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Abstract
Despite the difference among specific methods, existing Sensitivity Analysis (SA) technolo-

gies are all value-based, that is, the uncertainties in the model input and output are quanti-

fied as changes of values. This paradigm provides only limited insight into the nature of

models and the modeled systems. In addition to the value of data, a potentially richer infor-

mation about the model lies in the topological difference between pre-model data space

and post-model data space. This paper introduces an innovative SA method called Topol-

ogy Oriented Sensitivity Analysis, which defines sensitivity as the volatility of data space. It

extends SA into a deeper level that lies in the topology of data.

Introduction
Sensitivity Analysis (SA) is “the study of how uncertainty in the output of a model can be appor-
tioned to different sources of uncertainty in the model input” [1]. Although it is frequently per-
ceived as an optional step in modeling that can be omitted without a significant loss of
information, SA can play a critical role in scientific discovery [2]. It offers a variety of benefits
to improve the relevance of modeling to science and technology, including[2–4]:

• identification of critical model factors by quantifying the contribution of each model input
variable to the variability of its output, which later allows for efficient allocation of resources
for data acquisition;

• legitimate model simplification, which is particularly important when investigating complex
systems;

• contribution to theory development by discovering the most accurate representation of the
modeled system;

• investigation of deep uncertainties in a variety of systems–a painful but necessary step of sci-
entific discovery;

• comprehensive investigation of model behaviors to provide acceptable policy recommendations
in scenario analysis, especially in the absence of outcome scenarios endorsed by stakeholders;
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• information provision for stakeholders to develop a shared understanding about the studied
problems.

Current SA technologies can be roughly classified into two groups: one-factor-at-a-time
(OAT) and global SA. Despite the difference in evaluating the multidimensional model input
space, the existing SA technologies are all value-based, where the quantified uncertainties in
the model input and output are due to changes of input/output values. For example, a typical
OAT examines the change of value of a particular model output when one of the inputs is
altered in its value while all other inputs remain unchanged. Another example is a type of
global SA based on model output variance decomposition, which results in sensitivity indices
that reflect the fraction of output variance (in value) contributable to a certain input.

This value-based paradigm of SA may result in limited insight into the nature of a given
model. Fig 1 illustrates a situation when two datasets, A and B, have identical variance, but
demonstrate very distinct topological nature of its data points. Specifically, dataset B has a
more uniform spatial distribution while A shows a more random pattern. In scenario analysis,
if each data point in datasets A and B represents an output scenario, value-based SA would pro-
vide little information about the relative "positions" of scenarios in the data space, and may
lead to misleading conclusions about policies that satisfy a wide range of future conditions.

This study proposes a new approach to SA called Topology Oriented Sensitivity Analysis
(TOSA). We postulate that model sensitivity comprises more than the variance of data, but
also the volatility of data space. Consequently, not only does the proposed TOSA capture the
change of value of model input and output, but it also provides the means of measuring topo-
logical changes of modeled data. It extends SA to a deeper level that lies in the topology of data.
Following a brief introduction to the theoretical background, we give a complete description of
TOSA. We then demonstrate the utility of TOSA using an agent-based model of shopping
behavior as a case study.

Background

Sensitivity Analysis
Based on a comprehensive review of SA literature, Saltelli and Annoni (2010) state that most
studies apply SA in an OAT fashion, i.e., changing the value of uncertain factors one-at-a-time
while keeping the other factors constant [5]. It has already been found that OAT-SA is justified
only for linear models [6, 7]. If the problem is nonlinear, OAT can lead to misleading conclu-
sions [8, 9]. Failure to capture nonlinearities has also been found in regression and correlation

Fig 1. Two datasets with identical variance are different in nature.

doi:10.1371/journal.pone.0137591.g001
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based SA. Evidence indicates that regression based SA only works for linear models and its
effectiveness depends on the goodness of fit [6]. Similarly, correlation measures are not effec-
tive at evaluating the sensitivity of complex models since nonlinearities are poorly taken into
account in these measures [10].

To address the “curse” of nonlinearity, various remedies have been proposed including the
method of Morris and the measure of importance. While the Morris method can account for
nonlinearity, it assumes monotonicity, which does not always hold in complex models [10].
Moreover, the Morris method cannot differentiate between the effects caused by model nonlin-
earity and parameter interactions [10]. The importance measure is also of limited value because
it only provides first-order effects (i.e., parameter interactions are not considered) and is very
demanding computationally [6].

As a result, variance-based global SA (GSA) has recently received increased attention due to
its model independence. In GSA, the unconditional variance of model output is decomposed
into terms that account for individual factors plus terms that quantify the interactions among
factors [11]. GSA has the capability to account for model nonlinearity and non-monotonicity,
regardless of the generic assumptions of the underlying model [6, 10]. In a variety of studies,
GSA has proven to do better than the more traditional SA approaches [12]. In the reported lit-
erature we identified the extended Fourier Amplitude Sensitivity Test (eFAST) and the method
of Sobol as the most popular methods of performing GSA due to their proven track of perfor-
mance. Sobol’s method will be used as a point of departure for the proposed TOSA. In order to
explain TOSA, a brief discussion about the modeling theory is necessary.

Redefine Models
Miller and Page [13] have proposed a formal “model of models”, which addresses the underly-
ing logic of system modeling. Roughly speaking, the “model of models” reflects the Input-Pro-
cess-Output (IPO) view of modeling and simulation. The input consists of the present states of
the system. The model processes the input data and generates an output in the form of new
states of the system. This view puts the model at the center of the simulation process, as shown
in Fig 2 left. In this “Model-Oriented” simulation, data is treated mainly as the input and out-
put of a simulation process. The model comes first, then comes the data. An alternative way to

Fig 2. Model-Oriented simulation versus Data-Oriented simulation.

doi:10.1371/journal.pone.0137591.g002
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look at the modeling process is the “Data-Oriented” simulation, where data occupies the center
stage, and a variety of models are applied to it. Thus, under the “Data-Oriented” approach, the
same data is changed by multiple models (Fig 2, right).

The “Data-Oriented” approach to simulation provides additional flexibility to define the
modeled data. Data is represented as a space that can be changed by a model. Prior to the
model, it is a multidimensional space that contains all the “known” information about the
modeled system, After the model, it becomes a multidimensional space that contains all the
“resulting states” of the system. A model is a force that changes the configuration of the data
space. Fig 3 shows a simple example with one independent and one dependent variable.
Assuming that the model is linear, the nearest neighbors A and B in the pre-model space (hori-
zontal) remains the nearest neighbors in the post-model space (vertical; Fig 3 left). When the
model is nonlinear, the A and B can end up farther away in the post-model space, with A and
C becoming the nearest neighbors (Fig 3 right). Geometrically the space becomes distorted.
We will use this data space distortion to redefine sensitivity.

Fig 4 illustrates a case of three dimensions. By traversing through the data space along track
A, we capture less variability (uncertainty) than when traversing along track B. If we reduced

Fig 3. Model is a force that changes data space.

doi:10.1371/journal.pone.0137591.g003

Fig 4. Heterogeneity of the data space.

doi:10.1371/journal.pone.0137591.g004
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the dimensionality from 3 to 2 by removing axis X1, we would not be able to reveal the actual
space distortion. We can infer that X1 contains more information about the model and the
data, and thus has a higher level of sensitivity i.e. in the example model outcome is more sensi-
tive to X1 than X2 and X3.

Consequently, sensitivity of a particular variable can be defined as the absolute change of
data space when the variable is removed from or added to the model. In the next section, we
formulate TOSA to quantify the extent to which the data space distortion can be mitigated or
augmented when a certain variable is removed or added.

Topology Oriented Sensitivity Analysis (TOSA)

Topological Measurements of Data Space
Define X = (x1, x2,. . .,xn)

T as the model input, where n2[1,1) is the number of inputs. For
any given input i 2 (1,n], there is a corresponding xi = (xi1, xi2,. . .xim), wherem is the number
of input variables. Note that an input (i) and an input variable (xim) are different concepts,
where the former one refers to a data point while the latter one refers to (one of many) variables
defining the point. Similarly, define Y = (y1, y2,. . ., yn)

T as the output, where yi = (yi1, yi2,. . .
yim’) andm’ is the number of output variables. Let Y = f(X), where f is the model. It is therefore
known that 8xi2X: xi2Rm, where Rm is a hyperspace withm dimensions and the ith input of
the model is a data point in the hyperspace. Similarly, 8yi2Y: yi2Rm’, where Rm’ is a hyper-
space withm’ dimensions, and the ith output is a data point (yi1, yi2,. . .yim’). Note thatm≢m’,
i.e., the number of input variables is not necessarily equal to the number of output variables;
but it is assumed that the number of input points is equivalent to the number of output points
(both are n). Finally, define X�R

m as the input data space (i.e., pre-model data space) and
Y�R

m’ as the output data space (i.e., post-model data space). Formula (1) shows that X is tran-
sitioned to Y through f.

x11 x12 � � � x1m

x21 x22 � � � x2m

..

. � � � � � � ..
.

xi1 xi2 � � � xim

..

. � � � � � � ..
.

xn1 xn2 � � � xnm

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA
!f

y11 y12 � � � y1m0

y21 y22 � � � y2m0

..

. � � � � � � ..
.

yi1 yi2 � � � yim0

..

. � � � � � � ..
.

yn1 yn2 � � � ynm0

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA

ð1Þ

Where X is distorted by f and its topology is changed. The key step of the proposed SA is to
measure the topology of input space (X) and output space (Y). We propose four ways of mea-
suring the change in configuration: distance-based measurement, centroid-based measure-
ment, vector-based measurement, and centralized vector-based measurement (Fig 5).

The distance-based measurement quantifies the distance between each pair of inputs, as
illustrated in Fig 5 (A). Suppose the distance between a given pair of inputs xi and xj (or yi and
yj) is Dij, the average Dij indicates the overall configuration of data space topology before (or
after) the model takes effect. It is worth noting that X and Y are multidimensional spaces and
therefore the Mahalanobis distance should be applied instead of the Euclidean distance [14].
Covariance Smay exist among variables, exerting unnecessary influence on the calculation of
Euclidean distance. The Mahalanobis distance standardizes the distance between any two data
points by dividing Euclidean distance by S (covariance matrix), which better captures the rela-
tive locations of data points. Following the above notion, the distance between the data points i
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and j in the input space and output space are calculated as follows:

Idij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxi � xjÞTS�1

X ðxi � xjÞ
q

ð2Þ

Od
ij ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðyi � yjÞTS�1

Y ðyi � yjÞ
q

ð3Þ

And the distance-based measure for the input and output space topology is given by formu-
las (4) and (5), respectively:

Id ¼ 2

nðn� 1Þ
Xn�1

i¼1

Xn
j¼iþ1

Idij ð4Þ

Od ¼ 2

nðn� 1Þ
Xn�1

i¼1

Xn
j¼iþ1

Od
ij ð5Þ

Where n is the number of inputs (data points or cases) and SX and SY are covariance matri-
ces of input and output data, respectively. Distance-based measurement calculates n(n-1)/2
pairs of data points. When n is big, the computation is nontrivial (e.g. for 100 data points, cal-
culation amounts to 4950 pairs of points).

Fig 5. Four types of topological measurements of data space.

doi:10.1371/journal.pone.0137591.g005

Topology Oriented Sensitivity Analysis

PLOS ONE | DOI:10.1371/journal.pone.0137591 September 14, 2015 6 / 21



Data space configuration can also be measured as the distance of each data point to the cen-
troid of the space, as illustrated in Fig 5B. Centroids of input and output spaces are given by:

xc ¼
1

n
�
Xn
i¼1

xi; and yc ¼
1

n
�
Xn
i¼1

yi ð6Þ

For any given data point, if its distance to the centroid changes, then a distortion of the data
space occurs. Using the Mahalanobis distance, the centroid-based measurement can be calcu-
lated as the average sum of squares of the distances to the centroid. Formulas (7) and (8) are
used to calculate the distance between data point i and the centroid in the input and output
space, respectively, and formulas (9) and (10) give centroid-based topological measurements of
the input space and output space.

Icic ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxi � xcÞTS�1

X ðxi � xcÞ
q

ð7Þ

Oc
ic ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðyi � ycÞTS�1

Y ðyi � ycÞ
q

ð8Þ

Ic ¼ 1

n

Xn

i¼1
Icic ð9Þ

Oc ¼ 1

n

Xn

i¼1
Oc

ic ð10Þ

Both the distance-based measurement and the centroid-based measurement use distance to
quantify space topology. A common problem faced by both indices is the deterioration of the
distance measure when the dimensionality of data is increasing. Beyer et al. [15] proved that
the distance between any pair of data points starts to converge to an identical value when
dimensionality reaches a certain point, as few as 10–15 dimensions. In other words, for any
data point, with the increase in dimensionality, the distance to the nearest data point
approaches the distance to the farthest data point:

limd!1 ¼ distmax � distmin

distmin

¼ 0 ð11Þ

The above phenomenon means that, if the number of input variables (or output variables) is
big enough, Iij and Oij will converge to an identical value. To overcome this limitation, a vec-
tor-based measurement is proposed.

As illustrated in Fig 5C, if the angle between two input data points xi and xj is θij, then

cosðyijÞ ¼ xi �xj
kxikkxjk. Note that θij is the Euclidean angle. In order to eliminate the influence of

covariance among variables, Mahalanobis angle θij
M is used [16]. By aggregating cos(θij

M), the
space topology can be quantified. Formulas (12) and (13) show the angles between any pair of
data points i and j in the input space and output space. Formulas (14) and (15) give vector-
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based topological measurements of the input space and output space.

Ivij ¼ arccos
xi

TS�1
X xjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xi
TS�1

X xi

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xj

TS�1
X xj

q
0
B@

1
CA ð12Þ

Ov
ij ¼ arccos

yi
TS�1

Y yjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
yi

TS�1
Y xi

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
yj

TS�1
Y yj

q
0
B@

1
CA ð13Þ

Iv ¼ 2

nðn� 1Þ
Xn�1

i¼1

Xn

j¼iþ1
Ivij ð14Þ

Ov ¼ 2

nðn� 1Þ
Xn�1

i¼1

Xn

j¼iþ1
Ov

ij ð15Þ

It is worth noting that if data points are farther from the null vector (the origin of the coor-
dinate), and the variance is very small, the angles between any two data points might be too
small to demonstrate any significant change. In this case, data needs to be standardized to its
center. Formulas (16) and (17) show the centralized angles between any pair of data points i
and j in the input space and output space and formulas (18) and (19) give the centralized vector
based topological measurements of the input space and output space.

Icvij ¼ arccos
ðxi � xcÞTS�1

X ðxj � xcÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxi � xcÞTS�1

X ðxi � xcÞ
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðxj � xcÞTS�1
X ðxj � xcÞ

q
0
B@

1
CA ð16Þ

Ocv
ij ¼ arccos

ðyi � ycÞTS�1
Y ðyj � ycÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðyi � ycÞTS�1
Y ðyi � ycÞ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðyj � ycÞTS�1

Y ðyj � ycÞ
q

0
B@

1
CA ð17Þ

Icv ¼ 2

nðn� 1Þ
Xn�1

i¼1

Xn

j¼iþ1
Icvij ð18Þ

Ocv ¼ 2

nðn� 1Þ
Xn�1

i¼1

Xn

j¼iþ1
Ocv

ij ð19Þ

Given the failure of distance calculation in high-dimensional data, vector based measure-
ments are recommended for complex multidimensional models.

Topology Oriented Sensitivity Indices
For any given topological measurement, the change to the spatial relationship between the ith

data point and the jth data point after the model takes effect (Tij) can be given by:

Tij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðOij � IijÞ2

q
ð20Þ

Where Iij and Oij represent any of the four proposed topological measurements for input
space and output space, respectively. The topological change from the input data space to the
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output data space (TX) can be given by:

Tc
X ¼ 1

n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1
ðOc

ic � IcicÞ2
q

ð21Þ

Td;v;cv
X ¼ 2

nðn� 1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn�1

i¼1

Xn

j¼iþ1
ðOd;v;cv

ij � Id;v;cvij Þ2
r

ð22Þ

Where n is the number of data points. TX indicates the extent to which the input data space
is distorted by the model given the full set of input variables, i.e., all variables from the 1st to the
mth are considered. On the other hand, we can define T0 as the topological change when none
of the variables are considered. Trivially:

T0 ¼ 0 ð23Þ

If removing a particular input variable, for example, the variable i, alters the value of TX, we
can infer that the topological change from the input space to the output space is influenced by
i. Let's denote Ti as the topological change after the variable i is added into the model, then:

Ti ¼ T�1;2;...;i�1;iþ1;...;m ð24Þ

where T*1,2,. . .,i−1,i+1,. . .,m is the topological change after all variables but variable i are removed
from the model. Then total topological change of the data space T(Y) is given by:

TðYÞ ¼
Xni

i¼1
Ti þ

Xni1þni2

i1¼1

Xni1þni2

i2¼i1þ1
Ti1 i2

þ � � � þ TX ð25Þ

where ni is the number of data points added into the model when variable i is added. T(Y) is
the summation of topological changes when one variable, two variables . . . until all variables
are added into the system. Following this notion, the Topology Oriented Sensitivity Index
(TOSI) is given by:

TSi1 ;...;ik ¼
Ti1;...;ik

TðYÞ ð26Þ

And the summation of all the TOSI equals 1:Xm

k¼1

Xm

i1<::<ik
TSi1 ;...;ik ¼ 1 ð27Þ

If k = 1, then TSi1 ;...;ik is called the Main Topology Oriented Sensitivity Index (MTOSI);

TSi ¼
Ti

TðYÞ ð28Þ

if k�2, then TSi1 ;...;ik is called the Interaction Topology Oriented Sensitivity Index (ITOSI). The

Total Topology Oriented Sensitivity Index (TTOSI) is then defined as:

TStoti ¼ TSi þ TSi;�i ¼ 1� TS�i ð29Þ

Where TSi,*i is the summation of all the TSi1 ;...;ik that involve the variable i and at least one

variable from (1,. . ., i-1, i+1, . . .m); and TS*i is the summation of all the TSi,*i that do not
involve any variable i. Consequently, TStoti represents the average topological change in the data
space that is contributable to the input variable i through its sole influences and interactions
with other variables.

Topology Oriented Sensitivity Analysis

PLOS ONE | DOI:10.1371/journal.pone.0137591 September 14, 2015 9 / 21



Calculation Procedure
TOSI computation requires a particular experimental design. This section explains the calcula-
tion steps. In order to make an easy demonstration, we use an example with three input vari-
ables X1, X2 and X3, and two output variables Y1 and Y2. The model is represented as f. Ten
samples are generated in the simulation. Then we build a joint input-output matrix of five col-
umns and ten rows:

x11 x12 x13 y11 y12

x21 x22 x23 y21 y22

x31 x32 x33 y31 y32

x41 x42 x43 y41 y42

x51 x52 x53 y51 y52

x61 x62 x63 y61 y62

x71 x72 x73 y71 y72

x81 x82 x83 y81 y82

x91 x92 x93 y91 y92

x101 x102 x103 y101 y102

0
BBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCA

ð30Þ

• Step 1: Generate a list of (n) input vectors (1�m vectors) using a random number sampling
approach.m is the number of input variables and n is the number of generated samples. In
our example, there are three input variables X1, X2 and X3, and ten randomly generated sam-
ples. The input values are showed in the following 3�10 matrix, where the elements are the
randomly generated numbers.

x11 x12 x13

x21 x22 x23

..

. . .
. ..

.

x101 x102 x103

0
BBBBBB@

1
CCCCCCA

ð31Þ

• Step 2: Execute the model n times with the generated input vectors. Each input vector is a line
in the above matrix. In our example, for the first vector (x11, x12, x13), we obtain (y11, y12) =
f(x11, x12, x13). This step is repeated until the last execution (y101, y102) = f(x101, x102, x103).

• Step 3: Calculate TX following formulas (21) and (22). Matrix (30) is used to calculate TX.
Note there are four types of TX specified by equations (2) through (19).

• Step 4: Calculate the average value of the n samples given any input variable Xi, denoted as �xi ,
and remove input vectors except ðx1; x2; . . . ; x̂i ; . . . ; xmÞ, where x̂i 	 �xi . Similarly, remove
output vectors except ðy1; y2; . . . ; ŷi ; . . . ; ym0 Þ, where
ðx1; x2; . . . ; x̂i ; . . . ; xmÞ!f ðy1; y2; . . . ; ŷi ; . . . ; ym0 Þ. For example, we calculate the average
value of all samples given X1. Suppose the average value is close to x21, x51 and x71, then we
remove all input vectors and corresponding output vectors other than the second, the fifth
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and the seventh vectors. By doing it, the randomness of X1 has been ruled out (only leaving
the average value), and thus its impact on the outputs is eliminated. The new matrix is:

x21 x22 x23 y21 y22

x51 x52 x53 y51 y52

x71 x72 x73 y71 y72

0
BB@

1
CCA ð32Þ

• Step 5: Calculate T1,2,. . .,i−1,i+1,. . .,m = T*i following formulas (21) and (22). In our example,
matrix (32) is used to calculate the new TX. The results is denoted as T*1 to illustrate that X1

has been removed. After the calculation of this step is complete, the removed vectors are put
back to matrix (32).

• Step 6: Repeat steps 4 and 5 until all xi are consecutively removed, and the corresponding
T~i’s are calculated. In our example, T*1, T*2 and T*3 are calculated, which means X1, X2

and X3 are removed separately from matrix (30).

• Step 7: For any input vector ðx1; x2; . . . ; x̂i ; . . . ; xmÞ, calculate the average value of input vari-
able xj denoted as �xj , where i 6¼j, and remove input vectors except
ðx1; x2; . . . ; x̂i ; . . . ; x̂j ; . . . ; xmÞ, where x̂i 	 �xi and x̂j 	 �xj . Similarly, remove output vectors
except ðy1; y2; . . . ; ŷi ; . . . ; ŷj ; . . . ; ym0 Þ, where
ðx1; x2; . . . ; x̂i ; . . . ; x̂j ; . . . ; xmÞ!f ðy1; y2; . . . ; ŷi ; . . . ; ŷj ; . . . ; ym0 Þ. In our example, suppose
X1 has been removed (matrix (32)). Then the average value of the remaining samples given
X2 is calculated, which is close to x22 and x72. Thus we need to remove the fifth input vector
and the corresponding output vector. The new matrix is:

x21 x22 x23 y21 y22

x71 x72 x73 y71 y72

 !
ð33Þ

Where the impact of both X1 and X2 on outputs have been eliminated. It is therefore possi-
ble to evaluate the importance of these input variables by “removing” them from the model.

• Step 8: Calculate T1,2,. . .,i−1,i+1,. . .,j−1,. . .,j+1,. . .,m = T*ij following formulas (21) and (22). In our
case, matrix (33) is used to calculate the new TX, which is denoted as T*12, to illustrate that
X1 and X2 have been removed.

• Step 9: Repeat steps 7 and 8 until x1,. . .,xk (2
k
m) are removed, and all the corresponding
T~1,2,. . .,k (2
k
m) are calculated. In our case, the calculated TX’s include T*1,T*2,T*3,
T*12,T*13 and T*23.

• Step 10: Calculate MTOSI, ITOSI and TTOSI following formulas (25) through (29).

Case Study

The URBANmodel
We demonstrate the proposed TOSA using a model called URBAN, an agent-based model
(ABM) developed to investigate how individual shopping travel behaviors reshape urban con-
figuration [17]. Two types of agents are modeled in URBAN: Store and Person. As illustrated in
Fig 6, the red dots represent stores, and the green squares are people. When an individual
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decides to go shopping at a particular store, a connection is established (represented by a blue
line in Fig 6). The go/no go decision of a person depends upon three factors: (1) the utility of a
store (including the size of the store, the selection of goods, etc.); (2) store accessibility (includ-
ing store distance and traveling expenses); and (3) the socioeconomic status of the individual.
If a store is visited by more people, it maintains higher profits and grows in size, which in turn
becomes more attractive to other potential shoppers; in contrast, if a store is visited less fre-
quently, it starts to lose profit, shrinks in size, and ultimately runs out of business (it is removed
from the ABM).

Table 1 summarizes the main input and output variables of URBAN. Note that, for the dem-
onstration purposes, the initial number of stores, the initial number of people, and the size of
urban space are held fixed in the computation of TOSI’s. Four critical input variables are exam-
ined in the simulations: preference for store utility (α), preference for accessibility (β), dollar
amount of purchase, and store operating cost per day. Note that α and β are directly related to
individual decision making: if the value of α is bigger for an agent, it means she/he cares more
about the store utility; and if β is bigger, it means that accessibility is more important to the
agent. The other two input variables, dollar amount of purchase and store operating cost per day,
influence the dynamics of the store status: if a store has a higher daily operating cost (in percent
of the cash reserve), it may run out of business faster if not enough income is obtained. On the
other hand, if dollar amount of purchase is higher, the stores may be able to maintain the income.
The output variables of interest are the final number of stores, the total walking distance and the
total driving distance. These output variables are used to determine the final urban configuration.

The dollar amount of purchase and the store operating cost per day were assumed to follow
a normal distribution (Table 1); socioeconomic status, measured as household income, was
assumed to follow a Pareto distribution.

Fig 6. The URBANmodel—sample results.

doi:10.1371/journal.pone.0137591.g006

Table 1. Input and output variables of the URBANmodel.

Symbol Variable name Values Symbol Variable name Values

Input X6 Initial # of stores 20

X1 Preference for store 0~6, step 0.25 X7 Initial # of people 200

X2 Preference for travel 0~6, step 0.25 Output

X3 $ amount of purchase N (100, 20) Y1 Final number of stores N/A

X4 Store operating cost per day N (0.01,0.001) Y2 Total walking distance N/A

X5 Urban space size 50*50 gird where a grid cell equals 1002 square feet Y3 Total driving distance N/A

doi:10.1371/journal.pone.0137591.t001
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TOSI
All the four types of TOSI’s were calculated, including the distance-based indices, the centroid-
based indices, the vector-based indices, and the centralized vector based indices. The a and β
coefficients were changed in a OAT (one at a time) manner from 0 to 6, at the step 0.25.
Because Probability Density Functions (PDFs) were used to describe certain input variables,
for a given combination of a and β, the simulation was repeated 30 times to generate a statisti-
cally sound results. As a result, a total of 18,750 simulations were performed. The input data
space is therefore a seven-dimensional space with 18,750 data points, and the output space is a
three-dimensional space with the same number of data points.

The centroid based indices were first calculated. Fifteen terms were calculated including all
the main and interaction topology-oriented indices, each involving 18,750 matrix calculations.
Given the difficulty of calculation, a Visual Basic (VB) program was developed to facilitate the
calculation. The selection of VB is a practical choice. Many business practices rely on Microsoft
Excel. It would be easier for nonacademic users to apply our tools in Excel as a VB application
(VBA). For academic users, we also provided the tools programed in SAS and R [18], which
more efficiently handle matrix data structures.

Table 2 summarizes the results. After normalizing the result to 100% (%TSi and %TStoti ),
we identified the preference for the store utility (X1) and preference for accessibility (X2) to be

Table 2. Centroid based TOSI’s.

No. Combination

1 X1 X2 X3 X4

2 X2 X3 X4

3 X1 X3 X4

4 X1 X2 X4

5 X1 X2 X3

6 X3 X4

7 X2 X4

8 X2 X3

9 X1 X4

10 X1 X3

11 X1 X2

12 X1

13 X2

14 X3

15 X4

X1 X2 X3 X4

Ti,*i 0.3396 0.3318 0.2283 0.2310

TSi 0.2239 0.2211 0.0936 0.0943

TStot
i 0.4427 0.4326 0.2977 0.3012

% TSi 35.4% 34.9% 14.8% 14.9%

% TStot
i 30.0% 29.3% 20.2% 20.4%

X1: preference for the store utility (α)

X2: preference for accessibility (β)

X3: dollar amount of purchase

X4: store operating cost per day.

doi:10.1371/journal.pone.0137591.t002
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more influential on the topological change than the dollar amount of purchase (X3) and store
operating cost (X4).

We also calculated the other three types of TOSI. Compared to the centroid-based indices,
the calculation was more difficult, as each of the 15 terms involves 175,771,875 matrix calcula-
tions. A set of VB programs was developed to facilitate the calculation. The results are summa-
rized in Table 3. Although different in exact values, all TOSI’s suggest stronger influences of
preference for the store utility (X1) and preference for accessibility (X2).

In order to evaluate the difference between TOSA and traditional SA, we performed an
OAT SA on the same data. To be noted, unlike TOSA that gives a single sensitivity index in
spite of the number of output variables, the OAT SA needs to be done for each of the output
variables. Fig 7 shows that the three output variables—final number of stores (store), the total
walking distance (walk) and the total driving distance (drive)—are highly correlated. As a
result, we only present the results of OAT SA for output “drive”.

Table 3. Calculation results.

MTOSI X1 X2 X3 X4

Distance based 28.9% 28.1% 21.2% 21.8%

Centroid based 35.4% 34.9% 14.8% 14.9%

Vector based 35.0% 31.8% 18.9% 14.3%

Centralized Vector based 29.6% 29.4% 20.6% 20.4%

TTOSI X1 X2 X3 X4

Distance based 28.3% 27.8% 21.7% 22.2%

Centroid based 30.0% 29.3% 20.2% 20.4%

Vector based 31.3% 29.9% 21.5% 17.3%

Centralized Vector based 28.7% 28.7% 21.3% 21.4%

doi:10.1371/journal.pone.0137591.t003

Fig 7. Correlation of the three output variables.

doi:10.1371/journal.pone.0137591.g007
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To obtain comparable measures, we summarized the results of OAT using linear regression.
As shown in Fig 8, coefficients α and β are more influential on the output variable “drive”,
while “purchase” and “operation” do not show any observable impact on this output. If using
the t-ratio of the linear regression (which is the standardized coefficient of input variable in a
regression analysis) to evaluate the degree of impacts, α outperforms β. In other words, accord-
ing to the OAT SA, preference for the store utility (X1) and preference for accessibility (X2) can
significantly affect the total driving distance, with the former exhibiting stronger influence.
However, the OAT SA does not support the impact of dollar amount of purchase (X3) or store
operating cost (X4) on the total driving distance.

We also used Pearson’s correlation coefficient (r)—one of the simplest measures of global
SA [19]. Fig 9 depicts the results of the analysis, together with the coefficients of determination.

Fig 8. OAT sensitivity analysis on total driving distance.

doi:10.1371/journal.pone.0137591.g008
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The following observations can be made. Given all three output measures, the model behaves
fairly linearly as about 80% of the influence can be attributed to individual inputs (R2 ~ 0.8). The
influence of inputs is similar for “store” and “walk” with the coefficients α and βmostly affecting
the variability of the outputs. Note that where the impact of α is negative, the impact of β is posi-
tive. For ‘drive’, the impact is essentially inverted. In absolute terms, however, α and β coefficients
are the most influential on all three output variables, with α slightly dominating β.

After comparing the results of the three methods, we found that TOSA, OAT SA and Global
SA (based on the correlation coefficient), can lead to quite different conclusions. Although all
three methods unanimously suggest that reference for the store utility (X1) is the most influen-
tial factor and preference for accessibility (X2) is the second, TOSA also indicates the impor-
tance of dollar amount of purchase (X3) or store operating cost (X4). It is because the existence
of dollar amount of purchase (X3) or store operating cost (X4) can affect the level of topological
change of the data, which is the foundation of TOSA calculation. Practically, it means that
although altering dollar amount of purchase (X3) or store operating cost (X4) will not change
the expected number of stores, or the expected walk/driving distance, the specific combination
of the three urban setup indicators has actually changed. For example, Fig 10 illustrates the
simulation result when dollar amount of purchase (X3) and store operating cost (X4) are chang-
ing, while the values of reference for the store utility (X1) and preference for accessibility (X2)
are both fixed to 3.0. As shown, although the expected outcome is always the same (it is the
centroid of the 3D scatter plot), it actually represents very different futures–without changing
X1 and X2, the maximum driving distance is still 22.5% longer than the minimum driving dis-
tance in only 16 simulations. The output data space is still very volatile, suggesting potentially
distinct futures. Traditional value-based SA methods fail to capture this nuance because this
piece of subtle information is hidden behind data topology rather than the mean value or its
variance. Clearly, TOSA provides a different yet complementary angle to interpret model
sensitivity.

Fig 9. Pearson correlation coefficient calculated for the three output variables.

doi:10.1371/journal.pone.0137591.g009
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A further comparison has highlighted the differences between TOSA and traditional SA.
Traditional value-based SA methods rely heavily on summary statistics (variance, mean) which
may fail when dealing with non-monotonic and non-additive models [20, 21]. While useful in
many circumstances, the correlation coefficient (and its derivatives like Spearman, standard-
ized regression coefficients etc.) is derived from a linear model, and does not provide any infor-
mation on the interaction effects among inputs which, in our example, account for about 20%
of model variability. Published research suggests that some of the inputs may not be influential
singly, but may substantially affect the variability of results when evaluated in combination
with other inputs, contributing to higher-order effects [22]. In addition, the measures of sensi-
tivity may be different for different output variables (in our case, for each input variable, there
is a separate sensitivity index for “store”, “walk” and “drive” respectively), posing a challenge to
a modeler when deciding on factor fixing and model simplification. As an alternative, we could
use ANOVA-like measures of sensitivity (aka variance-based global SA), but these methods
require a quasi-random experimental design, which may be inappropriate when other types of
post-processing analyses (based on parametric statistics) are also employed to the output data.

Fig 10. The volatile outcome when the values of X1 and X2 are fixed to 3.0.

doi:10.1371/journal.pone.0137591.g010
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Discussion
Model sensitivity has to be evaluated in relation to the specific context of a modeling study. In
general however, the concept of model sensitivity relates to the relationships between model
input and output uncertainties. Model SA should therefore measure the degree of change after
the model takes effect. Most SA methods define uncertainty using statistical denotations, either
as the absolute change in values, or as their variance. We argue that topology, which is not pres-
ent in the commonly-utilized approaches to SA, may provide additional useful information on
model behavior and the complexity of relationships between its inputs and outputs.

The proposed TOSA attempts to quantify the topological difference between model input
data space and its output data space. It builds on a view of data-oriented simulation (Fig 2), in
which models are external mechanisms that distort the data space. A cross-paradigm property
of models is their ability to alter the data space topology. In this light, sensitivity is an indicator
of the volatility of data space: if adding a dimension (an input variable) strengthens the volatil-
ity of the modeled data space, the outcome is sensitive to the added dimension. This new angle
of SA is a promising avenue for model exploration and evaluation.

Recent studies demonstrate how SA can be applied to evaluate the temporal [2, 23] and spa-
tial [24–26] complexities of models. Temporal SA explores the regions in the time series of sen-
sitivities where a particular input dominates the others. Spatial SA investigates the spatial
heterogeneities of models, especially in the geographic space [24]. Compared to the traditional
SA, in which only the final model sensitivities are of interest, temporal SA and spatial SA exam-
ine the behaviors of a model over time and space. SA has been therefore extended from a scalar
(single-indication) type of analysis to a time series or a layer that contains spatially differenti-
ated information (Fig 11). Following the previous works, TOSA adds a new dimension to com-
prehensive model evaluation, where SA is applied as a topological concept, other than a value
concept (Fig 11). As a consequence, a new school of SA methods may emerge, promoting our
understanding of models and the modeled systems. We hypothesize that TOSA may be espe-
cially useful in model-based scenario analysis, contributing to more solid understanding of fac-
tors that are critical in identifying similar output scenarios.

The proposed methodology is obviously in its infancy. Future work will focus on three
aspects of TOSA development. First, using a number of case studies, we plan to compare and
contrast TOSA with the most common value-based approaches (most notably, variance-based
SA). Second, we will identify conditions in which the use the simpler centroid-based TOSA

Fig 11. Evolution of SAmethodology.

doi:10.1371/journal.pone.0137591.g011
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metrics is insufficient. Third, the temporal complexity of TOSA could be as high as O(m!)
times O(n2). In the case study, the longest experiment took nearly nine hours to finish (on a
dual processor desktop computer with 32 GB RAM, running Windows 7). We argue, however,
that modelers should be first concerned with getting the right answer, and then focus on reduc-
ing the processing time of the evaluation procedure. We do not expect TOSA to be done in real
time. In many applications, post-modeling analyses are performed to obtain more knowledge
about the studied systems, rather than assisting in real time decision making. Even when the
real time analysis is required, some technologies may be leveraged to expedite the calculation,
such as cloud computing. In the future, we plan to optimize the execution to provide a new
tool that can be applied to diverse complex modeling applications.

Conclusions
SA is undoubtedly a critical component in shaping our understanding of modeled systems.
Current SA approaches quantify sensitivities on the basis of change in values. This paper pro-
poses a different approach to evaluating model behavior—an approach based on topology that
represents the connectivity of multidimensional data points. Datasets with identical statistical
features (e.g., variance) may be differently spaced, resulting in diverse topological structures.
As a result, two factors of identical influence on output variability (measured using the com-
mon SA approaches), may have a different effect when evaluated within the topological space.

The proposed Topology-Oriented Sensitivity Analysis captures the topological difference
between the pre-model data space and post-model data space. It defines sensitivities of a partic-
ular variable as the contributed marginal and interactive topological changes when this variable
is added to the model. When the data space demonstrates more volatility after a variable is
added, it suggests a high level of model sensitivity to this variable. Measuring volatility of data
space is not a trivial task, since the dimensionality of data space keeps changing during TOSA
calculation (removing/adding dimensions). Therefore, as a benchmark, we calculate the ratio
of the output space topology to the input space topology.

Topology-based sensitivity analysis introduces an alternative way of looking at a model and
its data. It introduces new opportunities for investigating the hidden but potentially critical
characteristics of modeled systems. More efforts are therefore urged to extend this paradigm of
model evaluation.
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