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INERTIAL MANIFOLDS FOR CERTAIN SUB-GRID SCALE α-MODELS OF

TURBULENCE

MOHAMMAD ABU HAMED, YANQIU GUO, AND EDRISS S. TITI

Abstract. In this note we prove the existence of an inertial manifold, i.e., a global invariant,
exponentially attracting, finite-dimensional smooth manifold, for two different sub-grid scale
α-models of turbulence: the simplified Bardina model and the modified Leray-α model, in
two-dimensional space. That is, we show the existence of an exact rule that parameterizes
the dynamics of small spatial scales in terms of the dynamics of the large ones. In particular,
this implies that the long-time dynamics of these turbulence models is equivalent to that of a
finite-dimensional system of ordinary differential equations.

MSC Classification: 35Q30, 37L30, 76BO3, 76D03, 76F20, 76F55, 76F65

Keywords: inertial manifold, turbulence models, sub-grid scale models, Navier-Stokes equa-
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1. INTRODUCTION

The fidelity of the Navier-Stokes equation (NSE) is in capturing the dynamics of turbulent
flow. However, their downfall is in reliable direct numerical simulation of turbulence. Therefore
scientists have developed various approximate models which are computable and preserve some
statistical properties of the physical phenomenon of turbulence, and of particular interest to us
in this paper are certain sub-grid scale α-models of turbulence.

In many applications, it is enough to capture the mean features of the flow, to obtain this
we need to average the nonlinear term in the NSE and this leads to the well-known closure
problem. In 1980 Bardina et al. [3] introduced a particular sub-grid scale model which was
later simplified by Layton and Lewandowski (see [40]) which takes the form:











vt − ν∆v + (v̄ · ∇)v̄ +∇p = f,

∇ · v = 0,

v = v̄ − α2∆v̄.

(1)

Here the unknowns are the fluid velocity field v, and the “filtered” velocity vector v̄, as well
as the “filtered” pressure scalar p. In addition, there are two given parameters: ν > 0 is the
constant kinematic viscosity, and α > 0 is the length scale parameter which represents the width
of the filter. The vector field f is a given body forcing, assumed to be time independent. For
more details about model (1), see [4, 5, 32, 33].
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In 2005 Cheskidov-Holm-Olson-Titi [10] introduced the Leray-α model:











wt − ν∆w + (w̄ · ∇)w +∇p = f,

∇ · w = 0,

w = w̄ − α2∆w̄.

(2)

Leray (1934 [34]) established the well-posedness of the NSE in 2D and 3D, by introducing a
modified system similar to (2), for which it was easier to prove the existence and uniqueness
of solutions, and then by passing with the parameter α → 0+ he achieved the existence of
solutions to the NSE. An upper bound of the dimension of the global attractor and an analysis
of the energy spectrum of the solutions of the 3D version of (2) were established in [10], which
suggested that the Leray-α model has great potential to become a good sub-grid scale large-eddy
simulation model of turbulence. See also a computational study of this model in [27, 36, 37].

Inspired by the remarkable performance of the Leray-α model, Ilyin-Lunasin-Titi (2006 [29])
proposed a modified-Leray-α model:











ut − ν∆u+ (u · ∇)ū+∇p = f,

∇ · u = 0,

u = ū− α2∆ū.

(3)

It was demonstrated in [29] that the reduced modified-Leray-α model (3) in infinite channels
and pipes is equally impressive as a closure model to Reynolds averaged equations as Leray-
α model (2) and other sub-grid scale α-models, e.g. the Navier-Stokes-α (also known as the
viscous Camassa-Holm equations [7, 8, 9, 20]) and the Clark-α [6].

Comparing the three turbulence models (1), (2) and (3), we see that in the simplified Bardina
model (1), both arguments of the nonlinearity are regularized, while the Leray-α model (2)
regularizes only the first argument of the nonlinear term, i.e. the transport velocity, and in the
modified Leray-α model (3), solely the second argument of the nonlinearity is smoothed, i.e. the
transported velocity is regularized. For the models (1), (2) and (3), the global well-posedness
in 3D, the existence of a finite dimensional global attractor, and the analysis of their energy
spectra have been established in [3, 10, 29, 34].

Our interest lies in the large-time behavior of the dynamics generated by turbulence models.
In particular, we aim to show existence of inertial manifolds for two different systems in 2D: the
simplified Bardina model (1) and the modified-Leray-α model (3), subject to periodic boundary
condition, with basic domain Ω = [0, 2πL]2.

Long-time behavior of solutions of a large class of dissipative PDEs possesses a resemblance
of the behavior of finite-dimensional systems. The concept of inertial manifold was introduced
to capture such phenomenon. Indeed, an inertial manifold of an evolution equation is a finite-
dimensional Lipschitz invariant manifold attracting exponentially all the trajectories of a dynam-
ical system induced by the underlying evolution equation [24, 25]. The precise definition is given
in section 3.2. The existence of an inertial manifold for an infinite-dimensional evolution equa-
tion represents the best analytical form of reduction of an infinite system to a finite-dimensional
one. This is because an inertial manifold is finite-dimensional, and the restriction of the evolu-
tionary equation to this manifold reduces to a finite system of ODEs, which called the inertial
form of the given evolutionary equation. As a result, the dynamical properties of the solution
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of the evolutionary PDE, which is an infinite-dimensional dynamical system can be analyzed by
the study of an inertial form which is a finite-dimensional system.

Inertial manifolds were introduced by Foias, Sell and Temam in [24, 25]. The idea was
employed to a large class of dissipative equations [26] (see also [44]). A number of dynamical
systems possess inertial manifolds, e.g., certain nonlinear reaction-diffusion equations in 2D
[18, 25, 39] and in 3D [38], the Kuramoto-Sivashinsky equation [23, 24, 26, 44], Cahn-Hilliard
equation [17], as well as the von Kármán plate equations [11], just to name a few. It is worth
mentioning that an original purpose of developing the theory of inertial manifolds was for
treating the NSE. Unfortunately, the problem of existence of inertial manifolds for the 2D
NSE is still unsolved and we are unaware of any such result for a system of hydrodynamics
which does not involve an artificial hyperviscosity. In particular, the question of existence of
an inertial manifold is still open even for the 2D Navier-Stokes-α model, Leray-α model and
Clark-α model and others. Recently, the concept of determine form was introduced in [21, 22],
in which it is shown that the long-time dynamics of such models, in particular that of the 2D
NSE, is equivalent to the long-time dynamics of an ODE with continuously Lipschitz vector field
in certain infinite-dimensional space of trajectories with finite range (see also [28] for related
results). In this paper, we succeed to obtain the existence of inertial manifolds for the simplified
Bardina model (1) and the modified Leray-α model (3), since the nonlinear terms in these two
systems are milder than that of the NSE and other α-models of turbulence.

The paper is organized as follows: section 2 is devoted to the preliminaries and the functional
settings. In section 3 and section 4, we study the simplified Bardina model (1) and the modified
Leray-α model (3), respectively, and prove the existence of absorbing balls in various Hilbert
spaces, as well as the existence of an inertial manifold for both models. In the appendix, we
give a detailed justification of the strong squeezing property for these two systems.

2. PRELIMINARIES

We introduce some preliminary background material, which is standard in the mathematical
theory of the NSE.

(i) Let F be the set of all two-dimensional trigonometric vector-valued polynomials with
periodic domain Ω. We then set

V =

{

φ ∈ F : ∇ · φ = 0 and

∫

Ω
φ(x) dx = 0

}

.

We set H and V to be the closures of V in L2
per and H1

per, respectively.

(ii) We denote by Pσ : L2
per → H the Helmholtz-Leray orthogonal projection operator, and

by A = −Pσ∆ the Stokes operator with the domain D(A) = (H2
per(Ω))

2 ∩ V . Since we
work with periodic space, then it is known that

Au = −Pσ∆u = −∆u, for all u ∈ D(A).

The operator A−1 is a self-adjoint positive definite compact operator from H into H
(cf. [16, 45]). We denote by 0 < L−2 = λ1 ≤ λ2 ≤ . . . . . . the eigenvalues of A, repeated
according to their multiplicities.
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(iii) We denote by |·| and (·, ·) the L2
per norm and the L2

per inner product, respectively. More-

over, one can show that V = D(A1/2). Therefore we denote by ((·, ·)) = (A1/2·, A1/2·),
and by || · || = |A1/2 · | the inner product and the norm on V , respectively. We also

observe that, D(As/2) = (Hs
per(Ω))

2 ∩ V (cf. [16, 45]). In addition, we denote by V ′

the dual space of V , and by D(A)′ the dual space of D(A).
(iv) For r < s, we recall the following version of Poincaré inequality

λs−r
1 |Arφ| ≤ |Asφ|, (4)

for every φ ∈ D(As).
(v) For w1, w2 ∈ V , we define the bilinear form

B(w1, w2) = Pσ((w1 · ∇)w2).

The bilinear form B : V × V → V ′ is continuous, and it satisfies

〈B(w1, w2), w3〉V ′ = −〈B(w1, w3), w2〉V ′ . (5)

In particular, 〈B(w1, w2), w2〉V ′ = 0. Moreover, (B(w,w), Aw) = 0 for every w ∈ D(A)
(this is only true in the 2D periodic case). See [16, 44, 45, 46] for proofs. In addition,
we shall use the following estimate on the L2−norm of B(w1, w2) in 2D:

|B(w1, w2)| ≤ c|w1|
1

2 ‖w1‖
1

2 ‖w2‖
1

2 |Aw2|
1

2 , (6)

which is due to Hölder’s inequality and Ladyzhenskaya’s inequality in 2D: |φ|L4 ≤

c|φ|
1

2‖φ‖
1

2 .

Finally, we quote the following classical result (see, e.g., [44, 45]):

Lemma 1. Let X ⊂ H ≡ H ′ ⊂ X ′ be Hilbert spaces. If u ∈ L2(0, T ;X) with ut ∈ L2(0, T ;X ′),
then u is almost everywhere equal to an absolutely continuous function from [0, T ] into H and
the following equality holds in the distribution sense on (0, T ):

d

dt
|u|2H = 2〈ut, u〉X′ . (7)

3. THE SIMPLIFIED BARDINA MODEL

This section is devoted to prove the existence of an inertial manifold for the two-dimensional
simplified Bardina model. We apply the Helmholtz-Leray orthogonal projection Pσ to equation
(1), and obtain the following equivalent functional differential equation (see e.g., [16, 45])











vt + νAv +B(v̄, v̄) = f,

v = v̄ + α2Av̄,

v(0) = v0.

(8)

Moreover, we assume that the forcing term and the initial data have spatial zero mean, i.e.,
∫

Ω f(x)dx =
∫

Ω v0(x)dx = 0, and hence
∫

Ω v(x, t)dx = 0, for all t ≥ 0.
In [5] Cao-Lunasin-Titi proved the global well-posedness of the three-dimensional viscous

simplified Bardina model (8), as well as the existence of a finite-dimensional global attractor.
Therefore we will not discuss here the question of well-posedness and the attractor’s dimension,
because the two-dimensional case follows similar treatment. Notably, it was also shown in
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[5] that the global regularity of the three-dimensional inviscid simplified Bardina model, i.e.,
when ν = 0. In this inviscid case, model (8) coincides with the inviscid Navier-Stokes-Voigt
model, namely, Euler-Voigt model which has been a subject of intensive recent analytical and
computational studies (cf. [30, 36, 32, 33, 35, 42]).

Now we can quote the following theorem without proof (since it has been proven in the 3D
case in [5]) which states the global existence and uniqueness of regular solutions of equation (8).

Theorem 2. (Regular Solution) Let f ∈ V ′, v0 ∈ V ′, and T > 0. Then there exists a unique
function v ∈ C([0, T ];V ′) ∩ L2([0, T ];H) with vt ∈ L2([0, T ];D(A)′) and v(0) = v0, and which
satisfies (8) in the following sense:

〈vt, w〉D(A)′ + ν 〈Av,w〉D(A)′ + (B(v̄, v̄), w) = 〈f,w〉V ′ , (9)

for every w ∈ D(A). Moreover the solution v depends continuously on the initial data, with
respect to the L∞([0, T ];V ′) norm. Here, equation (9) is understood in the following sense: for
almost everywhere t0, t ∈ [0, T ] we have

〈v(t), w〉V ′ − 〈v(t0), w〉V ′ + ν

∫ t

t0

(v,Aw) +

∫ t

t0

(B(v̄(s), v̄(s)), w) ds =

∫ t

t0

〈f,w〉V ′ds.

3.1. Asymptotic estimates for the long-time dynamics. This section is devoted to es-
tablishing appropriate a priori estimates for the long-time dynamics of the solution of (8). In
particular, we are required to justify the existence of absorbing balls for the dynamical system
induced by equation (8), in various spaces of functions. This is needed for our proof for the ex-
istence of inertial manifolds. The estimates provided here are done formally, but one can prove
them rigorously, e.g., by using the Galerkin approximation scheme. Throughout the following
estimates, we assume the forcing f ∈ V ′, and the initial data v(0) ∈ V ′, thus the corresponding
v̄(0) ∈ V .

3.1.1. H1-estimate for v̄. We take the D(A)′ action of equation (8) on v̄ and use the identities
(5) and (7) to obtain

1

2

d

dt
(|v̄|2 + α2‖v̄‖2) + ν(‖v̄‖2 + α2|Av̄|2) = 〈f, v̄〉. (10)

By the Cauchy-Schwarz and Young’s inequalities, we have

|〈f, v̄〉| = |(A−1f,Av̄)| ≤ |A−1f ||Av̄| ≤
|A−1f |2

2α2ν
+

α2ν

2
|Av̄|2.

Consequently, we obtain

d

dt
(|v̄|2 + α2‖v̄‖2) + ν(‖v̄‖2 + α2|Av̄|2) ≤

|A−1f |2

α2ν
.

Applying Poincaré inequality (4) we get

d

dt
(|v̄|2 + α2‖v̄‖2) + νλ1(|v̄|

2 + α2‖v̄‖2) ≤
|A−1f |2

α2ν
.

We then use Gronwall’s inequality to deduce

|v̄(t)|2 + α2‖v̄(t)‖2 ≤ e−νλ1(t−t0)(|v̄(t0)|
2 + α2‖v̄(t0)‖

2) +
1− e−νλ1(t−t0)

α2λ1ν2
|A−1f |2,
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for all t ≥ t0 ≥ 0. Therefore

lim sup
t→∞

(|v̄(t)|2 + α2‖v̄(t)‖2) ≤
1

α2λ1ν2
|A−1f |2.

In particular, it follows that

lim sup
t→∞

(1 + α2λ1)|v̄(t)|
2 ≤

1

α2λ1ν2
|A−1f |2 and lim sup

t→∞

α2‖v̄(t)‖2 ≤
1

α2λ1ν2
|A−1f |2.

This immediately implies

lim sup
t→∞

|v̄(t)| ≤
1

2
ρ0 :=

[

(1 + α2λ1)α
2λ1ν

2
]−

1

2 |A−1f |;

lim sup
t→∞

‖v̄(t)‖ ≤
1

2
ρ1 := (α4λ1ν

2)−
1

2 |A−1f |. (11)

Thanks to the above, we conclude that, the solution v̄(t), after long enough time, enters a ball
in H, centered at the origin, with radius ρ0. Also, v̄(t) enters a ball in V with radius ρ1. Notice
the growth of ρ0 and ρ1 with respect to the shrinking of ν satisfies ρ0 ∼ ν−1 and ρ1 ∼ ν−1

asymptotically.

3.1.2. H2-estimate on v̄ (L2-estimate on v). We take the D(A)′ action of equation (8) on Av̄
by using (7), and employ the identity (B(v̄, v̄), Av̄) = 0 (which is only valid in 2D periodic case,
c.f. [16, 44]). It follows that

1

2

d

dt
(‖v̄‖2 + α2|Av̄|2) + ν(|Av̄|2 + α2|A3/2v̄|2) = 〈f,Av̄〉.

By Cauchy-Schwarz inequality and Young’s inequality, we have

|〈f,Av̄〉| = |(A−
1

2 f,A
3

2 v̄)| ≤
|A−1/2f |2

2α2ν
+

α2ν

2
|A3/2v̄|2.

As a result, we reach to

d

dt
(‖v̄‖2 + α2|Av̄|2) + ν(|Av̄|2 + α2|A3/2v̄|2) ≤

|A−1/2f |2

α2ν
.

Applying Poincaré inequality (4) followed by Gronwall’s inequality, one has

‖v̄(t)‖2 + α2|Av̄(t)|2 ≤ e−νλ1(t−t0)(‖v̄(t0)‖
2 + α2|Av̄(t0)|

2) +
1− e−νλ1(t−t0)

α2λ1ν2
|A−1/2f |2, (12)

for all t ≥ t0 > 0. Thus,

lim sup
t→∞

(‖v̄(t)‖2 + α2|Av̄(t)|2) ≤
1

α2λ1ν2
|A−1/2f |2. (13)

In particular, it follows that

lim sup
t→∞

‖v̄(t)‖ ≤
1

2
ρ̃1 :=

[

(1 + α2λ1)α
2λ1ν

2
]−

1

2 |A−
1

2 f |;

lim sup
t→∞

|Av̄(t)| ≤
1

2
ρ2 := (α4λ1ν

2)−
1

2 |A−
1

2 f |.

The above estimate along with (11) shows that ‖v̄(t)‖ ≤ min{ρ1, ρ̃1} for sufficiently large time
t. Also, v̄(t) enters a ball with radius ρ2 in D(A) after long enough time.
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Furthermore, since v = v̄ + α2Av̄, one has

lim sup
t→∞

|v(t)| ≤ lim sup
t→∞

|v̄(t)|+ α2 lim sup
t→∞

|Av̄(t)| ≤ (ρ0 + α2ρ2)/2.

Thus, after sufficiently large time, v(t) enter a ball in H with the radius ρ := ρ0 + α2ρ2. Also,
note that ρ ∼ ν−1 asymptotically.

3.2. Existence of an inertial manifold. Denote R(v) := B(v̄, v̄), then equation (8) takes the
form

dv

dt
+ νAv +R(v) = f, (14)

where we assume that f ∈ V ′. From the energy estimate in subsection 3.1.2, we see that for
positive time t, one has v̄(t) ∈ D(A), and thus v(t) ∈ H for t > 0. Moreover, for sufficient
large t, the solution v(t) enters a ball with radius ρ. Since we are concerning the large-time
behavior of solutions, without loss of generality we can assume v0 ∈ H, throughout the following
discussion.

Notice that the nonlinear operator R is locally Lipschitz from H to H. Indeed, let v1,
v2 ∈ H, then the corresponding v̄1, v̄2 ∈ D(A). Furthermore, since v = v̄ + α2Av̄, one has
v̄ = (I + α2A)−1v, and thus

|Av̄| = |A(I + α2A)−1v| ≤
1

α2
|v|. (15)

Then, by using (6), along with Poincaré inequality and estimate (15), we infer

|R(v1)−R(v2)| = |B(v̄1, v̄1)−B(v̄2, v̄2)|

= |B(v̄1, v̄1 − v̄2)|+ |B(v̄1 − v̄2, v̄2)|

≤ c|v̄1|
1

2 ‖v̄1‖
1

2 ‖v̄1 − v̄2‖
1

2 |Av̄1 −Av̄2|
1

2 + c|v̄1 − v̄2|
1

2‖v̄1 − v̄2‖
1

2 ‖v̄2‖
1

2 |Av̄2|
1

2

≤ cλ−1
1 (|Av̄1|+ |Av̄2|)|Av̄1 −Av̄2|

≤ cλ−1
1 α−4(|v1|+ |v2|)|v1 − v2|. (16)

As in [16, 25, 26, 44], in order to avoid certain technical difficulties for large values of |v|,
resulting from the nonlinearity, we truncate the nonlinear term by a smooth cutoff function
outside the ball of radius 2ρ in H. Indeed, let θ : R+ → [0, 1] with θ(s) = 1 for 0 ≤ s ≤ 1,
θ(s) = 0 for s ≥ 2, and |θ′(s)| ≤ 2 for s ≥ 0. Define θρ(s) = θ(s/ρ), for s ≥ 0. We consider the
following “prepared” equation, which is a modification of (14):

dv

dt
+ νAv + θρ(|v|)(R(v) − f) = 0. (17)

Notice that (14) and (17) have the same asymptotic behaviors in time, and the same dynamics
in the neighborhood of the global attractor. This is because we have shown that for t sufficiently
large, v(t) enters a ball in H with radius ρ. On the other hand, the advantage of (17) compared
to (14) is that (17) possesses an absorbing invariant ball in H. To see this, take the scalar
product of (17) with v, and then for |v| ≥ 2ρ, one has

1

2

d

dt
|v|2 + λ1ν|v|

2 ≤
1

2

d

dt
|v|2 + ν‖v‖2 = 0,
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since θρ(|v|) = 0 for |v| ≥ 2ρ. It follows that, if |v0| > 2ρ, the orbit of the solution to (17) will
converge exponentially to the ball of radius 2ρ in H, while if |v0| ≤ 2ρ, the solution does not
leave this ball.

Furthermore, since R : H → H is locally Lipschitz, the truncated nonlinearity F (v) :=
θρ(|v|)R(v) is globally Lipschitz from H to H. To see this, we let v1, v2 ∈ H, and calculate for
three cases:

(i) if |v1| ≥ 2ρ and |v2| ≥ 2ρ, then F (v1) = F (v2) = 0;
(ii) if |v1| ≥ 2ρ ≥ |v2|, then θρ(|v1|) = 0, thus

|F (v1)− F (v2)| = |θρ(|v1|)R(v2)− θρ(|v2|)R(v2)|

≤
2

ρ
|v1 − v2||R(v2)| ≤ cρλ−1α−4|v1 − v2|,

by virtue of (16) and the property of θ.
(iii) if |v1| ≤ 2ρ and |v2| ≤ 2ρ, then

|F (v1)− F (v2)| ≤ |θρ(|v1|)(R(v1)−R(v2))|+ |R(v2)(θρ(|v1|)− θρ(|v2|))|

≤ cρλ−1
1 α−4|v1 − v2|,

due to (16) and the property of θ.

A summary of these three cases yields

|F (v1)− F (v2)| ≤ L |v1 − v2|, where L := cρλ−1
1 α−4. (18)

Since the nonlinearity of (17) is globally Lipschitz, we shall see that equation (17) possesses
the strong squeezing property stated in Proposition 3, provided certain spectral gap condition
is fulfilled. Indeed, for γ > 0 and n ∈ N, we define the cone

Γn,γ :=

{(

v1
v2

)

∈ H ×H : |Qn(v1 − v2)| ≤ γ|Pn(v1 − v2)|

}

. (19)

The strong squeezing property asserts: if the dynamics of two trajectories starts inside the cone
Γn,γ , then the trajectories stay inside the cone forever, and the higher Fourier modes of the
difference are dominated by the lower modes (i.e. the cone invariance property); on the other
hand, for as long as the two trajectories are outside the cone, then the higher Fourier modes
of the difference decay exponentially fast (i.e. the decay property). More precisely, we have the
following result.

Proposition 3. Let v1 and v2 be two solutions of (17). Then (17) satisfies the following
properties:

(i) The cone invariance property: Assume that n is large enough such that the spectral

gap condition λn+1 − λn > L (γ+1)2

νγ holds. If

(

v1(t0)
v2(t0)

)

∈ Γn,γ for some t0 ≥ 0, then
(

v1(t)
v2(t)

)

∈ Γn,γ for all t ≥ t0;
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(ii) The decay property: Assume that n is large enough such that λn+1 > ν−1L

(

1
γ + 1

)

.

If

(

v1(t)
v2(t)

)

6∈ Γn,γ for 0 ≤ t ≤ T , then

|Qn(v1(t)− v2(t))| ≤ |Qn(v1(0))− v2(0)|e
−bnt, for 0 ≤ t ≤ T,

where bn := νλn+1 − L

(

1
γ + 1

)

> 0.

Proof. See the appendix. �

Notice that, the eigenvalues of the operator A satisfies the spectral gap condition:

lim sup
j→∞

(λj+1 − λj) = ∞. (20)

Indeed, since the eigenvalues of A in the periodic domain are of the form L−2(k21 + k22), the
spectral gap condition (20) is available due to a classical result in number theory:

Theorem 4. (Richards [41]) The sequence {γk = m2
1 +m2

2 : m1,m2 ∈ Z and γk+1 ≥ γk} has
a subsequence {γkj} such that γkj+1

− γkj ≥ δ log(γkj ) for some δ > 0.

Obviously, (20) implies the required condition in Proposition 3, i.e., there exists n ∈ N such

that λn+1 − λn > 4L
ν and λn+1 > ν−1L

(

1
γ + 1

)

, and thus for such n large enough, the strong

squeezing property holds for the “prepared” equation (17).

Definition 5. (Inertial Manifold) [25] Consider the solution operator S(t) generated by the
“prepared” equation (17). A subset M ∈ H is called an initial manifold for (17) if the following
properties are satisfied :

(i) M is a finite-dimensional Lipschitz manifold;
(ii) M is invariant, i.e. S(t)M ⊂ M, for all t ≥ 0;
(iii) M attracts exponentially all the solutions of (17).

Clearly, property (iii) implies that M contains the global attractor.
Next, we state a fundamental theorem concerning that the strong squeezing property implies

the existence of an inertial manifold and the exponential tracking (cf. [26]) for dissipative
evolution equations. There are several proofs of this theorem that can be found in [17, 23, 26,
43, 44].

Theorem 6. Consider a nonlinear evolutionary equation of the type vt+Av+N(v) = 0, where
A is a linear, unbounded self-adjoint positive operator, acting in a Hilbert space H, such that
A−1 is compact, and N : H → H is a nonlinear operator. Assume the solution v(t) enters a ball
in H with the radius ρ for sufficiently large time t. For γ > 0 and n ∈ N, we define the cone Γn,γ

in (19). Assume there exists n ∈ N such that the “prepared” equation vt+Av+ θρ(|v|)N(v) = 0
satisfies the strong squeezing property, i.e., for any two solutions v1 and v2 of the “prepared”
equation,

• if

(

v1(t0)
v2(t0)

)

∈ Γn,γ for some t0 ≥ 0, then

(

v1(t)
v2(t)

)

∈ Γn,γ for all t ≥ t0;
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• if

(

v1(t)
v2(t)

)

6∈ Γn,γ for 0 ≤ t ≤ T , then there exists an > 0 such that

|Qn(v1(t)− v2(t))|H ≤ e−ant|Qn(v1(0)) − v2(0)|H , for 0 ≤ t ≤ T.

Then the “prepared” equation possesses an n-dimensional inertial manifold in H. In addition,
the following exponential tracking property holds: for any v0 ∈ H, there exists a time τ ≥ 0 and
a solution S(t)ϕ0 on the inertial manifold such that

|S(t+ τ)v0 − S(t)ϕ0|H ≤ Ce−ant,

where the constant C depends on |S(τ)v0|H and |ϕ0|H .

Since we have shown that the strong squeezing property holds for (17) provided n is large
enough, by using Theorem 6, we obtain the following result for the simplified Bardina model.

Theorem 7. The “prepared” equation (17) of the simplified Bardina model possesses an n-
dimensional inertial manifold M in H, i.e., the solution S(t)v0 of (17) approaches the invariant
Lipschitz manifold M exponentially. Furthermore, the following exponential tracking property
holds: for any v0 ∈ H, there exists a time τ ≥ 0 and a solution S(t)ϕ0 on the inertial manifold
M such that

|S(t+ τ)v0 − S(t)ϕ0| ≤ Ce−bnt,

where bn is defined in Proposition 3, and the constant C depends on |S(τ)v0| and |ϕ0|.

4. MODIFIED-LERAY-α MODEL

This section is devoted to proving the existence of an inertial manifold for the modified-
Leray-α model (3). Applying the Helmholtz-Leray orthogonal projection Pσ to (3), we obtain
the following equivalent functional differential equation:











ut + νAu+B(u, ū) = f

u = ū+ α2Aū

u(x, 0) = u0(x).

(21)

An analytical study of the modified-Leray-α model has been presented in [29]. Specifically, it
was shown that (21) is globally well-posed in 3D. In addition, an upper bound for the dimension
of its global attractor and analysis of the energy spectrum were established. The proof of global
well-posedness in 2D is very similar, so we just state the result and omit its proof.

Theorem 8. (Regular Solution) Let f ∈ H, u0 ∈ V ′, and T > 0. Then there exists a unique
function u ∈ C([0, T ];V ′) ∩ L2([0, T ];H) with ut ∈ L2([0, T ];D(A)′) and u(0) = u0, and which
satisfies equation (21) in the following sense:

〈

du

dt
, w

〉

D(A)′
+ ν 〈Au,w〉D(A)′ + (B(u, ū), w) = 〈f,w〉V ′ , (22)
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for every w ∈ D(A). Moreover the solution v depends continually on the initial data with respect
to the L∞([0, T ];V ′) norm. Here, the equation (22) is understood in the following sense: for
almost everywhere t0, t ∈ [0, T ] we have

〈u(t), w〉V ′ − 〈u(t0), w〉V ′ + ν

∫ t

t0

(u,Aw) +

∫ t

t0

(B(u(s), ū(s)), w) ds =

∫ t

t0

〈f,w〉V ′ds.

4.1. Asymptotic estimates for the long-time dynamics. In order to prove the existence
of an inertial manifold, it is required to establish appropriate a priori estimates on the long-time
dynamics of the solution. In particular, we are required to find absorbing balls for the dynamical
system induced by the equation (21) in various spaces of functions. The estimates provided here
are done formally, but can be justified rigorously, for instance, by using the standard Galerkin
approximation method. During our estimates, u0 ∈ V ′ and f ∈ H.

4.1.1. H1-estimate on ū. Taking the D(A)′ action of the equation (21) on ū by using the fact
(B(u, ū), ū) = 0 and (7), we obtain

1

2

d

dt
(|ū|2 + α2‖ū‖2) + ν(‖ū‖2 + α2|Aū|2) = (f, ū). (23)

Notice that, the energy identity (23) is almost identical to (10) from the analysis of the
simplified Bardina model. Therefore, we can adopt the estimate in the subsection 3.1.1 to
conclude

lim sup
t→∞

|ū(t)| ≤
1

2
ρ0 :=

[

(1 + α2λ1)α
2λ1ν

2
]−

1

2 |A−1f |;

lim sup
t→∞

‖ū(t)‖ ≤
1

2
ρ1 := (α4λ1ν

2)−
1

2 |A−1f |.

From this, we conclude that, the solution ū(t), after a sufficiently large time, enters a ball in H
with radius ρ0, and also enters a ball in V with radius ρ1. In addition the growth of the radii
ρ0 and ρ1 with respect to the shrinking of the viscosity ν satisfies ρ0 ∼ ν−1 and ρ1 ∼ ν−1.

4.1.2. L2-estimate on u (H2-estimate on ū). By taking the D(A)′ action of the equation (21)
on u and using (7), we have

1

2

d

dt
|u|2 + ν‖u‖2 + (B(u, ū), u) = (f, u).

Recall in subsection 3.1.2 when we derived L2-estimate on v (H2-estimate on v̄) for the simplified
Bardina model, we used the identity (B(v̄, v̄), Av̄) = 0 (in the periodic 2D case) to eliminate the
nonlinearity. On the other hand, for the NSE, the L2-estimate is fairly easy, since (B(u, u), u) =
0. However, under the current situation, the nonlinear term (B(u, ū), u) does not vanish, which
causes the estimate to be slightly more involved. Indeed, by using Hölder’s inequality, and the

Ladyzhenskaya inequality |u|L4 ≤ c|u|
1

2‖u‖
1

2 , as well as the Young’s inequality, we infer

|(B(u, ū), u)| ≤ |u|2L4‖ū‖ ≤ c|u|‖u‖‖ū‖ ≤
ν

4
‖u‖2 +

c

ν
|u|2‖ū‖2.
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Also, |(f, u)| = |(A−
1

2 f,A
1

2u)| ≤ |A−
1

2 f |‖u‖ ≤ ν
4‖u‖

2 + 1
ν |A

−
1

2 f |2. Combining the above esti-
mates, we obtain

d

dt
|u|2 + ν‖u‖2 ≤

c

ν
|u|2‖ū‖2 +

2

ν
|A−

1

2 f |2.

In subsection 4.1.1, we have shown that there exists t1 > 0 such that |ū(t)| ≤ ρ0 and ‖ū(t)‖ ≤
ρ1 provided t ≥ t1. As a result,

d

dt
|u|2 + ν‖u‖2 ≤

c

ν
ρ21|u|

2 +
2

ν
|A−

1

2 f |2, for all t ≥ t1. (24)

We attempt to derive a uniform bound for |u(t)|. To this end, we integrate between s and
t+ 1

νλ1
for t1 ≤ t ≤ s ≤ t+ 1

νλ1
:

|u(t+
1

νλ1
)|2 ≤ |u(s)|2 +

c

ν
ρ21

∫ t+ 1

νλ1

t
|u(s)|2ds+

2

ν2λ1
|A−

1

2 f |2.

Then, integrating with respect to s from t to t+ 1
νλ1

gives

1

νλ1
|u(t+

1

νλ1
)|2 ≤

(

c

ν2λ1
ρ21 + 1

)
∫ t+ 1

νλ1

t
|u(s)|2ds +

2

ν3λ2
1

|A−
1

2 f |2, for all t ≥ t1. (25)

In order to control the right-hand side, we should obtain a bound on
∫ t+ 1

νλ1
t |u(s)|2ds. To this

end, we deduce from (23) by using Cauchy-Schwarz and Young’s inequalities:

d

dt
(|ū|2 + α2||ū||2) + ν(||ū||2 + α2|Aū|2) ≤

|A−1f |2

α2ν
.

Integrating the above inequality from t to t+ 1
νλ1

yields

να2

∫ t+ 1

νλ1

t
|Aū(s)|2ds ≤ |ū(t)|2 + α2||ū(t)||2 +

|A−1f |2

α2ν2λ1

≤ ρ20 + α2ρ21 +
|A−1f |2

α2ν2λ1
, for t ≥ t1,

where we have used the fact that |ū(t)| ≤ ρ0 and ‖ū(t)‖ ≤ ρ1 for t ≥ t1.

By definition u = ū+ α2Aū, it follows that |u|2 ≤ 2(|ū|2 + α4|Aū|2) ≤ 2
(

1
λ2
1

+ α4
)

|Aū|2 due

to Poincaré inequality. Consequently, for t ≥ t1, one has
∫ t+ 1

νλ1

t
|u(s)|2ds ≤ 2

(

1

λ2
1

+ α4

)
∫ t+ 1

νλ1

t
|Aū(s)|2ds

≤ C0 :=

(

1

λ2
1

+ α4

)

2

να2

(

ρ20 + α2ρ21 +
|A−1f |2

α2ν2λ1

)

. (26)

Substituting (26) into (25), we conclude

|u(t+
1

νλ1
)|2 ≤ ρ23 :=

( c

ν
ρ21 + νλ1

)

C0 +
2

ν2λ1
|A−

1

2 f |2, for t ≥ t1.

This indicates that, for t ≥ t1 +
1

νλ1
, the solution u(t) enters a ball in H with the radius ρ3.



INERTIAL MANIFOLDS FOR TURBULENCE MODELS 13

Furthermore, the growth of the radius ρ3 with respect to the shrinking of the viscosity ν
satisfies ρ3 ∼ ν−3.

4.1.3. H1-estimate on u. We take the D(A)′ action of the equation (21) on Au. It follows from
(7) that

1

2

d

dt
‖u‖2 + ν|Au|2 + (B(u, ū), Au) = (f,Au).

By using Cauchy-Schwarz and Young’s inequalities, one has

d

dt
‖u‖2 + ν|Au|2 ≤

2

ν
(|B(u, ū)|2 + |f |2).

Recall we have shown that ‖ū(t)‖ ≤ ρ1 for t ≥ t1, as well as |u(t)| ≤ ρ3 for t ≥ t1 + 1
νλ1

.

Therefore, by employing (6) along with (15), we deduce

|B(u, ū)| ≤ c|u|
1

2‖u‖
1

2 ‖ū‖
1

2 |Aū|
1

2 ≤
c

α
|u|‖u‖

1

2‖ū‖
1

2 ≤
c

α
ρ3ρ

1

2

1 ‖u‖
1

2 , for t ≥ t1 +
1

νλ1
.

As a result, for t ≥ t1 +
1

νλ1
,

d

dt
‖u‖2 ≤

c

να2
ρ23ρ1‖u‖ +

2

ν
|f |2.

To obtain a uniform bound for ‖u(t)‖, we integrate between s and t+ 1
νλ1

, for t1 +
1

νλ1
≤ t ≤

s ≤ t+ 1
νλ1

,

‖u(t+
1

νλ1
)‖2 ≤ ‖u(s)‖2 +

c

να2
ρ23ρ1

∫ t+ 1

νλ1

t
‖u(s)‖ds +

2

ν2λ1
|f |2.

Then, using Cauchy-Schwarz and integrating with respect to s between t and t+ 1
νλ1

yield

1

νλ1
‖u(t+

1

νλ1
)‖2 ≤

∫ t+ 1

νλ1

t
‖u(s)‖2ds+

c

ν
5

2α2λ
3

2

1

ρ23ρ1

(

∫ t+ 1

νλ1

t
‖u(s)‖2ds

)
1

2

+
2

ν3λ2
1

|f |2,

for t ≥ t1 +
1

νλ1
. Now we ought to find a bound for

∫ t+ 1

νλ1

t ‖u(s)‖2ds. Indeed, integrating (24)

from t to t+ 1
νλ1

for t ≥ t1 +
1

νλ1
gives

∫ t+ 1

νλ1

t
‖u(s)‖2ds ≤

1

ν

(

|u(t)|2 +
c

ν
ρ21

∫ t+ 1

νλ1

t
|u(s)|2ds+

2

ν2λ1
|A−

1

2 f |2

)

≤ C1 :=
1

ν

(

ρ23 +
c

ν
ρ21C0 +

2

ν2λ1
|A−

1

2 f |2
)

,

where we have used (26) and the fact that |u(t)| ≤ ρ3 provided t ≥ t1 +
1

νλ1
.

Finally, we conclude

‖u(t)‖2 ≤ ρ̃2 := νλ1C1 +
c

ν
3

2α2λ
1

2

1

ρ23ρ1C
1

2

1 +
2

ν2λ1
|f |2, for t ≥ t1 +

2

νλ1
.

This shows the solution u(t) enters of a ball in V of radius ρ̃ for t ≥ t1 +
2

νλ1
.
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Also, recall ρ0 ∼ ν−1, ρ1 ∼ ν−1, ρ3 ∼ ν−3, then by (26) one has C0 ∼ ν−3, and thus we see
that C1 ∼ ν−7. Hence, ρ̃ ∼ ν−6.

4.2. Existence of an inertial manifold. From energy estimates established in section 4.1,
we see that for positive time t, one has u(t) ∈ V because of the parabolic nature of the equation,
and for sufficiently large time t ≥ t1 +

2
νλ1

, the solution u(t) enters a ball in V of radius ρ̃. So,
without loss of generality, as far as inertial manifold is concerned, which is a long-time behavior,
we assume the initial data u0 ∈ V .

We set R(u) := B(u, ū). Then the equation (21) takes the form

ut + νAu+R(u) = f. (27)

Recall that the nonlinear term B(v̄, v̄) = Pσ(v̄ · ∇)v̄ in the simplified Bardina model (1) is
locally Lipschitz from H to H, which is a condition for (1) possessing an inertial manifold.
However, R(u) does not have this property, since it is not a mapping from H to H. However,
we will be able to show that R is locally Lipschitz continuous from V to V . To see this, we
calculate

‖R(u)‖ = |A
1

2B(u, ū)| ≤ |B(A
1

2u, ū)|+ |B(u,A
1

2 ū)|

≤ ‖u‖|∇ū|L∞ + c|u|
1

2 ‖u‖
1

2 |Aū|
1

2 |A
3

2 ū|
1

2

≤ c‖u‖‖ū‖
1

2 |A
3

2 ū|
1

2 + c|u|
1

2 ‖u‖
1

2 |Aū|
1

2 |A
3

2 ū|
1

2

≤ cλ
−

1

2

1 ‖u‖|A
3

2 ū|

≤ cλ
−

1

2

1 α−2‖u‖2. (28)

Note that, throughout the above calculation, we have employed (6), and Agmon’s inequality in

2D: |φ|L∞ ≤ c|φ|
1

2 |Aφ|
1

2 , as well as (15), where c is a positive constant.
This shows that R is a mapping from V to V . By similar computation, we deduce, for u1,

u2 ∈ V :

‖R(u1)−R(u2)‖ ≤ cλ
−

1

2

1 α−2(‖u1‖+ ‖u2‖)‖u1 − u2‖, (29)

that is, R : V → V is locally Lipschitz continuous.
Recall in the subsection 4.1.3, we have shown that |u(t)| ≤ ρ̃ for sufficiently large time

t ≥ t1+
2

νλ1
. As in [25, 26], in order to avoid certain technical difficulties for large values of ‖u‖,

resulting from the nonlinearity, we truncate the nonlinear term outside the ball of radius 2ρ̃ in
V by a smooth cutoff function θ : R+ → [0, 1] with θ(s) = 1 for 0 ≤ s ≤ 1, θ(s) = 0 for s ≥ 2,
and |θ′(s)| ≤ 2 for s ≥ 0. Define θρ̃(s) = θ(s/ρ̃) for s ≥ 0. We consider the following “prepared”
equation, which is a modification of (27):

ut + νAu+ θρ̃(‖u‖)(R(u) − f) = 0. (30)

Since R : V → V is locally Lipschitz, by similar calculation as in subsection 3.2, it can be
shown that the truncated nonlinearity F(u) := θρ̃(‖u‖)R(u) is globally Lipschitz continuous

with Lipschitz constant L := cρ̃λ
−

1

2

1 α−2.
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Now, for γ > 0 and N ∈ N, we define the cone in the product space V × V :

Γ̃N,γ :=

{(

u1
u2

)

∈ V × V : ‖QN (u1 − u2)‖ ≤ γ‖PN (u1 − u2)‖

}

.

The following result states the equation (30) possesses the strong squeezing property :

Proposition 9. Let u1 and u2 be two solutions of (30). Then (30) satisfies the following
properties:

(i) The cone invariance property: Assume that N is large enough such that the spectral

gap condition λN+1 − λN > L(γ+1)2

νγ holds. If

(

u1(t0)
u2(t0)

)

∈ Γ̃N,γ for some t0 ≥ 0, then
(

u1(t)
u2(t)

)

∈ Γ̃N,γ for all t ≥ t0;

(ii) The decay property: Assume that N is sufficiently large such that λN+1 > ν−1L
(

1
γ + 1

)

.

If

(

u1(t)
u2(t)

)

6∈ Γ̃N,γ for 0 ≤ t ≤ T , then

‖QN (u1(t)− u2(t))‖ ≤ ‖QN (u1(0)) − u2(0)‖e
−βN t, for 0 ≤ t ≤ T,

where βN := νλN+1 − L
(

1
γ + 1

)

> 0.

Proof. See the appendix. �

Note that the spectral gap condition is satisfied for sufficiently large N , by virtue of Theorem
4. Consequently the strong squeezing property holds for the equation (30). Then, according to
Theorem 6 which concerns the existence of an inertial manifold, we have the following result.

Theorem 10. The “prepared” equation (30) of the modified-Leray-α model possesses an N -
dimensional inertial manifold M in V , i.e., the solution S(t)u0 of (30) approaches the invariant
Lipschitz manifold M exponentially in V . Furthermore, the following exponential tracking prop-
erty holds: for any u0 ∈ V , there exists a time τ ≥ 0 and a solution S(t)ϕ0 on the inertial
manifold M such that

‖S(t+ τ)u0 − S(t)ϕ0‖ ≤ Ce−βN t,

where βN is defined in Proposition 9, and the constant C depends on ‖S(τ)u0‖ and ‖ϕ0‖.

Remark 1. Concerning the Leray-α model (2), the nonlinearity is (w̄ · ∇)w and clearly there

is a loss of derivative. It can be shown that the operator R̃(v) := B(v̄, v) = Pσ(v̄ · ∇)v is
Lipschitz continuous from V to H in 2D. As far as inertial manifold is concerned, this produces
the similar difficulty as what we face for the 2D NSE. Indeed, under such scenario, using the

classical theory, the existence of an inertial manifold requires a stronger gap condition: λ
1

2

j+1−λ
1

2

j

must be sufficiently big, which only holds for very large viscosity ν (see, e.g. [43]). But our main
interest lies in fluid flow with small viscosity, which is the situation when turbulence occurs, so
a result valid for only large ν is of no account.
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5. APPENDIX

We present the proof of Propositions 3 and 9 for the sake of completion. Since the proof of
these two propositions are similar, we only show Proposition 9.

Proof. The method of the proof is standard (see, e.g. [26]). Assume u1 and u2 are two solutions

of (30). To show the cone invariance property (i), it is sufficient to show

(

u1(t)
u2(t)

)

can not pass

through the boundary of the cone if the dynamics starts inside the cone. More precisely, we

shall show d
dt(‖QN (u1(t) − u2(t))‖ − γ‖PN (u1(t) − u2(t))‖) < 0 whenever

(

u1(t)
u2(t)

)

∈ ∂Γ̃N,γ ,

where ∂Γ̃N,γ stands for the boundary of the cone Γ̃N,γ .
Recall F(u) = θρ̃(‖u‖)R(u). Then by the equation (30),

∂t(u1 − u2) + νA(u1 − u2) + F(u1)−F(u2) = 0.

By setting p = PN (u1 − u2) and q = QN (u1 − u2), we obtain

pt + νAp+ PN (F(u1)−F(u2)) = 0 (31)

qt + νAq +QN (F(u1)−F(u2)) = 0. (32)

We take the scalar product of (31) with Ap,

1

2

d

dt
‖p‖2 + ν|Ap|2 + (PN (F(u1)−F(u2)), Ap) = 0.

Thus by the global Lipschitz continuity of F , we have

1

2

d

dt
‖p‖2 ≥ −νλN‖p‖2 − ‖F(u1)−F(u2)‖‖p‖ ≥ −νλN‖p‖2 − L‖u1 − u2‖‖p‖. (33)

Without loss of generality, we can assume ‖p(t)‖ > 0. (Otherwise, if ‖p(t∗)‖ = 0 for some t∗,
then since we consider the boundary of the cone, we can assume ‖q(t∗)‖ = γ‖p(t∗)‖ = 0, and
thus u1(t

∗) = u2(t
∗). By the uniqueness of solutions, we obtain u1(t) = u2(t) for all t ≥ t∗, and

the cone invariance property follows.) Now we can divide both sides of (33) by ‖p(t)‖, so

d

dt
‖p‖ ≥ −νλN‖p‖ − L‖u1 − u2‖. (34)

Analogously, by taking the scalar product of (32) with Aq, we can deduce

d

dt
‖q‖ ≤ −νλN+1‖q‖+ L‖u1 − u2‖. (35)

Multiplying (34) with γ and subtracting the result from (35), we infer, by using the fact
p+ q = u1 − u2,

d

dt
(‖q‖ − γ‖p‖) ≤ ν(λNγ‖p‖ − λN+1‖q‖) + L(γ + 1)(‖p‖ + ‖q‖).

So whenever ‖q(t)‖ = γ‖p(t)‖, i.e.

(

u1(t)
u2(t)

)

∈ ∂Γ̃N,γ , we have

d

dt
(‖q‖ − γ‖p‖) ≤

(

ν(λN − λN+1) + L
(γ + 1)2

γ

)

‖q‖ < 0,
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due to our assumption λN+1 − λN > L(γ+1)2

νγ .

To show the decay property (ii), we assume

(

u1(t)
u2(t)

)

6∈ Γ̃N,γ for 0 ≤ t ≤ T , then ‖q(t)‖ >

γ‖p(t)‖ for 0 ≤ t ≤ T , and we see from (35) that

d

dt
‖q‖ ≤ −νλN+1‖q‖+ L(‖p‖+ ‖q‖) ≤ −

[

νλN+1 − L

(

1

γ
+ 1

)]

‖q‖ = −βN‖q‖,

for 0 ≤ t ≤ T , where βN := νλN+1 − L
(

1
γ + 1

)

. By Gronwall’s inequality, one has

‖q(t)‖ ≤ e−βN t‖q(0)‖, for 0 ≤ t ≤ T.
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