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ABSTRACT 

 

Transport of small hydrocarbon molecules inside organic nanopores is important to our 

understanding of oil and gas production from source rocks such as shale. Unlike flow in 

conventional reservoirs, the fluid transport in unconventional reservoirs involves 

kerogen pore structure with much smaller capillaries. This, in turn, leads to large 

capillary wall surface area and, consequently, to a significant physical adsorption effect. 

Measurements are needed to understand the nature of flow inside kerogen structures. 

However, direct measurements are difficult and have large uncertainties related to 

kerogen isolation. Non-equilibrium molecular dynamics simulation allows numerical 

study of fluid transport inside model nanocapillaries representative of kerogen matrices. 

First, we studied the transport in 1-D in single nanocapillaries. Based on the 

simulation results we observe that fluid flow velocity and mass flux are significant near 

the capillary surfaces where adsorption takes place. Hence, Hagen-Poiseuille equation 

based on the no-flow condition at the wall significantly underestimates the fluid flow in 

nanocapillary. The dependence of surface transport velocity, as well as flow 

enhancement, are determined quantitatively.  

Second, we expand our study into 3-D nanoporous networks. Existing molecular 

models use nanoscale capillaries and do not describe the exact geometric structure of the 

organic nanopores in real source rocks, especially for mesopores, which widely exist in 

organic solids and are crucial for fluid transport in the source rocks. Here we present a 

new method to simplify the existing molecular kerogen models. Pore structures can be 
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built to reflect the exact porous structure of hydrocarbon bearing kerogen pores for fluid 

transport without losing accuracy. The kerogen pore network skeleton can be populated 

based on 3-D digital segments obtained from high-resolution TEM tomographs. We 

introduce a simplified molecular model approach to work with significantly larger 

volumes of 3-D segments. To test the transport simulation accuracy using molecular 

dynamics for this simplified model, sample pore network structures are populated with 

both the existing exact molecular model and the simplified model, the permeability of 

reservoir fluid flowing through the media is simulated and compared. The simplified 

kerogen model can be easily applied to larger organic porous material samples to reduce 

spatial uncertainty.  
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NOMENCLATURE 

 

a   length of the bump 

a   acceleration 

b   length of the trench 

c   molar concentration 

𝛥𝑐   concentration drop 

d   inner diameter of the carbon nanotube 

d   molecular diameter 

D   diffusion coefficient 

f   fugacity 

f   external force in EF-NEMD 

f   probability density in phase space 

F   force 

dp/dl, dp/dz  pressure gradient 

𝑚   atomic mass 

𝑛   number of atoms 

h   height of the bump, nm 

L(c)   transport coefficient 

J   molar flux 

𝑘𝐵    Boltzmann constant 

𝑘   permeability 
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𝑘0   permeability, Darcy 

𝑘𝑎𝑝𝑝   permeability, apparent 

𝐾𝑛   Knudsen number 

p   pressure 

𝛥𝑃   pressure drop 

𝑞𝑡𝑜𝑡𝑎𝑙     total volumetric flux per capillary 

𝑞𝐻−𝑃    volumetric flux from Hagen-Poiseuille equation 

𝑞𝑠𝑢𝑟𝑓𝑎𝑐𝑒   volumetric flux per capillary contributed by surface velocity 

q   atomic charge 

R   radius of the capillary 

R2   coefficient of determination 

Re   Reynolds number 

r   distance to the center of capillary 

𝑟𝑖𝑗   distance between two LJ sites 

T   temperature, K 

𝑈𝑖𝑗
𝐿𝐽

    Lennard-Jones interaction energy 

v   velocity, m/s 

vz   streaming velocity along z direction, m/s 

𝑣𝑥̅̅ ̅   average Darcy velocity, m/s 

x   molar fraction 

𝑉, 𝐸, 𝑈   potential energy 
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𝛽   thermal dynamic beta, 
1

𝑘𝐵𝑇
 

𝜌   density 

𝜇    viscosity 

𝜇    chemical potential 

𝜎𝑖𝑗    distance between LJ sites 

𝜖𝑖𝑗     energy scale of the interaction between LJ sties 

𝜖     permittivity 

𝜆   mean free path 

𝛺   Bhatnagar–Gross–Krook operator 

𝜏   relaxation time 
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CHAPTER I 

INTRODUCTION AND LITERATURE REVIEW 

Background 

Shale gas has attracted increasing attention as an important energy resource in recent 

years due to improvements in horizontal drilling and hydraulic fracturing techniques. 

This has invoked interest from several fields including fossil energy, chemical 

engineering and environmental science (Estrada & Bhamidimarri, 2016; Soeder et al., 

2014; Q. Wang, Chen, Jha, & Rogers, 2014). Over the last decade, gas production from 

organic-rich source rocks has increased to over 40% of the total natural gas production 

in North America, and the future growth in using this energy source is anticipated 

worldwide (Figure 1, Figure 2). 

Shale gas is categorized among unconventional resources, in the same category 

as coal bed methane (CBM) and tight gas. And the storage and transport processes of 

shale gas shares similarities and complexities to both CBM and tight gas. As a result, the 

experimental and theoretical work based on CBM and tight gas are widely applied for 

the study of shale gas systems (Figure 3). However, because they possess a multiscale 

pore structure with pore sizes spanning orders of magnitude from the molecular scale to 

the macroscopic scale, in both organic and inorganic forms, shale formations have added 

complexities. Hence, the methods of investigation used bot for tight gas and coal bed 

methane, including both experimental and theoretical, must be improved and new. 
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Figure 1. Shale gas and oil plays, Lower 48 States (6/30/2016) ("Shale gas and oil 

plays, Lower 48 States (6/30/2016)," 2016) 

Figure 2. Monthly dry shale gas production of U.S. (Reprinted from "Natural 

Gas Weekly Update," 2018)
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Figure 3. The geology of conventional and unconventional oil and gas 

(Reprinted from "Natural Gas Weekly Update," 2018) 

Figure 4. Gas content versus pore pressure for a typical shale plug (Reprinted 
from K. Liu, Sun, Gu, Liu, & Chen, 2017) 
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methodologies must be developed for understanding the shale formations (Etminan, 

Javadpour, Maini, & Chen, 2014) 

The storage capacity of shale gas reservoirs is due to: 1) free compressed gas in 

the organic and inorganic pore network; 2) adsorbed gas on the surface of organic 

material pore network; 3) absorption or dissolution in liquids (oil and water) in the 

organic and inorganic pore network and in the solid organic matter. Previous researchers 

have shown that a substantial amount of hydrocarbon is stored in the organic nanopores, 

which can be potentially tapped into using improved recovery technologies (I Yucel 

Akkutlu & Didar, 2013; Hartman, Ambrose, Akkutlu, & Clarkson; Rahmani & Akkutlu, 

2015). The adsorption of molecules on the inorganic surfaces are comparatively less, so 

this research mainly focuses on the adsorption on organic (kerogen) surfaces. Previous 

researchers also showed the importance of adsorbed hydrocarbons on production, both 

experimentally and theoretically (Figure 4, Figure 5). The production decline curves 

from the U.S. shale plays (Figure 6) show that the production rate of shale gas wells 

declines fast, with the adsorbed gas remain mostly untapped. This indicates there is 

potential to produce the adsorbed gas with future technologies apart from hydraulic 

fracturing. 

Adsorption is the physical adhesion of molecules/atoms/ions onto a surface of a 

material. The adsorption process creates a film of hydrocarbon molecules on the surface 

of the kerogen pore walls, which differs from the process of absorption, in which the 

fluid permeates into the volume of solid kerogen. Sorption is the general terms for both 

processes, and desorption is the reverse process of them. The adsorption phase has 
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Figure 5. Effects of three gas transport mechanisms on cumulative gas production. 

(a) Effect of gas diffusion with different gas diffusion coefficients. (b) Effect of gas 

desorption with different Langmuir volumes. (c) Effect of gas slippage with 

different pore diameters (Reprinted from R. Y. Yang et al., 2016). 

unique physical and chemical properties compared to the bulk fluid. When the specific 

surface area of a material is high, such as kerogen, the percentage of the adsorbed fluid 

is no longer negligible comparing to the total fluid amount in contact with the porous 

material, and the impact of adsorption may even dominate the overall fluid behavior. 

Kerogen is a typical example of a nanoporous material with significant amount of 

sorption in its nanopores with organic walls. 
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Figure 6. The sharp decline of shale gas through a well’s life time, indicating 

the potential for tapping the adsorbed gas (Reprinted from Outlook, 2012). 

According to IUPAC, based on the difference in size, nanopores can be 

subdivided into three categories: micropores (0.2-2nm) 1, mesopores (2-50nm), and 

macropores (>50nm). For ordinary fluid molecules related to oil and gas, in kerogen 

micropores, adsorption dominates; in kerogen macropores, free fluid dominates; in 

mesopores, both adsorption and free fluid are important (Kruk, Jaroniec, & Sayari, 

1997). The size of the pores has an impact on both phase (Zottl & Stark, 2014) and 

transport (Arya, Chang, & Maginn, 2001) behavior of fluid in the pores. The pore size 

has huge impact on the thermodynamics, based on experimental results (Figure 7). 

1 For applications in petrophysics and geology, the term “micropore” sometimes refers to 

pores with diameters at the micrometer range. 



7 

Single file diffusion is an intuitive example (Figure 8) showing that different categories 

of pores can have unique impact on the fluid within. 

Figure 7. Typical isotherm shape exhibited by (a) purely microporous material 

(Type I, isotherm profile) (b) non-porous and microporous material (Type II, 

isotherm profile) and (c) purely mesoporous materials (Type IV, isotherm 

profile) (Reprinted from Donohue & Aranovich, 1998; Kuila & Prasad, 2013) 

Figure 8. An illustration of single file diffusion: Micropores can only allow no more 

than one fluid molecule to pass through at a time, whereas mesopores allow 

multiple, resulting a difference in diffusivity (Reprinted from Cheng & Bowers, 

2007) 
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Shale gas mainly contains methane (C1). And it may contain other hydrocarbons 

in significantly less amount, such as ethane (C2) and propane (C3). Hydrocarbons 

heavier than butane (C4) are usually very few. Non-hydrocarbon components such as 

CO2 and N2 sometimes exist (Bulba & Krouskop, 2009). As a result, in this research, we 

only analyze small hydrocarbon molecule up to C4. 

Depending on its thermal maturity, that is the level of temperature the organic 

matter has been exposed to, kerogen consists of nanopores with a wide pore size 

distribution and large specific surface area for the storage of natural gas. The adsorbed 

gas amount in kerogen varies and makes up to 50% of gas in place (Ambrose, Hartman, 

Diaz Campos, Akkutlu, & Sondergeld, 2010).  Thus, understanding the pore structure, 

petrophysical characteristics, and transport behavior of reservoir fluids in kerogen is of 

great importance. The kerogen microstructure and fluid it generates is highly impacted 

by the kerogen type (Figure 9). In Chapter III, we studied the fluid transport, and 

provided a simplified nanoporous network, in and for all four types of kerogen 

microstructures. 
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Figure 9. Modified Van Krevelen diagram showing the maturation pathways 

of kerogen upon burial and associated increase in temperature (Reprinted 
from McCarthy et al., 2011)
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Characterization and Flow Simulation of Nanopores 

The study and characterization of pores in reservoir rocks has been a mature science for 

years. Figure 10 shows a range of pore throat sizes in typical siliciclastic rocks, and the 

corresponding characterization methods. When pore size goes under 10-2 μm, 

conventional methods for larger pores are no longer applicable and the characterization 

becomes more difficult, which calls for unique characterization technologies. 

Figure 10. Pore throat sizes for typical siliciclastic rocks, with measurement 

methods, and molecular diameters of water, mercury, and three gases are 

also shown (Reprinted from Nelson, 2009). 
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The research on nanoporous materials and their physical phenomena is fast-

evolving. To understand the elastic, storage and transport properties of shale gas, one 

challenge is to understand the complete pore structure, whereas the other is to 

understand how the pores interact with the fluid molecules. 

To experimentally measure the pore size, shape and connectivity in shale gas 

samples, there are both direct and indirect methods. Direct methods include scanning 

electron microscopy (SEM), atomic force microscopy (AFM, Figure 11) (Chalmers, 

Bustin, & Power, 2012; Loucks, Reed, Ruppel, & Hammes, 2012)  and transmission 

electron microscopy (TEM, Figure 12). Figure 13 gives a brief review on the 

applicability of each microscopic characterization method according to the length scale 

of the samples. We note that, nowadays, it is possible to get the 3-D imaging of material 

samples at the resolution <1 nm, which is the same as the diameter of typical atoms 

(Figure 19). 

Indirect methods include pycnometry (Chalmers et al., 2012; Javadpour, Fisher, 

& Unsworth, 2007), nitrogen adsorption tests (Chalmers et al., 2012; Groen, Peffer, & 

Perez-Ramirez, 2003). Figure 14 shows the prevalent presence of micropores and 

mesopores in typical shale rock samples from adsorption tests. Figure 15 shows the basic 

setup of an indirect measurement. In addition, indirect methods requires some 

mathematical modeling to calculate the parameter being measured, as a result, the 

measurement results is highly sensitive to the accuracy of the model, and errors can be 

introduced during this process (Cui, Bustin, & Bustin, 2009; Q. H. Hu, Ewing, & Dultz, 

2012; Mehmani, Prodanovic, & Javadpour, 2013). Specifically, permeability 
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measurement methods include pulse-decay method, canister desorption test, and 

measurement using crushed samples. 

Direct methods can detect the geometric location of the pores in the sample, but 

the measurements are time-consuming; indirect methods can measure the pore-size 

distributions of the samples rapidly, but they cannot detect the location of the pores and 

cannot give the information how the pores are connected. 

Another challenge for experimental measurement is sample preparation. For a 

highly heterogeneous reservoir rock, it is difficult to directly measure the contribution of 

flow of organic pores, and samples are prone to damage during the separation process. 

As a result, simulation methods can be considered very powerful alternative to 

experimental measurements. 

Figure 11. FIB/SEM image showing porosity and kerogen within shale. Black 

depicts pore, dark gray is kerogen, light gray is matrix (clay and silica) (Reprinted 
from Ambrose et al., 2010). 
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Figure 12. TEM image for an Eagle Ford kerogen sample (Reprinted from 
Firdaus & Heidari, 2015)

Figure 13. Overview of microscopic techniques. The resolution of each technique 

is displayed as an approximate range indicating its imaging capability  (Reprinted 
from Cocco et al., 2013)
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Figure 14. Pore-size distribution defined by differential pore volume using low- 

pressure gas (N2 and CO2) adsorption analyses (Reprinted from Chalmers et 

al., 2012) 

Figure 15. Laboratory measurement of low permeability unconventional 

gas reservoir rocks (Reprinted from Sander, Pan, & Connell, 2017) 
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The impact of pore size, shape and connectivity is the primary focus of this 

study. When pore size becomes small, there is deviation from conventional fluid 

dynamics. The first source of deviation from macropores is the significant contribution 

from adsorption. In many previous studies, the adsorption/desorption process is modeled 

as a diffusive process, and the dynamics can be described using diffusivities (L. Chen et 

al., 2015; Cui et al., 2009; Maginn, Bell, & Theodorou, 1993). This approach works 

relative well with micropores, in which the bulk fluid flow contribution can be ignored. 

However, in mesopores, the adsorption/desorption process is in parallel with bulk fluid 

flow, and it is reported that adsorbed molecules also contribute to the overall flow 

(Riewchotisakul, 2014). 

The second source of deviation comes from confinement. This confinement 

effect can be described by Knudsen number (Kn). It is a dimensionless number defined 

as 𝐾𝑛 = 𝜆/𝐿, which is the mean free path over the representative physical length scale, 

i.e. the pore size. When Kn gets large, the collision between fluid molecules and the 

confinement walls become non-negligible, and the fluid-wall interactions makes the 

transport phenomenon deviate from what is described by conventional fluid dynamics. 

The mean free path of molecules is impacted by pressure and temperature of the system, 

and the fluid molecule itself. Equation 1 describes the mean free path for ideal gas. 

𝜆 =
𝑘𝐵𝑇

√2𝜋𝑑2𝑝
Equation 1 

𝑘𝑎𝑝𝑝

𝑘0
= 𝑓(𝐾𝑛, 𝑃) Equation 2 
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This effect is first reported by Klinkenberg (Klinkenberg, 1941). Previous 

numerical simulation results show that apparent permeability (the measured permeability 

considering Knudsen effect) is significantly dependent on pore throat size and pressure. 

With the decrease in reservoir pressure, slip flow, transition flow begins to dominate 

viscous flow (Brown, Dinardo, Cheng, & Sherwood, 1946; Javadpour, 2009; 

Klinkenberg, 1941). There are several models describing the Knudsen effect, however, 

the difference in apparent factors between the models can be huge, which indicates the 

uncertainty of the Knudsen effect (Figure 16, with flow regimes described in Table 1). 

This impact is crucial in determining the subsurface permeability, by making corrections 

to permeability measured in the lab, which typically has significant differences in 

pressure, temperature and fluid type than reservoirs. 

Figure 16. Comparisons of apparent permeability model (“α’’ is the tangential 

momentum accommodation coefficient in Brown’s model, reflect wall 

roughness) (Reprinted from Zhang, Hu, Meegoda, & Gao, 2015) 
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Table 1. Flow regime vs. Knudsen number 

Flow regime Knudsen number 

Viscous flow <10-2

Slip flow (10-2, 10-1) 

Transition flow (10-1, 101) 

Free molecular flow >101

Forchheimer correction is another possible correction on Darcy’s law, when the 

flow velocity is high (Re ≥ 10) (Whitaker, 1996). This effect is caused by the inertial 

accelerating or decelerating forces due to tortuosity, which introduces a non-linear term 

to the pressure ~ velocity relationship (Equation 3). 

𝛻𝑝 = 𝑎𝑈 + 𝑏𝑈2 Equation 3 

Multiscale transport and kinetics modeling is an approach to study transport 

behavior in unconventional reservoirs or rocks, and to predict the productivity of oil and 

gas (I. Yucel Akkutlu & Fathi; Fathi & Akkutlu; Fathi & Akkutlu, 2009; Fathi & 

Akkutlu, 2014; Wasaki & Akkutlu; Yi, Akkutlu, Karacan, & Clarkson, 2009). However, 

transport modeling and simulation requires accurate parameterization, especially those 

related to transport in nanopores and adsorption. Current novel reservoir simulation 

studies on highly heterogeneous reservoir rocks also require transport parameters of the 

nanopores to be determined to get more accurate results (Yan, Wang, & Killough, 2016). 
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There are several methods to simulate fluid flow in nanochannels, including 

molecular dynamics, direct simulation Monte Carlo (DSMC) (Oran, Oh, & Cybyk, 

1998), dissipative particle dynamics (DPD) (Groot & Warren, 1997), Lattice-Boltzmann 

method (LBM) (S. Chen & Doolen, 1998; Raabe, 2004). Apart from molecular 

dynamics, which is the focus of this study, there are already many successful 

applications of these methods to study the transport phenomena in the shale gas 

reservoirs (L. Chen et al., 2015; Fathi & Akkutlu, 2013). Figure 17 suggests that the 

selection of the methods above, together with dynamics simulation methods based on 

Navier-Stokes equation, can be applied based on the size of the system, desired 

computational efficiency, Knudsen number, and the level of microscopic complexity. 

Figure 17. Various approaches to computational fluid dynamics together with 

their preferred range of applicability (Reprinted from Raabe, 2004) 
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Specifically, Lattice-Boltzmann method (lattice gas and lattice Boltzmann 

automata) is coarser than DPD and DSMC, instead of Navier-Stokes equations, it solves 

discrete Boltzmann equation with collision models (such as Bhatnagar–Gross–Krook). 

The direct simulation Monte Carlo (DSMC) uses Monte Carlo simulation to solve the 

Boltzmann equation (Equation 4, in the next section) with high Knudsen number. DSMC 

is commonly used for large and low-pressure systems. Because of its low computational 

cost, it is also used in simulation of transport in nanopores (Roy, Raju, Chuang, Cruden, 

& Meyyappan, 2003). Dissipative (pseudo-) particle dynamics (DPD) is a stochastic 

simulation method, which can avoid the lattice artifacts (exists in LBM) and saves 

significant computational cost than molecular dynamics and works very well for 

complex fluids (Espanol & Warren, 1995). Molecular dynamics simulation is by far the 

finest method used to simulate fluid flow. It not only considers all intra-atomic 

interactions, but also not possible to bypass the transient stage when it is used to 

simulate steady state behaviors. However, thanks to the rapid increase of computation 

power, molecular dynamics is becoming more and more popular. Molecular dynamics 

also makes model parameterization very easy. If the chemical structure of the system is 

accurately determined, the simulation results should be accurate. 

There are already numerous modeling studies on the transport in porous media, 

specifically reservoir rocks, using the methods above, using idealized pore geometry and 

structures.  These studies can be very useful in determining the impact of different 

variables, but since the idealized models are usually far away from the actual pore 

samples, the results cannot be directly used to accurately describe the 
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permeability/diffusivity in the porous media. As a result, finding ways to apply the 

numerical methods on accurate nanopore structures are crucial. 

The application with a similar approach in macropores is a mature technology. 

The pore network models of conventional rocks such as sandstone (Blunt, 2001) is an 

tested application of  Navier-Stokes dynamics in microporous media. Together with the 

sophisticated pore structure characterization method, engineers and scientists have 

created a new technology called digital rock physics for microporous media (Figure 18). 

The primary goal of digital rock physics studies is to relate measured geophysical 

observables to the in-situ rock properties. It includes in the analysis the shape and 

connectivity of the pores, which cannot be captured by the conventional macroscopic 

techniques such as porosimetry and NMR. The first necessary step for digital rock 

physics is to obtain a digital image of the porous material. This could be done using x-

ray CT or micro-CT. Then, imaging artifacts are removed, and the separation between 

the solid material that makes up the skeleton and the pore space is performed for the 

investigations (Andra et al., 2013a). Finally, physical quantities of interest, for example, 

the permeability of the porous medium, can be computed considering steady-state flow 

throughout the pore network. Fluid flow for segments with large-scale pores is often 

simulated using Lattice-Boltzmann simulation method and the explicit jump Stokes 

method (Andra et al., 2013b). 
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Figure 18. A graphical illustration of digital rock physics, from FEI (Reprinted 
from FEI, 2018) 

Figure 19. Stack of images produced with FIB-nt from sample, showing 

capability of high-resolution 3-D imaging (Reprinted from Balach, Soldera, 

Acevedo, Mucklich, & Barbero, 2013)

We are inspired to apply this methodology to smaller pores, to take the advantage 

of the advancement in simulation and characterization technologies. When pore size is 

reduced to the nanometer scale, the current imaging techniques, such as TEM, have a 
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sub-nanometer scale (0.1~0.2 nm) resolution which could capture the detailed 3-D 

images of the pores (Milliken & Curtis, 2016) (Figure 19). At this scale, the fluid-wall 

interactions are significant, hence, the chemical variability of the pore walls matters. 

However, the conventional approaches assuming homogeneous fluid properties such as 

the methods based on the Navier-Stokes equation and the Lattice-Boltzmann method 

may no longer be valid. Non-equilibrium molecular dynamics simulations could be used 

instead (Fathi & Akkutlu, 2013). The details will be covered in Chapter III. 
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Molecular Mechanics and Molecular Dynamics 

Molecular modelling is the methodology that includes all theoretical and computational 

methods, to model or approximate the behavior of molecules, atoms and ions. This 

includes molecular mechanics, which treats atoms, ions or atomic groups as the smallest 

modelling unit; and quantum chemistry, which explicitly models the electrons. 

Molecular mechanics relies on classical mechanics to model the behavior of the 

molecular systems, and the quantum effects are partially considered, by using different 

forms of model equations and parameters. In molecular mechanics, the Born-

Oppenheimer approximation (Koppel, Domcke, & Cederbaum, 1984) is used, which 

assumes that the motion of atomic nuclei and the motion of the electrons in a molecule 

or ion can be treated separately. As a result, the potential energy of the entire molecular 

system can be calculated using the coordinates of the nuclei, with the impact of electrons 

implicit. Force fields, or interatomic potentials, are a series of functions (and their set of 

parameters) describing the interactions between atoms or coarse-grained particles within 

the molecular system, using the coordinates of atoms or particles as variables. The 

functions of force fields are determined empirically or theoretically; and the parameters 

of the force fields can be derived from experiments and/or quantum mechanical 

calculations. 

The basic idea of molecular mechanics is illustrated in Figure 20, which requires 

statistical thermodynamics to combine the microscopic behavior to macroscopic 

properties. For processes that are not at thermodynamic equilibrium, non-equilibrium 
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statistical mechanics must be used to analyze the results from molecular mechanical 

simulations. The Boltzmann equation describes the statistical behaviors of systems that 

are not at non-equilibrium. The general form of Boltzmann equation can be written as 

Equation 4, with 𝑓(𝒓, 𝒑, 𝑡) being the probability density function of a state within the 

phase space, the "force" term corresponds to the influence of external forces, the 

"diffusion" term represents particle diffusion, and "collision" term represents the impact 

of  particle collisions. The major challenge for solving this equation comes from the 

collision term. Bhatnagar, Gross and Krook (Bhatnagar, Gross, & Krook, 1954) 

proposed a simplification for the collision term (Equation 5), which maintains the 

accuracy in describing macroscopic behavior, being the theoretical foundation of 

molecular dynamics simulation (will be discussed later). In the Boltzmann equation, 

despite the “delta” in the phase space is selected to be infinitesimally small 

macroscopically, but the “delta” is still considered much larger than individual molecule. 

This implicit assumption also makes the analysis of molecular dynamics simulation 

valid. Another class of non-equilibrium statistical method applied in molecular 

mechanics is the perturbation from equilibrium (near-equilibrium methods), with tools 

includes Green-Kubo relations (Searles & Evans, 2000), Onsager reciprocal relations 

(Monroe & Newman, 2006), etc.  

 

Figure 20. The basic idea of molecular modeling and simulation 
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𝑑𝑓

𝑑𝑡
= (

𝜕𝑓

𝜕𝑡
)

𝑓𝑜𝑟𝑐𝑒
+ (

𝜕𝑓

𝜕𝑡
)

𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛
+ (

𝜕𝑓

𝜕𝑡
)

𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛
 

Equation 4 

  

Ω(𝑓) = −
1

𝜏
(𝑓 − 𝑓(0)) 

Equation 5 

 

 Since the simulation results must be analyzed using statistical thermodynamics, 

the simulation must be carried out under some certain restrictions to make the analysis 

valid, these restrictions are the same as those for statistical ensembles. An ensemble is 

like a probability distribution of a state of the system. There are three basic ensembles, 

and some certain thermodynamic quantities must be kept constant. Specifically, these are 

microcanonical ensemble (constant NVE ensemble), canonical ensemble (constant NVT 

ensemble) and grand canonical ensemble (constant μVT ensemble). Apart from these 

three ensembles, Gibbs ensemble (with constant NPT), and isenthalpic-isobaric 

ensemble (with constant NPH) are also commonly used in molecular mechanics.  

 To ensure that the entire molecular model fulfills the requirement of certain 

ensembles, some algorithms must be applied to adjust the trajectories (and/or velocities), 

other than the common molecular mechanical operations in a typical simulation 

cycle/step. Specifically, temperature and pressure are the two quantities which cannot be 

always kept constant during regular molecular simulation cycles/steps, thus 

“thermostats” and “barostats” can be applied to keep them constant. The common 

control methods include Nose-Hoover (Evans & Holian, 1985), Berendsen (Lemak & 

Balabaev, 1994), Langevin (Soddemann, Dunweg, & Kremer, 2003) and direct 

rescaling.  



 

26 

 

Typically, there are two ways to model a multi-atomic system, all-atom and 

united-atom. All-atom (AA) force fields treat each atom separately and assign 

parameters for every one of them; while the united-atom (UA) approach necessarily 

combine the impact of smaller atoms (e.g. hydrogen) into the impact of nearby larger 

atoms, which could reduce the degrees of freedom of the system and save computational 

cost, but at the risk of losing accuracy. Coarse-grained potential is a united-atom 

approach which further simplify the molecular model by combining more atoms together 

into larger grains, which could significantly reduce the computational cost, and widely 

used in long-time simulations of large molecular systems, such as proteins, DNAs and 

polymers.  

The basic form for potential energy in molecular mechanics is shown in Equation 

6. The classical force fields include: Assisted Model Building and Energy Refinement 

(AMBER) (Weiner & Kollman, 1981), Chemistry at HARvard Molecular Mechanics 

(CHARMM) (Brooks et al., 1983), Consistent Valence Force Field (CVFF) (Hwang, 

Stockfisch, & Hagler, 1994; Maple et al., 1994), GROningen MOlecular Simulation 

(GROMOS), Optimized Potential for Liquid Simulations (OPLS) (W. L. Jorgensen, 

Maxwell, & TiradoRives, 1996), Transferable Potentials for Phase Equilibria (TraPPE), 

Condensed-phase Optimized Molecular Potentials for Atomistic Simulation Studies 

(COMPASS) (Sun, 1998; Sun, Ren, & Fried, 1998; J. Yang, Ren, Tian, & Sun, 2000), 

PCFF (Sun, 1995; Sun, Mumby, Maple, & Hagler, 1994), PCFF+ (Collell, Ungerer, et 

al., 2014), and Universal Force Field (UFF) (Rappe, Casewit, Colwell, Goddard, & 

Skiff, 1992). The common force fields can be classified to Class I, Class II and Class III 



27 

force fields. The force field equation for Class I is shown in Equation 7, which uses 

harmonic terms to describe intramolecular interactions, and Lennard-Jones and Coulomb 

terms to describe intermolecular interactions; the Class II force field is built on top of the 

Class I force field, but added the secondary and tertiary interaction terms between bonds, 

angles, dihedrals, and improper dihedrals (Equation 8), and the conformational energies 

and vibrational spectra can be successfully predicted; the Class III force field is invented 

to overcome the limitations of the additive empirical force fields, including polarizable 

force fields, hybrid methods (QM/MM), and reactive force fields. In this study, the 

commonly used force fields for organic materials: OPLS, CVFF, PCFF and PCFF+ are 

used. A multi-body force field, Tersoff potential (Dodson, 1987), is used to model 

carbon nanotubes. 

𝐸𝑡𝑜𝑡𝑎𝑙 = 𝐸𝑏𝑜𝑛𝑑𝑒𝑑 + 𝐸𝑛𝑜𝑛𝑏𝑜𝑛𝑑𝑒𝑑  

𝐸𝑏𝑜𝑛𝑑𝑒𝑑 = 𝐸𝑏𝑜𝑛𝑑 + 𝐸𝑎𝑛𝑔𝑙𝑒 + 𝐸𝑑𝑖ℎ𝑒𝑑𝑟𝑎𝑙 + 𝐸𝑖𝑚𝑝𝑟𝑜𝑝𝑒𝑟  

𝐸𝑛𝑜𝑛𝑏𝑜𝑛𝑑𝑒𝑑 = 𝐸𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑠𝑡𝑎𝑡𝑖𝑐 + 𝐸𝑣𝑎𝑛 𝑑𝑒𝑟 𝑊𝑎𝑎𝑙𝑠  

Equation 6 

𝐸𝑡𝑜𝑡𝑎𝑙 = ∑ 𝑘𝑏(𝑏 − 𝑏0)2

𝑏𝑜𝑛𝑑𝑠

+ ∑ 𝑘𝜃(𝜃 − 𝜃0)2

𝑎𝑛𝑔𝑙𝑒𝑠

+ ∑
𝑉𝑛

2
(1 + cos (𝑛𝜙 − 𝛿))

𝑑𝑖ℎ𝑒𝑑𝑟𝑎𝑙𝑠

+ ∑ 𝑘𝜔(𝜔 − 𝜔0)2

𝑖𝑚𝑝𝑟𝑜𝑝𝑒𝑟𝑠

+ ∑ (
𝑞𝑖𝑞𝑗

𝜖𝑟𝑖𝑗
)

𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑠𝑡𝑎𝑡𝑖𝑐

+  ∑ 𝜖𝑖𝑗 [(
𝑅𝑚𝑖𝑛,𝑖𝑗

𝑟𝑖𝑗
)

12

− 2 (
𝑅𝑚𝑖𝑛,𝑖𝑗

𝑟𝑖𝑗
)

6

]

𝑣𝑎𝑛 𝑑𝑒𝑟 𝑊𝑎𝑎𝑙𝑠

 

Equation 7 
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𝐸𝑡𝑜𝑡𝑎𝑙 = ∑ [𝑘𝑏.2(𝑏 − 𝑏0)2 + 𝑘𝑏.3(𝑏 − 𝑏0)3 + 𝑘𝑏.4(𝑏 − 𝑏0)4]

𝑏𝑜𝑛𝑑𝑠

+ ∑ [𝑘𝜃,2(𝜃 − 𝜃0)2 + 𝑘𝜃,3(𝜃 − 𝜃0)2 + 𝑘𝜃,4(𝜃 − 𝜃0)2]

𝑎𝑛𝑔𝑙𝑒𝑠

+ ∑ [𝑘𝜙,1(1 − cos 𝜙) + 𝑘𝜙,2(1 − cos 2𝜙)

𝑑𝑖ℎ𝑒𝑑𝑟𝑎𝑙𝑠

+ 𝑘𝜙,3(1 − cos 3𝜙)] + ∑ 𝑘𝜒𝜒2

𝑖𝑚𝑝𝑟𝑜𝑝𝑒𝑟𝑠

+ ∑ ∑ 𝑘𝑏𝑏′(𝑏 − 𝑏0)(𝑏′ − 𝑏0′)

𝑏𝑜𝑛𝑑𝑠′𝑏𝑜𝑛𝑑𝑠

+ ∑ ∑ 𝑘𝜃𝜃′(𝜃 − 𝜃0)(𝜃′ − 𝜃0′)

𝑎𝑛𝑔𝑙𝑒𝑠′𝑎𝑛𝑔𝑙𝑒𝑠

+ ∑ ∑ 𝑘𝑏𝜃(𝑏 − 𝑏0)(𝜃 − 𝜃0)

𝑎𝑛𝑔𝑙𝑒𝑠𝑏𝑜𝑛𝑑𝑠

+ ∑ ∑ (𝑏 − 𝑏0)[𝑘𝜙,𝑏1 cos 𝜙 + 𝑘𝜙,𝑏2 cos 2𝜙

𝑑𝑖ℎ𝑒𝑑𝑟𝑎𝑙𝑠𝑏𝑜𝑛𝑑𝑠

+ 𝑘𝜙,𝑏3 cos 3𝜙]

+ ∑ ∑ (𝑏′ − 𝑏0′)[𝑘𝜙,𝑏′1 cos 𝜙 + 𝑘𝜙,𝑏′2 cos 2𝜙

𝑑𝑖ℎ𝑒𝑑𝑟𝑎𝑙𝑠𝑏𝑜𝑛𝑑𝑠′

+ 𝑘𝜙,𝑏′3 cos 3𝜙]

+ ∑ ∑ (𝜃 − 𝜃0)[𝑘𝜙,𝜃1 cos 𝜙 + 𝑘𝜙,𝜃2 cos 2𝜙

𝑑𝑖ℎ𝑒𝑑𝑟𝑎𝑙𝑠𝑎𝑛𝑔𝑙𝑒𝑠

+ 𝑘𝜙,𝜃3 cos 3𝜙]

+ ∑ ∑ ∑ (𝜃 − 𝜃0)(𝜃′ − 𝜃0
′ )𝑐𝑜𝑠𝜙

𝑑𝑖ℎ𝑒𝑑𝑟𝑎𝑙𝑠𝑎𝑛𝑔𝑙𝑒𝑠′𝑎𝑛𝑔𝑙𝑒𝑠

+ ∑ (
𝑞𝑖𝑞𝑗

𝜖𝑟𝑖𝑗
)

𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑠𝑡𝑎𝑡𝑖𝑐

+  ∑ 𝜖𝑖𝑗 [(
𝑅𝑚𝑖𝑛,𝑖𝑗

𝑟𝑖𝑗
)

12

− 2 (
𝑅𝑚𝑖𝑛,𝑖𝑗

𝑟𝑖𝑗
)

6

]

𝑣𝑎𝑛 𝑑𝑒𝑟 𝑊𝑎𝑎𝑙𝑠

 

Equation 8 
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Figure 21. Common force field interactions 

Lennard-Jones potential (Verlet, 1967) (Equation 9) is a simple model which 

approximates the van der Waals interaction between a pair of neutral atoms or 

molecules. For van der Waals interactions involving different types of atoms, a series of 

combination rules or mixing rules are applied. The Lorentz-Berthelot rules (Schoen & 

Hoheisel, 1984) (Equation 10) are the most commonly used among all of them. 

𝑈𝑖𝑗
𝐿𝐽(𝑟𝑖𝑗) = 4𝜖𝑖𝑗 [(

𝜎𝑖𝑗

𝑟𝑖𝑗
)

12

− (
𝜎𝑖𝑗

𝑟𝑖𝑗
)

6

] Equation 9 

With ϵij and σij being the energy and length scale of the interaction between two 

Lennard-Jones sites i and j, and rij is the distance between them. 

𝜎𝑖𝑗 =
𝜎𝑖𝑖 + 𝜎𝑗𝑗

2
, 𝜖𝑖𝑗 = √𝜖𝑖𝑖𝜖𝑗𝑗  Equation 10 

Like van der Waals interaction, many interatomic forces decrease significantly 

with the increase in distance. As a result, to reduce computational cost, it is necessary to 



30 

ignore the interactions at longer distance by only considering the interaction within the 

Verlet list or cell list (Figure 22, Figure 23). For interactions which decay slowly (like 

electrostatic interaction), algorithms like Ewald summation (Hautman & Klein, 1992) 

and Particle Mesh Ewald (Darden, York, & Pedersen, 1993) is used to prevent accuracy 

loss while managing the computational cost. 

Boundary condition is another important consideration for molecular mechanics. 

Unlike conventional mechanical modeling, molecular models are typically much smaller 

than the real systems to be investigated. In addition, it is generally considered not easy to 

make a fixed accurate boundary condition. As a result, periodic boundary condition is 

the most commonly used boundary condition for molecular mechanics (Figure 24). 

Figure 22. The Verlet list: a particle 𝒊 interacts with those particles within the 

cutoff radius 𝒓𝒄; the Verlet list contains all the particles within a sphere with radius 
𝒓𝒗 (Reprinted from Frenkel & Smit, 2002)
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Figure 23. The cell list: the simulation cell is divided into cells of size 𝒓𝒄 × 𝒓𝒄 a 
particle 𝒊 interacts with those particles in the same cell or neighboring cells 

(Reprinted from Frenkel & Smit, 2002) 

Figure 24. Schematic representation of periodic boundary conditions (Reprinted 
from Frenkel & Smit, 2002) 
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Molecular mechanics have certain limitations which could reduce its accuracy 

and even prevent it from generating valid results. These limitations include: 1) Reaction 

is not easy to be implemented; 2) Polarization needs special parameterization; 3) The 

parameterization of large molecules comes from analogies from small molecules, which 

could introduce errors. However, in this study, since there are no chemical reactions and 

the fluid molecules are not strongly polar, it can be expected that the accuracy loss only 

comes from the pore model. 

Molecular mechanics is first mentioned by Andrews et al. (Kettering, Shutts, & 

Andrews, 1930), and the concept was proved by Allinger (Allinger, 1976), and further 

implemented in 1980s with the emergence of several popular force fields. Since 2000, 

there are more and more applications and publications about classical molecular 

mechanics simulations. Thanks to the fast development of high-performance parallel 

computing, molecular mechanics now can be utilized to study molecular systems with 

millions to billions of atoms, up to large biological systems and living cells (Perilla et 

al., 2015). And now it has been applied to investigate structure, dynamics, and properties 

of various subjects, including materials science, chemical biology, polymer chemistry, 

and so on. 

Molecular dynamics is the main application of molecular mechanics. It uses 

force fields to calculate the forces between each interaction pairs, then with a proper 

integration algorithm and Newton’s second law (Equation 11) of motion, the coordinates 

and velocities of all particles in the model are updated for the next time step. A typical 

molecular dynamics simulation cycle is shown in Figure 25, with the trajectory, forces, 
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and velocities being the main output. Using statistical mechanics, the macroscopic 

properties of interest can be calculated at the last step or on the fly. Other than the issues 

mentioned above, the entire molecular dynamics simulation requires some additional 

steps. The first is energy minimization. This process considers all the potential energy of 

the system without regard of the kinetic energy, and results in a local minimum and 

slight changes of the initial coordinates, to make the simulation more robust. Second, 

before the actual molecular dynamics production stage, the system shall go through a 

simulated annealing process, which further, and faster minimize the energy of the 

system. 

𝑭 = 𝑚𝒂 Equation 11 

Figure 25. A typical cycle of molecular dynamics simulation (Reprinted 
from Hospital, Goñi, Orozco, & Gelpí, 2015) 
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The molecular simulation work carried out in this study is performed using 

Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) (Plimpton, 

Crozier, & Thompson, 2007) is a molecular dynamics program from Sandia National 

Laboratories, which uses spatial-decomposition to partition the simulation into small 

sub-domains, which allows parallel computing in both CPUs and GPUs. GROMACS 

(Hess, Kutzner, van der Spoel, & Lindahl, 2008) is an alternative simulator which is 

used in the beginning of the project for ideation and comparison/validation purposes. 

VMD (Humphrey, Dalke, & Schulten, 1996) is a visualization software for molecular 

structure and modeling, and it is used for visualization in this study. 

Figure 26. A typical workflow for molecular dynamics simulation 
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Molecular Monte Carlo simulation is another important application for molecular 

mechanics. Unlike molecular dynamics, it only considers the potential energy of the 

particles, without regard of the kinetic energy. However, based on the equipartition 

theorem, the kinetic energy per degree of freedom at equilibrium should be the same as 

potential energy per degree of freedom. The molecular Monte Carlo does not require 

integration of an equation of motion, thus the computational cost can be significantly 

reduced. And the thermodynamic properties of the system can be accurately determined. 

In this study, we use molecular Monte Carlo simulation to simulate the thermodynamic 

properties in equilibrium, such as density and adsorption capacity. Specifically, MCCCS 

Towhee (Martin, 2013) is used. Towhee is designed for the prediction of fluid equilibria 

with some solid/porous phases, using the Gibbs ensemble. 

The Metropolis–Hastings algorithm (Chib & Greenberg, 1995), a Markov chain 

Monte Carlo method, is a key step in molecular Monte Carlo simulation. Since the total 

number of possible states in the phase space is enormous (because of the high 

dimension), it is not easy to arrive at a fair sampling using direct sampling. This method 

can be used to calculate the probability distribution or to compute an integral 

(thermodynamic property). The basic steps of the Metropolis–Hastings algorithm are as 

follows. 

1) Randomly select particles and calculate the energy of the system.

2) Give the particles a random change in coordinates, then calculate the new

energy of the system. 
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3) And then decide whether to accept the move or not based on the criterion:

acc(o → n) = min(1, exp{−𝛽(𝑈𝑛𝑒𝑤 − 𝑈𝑜𝑙𝑑 )}) Equation 12 

After the sampling is completed, the thermodynamic quantities can be calculated 

based on statistical principles. Grand-canonical Monte Carlo (GCMC) is a widely used 

method to simulate thermodynamic equilibrium state, which relies on grand canonical 

ensemble. GCMC simulations are used in this study to construct adsorption systems at 

equilibrium. 

The transport simulations using molecular dynamics has been extensively 

investigated. There are two common approaches to study fluid transport: equilibrium 

molecular dynamics (EMD) and non-equilibrium molecular dynamics (NEMD). Using 

EMD, it is possible to calculate the self-diffusivity of the fluid sample using the Einstein 

equation (Equation 13), and then calculate transport diffusivity or corrected diffusivity 

using the Darken equation (Equation 14).  However, EMD is not suitable for calculating 

transport parameters for heterogeneous systems, and more samples are required to arrive 

at a stable 𝐷0 (Maginn et al., 1993). 

𝐷𝑠 =
1

6
𝑙𝑖𝑚
𝑡→∞

𝑑

𝑑𝑡
〈|𝒓(𝑡) − 𝒓(0)|𝟐〉 Equation 13 

𝐷𝑡(𝑐) = 𝐷0(𝑐) (
𝜕𝑙𝑛𝑓

𝜕𝑙𝑛𝑐
)

𝑇

𝐷0 =
1

3𝑁
∫ ∑ ∑〈𝑣𝑖(𝑡′) ∙ 𝑣𝑗(0)〉

𝑁

𝑗=1

𝑁

𝑖=1

∞

0

Equation 14 

when molecules rarely encounter each other, 𝐷0 = 𝐷𝑠. 
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NEMD simulation has several different techniques. The first is gradient 

relaxation molecular dynamics (GRMD), which requires to setup a one-dimensional 

diffusion problem. GRMD is computationally intensive because the size of the system 

must be large enough to obtain a “continuum-like” behavior (Maginn et al., 1993). The 

other two commonly used methods includes external field nonequilibrium molecular 

dynamics (EF-NEMD) and dual-control volume grand canonical molecular dynamics 

(DCV-NEMD), which will be elaborated in Chapter II (Arya et al., 2001). Another 

method is to use a fluidized piston to provide a driving force (Itsuo Hanasaki & Akihiro 

Nakatani, 2006). This method cannot directly control the pressure gradient and has a 

maximum time limit on simulation. Previous research has utilized this method 

(Riewchotisakul, 2014), however, an “entry-effect” at the capillary throat presents, 

which makes it hard to tell the exact impact of the capillary walls. 

Figure 27. Schematic representation of the gradient relaxation MD simulation box, 

with periodic images shown along the direction of the concentration gradient 

(Reprinted from Maginn et al., 1993). 
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1-D nanochannel is a popular analogy for the study of nanopores using molecular 

dynamics simulation. Several studies has been done for the application in 

unconventional oil and gas (Firouzi & Wilcox, 2013; Frentrup, Avendaño, Horsch, 

Salih, & Müller, 2012; Z. Liang & H. L. Tsai, 2012; Mutat, Adler, & Sheintuch, 2012b; 

Riewchotisakul, 2014; Wu & Zhang, 2016). However, all of them failed to honor the 

real surface chemical structure of their capillary models, instead, the use of over-

simplified capillary model may lead to spurious results. 

Another approach is to build 3-D molecular models and using them run transport 

simulations. Before full chemistry kerogen models are invented, several porous carbon 

structures are used as analogies for organic porous media in unconventional reservoirs 

for molecular dynamics simulation (Cai, Buts, Seaton, & Biggs, 2008; Firouzi, 

Alnoaimi, Kovscek, & Wilcox, 2014; Firouzi, Rupp, Liu, & Wilcox, 2014; Firouzi & 

Wilcox, 2012; Mosher, He, Liu, Rupp, & Wilcox, 2013). Despite these results provide 

meaningful insights of the transport phenomena, failure to address the accurate chemical 

structure of the porous media makes it impossible for them to make accurate predictions. 

Afterwards, several consecutive studies have been done to construct accurate kerogen 

building blocks, based on lab characterization results of kerogen sample, including 

NMR, X-Ray photoelectron spectroscopy, vitrinite reflectance, and elemental analysis. 

Then, these models are used to construct microporous structures ( 

Figure 28), which are used to study thermodynamic and transport properties (Bousige et 

al., 2016; Collell, Galliero, et al., 2014; Collell et al., 2015; Collell, Ungerer, et al., 2014; 
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Falk, Coasne, Pellenq, Ulm, & Bocquet, 2015; Falk, Pellenq, Ulm, & Coasne, 2015; 

Ungerer, Collell, & Yiannourakou, 2015). However, these full chemistry models do not 

have direct control over the pore structure and connectivity, and mesopores are not yet 

been included. In Chapter III, we tried to overcome these drawbacks by introducing 

mesopores with controlled PSD; and provided a simplified molecular model which 

enables complete control over pore structures. 

Figure 28. Realistic molecular model for kerogen, with micropores only 

(Reprinted from Bousige et al., 2016) 
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CHAPTER II  

MODELING AND SIMULATION OF 1-D NANOCAPILLARY*  

 

In this molecular mechanics simulation study, we first use 1-D nanochannel as the most 

simplified case to study the general relationship of transport in mesopores, then we 

construct 3-D realistic pore network models to mimic the transport of fluid molecules in 

real kerogen samples.  

 

Model Description  

 

Shale gas production involves fluid transport from nanoscale capillaries where the fluid 

flow may be affected by the capillary walls. In small nanocapillaries, the walls have the 

potential to influence the flow through microscopic parameters, such as fluid-wall 

molecular attractive forces and binding energy. These quantities are not considered in the 

classical fluid mechanics calculations. Thus, a deep understanding of the fluid transport in 

nanocapillaries could be critical for a better interpretation of the shale gas production. 

Conventional reservoir engineering methods rely on Hagen-Poiseuille equation of laminar 

flow, which is built on the assumption that the flow velocity by the capillary walls is 

negligible, i.e., no-flow boundary condition. There exists viscous coupling in the fluid, 

                                                

* Part of this chapter is reprinted with permission from "Flow of hydrocarbons in nanocapillary: 

A non-equilibrium molecular dynamics study." by F. Feng, I. Yucel Akkutlu, SPE Asia Pacific 
Unconventional Resources Conference and Exhibition. Society of Petroleum Engineers, 2015. 

Copyright 2015 by Society of Petroleum Engineers 
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which dictates a parabolic velocity profile for the flow (Figure 29). Superficially, for a 

cylindrical capillary, we have Equation 15, where vz(𝑟) is the streaming velocity along

the flow direction. 

Figure 29. Illustration of velocity profile inside a cylindrical capillary, 

with assumption that 𝒗𝒛(𝑹) = 𝟎. Reprinted with permission from Society 
of Petroleum Engineers, Copyright 2015.

𝑣𝑧(𝑟) = −
1

4𝜇

𝑑𝑝

𝑑𝑧
(𝑅2 − 𝑟2) + 𝑣𝑧(𝑟 = 𝑅) Equation 15 

Based on the assumption of no-flow boundary condition, we have the foundation 

of the Darcy’s law: 

𝑣𝑧(𝑟 = 𝑅) = 0 Equation 16 

𝑣𝑧(𝑟) = −
1

4𝜇

𝑑𝑝

𝑑𝑧
(𝑅2 − 𝑟2) Equation 17 

This assumption is valid for large capillaries, where the velocity of the fluid at the 

center of the capillary is large such that 𝑣𝑧(𝑟 = 0) ≫ 𝑣𝑧(𝑟 = 𝑅). However, for small

capillaries this velocity becomes significantly reduced, where 𝑣𝑧(𝑟 = 𝑅) is comparable to

𝑣𝑧(𝑟 = 0); then, no-flow boundary assumption needs to be re-visited.

With the non-zero velocity near the capillary walls, the mass flux at or near the 

walls may have a significant contribution to the overall hydrocarbon transport. As a result, 

permeability of nanocapillaries would be not only a function of pore size, but also a 
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function of the pore wall properties, such as surface roughness and heterogeneities in 

surface chemistry. In oil-wet structures, such as in the case of the kerogen pore network 

with large pore wall surface area, the number of adsorbed molecules is not trivial 

compared to the total amount of hydrocarbons in place. Then, how would the flow field 

in these structures appear? Would the capillary walls influence the flow to a scale that one 

could observe significant non-Darcy effects? 

It has previously been discussed by several authors that mass transport in 

nanocapillary mainly consists of four mechanisms: a) Knudsen diffusion, b) molecular 

diffusion, c) surface diffusion, and d) convection (Albo, Broadbelt, & Snurr, 2006). In 

high pressure cases, such as shale gas reservoirs conditions, the contribution of Knudsen 

diffusion is relatively small compared to the other mechanisms; hence it could be safely 

neglected. Molecular diffusion, on the other hand, does not contribute in the single-

component gas cases. Then, considering the presence of convection and surface transport 

only, one would write the total velocity as follows: 

𝑣𝑧(𝑟) = 𝑣𝑧,𝐻−𝑃(𝑟) + 𝑣𝑧,𝑠𝑢𝑟𝑓𝑎𝑐𝑒  Equation 18 

𝑞𝑡𝑜𝑡𝑎𝑙 = 𝑞𝐻−𝑃 + 𝑞𝑠𝑢𝑟𝑓𝑎𝑐𝑒 = 𝑞𝐻−𝑃 + ∫ 𝜌(𝑟)𝑣𝑧,𝑠𝑢𝑟𝑓𝑎𝑐𝑒𝑟𝑑𝑟
𝑅

0

 
Equation 19 

Here, note that the surface contribution of the pore walls on the flow rate is an 

integral in the radial direction. Albo et al. (2006) and several other authors introduced the 

surface transport as an activated process and its diffusivity can be described with the 

Arrhenius form. However, real capillaries are not perfectly smooth, which make previous 

conclusion dubious and requires further investigation. For the overall gas transport 
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experiencing only the pressure gradient as the driving force, the total flow rate can be 

simply adjusted by adding a surface flow term. 

Figure 30. Previously proposed mass transport mechanisms in 

nanocapillaries (Reprinted from Albo et al., 2006). 

Fundamentally, true driving force on the mass transport is the chemical potential 

gradient. The transport of guest molecules confined in nanocapillaries is common in 

systems such as catalysts, membranes and porous separators. Both experimental and 

theoretical work has been done to study this phenomenon (Kärger & Ruthven, 1992; 

Maginn et al., 1993; Xiao & Wei, 1992). Diffusive transport can be described by the 

generalized Fick’s law, which is a linear combination of chemical potential gradients for 

multi-components: 
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𝐽𝑖 = −𝑐𝑡 ∑ 𝐷𝑖𝑗𝛻𝑥𝑗

𝑛−1

𝑖=1

 Equation 20 

in which 𝐷𝑖𝑗 is Fickian diffusivity, or simply diffusivity, and depends on concentration 

but not the magnitude of the gradient (Taylor, 1993). For the single-component fluid case, 

the relationship can be written as 

𝐽 = −
𝐿(𝑐)

𝑘𝐵𝑇
𝛻𝜇 Equation 21 

where 𝐿(𝑐) is the single-component transport coefficient (Arya et al., 2001). This model 

has been validated for cases involving various porous media (Kapteijn, Bakker, Zheng, 

Poppe, & Moulijn, 1995; Krishna, 2000) (Maginn et al., 1993) and the diffusivity can be 

derived from the transport coefficient. 

Based on statistical mechanics, connecting microscopic values of particles and 

macroscopic properties of a system, molecular dynamics (MD) simulation and molecular 

Monte Carlo (MC) simulation have been widely used to study equilibrium and non-

equilibrium thermodynamic properties. 

Equilibrium and non-equilibrium MD simulations can both be used to calculate 

diffusivities. In equilibrium MD simulation method, 𝐿  and 𝐷𝑡  can be calculated from 

Green-Kubo relation (Theodorou, Snurr, & Bell, 1996): 

𝐿 =
𝑉

3
∫ 𝑑𝑡′ < 𝑱(𝑡′) ∙ 𝑱(0) >

∞

0

 Equation 22 
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𝐷𝑡 =
1

3𝑁
(∫ 𝑑𝑡′ < ∑ 𝒗𝒊(𝑡′)

𝑁

𝑖=1

∑ 𝒗𝒋(0)

𝑁

𝑗=1

>
∞

0

) (
𝜕𝑙𝑛𝑓

𝜕𝑙𝑛𝑐
)

𝑇
Equation 23 

where f is fugacity and N is the number of molecules. No driving force (chemical potential 

gradient) is applied externally. The thermodynamic factor term (
𝜕𝑙𝑛𝑓

𝜕𝑙𝑛𝑐
)

𝑇
 must be calculated 

with other methods to get transport diffusivity (X. Liu et al., 2012; X. Liu et al., 2011). 

For multi-component case, similar equations apply. Theodorou et al. (1996) also proposed 

so-called gradient-relaxation MD simulation based on transient flow simulation (Maginn 

et al., 1993). However, due to the unstable nature of transient flow, this simulation method 

is not widely used. 

The most commonly used methods to simulate mass transport and calculate 

transport diffusivities are homogeneous molecular dynamics, or external field non-

equilibrium molecular dynamics (EF-NEMD), and inhomogeneous molecular dynamics 

methods, or boundary driven molecular dynamics. 

In EF-NEMD method, the chemical potential gradient −𝛻𝜇  is replaced by an 

external force term 𝑓, to mimic the chemical potential gradient, which is identical to 

imposing a pressure gradient or concentration gradient to the fluid system. The simulation 

box of this method is relatively easy to setup, and it is faster than the inhomogeneous 

methods (Maginn et al., 1993). Modifications can be made to this method, by only 

applying external force field on a segment of the simulation box, to allow simulation for 

more complex porous media (Z. Liang & H.-L. Tsai, 2012). In this work, EF-NEMD 
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method is used primarily and inhomogeneous method is only used to verify the simulation 

results. 

In boundary driven non-equilibrium molecular dynamics, two reservoirs with high 

and low concentrations are constructed to apply driving force on the opposite sides of the 

flow region. Usually, Grand Canonical Monte Carlo (GCMC) techniques are used on the 

two reservoir tanks to maintain constant pressure and constant driving force, which is 

called Dual Control Volume Grand Canonical Molecular Dynamics (DCV-GCMD). The 

concept of this method is more intuitive than EF-NEMD method; however, it requires 

larger simulation system and longer simulation time. Thus, it is more suitable to simulate 

fluid flow through membrane systems (Lin & Murad, 2001). This method not only allows 

the study of both linear and non-linear responses, but also allows the simulation study for 

non-regular shaped porous media (Arya et al., 2001; Heffelfinger & Swol, 1994). The 

near-equilibrium approximation of irreversible thermodynamics, which stipulates the 

linear relationship between diffusive flux and the chemical potential gradient, is often 

disrupted by real or artificial momentum transfer. Also, this method may lead to severely 

underestimated fluxes, or additional mass transfer resistance, if not used properly (Lin & 

Murad, 2001). Instead of using GCMC simulation periodically to keep a constant driving 

force, some researchers choose to use two large enough reservoirs so that in the short 

simulation time, the change in chemical potential difference can be negligible (L. Wang, 

2012). The conversion of external force and pressure gradient can be determined by the 

relationship between chemical potential vs. pressure, to determine chemical potential 
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gradient at a certain pressure gradient, and external force equals chemical potential 

gradient. 

Carbon nanotube is a typical analog for the representation of the nanoscale 

capillaries of kerogen, based on which, critical parameters such as the pore size, pore wall 

roughness, and the strength of the liquid-wall interactions, can be modified and studied. 

In this work, single-wall carbon nanotubes made of a graphene sheet with inner diameters 

varying from 3nm to 9nm are used. Graphene represents the ultimate maturation in source 

rocks and has uniform surface properties. Graphene wall roughness can be modified 

relatively easily to mimic the roughness on the pore wall surfaces. The fluid flow inside 

the nanocapillary has been investigated for other applications such as nano- and micro- 

fluidics, however, these were far away for the subsurface conditions. In addition, for the 

shale oil/gas production, the shapes of the capillaries are not of regular shapes, and the 

fluids are multi-component hydrocarbons, which are foundationally different from the 

previous investigations. Hence, the research on the unconventional shale oil/gas 

production is still at an infancy stage. 
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Flow Simulations 

In this study the fluid flow is simulated using both EF-NEMD and DCV-GCMD. These 

are thermodynamic non-equilibrium molecular simulation methods. The simulation box 

is mainly composed of a 25nm long straight carbon nanotube, with varying diameter. In 

EF-NEMD method, the simulation is set with periodic boundary condition that is applied 

on both sides perpendicular to the flow direction, with a constant external force applied 

on every molecule, and the strength of the external force is assigned to a corresponding 

pressure gradient. In DCV-GCMD method, the simulation box consists of three regions, 

upstream (5nm long), midstream (15nm long) and downstream (5nm long), with GCMC 

simulations to control the upstream and downstream pressures, by setting the 

corresponding chemical potentials and temperatures, to drive net flow from upstream to 

downstream regions (Figure 31, Figure 32). The movement of the carbon atoms of the 

nanotube wall can be either fixed or allowed to vibrate. In the latter case, the carbon 

atoms within 2nm to the boundary of the simulation box are fixed to ensure that the 

movement of the carbon nanotube is confined. 

Prior to molecular dynamics simulation, the carbon nanotubes are charged to the 

desired temperature and pressure using GCMC simulation, more details are given in the 

Appendix. During the MD simulation, Nosé–Hoover thermostat is applied to the whole 

simulation system to ensure that the simulation is performed under the constant pressure 
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Figure 31. An illustration of methane charged in a smooth carbon nanotube: 

metallic colored balls are methane molecules, cyan skeleton is the carbon 

nanotube made of graphene sheet, diameter = 5nm.  Reprinted with permission 
from Society of Petroleum Engineers, Copyright 2015.

Figure 32. Simulation setup for homogeneous molecular dynamics (top) and 

inhomogeneous molecular dynamics (bottom) simulations. Fluid molecules are 

not shown. Reprinted with permission from Society of Petroleum Engineers, 
Copyright 2015.
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Figure 33. Simulation setup for molecular dynamics simulation of binary 

mixture in nanocapillary with rough surface. Reprinted with permission from 
Society of Petroleum Engineers, Copyright 2015.

and temperature. The temperature is set to a value varying from 86 F to 356 F, the 

pressure, on the other hand, is set to a value varying from 1000 psia to 12000 psia. The 

diameter of the tube is set to a value varying from 3 nm to 9 nm. During the MD 

simulations, the pressure gradient is set to a value between 1 to 100 psi/nm. Although the 

pressure gradient is large, due to the small capillary diameter, the flow is kept laminar, 

so the results obtained can be reasonably extrapolated to lower pressure gradients. 

Although using smaller pressure gradient may be perceived as real and a lot more 

meaningful, here we should note that the simulation takes longer, and the results have 

higher level of uncertainty due to a significantly smaller number of molecules, which 

leads to large fluctuations in the velocity field. In addition, under the imposed 

conditions, no Knudsen flow effect is expected due to high fluid density. 

In addition to the single-component flow simulation in smooth capillaries, multi-

component fluid flow simulations and simulations involving capillaries with rough 
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surfaces are performed, See Figure 33. In the latter case, the segmented, multi-layered 

smaller carbon nanotube rings can be placed inside the original carbon nanotube to 

mimic the roughness on the tube walls. The heavier component of the fluid which has 

more tendency to be adsorbed to the wall are more likely to be trapped by the trenches 

inside the tube. Realistic sizes of bumps and trenches (a, b, and h values) are used, to 

match the sizes of the most common chemical functional groups in real kerogen 

nanocapillaries. Figure 34 shows a snapshot of methane transport in nanocapillary with 

rough surfaces. 

Figure 34. The structure of a capillary with a rough inner surface, built with 

carbon nanotube walls (Cyan skeleton), filled with methane (red) (Feng & 

Akkutlu, 2015) a, b and h are parameters describing the roughness of the 

capillaries. Reprinted with permission from Society of Petroleum Engineers, 
Copyright 2015.
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Results 

First, we performed equilibrium simulations to charge the capillary with the fluid. GCMC 

simulation is used for this purpose.  The obtained fluid mass density profiles across the 

radius of the capillary are shown in Figure 35. The figure also contains the methane bulk 

density value at the same pressure and temperature conditions as the dotted line. Note that 

the adsorption layer is somewhat sensitive to the pressure, although its value does not vary 

significantly at high pressures. This is because the adsorption layer has fully developed at 

these high pressures. The second layer of high density by the wall, here we are going to 

call it transition layer following the terminology given in Rahmani and Akkutlu (2013), 

could be perceived as the deviation from the Langmuir theory, and it indicates that the 

adsorption is taking place under equilibrium, i.e., constant release and adsorption of 

methane molecules. Note that, with the increase in pressure, the density of the central 

layers by the carbon nanotube wall increases significantly, indicating that more methane 

molecules are stored at the central portion of the capillary as a compressed free fluid. 

Next, we consider the flow of methane inside the nanocapillary under steady-state 

conditions using EF-NEMD. In Figure 36, the actual streaming velocity profile (in blue) 

is shown along with the Hagen-Poiseuille velocity (in dotted red), with the no-flow 

boundary condition. Notice that the molecular simulation gives a higher velocity. In 

addition, we record non-zero velocity values at the wall. This could be perceived at the 

first sight as decoupling of viscosity and a transition from convection to diffusion but it is 

clear that the parabolic nature of the velocity profile still prevails. Hence, convection is 
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Figure 35. Methane density profile across the radius of a 5nm capillary is shown in 

solid line at various pore pressures. The bulk methane density values at these 

pressures are also shown as dotted lines. Temperature is kept constant and equal 

to 176F. Reprinted with permission from Society of Petroleum Engineers, 
Copyright 2015.

still the dominant transport mechanism in the simulation. What leads to non-zero velocity 

by the capillary wall is then the surface velocity of the adsorbed molecules. This could be 

clearly seen, when we the density profile and the velocity profile are compared in Figure 

36, on the top: the two plateaus on the velocity profile near the wall align exactly with the 
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Figure 36. Illustration of surface transport inside a smooth nanocapillary, with 

diameter = 5nm, temperature = 176F, pressure = 4000psia, pressure gradient = 

10psi/nm. The plot is from r = 0 to r = 2.5nm. Note that the Hagen-Poiseuille 

velocity is plotted to the secondary y-axis (left).  Reprinted with permission 
from Society of Petroleum Engineers, Copyright 2015.
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Figure 37. Treatment of carbon nanotube wall: fixed vs. flexible (modeled with 

Tersoff potential), with diameter = 5nm, temperature = 176F, pressure = 

4000psia, pressure gradient = 10psi/nm.  Reprinted with permission from Society 
of Petroleum Engineers, Copyright 2015.
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peaks on the density profile at the bottom, indicating a mobile phase both in the adsorption 

layer and in the transition layer. 

Another important aspect of the molecular simulation results is the fact that the 

superposition of the surface velocity to Hagen- Poiseuille velocity shifts up the latter to a 

level comparable to the numerically predicted velocity. This has recently been discussed 

by Riewchotisakul and Akkutlu (2015) as the lack of another transport mechanism, such 

as Knudsen diffusion. 

It should be mentioned that the molecular simulations we have discussed so far are 

performed with fixed carbon atoms on the nanotube walls. However, atoms on the surface 

of the capillary wall can be partly mobile upon the collisions with fluid molecules. To see 

the wall effects, we used Tersoff potential allowing the movement of the single wall 

carbon nanotube atoms on the wall. The velocity profile is plotted and compared to that 

with fixed wall in Figure 37. The results show that the fixed-wall model can be considered 

as a reasonable approximation without compromising on accuracy, when considering the 

advantage in low computational cost. 

Using the simulation setup described above, we performed a series of simulation 

runs varying pressure gradient, temperature, capillary diameter, and the average capillary 

pressure. We investigated the dependence of surface velocity on these factors. In Figure 

38, we show that the estimated surface velocity can be well fitted with linear regression to 

the pressure gradient applied. Independently, Riewchotisakul and Akkutlu (2015) 

previously observed a linear dependence of the surface velocity to the pressure gradient 

based on their NEMD simulation study using a moving piston model. Surface velocity is 
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plotted with respect to the reciprocal of pore pressure for a wide range of pressures in 

between 1000 psia to 12000 psia. It is understandable that higher pressure means higher 

adsorbed density, and higher resistance to the fluid flow; and larger pore diameter means 

less confinement and thus smaller resistance to the fluid flow. Although it has been argued 

that the surface transport obeys Arrhenius relationship (Albo et al., 2006), in a small 

temperature range, which is the reservoir temperature range, we observe that the 

relationship is controlled by the applied pressure gradient.  Figure 39 clearly shows that 

the flow is dominated by surface transport for smooth capillaries. 

So far, we have discussed the surface transport in smooth capillaries. In real 

kerogen capillaries, the capillary walls are not perfectly smooth. Roughness could 

influence the surface velocity, which in turn could influence the enhancement in fluid flow 

in the capillary. For this purpose, we performed simulations involving rough capillary 

walls as shown in Figure 40, involving segmented carbon nanotubes placed inside the 

main carbon nanotube. The lengths and the depth of the trenches and the bumps are used 

as the parameters to control the morphology of the roughness, and they are set close to the 

sizes of common functional groups exist in kerogen. Figure 40 also shows the fluid flow 

behavior compared to that in capillary with smooth walls. 

The double black dotted lines represent the inner carbon nanotube layer, the 

distance between the two layers is set to the diameter of a carbon atom. The inner layer 

occupies half of the volume by the wall of the main carbon nanotube and now becomes 

the place for the adsorbed methane molecules. Consequently, we observe limited change 

in the density profile of methane across the diameter of the capillary, Figure 40 (top). 
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Figure 38. Sensitivity analysis of surface velocity, with respect to pressure gradient, 

temperature, 1/pressure, and pore diameter, if not specified, diameter = 5nm, 

temperature = 176F, pressure = 4000psia, pressure gradient = 1psi/nm.  Reprinted 
with permission from Society of Petroleum Engineers, Copyright 2015.
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Figure 39. Density and velocity profiles at different capillary diameters, with 

diameter = 5nm, temperature = 176F, pressure = 4000psia, pressure gradient 

= 10psi/nm.  Reprinted with permission from Society of Petroleum Engineers, 
Copyright 2015.
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Figure 40. Comparison of rough and smooth capillaries, density profile (left) and 

velocity profile (right), dotted straight lines represents the segmented CNTs (Figure 

34), with diameter = 5nm, temperature = 176F, pressure = 4000psia, pressure 

gradient = 10psi/nm.  Reprinted with permission from Society of Petroleum 
Engineers, Copyright 2015.
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Note, however, that the imposed roughness drastically reduces the surface velocity, 

Figure 40 (bottom), since increased number of collisions occur under the same driving 

force. Although the surface velocity has been decreased significantly, it is still non-zero. 

Figure 41 compares the simulated velocity profile to the Hagen-Poiseuille solution, 

shown as the dashed line. Part of the adsorbed molecules is “trapped” by the trenches, 

whereas a significant amount of them are still mobile near the discontinuous surfaces. 

So, it is conclusive that using Hagen-Poiseuille equation to describe the transport in 

nanocapillaries would significantly underestimates the mass flux. From the velocity 

profile comparison, after adding the surface velocity, the Hagen-Poiseuille velocity 

profile is still beneath the simulated profile, which indicates that the nanoscale 

confinement may also change the fluid viscosity. As in the smooth case, changing the 

applied pressure gradient does not affect the shape of the velocity profile (Figure 42), in 

other words, the surface velocity is still proportional to the pressure gradient. 

The effect of surface morphology is studied by changing a, b, and h values, as 

shown in Figure 34. Decreasing the frequency of the inner segmented carbon nanotubes, 

or using larger a, b values, or increasing the smoothness, leads to an increase in surface 

velocity. This feature does not affect the shape of the velocity profile, however. On the 

other hand, adjusting the depth of the trenches by adding more inner carbon nanotube 

layers, reduces the effective inner diameter where flow occurs, but does not affect the 

surface velocity at all. The density of the inner most adsorption layer, which contributes 

to the transport because of the surface velocity, stays constant with the change in h 

value. However deeper trenches lead to more immobile methane molecules (Figure 45). 
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Figure 41. Comparison of simulated velocity profile and result from Hagen-

Poiseuille equation, for rough capillaries: velocity (left), mass flux (right), with 

diameter = 5nm, temperature = 176F, pressure = 4000psia, pressure gradient 

= 10psi/nm.  Reprinted with permission from Society of Petroleum Engineers, 
Copyright 2015.
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Figure 42. Pressure gradient normalized velocity profile, varying pressure gradient, 

with diameter = 5nm, temperature = 176F, pressure = 4000psia, pressure gradient 

= 10psi/nm, a, b = 0.5nm, h = 0.34nm.   Reprinted with permission from Society of 
Petroleum Engineers, Copyright 2015.

Figure 43. The relationship between surface roughness and surface velocity.  
Reprinted with permission from Society of Petroleum Engineers, Copyright 2015.
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Figure 44. Density and velocity profiles of rough capillaries, changing a, b values, 

with diameter = 5nm, temperature = 176F, pressure = 4000psia, pressure 

gradient = 10psi/nm. Reprinted with permission from Society of Petroleum 
Engineers, Copyright 2015.
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reduced, the contribution of surface transport increases and eventually in capillaries with 

a diameter less than 4nm, exceeds that contribution expected from Hagen-Poiseuille. 

Surface transport also favors low pressure and high temperature conditions. Contribution 

of surface transport prevails for reservoir pressures as low as 1000 psi. The deviation from 

conventional Hagen-Poiseuille flow behavior is determined by the density ratio of the 

free/adsorbed phases, viscosity, and surface velocity. 

Figure 45. Density and velocity profiles of rough capillaries, changing h value (1~3 

layers, respectively), with diameter = 5nm, temperature = 176F, pressure = 

4000psia, pressure gradient = 10psi/nm.  Reprinted with permission from Society 
of Petroleum Engineers, Copyright 2015.

0

0.2

0.4

0.6

0.8

1

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

D
en

si
ty

, g
/c

m
3

a,b=0.5nm, h=0.34nm

a,b=0.5nm, h=0.68nm

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

-2.5 -1.5 -0.5 0.5 1.5 2.5

St
re

am
in

g 
ve

lo
ci

ty
, m

/s

Distance to the center of capillary, nm

a,b=0.5nm, h=0.34nm

a,b=0.5nm, h=0.68nm



67 

Figure 46. Dependence of surface velocity on diameter, pressure, and temperature 

for rough capillaries (left), relative flow rate (right, total flow rates for 5nm, 

4000psi, 176F are set to 1, respectively), with diameter = 5nm, temperature = 

176F, pressure = 4000psia, pressure gradient = 1psi/nm, a, b = 0.5nm, h = 0.34nm.  

Reprinted with permission from Society of Petroleum Engineers, Copyright 2015.
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In the case of multi-component fluids, the classical single-phase fluid flow theory 

assumes that the streaming velocity should be the same for each component. However, in 

organic nanocapillaries with strong adsorption effect, since different components have 

different sizes and weights, the interactions with rough surfaces should have different 

levels of effects on the adsorption and transport of the fluid molecules. Literature on gas 

separation technologies and on coalbed methane is large and includes such discussions, 

see for example Yi et al. (2008) and Fathi and Akkutlu (2014) for selective adsorption, 

counter and co-diffusion effects. 

Figure 47, includes the flow simulation results for a binary (methane, n-butane) 

mixture. The surface roughness is kept the same for the simulations. Note that the surface 

velocity of the two components are different. Heavier component, n-butane, molecules are 

moving slower near the wall compared to the lighter component, methane. At the center 

of the capillary both velocities are the same, but as the walls are approached, we observe 

that the lighter component is transported faster. In the transition zone, co-flow has a 

dragging effect on methane and acceleration effect on n-butane. Hence, once again, we 

experience a deviation in flow based on the classical Hagen-Poiseuille formulation. 

Furthermore, if we consider larger spacing in between the wall and the inner tube, then 

transport in the transition layer develops within that inner space due to the molecules 

trapped in the trenches contributing to the overall transport by “hopping” through the 

barriers. This results in a non-zero surface velocity between the inner and outer capillaries. 

Whether the fluid molecules will be trapped or not really depends on the steric effects, i.e., 

the relative sizes of the fluid molecules (Table 2) and the sizes of the bumps and trenches. 
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Figure 47. Density and velocity profiles of rough capillaries, for methane-butane 

mixture, mole fraction (90% CH4 -10% C4H10), changing h value, with diameter = 

5nm, temperature = 176F, pressure = 4000psia, pressure gradient = 10psi/nm. Note 

that the pure methane velocity profile is also plotted, showing the dragging effect 

of adding a heavier component.  Reprinted with permission from Society of 
Petroleum Engineers, Copyright 2015.

0

0.1

0.2

0.3

0.4

0.5

0.6

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

D
en

si
ty

, g
/c

m
3

90% CH4, a=b=2.0nm, h=0.34nm

10% C4H10, a=b=2.0nm, h=0.34nm

2nd CNT wall

CNT wall

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

-2.5 -1.5 -0.5 0.5 1.5 2.5

St
re

am
in

g 
ve

lo
ci

ty
, m

/s

Distance to the center of capillary, nm

Pure CH4, a,b=2.0nm, h=0.34nm
90% CH4, a=b=2.0nm, h=0.34nm
10% C4H10, a=b=2.0nm, h=0.34nm
Hagen-Poiseuille
CNT wall



70 

This observation indicates the complexity of transport in rough capillaries, albeit 

we are using a very simple inner surface model. Note that, comparing the multi-component 

results with that in a capillary with smooth surfaces under the same condition, the surface-

velocity of the binary case is the same as the single-component case. The mobile 

adsorption layer is rich in heavier component, which reduces the overall surface velocity; 

on the other hand, with the rough surfaces the reduction is much larger, due to the inner 

capillary ring reducing the mobility of the adsorbed phase. Figure 48 shows density and 

velocity profiles of fluid smooth capillaries for comparison purposes. 

Table 2. Effective sizes and length of common fluid molecules (Reprinted 
from Mao & Sinnott, 2001)

Component Effective diameter 

nm 

Effective length 

nm 

Methane 0.399 0.399 

Ethane 0.399 0.476 

n-Butane 0.415 0.824 

iso-Butane 0.635 0.635 
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Figure 48. Density and velocity profiles of smooth capillaries, for methane-butane 

mixture, mole fraction (90% CH4 -10% C4H10), changing h value, with diameter = 

5nm, temperature = 176F, pressure = 4000psia, pressure gradient = 10psi/nm. Note 

that the pure methane velocity profile is also plotted, showing the dragging effect 

of adding a heavier component.  Reprinted with permission from Society of 
Petroleum Engineers, Copyright 2015.
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Summary 

In this chapter, we considered the fluid transport inside model nanocapillaries with 

varying sizes and wall properties to gain insight into the shale gas transport and 

production mechanisms. It is found that the surface transport associated with the 

adsorbed phase plays an important role in enhancing the fluid flow. The transport 

enhancement can be clearly observed using the concept of relative flow rate, or simply 

by calculating the mass flux across the capillary by multiplying the non-zero surface 

velocity by the total amount of hydrocarbons across the intersection of the capillary. 

Transport behavior is additionally controlled by the inner capillary wall surface 

morphology, which requires considerable modeling work from the real kerogen 

structures to fully determine the transport enhancement. Using segmented carbon 

nanotube rings inside the single-wall carbon nanotube is a simple way to mimic the 

rough structures in real kerogen capillaries, without diving into the chemical complexity 

of the real functional groups. For the transport of multi-component fluids, the surface 

velocity is different for each component and needs to be considered separately. 
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CHAPTER III  

MODELING AND SIMULATION OF 3-D KEROGEN POROUS NETWORK* 

Understanding the molecular structure of kerogen as part of the source rock 

characterization efforts is an important and fast-evolving science. The basic chemical 

structure of kerogen has been under investigation by the geochemists long before the 

interest in shale gas production (Vandenbroucke, 2003). Hybrid experimental-simulation 

methods have been extensively used to create realistic molecular models for kerogen 

nanostructures. Based on the optimized molecular reconstruction procedure, kerogen 

samples of all maturity levels from representative basins are taken to generate molecular 

structures as basic molecular building blocks. The recently published kerogen molecular 

structures are validated with molecular simulation and agree well with the experimental 

results (Bousige, Botan, Ulm, Pellenq, & Coasne, 2015; Bousige et al., 2016; Ungerer et 

al., 2015). The molecular simulation methods are also widely applied to solve real-world 

problems such as natural gas storage capacity and transport in kerogen (Collell et al., 

2015; Falk, Coasne, et al., 2015; Falk, Pellenq, et al., 2015; Ho, Criscenti, & Wang, 

2016; Lee, Bocquet, & Coasne, 2016). The force fields often used in these studies 

include a series of Class I and Class II force fields: CVFF (Dauberosguthorpe et al., 

* Part of this chapter is reprinted with permission from "A Simple Molecular Kerogen Pore-

network Model for Transport Simulation in Condensed Phase and Digital Source-Rock Physics" 
by F. Feng, I. Yucel Akkutlu, Transport in Porous Media, 126.2 (2019): 295-315. Copyright 

2018 by Springer Nature B.V.  
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1988), PCFF (Sun, 1995; Sun et al., 1994), PCFF+ (Collell, Ungerer, et al., 2014), and 

COMPASS (Sun, 1998). 

However, these molecular models are far from being perfect representations of 

kerogen with a certain desired quality. First, the molecular simulation systems 

investigated have scales less than 100 nm, which are much smaller than the 

representative elementary volume (REV, Figure 49) of rocks (Kou, Alafnan, & Akkutlu, 

2017). Previous methods focus on the detailed atomistic description of the kerogen such 

that their sizes are limited, and they do not include the complete pore network 

information of the kerogen, such as the presence of mesopores, which have a significant 

influence on the gas transport (Figure 50). Fluid molecules could experience larger mass 

fluxes and different transport mechanisms as the pore size change (Hahn, Karger, & 

Kukla, 1996; Mutat, Adler, & Sheintuch, 2012a).  Second, the pore network geometry 

information can be obtained from TEM imaging but TEM does not help us to build the 

molecular models of the solid kerogen. Finally, obtaining the exact molecular model of 

kerogen can be costly or impractical for today’s oil and gas industry because substantial 

experimental and simulation work is required to obtain the basic kerogen building block. 

Whereas often the industry’s only concern is obtaining the petrophysical properties of 

the source rock. Therefore, simplifications on the exact kerogen molecular models are 

required to better adapt to the industrial applications. Such a process should include 

simplification of the molecular structure of the kerogen, implementation of new force 

field parameters for the imposed simplification, and validation. With the simplified 
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models, one would hope to accurately determine the permeability of the kerogen using 

molecular simulation based on microscopic structure, without losing accuracy. 

Figure 49. Representative elementary volume (REV) (Reprinted from 
Norris & Lewis, 1991) 

Figure 50. Pore size distribution P(D) for the numerical sample considered in this 

work (red line) and for an experimental kerogen sample (Marcellus kerogen, black 

line). The experimental data, which are taken from Clarkson et al. Fuel (2013), 

were obtained by means of CO2 adsorption (Falk, Coasne, et al., 2015) 
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Model Description 

In previous studies, 3-D kerogen models have been generated by replicating the 

molecular structure representing the basic kerogen building block, which consists of 

hundreds of C, H, N, O, S atoms, but mainly C and H. The radical groups only contain C 

and H are non-polar. On the other hand, the common fluid molecules, hydrocarbons 

(CxHy), N2, and CO2 are all non-polar. As a result, the inter-atomic interactions between 

fluid and kerogen can be mostly described by Lennard-Jones potential (Equation 6, 

Equation 7, Equation 8). In addition, the Lennard-Jones parameters for different united 

atoms (containing C, N, and O) are close. Based on this fact, we see the potential to 

degenerate different types of atoms in the kerogen model into one unified atom type, so 

that the inter-atomic interactions are mostly kept the same as the full chemistry model. 

Specifically, the basic idea is to keep the number of united atoms unchanged, and the 

pore volume unchanged, with some method to average the Lennard-Jones parameters of 

the different atoms in the full chemistry model. Several combinations of weighted means 

for ϵ and σ, including arithmetic, geometric and harmonic means are tested. Different 

close-packing methods, including face-centered cubic (FCC), hexagonal close-packed 

(HCP), and diamond cubic packing (DCP). 

After several experiments, an ideal simplification method is found. With this 

method, all intra-molecular and inter-molecular interactions of the full chemistry model, 

described by Class I or Class II force field formulations, are expected to be replaced by a 

uniform, simple interatomic Lennard-Jones 12-6 potential (Equation 24). The force field 
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parameters which are used to calculate the average (Equation 25) are obtained from the 

PCFF force field (Sun et al., 1994) with 𝜎12−6 = 𝜎9−6/1.12246 and summarized in 

In the flow simulation, OPLS-AA force field is used to describe fluid molecules, 

with bond, angles, dihedrals described in the equation forms below. 

𝐸 = 𝐾  𝑟 −  𝑟02 
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u

at

io
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3
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Table 5, Appendix. In the PCFF force field, the atoms at different chemical 

environments are of different atom types, however, only the most common types in 

kerogen molecules shown in Figure 51 are used to represent all the atoms of the same 

element name. In this model, despite the intra-molecular forces are ignored to save 

computational cost, most geometrical information of the structure, as well as the 

intermolecular forces, can be retained. 
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𝑉(𝑟) = 4𝜖 [(
𝜎

𝑟
)

12

− (
𝜎

𝑟
)

6

] 
Equation 24 

where 𝜖 and 𝜎 are weighted geometric, arithmetic mean of atoms, respectively. 

𝜖 = ∏ 𝜖
𝑖

𝑛𝑖
𝑛𝑡𝑜𝑡𝑎𝑙

𝑖=𝐶,𝐻,𝑁,𝑂,𝑆

𝜎 =
∑ 𝑛𝑖𝜎𝑖𝑖=𝐶,𝐻,𝑁,𝑂,𝑆

𝑛𝑡𝑜𝑡𝑎𝑙

Equation 25 

the density of the atom can be determined by the arithmetic mean (Equation 26). 

𝑚 =
∑ 𝑛𝑖𝑚𝑖𝑖=𝐶,𝐻,𝑁,𝑂,𝑆

𝑛𝑡𝑜𝑡𝑎𝑙
Equation 26 

The simplified molecular pore network model shall be built based on a given 3-D 

voxel image of kerogen pore network.  The organic matter volume that makes up the 

skeleton is filled with the averaged “pseudo-atoms”. Diamond cubic packing is used 

when populating with the pseudo-atoms (Figure 52). This packing has a coordination 

number of atoms equal to 4, which is close to that in a typical organic matter that make 

up kerogen. Thus, the chemical environment of the pseudo-atoms can best mimic the 

exact kerogen molecular structure. When filling up the solid spaces, a trial interatomic 

distance can be assigned first and then adjusted iteratively until the density of the solid 

system reaches the desired value. 



79 

Figure 51. Kerogen molecular structures, act as molecular building blocks used in 

this work, Type II-C, Type I-A, and Type III-A, respectively (Reprinted from 
Ungerer et al., 2015) 
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Figure 52. Diamond cubic packing: note that the atoms are the averaged 

pseudo atoms instead of carbon.  Reprinted with permission from Springer 
Nature B.V., Copyright 2018.

Figure 53. Using dummy atoms to create mesopores and control PSD. 
Reprinted with permission from Springer Nature B.V., Copyright 2018.    
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The 3-D voxel images can be generated using 3-D TEM or STEM tomography of 

the real kerogen samples, with resolution high enough to capture the detailed 

geometrical information of the pore network. However, when experimental tomography 

is not available, imaginary sample structures can be used to test the validity of the 

methodology explained above. Specifically, samples pore structures containing the much 

needed mesopores can be generated using multiple previously published kerogen 

building blocks with simulated annealing molecular dynamics simulation (Collell, 

Ungerer, et al., 2014; Ungerer et al., 2015). To include necessary mesopores and pore 

network in the kerogen molecular structure, dummy atoms of different sizes can be 

mixed together with kerogen building blocks before simulated annealing, and then be 

Figure 54. A sample 3-D pore network, visualized with Paraview, pore space shown 

in grey, organic solid shown in red, left: random kerogen sample constructed by 

exact kerogen building blocks (Type II-C), right: the same kerogen sample 

constructed by the simplified kerogen molecular model, with length unit of 

Angstrom.  Reprinted with permission from Springer Nature B.V., Copyright 
2018.
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Figure 55. Pore size distribution of the pore network in Figure 54, calculated with 

(Bhattacharya & Gubbins, 2006), with minimum test particle size of 0.4 nm 

Figure 56. The comparison between the exact kerogen molecular structure (Type 

II-C kerogen, with most hydrogen atoms implicit, left. Cyan: carbon, yellow: 

sulfur, red: nitrogen, blue: oxygen, white: hydrogen) (Ungerer et al., 2015) to the 

simplified model, packed with standard cubic packing (right).  
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removed afterward (Figure 53). Inserting dummy atoms has been proven to be an 

effective way to add larger pores in organic kerogen structure, and this approach was 

proposed independently by other researchers (Zhou, Xu, & Jiang, 2016) . 

After the 3-D sample structure is generated, it can be scanned into 3-D voxel 

images, based on which the simplified molecular model, with identical geometric 

features, can be generated (Figure 54 and Figure 56). 
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Flow Simulations 

The primary goal of this simplified molecular model is to accurately simulate fluid flow 

in realistic kerogen structures. To simulate transport in model organic porous media, 

non-equilibrium molecular dynamics simulation shall be used, with external field non-

equilibrium molecular dynamics (EF-NEMD) and dual control volume grand canonical 

molecular dynamics (DCV-GCMD) being the most popular methods (Arya et al., 2001). 

In the first method, a uniform external force field is applied to all the fluid molecules in 

the porous medium as the driving force; whereas in the second method, two separate 

fluid reservoirs are placed on both sides of the porous medium and maintained at 

different constant pressures with Grand Canonical Monte Carlo (GCMC) simulation, to 

drive the fluid flow through the porous media. 

Although the first method is simple and computationally efficient, the dynamics 

of each fluid molecule inside are modified directly by the external field instead of real 

intermolecular interaction. On the other hand, DCV-GCMD overcomes such problem by 

generating particle flow with a realistic chemical potential gradient, and pressure 

gradient can be generated and maintained directly. So, it is widely used for simulation of 

gas flowing through organic porous media (Collell et al., 2015; Firouzi & Wilcox, 2012). 

However, DCV-GCMD is computationally expensive for high-density fluid and 

polyatomic molecular fluids  (I. Hanasaki & A. Nakatani, 2006), which is very common 

in the subsurface conditions. 
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Thus, an alternative method for the simulation of fluid flow is proposed in Figure 

57. In this method, a constant pressure gradient is created and maintained efficiently

outside of the digital kerogen segment using an external force field. However, the fluid 

flow inside the segment within the pores is not modified by the external force field. The 

molecular dynamics simulation box is shown in Figure 57. Specifically, the cuboid 

segment representing 3-D kerogen atomic structure is placed in between the two fluid 

reservoirs along the flow direction. The fluid is driven by an external force, which is 

only applied at the upstream end to a region (A), to enable flow through the porous 

kerogen medium. 

Figure 57. Molecular dynamics simulation box setup, showing an intersection 

parallel to flow direction, (A) External force driving region, (B) upstream free fluid 

region, (C) kerogen pore network region, (D) downstream free fluid region. Black 

areas are occupied by kerogen solid, light gray areas are occupied by reservoir 

fluid. The length of the edges of the kerogen block is around 30nm, depending on 

the simulation case.  
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First, with Grand Canonical Monte Carlo simulation, specific reservoir fluid can 

be filled into the entire simulation box, including the pores of the kerogen medium, at 

the desired subsurface temperature and pressure. Then, molecular dynamics simulation 

is run under NVT ensemble, under a constant external force uniformly applied to the 

region (A), to drive the fluid flow through the kerogen medium. When the fluid flow 

reaches steady-state, the pressure and concentration (or density) gradients of fluid can be 

maintained across the kerogen pore network. 

The temperature of the system can be controlled by applying two separate 

thermostats, both applied on the fluid molecules only: one for all kerogen pores and one 

for fluid molecules in the other regions. The velocities of the molecules are only scaled 

at two directions which are perpendicular to flow direction. In this way, the temperature 

of the system can be controlled, the excess viscous heat generated in the porous media 

can be fully dissipated, with the dynamics along the flow direction untouched. During 

the simulation, periodic boundary conditions are applied to all x, y, and z directions. 

Fluid molecules exiting from the right boundary of the region (D) re-enter the 

simulation box from the left boundary of the region (A). The length of the regions (A), 

(B) and (D) are set to 5nm, 5nm, and 5nm, respectively, the width and height of the 

simulation box are kept the same to the 3-D kerogen atomic structure. Thus, the 

permeability of the kerogen segment can be calculated using the values of the simulated 

flow rate and the pressure difference applied between region (B) and region (D). 

In the simulations, pure methane is used to represent reservoir fluid, which is 

described by the OPLS-AA force field. Arithmetic mixing rule is used to calculate 
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Lennard-Jones interaction terms using Lorentz-Berthelot mixing rule (Equation 10). The 

cutoff distance is set to 10.0 Angstroms, the time step is set to 1.0 femtosecond.  

The density profile of the fluid in Figure 58 shows that a stabilized pressure 

gradient can be maintained using the external force approach, and a stable steady-state 

flow can be reached after sufficient simulation time (Figure 59). Figure 60 shows that 

the simulation model generates a laminar flow field inside the porous structure. The 

permeability of the porous medium can be calculated using Equation 27, with Δ𝑋 taken 

as the thickness of the medium, Δ𝑃 as the pressure drop across the medium, 𝑣𝑥̅̅ ̅ as the 

Darcy velocity along the flow direction, assuming methane’s viscosity is unchanged 

across the segment.  

𝑣𝑥̅̅ ̅ =
𝑘

𝜇

Δ𝑃

Δ𝑋
 

Equation 27 

During the simulation, tail correction is ignored when calculating local pressures. 

Although ignoring this term underestimate the pressure especially when fluid density is 

high (Evans & Morriss, 1983) (which can be common in high pressure reservoir 

conditions), these error terms cancel each other out when calculating the pressure drop 

(Equation 27), given that Δ𝑃 is comparably smaller than the average pressure of the 

entire system.  

To validate the effectiveness of the simplified molecular model, the size of the 

kerogen sample has to be as large as computationally possible to cover realistic 

mesopores characteristics, connectivity and pore size distribution (Adesida, Akkutlu, 

Resasco, & Rai, 2011; Feng & Akkutlu, 2015).  
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Figure 58. Density profile of methane flow stream through the pore network, along 

with the fluid flow direction, snapshot after simulation for 1ms. The external force 

field is applied to the 0~18nm region. The regions described in Figure 55 is 

marked with (A), (B), (C) and (D), respectively.  Reprinted with permission from 
Springer Nature B.V., Copyright 2018.

Figure 59. Darcy velocity vs. simulation time, showing a steady state flow can 

be eventually reached.  Reprinted with permission from Springer Nature B.V., 
Copyright 2018.
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Figure 60. Streamlines showing fluid flow through porous media (length unit 

is Angstrom; velocity unit is relative value).  Reprinted with permission from 
Springer Nature B.V., Copyright 2018.
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Results 

Using molecular dynamics simulations, the new simplified kerogen model can be 

evaluated, by comparing the simulation results from both the simplified model and the 

exact molecular model. The new molecular model is tested at different scenarios. For the 

simplified model, we assume that the positions of all kerogen atoms are fixed. Then, the 

effectiveness of the simplified molecular model can be validated by comparing it to the 

ones described by actual kerogen molecular structures. The results show the simplified 

model is a decent approximation against PCFF and CVFF force fields, see Figure 61. 

During the simulation, for atomic interactions not included in PCFF, CVFF force fields, 

the force field parameters from the most similar atomic interactions are used as 

replacements. If otherwise specified, all simulations are run under 353 K, 13.8 MPa 

subsurface conditions. 

Hydrocarbon-bearing kerogens are of different types. Type I, II and III kerogen 

samples from previous research (Ungerer et al., 2015) are tested separately to compare 

the effectiveness of the simplified model on different geochemistry (Figure 62). 

Although the kerogen of each type has a different chemical structure, it turns out that the 

pore structure of the type is more important for the fluid flow. Varying sizes of the 

kerogen sample pores using the simplified molecular model is proven to be effective on 

a 3-D pore-network system with a significant number of mesopores (Figure 63). The 
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Figure 61. Flow simulation through porous kerogen, simplified force field vs exact 

force fields, Type II kerogen, the number on the legend is the density, with the 

unit of g/cm3 .  Reprinted with permission from Springer Nature B.V., Copyright 
2018.
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Figure 62. Flow simulation through porous kerogen, simplified force field vs exact 

force fields, varying kerogen geochemistry, CVFF force field, kerogen samples with 

similar pore size distributions are used for the simulation, the densities are 

0.371g/cm3, 0.475g/cm3, 0.488g/cm3, respectively.  Reprinted with permission from 
Springer Nature B.V., Copyright 2018.
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apparent porosity, permeability, and transport diffusivity data for the simplified model 

structures are calculated and listed in Table 3. Specifically, the apparent porosity is 

calculated based on the atomic radius data of the molecular structures, counting all void 

space in the kerogen skeleton, thus it is higher than experimentally measured porosity, 

whose value depends on the measurement method. Also, the transport diffusivities are of 

the same order of magnitude to the experimental measurement results using pulsed field 

gradient NMR method for samples of similar pore sizes (Y. L. Hu et al., 2016). 

Figure 63. Flow simulation through porous kerogen, simplified force field vs exact 

force fields, using pore networks of different pore sizes, the number on the legend 

is the density, with a unit of g/cm3 .  Reprinted with permission from Springer 
Nature B.V., Copyright 2018.
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Table 3. Porosity, permeability, and diffusivity of the structures above. 
Reprinted with permission from Springer Nature B.V., Copyright 2018.

Structure Name 

Apparent 

porosity 

Permeability, 10-4 

mD 

Transport Diffusivity, 10-6 

m2/s 

Type I, 0.371 g/cm3 64% 1.4 0.28 

Type II, 0.475 g/cm3 53% 3.5 0.71 

Type III, 0.180 g/cm3 86% 21.0 4.2 

Type III, 0.488 g/cm3 51% 4.4 0.89 

Type III, 0.824 g/cm3 14% 1.6 0.32 
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Discussion 

Previous research (Chapter I) using single capillaries have discovered that the mobile 

adsorbed molecules in small pores could lead to enhanced fluid transport and greater 

permeability in kerogen (Fathi & Akkutlu, 2013; Feng & Akkutlu, 2015; 

Riewchotisakul, 2014) (Figure 34 and Figure 64). Based on the Hagen-Poiseuille 

equation with a non-zero boundary condition at the pore wall (Equation 28), the flow 

rate in a nanocapillary can be expressed as Equation 29 and Equation 30, which can be 

proved using molecular dynamics simulations, of methane carbon nanotube as the 

nanocapillary. An external force field is applied as the driving force, with the simulation 

setup and results shown in Figure 32 and Figure 64. 

𝑣𝑧(𝑟) = −
1

4𝜇

𝑑𝑝

𝑑𝑧
(𝑅2 − 𝑟2) + 𝑣𝑧(𝑟 = 𝑅)

Equation 28 

𝑞𝑡𝑜𝑡𝑎𝑙 = 𝑞𝐻−𝑃 + 𝑞𝑠𝑢𝑟𝑓𝑎𝑐𝑒 
Equation 29 

𝑞𝑡𝑜𝑡𝑎𝑙 =
𝜋(2𝑟𝑖𝑛,𝑡𝑢𝑏𝑒

2 𝑟𝑖𝑛,𝑎𝑑𝑠
2 − 𝑟𝑖𝑛,𝑎𝑑𝑠

4 )

8𝜇

𝑑𝑃

𝑑𝐿
+ 𝐶𝑠𝑣

𝑑𝑃

𝑑𝐿
𝜋(𝑟𝑖𝑛,𝑎𝑑𝑠

2 )

+
𝜌𝑎𝑑𝑠

𝜌𝑏𝑢𝑙𝑘
𝐶𝑠𝑣

𝑑𝑃

𝑑𝐿
𝜋(𝑟𝑖𝑛, 𝑡𝑢𝑏𝑒

2 − 𝑟𝑖𝑛,𝑎𝑑𝑠
2 ) 

Equation 30 

in which 𝐶𝑠𝑣 is a constant parameter, indicating the contribution of surface flow 

enhancement. 



96 

Figure 64. Velocity profile of methane across the nanocapillary, simulation is run at 

353K, 13.8 MPa. (Feng & Akkutlu, 2015) The a, b and h are parameters describing 

the roughness of the capillaries.  Reprinted with permission from Springer Nature 
B.V., Copyright 2018.

Using the magnified 3-D organic porous network, and the simplified kerogen 

pore network model, it can be shown that the surface transport enhancement due to 

mobile adsorbed molecules still exists in 3-D tortuous nanoporous media. Specifically, 

the statistical average velocity along the main flow direction of all the adsorbed 

molecules (�̅�𝑧,𝑎𝑑𝑠𝑜𝑟𝑏𝑒𝑑) can be used as a measure for the surface transport enhancement 

effect. This would be the deviation from the traditional Hagen-Poiseuille flow. This 

velocity is calculated dynamically, by averaging the velocity of all adsorbed molecules 

throughout the simulation using (Equation 31). 

�̅�𝑧,𝑎𝑑𝑠𝑜𝑟𝑏𝑒𝑑 =
∫ ∑ 𝑣𝑧,𝑎𝑑𝑠𝑜𝑟𝑏𝑒𝑑 𝑑𝑡

𝑡

0

∫ ∑ 𝑛𝑎𝑑𝑠𝑜𝑟𝑏𝑒𝑑 𝑑𝑡
𝑡

0

Equation 31 
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If we assume Equation 29 is still valid for the 3-D case, the total Darcy velocity 

can be broken down into the contributions from the Hagen-Poiseuille flow and the 

surface transport (Equation 32). 

𝑞𝑡𝑜𝑡𝑎𝑙 = 𝑞𝐻−𝑃 + 𝑞𝑠𝑢𝑟𝑓𝑎𝑐𝑒 

𝐴𝑣𝐷𝑎𝑟𝑐𝑦, 𝑡𝑜𝑡𝑎𝑙 = 𝐴𝑣𝐷𝑎𝑟𝑐𝑦,𝐻−𝑃 + 𝐴�̅�𝑧,𝑎𝑑𝑠𝑜𝑟𝑏𝑒𝑑  

𝑣𝐷𝑎𝑟𝑐𝑦, 𝑡𝑜𝑡𝑎𝑙 = 𝑣𝐷𝑎𝑟𝑐𝑦,𝐻−𝑃 + �̅�𝑧,𝑎𝑑𝑠𝑜𝑟𝑏𝑒𝑑  

Equation 32 

in which 𝐴 is the cross-sectional area. �̅�𝑧,𝑎𝑑𝑠𝑜𝑟𝑝𝑒𝑑  can be calculated using the trajectory 

information from molecular dynamics simulations. 

Figure 65 shows that a significant amount of flow in the nanopores is contributed 

by the surface enhancement phenomenon. As a result, the permeability of the organic 

nanopore medium is much higher than that predicted using the conventional 

petrophysics and fluid dynamics.  Our results show that the contribution of the adsorbed 

phase to the total mass flux is more significant when the applied pressure gradient is 

low. 

To simulate steady-state flow, it is necessary to allow enough time for the system 

to fully stabilize. The characteristic time required to establish a steady-state flow system 

is 𝑡𝑑 =
𝐿2

𝐷
, where 𝐿 is the characteristic length and 𝐷 is diffusivity. As a result, limiting 

the time spent on establishing a pseudo-steady state flow is crucial for simulating larger 

pore network models. It could be achieved by setting a proper initial streaming velocity 

and density distribution for all fluid molecules. And this initial guess can be determined 

from existing simulation results. 
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Figure 65. Darcy velocity of all fluid molecules vs. Darcy velocity of adsorbed 

molecules only, calculated from the simulation results based on Figure 61-A, with 

the exact model being used. The difference between the two curves is the flow 

contribution with the conventional Hagen-Poiseuille equation.  Reprinted with 
permission from Springer Nature B.V., Copyright 2018.

In addition, the variance of the sample is proportional to the sample size, given 

all sample data are from the same distribution (pseudo-steady state flow). As a result, 

despite increasing the size of the pore network increases the computational cost required 

for each time step, it also reduces the number of time steps to get a simulated 

permeability with acceptable precision. The overall computational cost should stay the 

same regardless of the pore network model size (after the system reaches pseudo-steady 

state). To further reduce computational complexity, kerogen molecules far from the 

surface can be set to frozen during the simulation, which reduces the number of effective 

molecules to 𝑂(𝐿2). In sum, the overall computational complexity is 𝑂(𝐿4), limited by 

the transient period, and it can be potentially optimized by further algorithm design. 

Alternatively, when the system size is large and uniform enough, it is possible to build a 
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transient GRMD diffusion model (Figure 27) to calculate diffusivity/permeability and to 

make better use of the data in the transient stage.  

Thanks to parallel computing and GPU acceleration technologies, today 

supercomputers can now handle molecular simulations at large scale. GPU has superior 

power in solving matrix equations than CPU, which is usable for most Molecular 

Dynamics simulations. In this work, because we need to theoretically investigate the 

contribution of surface flow enhancement by dynamically identifying the adsorbed 

molecules and frequent property computations, which requires frequent data transfer 

from GPU to CPU, the speedup using GPU will be limited. However, in real industrial 

applications which do less property computations, the speedup gained using GPU will be 

significant.  

Another challenge is to reduce the pressure gradient used in the simulation to a 

smaller, more realistic value. Because of statistical variation, longer simulation is 

required to obtain a reliable data set to determine pressure gradient and flux, as pressure 

gradient goes smaller. Currently, due to limited computational capacity, the pressure 

gradient applied to the simulation system is at the scale of 1013 Pa/m, which is much 

higher than those in real gas reservoirs. This can be fixed by using more computational 

power.  

Moreover, it usually requires samples with sizes in micrometers to cover the 

complete pore size distribution and the other pore network characteristics. To effectively 

reduce computational cost, Monte Carlo sampling can be used. The whole system can be 

divided into smaller blocks at the size of around 100 nm, then we only perform 
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molecular modeling and simulations for some randomly selected blocks. Then the 

petrophysical properties of the sample can be calculated statistically. Compared to 

directly simulating the whole system at one time, Monte Carlo allows simulations with 

limited computational resources, and uncertainty can be reduced by simulating more 

randomly selected samples.  

The kerogen rock samples are usually measured at laboratory temperature and 

pressure, which is different from the subsurface conditions. Thus, the actual porous 

structure subsurface can be different from what is measured in the lab, due to thermal 

expansion and compaction. This can be corrected with the coefficient of thermal 

expansion and compressibility, either measured in the laboratory or simulated with 

molecular simulation, prior to populating the porous structure with the simplified 

molecular model.  

 This work focuses on the validation of high pressure, supercritical fluid. 

Although this simplified model work for this fluid, further investigation into the low 

pressure, high Knudsen number fluid are meaningful.  

In this chapter, we proposed a simplified effective kerogen molecular model for 

simulating reservoir fluid transport, with accuracy comparable to the exact kerogen 

models. Once the pore structure is obtained from 3-D TEM tomography, together with 

the basic geochemical information of kerogen, we showed that the kerogen molecular 

model can be built. Using molecular dynamics simulation, accurate transport parameters 

can be simulated for reservoir engineering applications. Our results indicate the presence 

of a mobile adsorbed phase in the kerogen pore network during the steady-state flow of 
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methane in the kerogen segment. This result independently confirms the previous flow 

simulations using single-capillary with smooth and rough surfaces. 
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CHAPTER IV  

SUMMARY AND PROSPECT 

 

In this study, we first explored the transport phenomenon in kerogen mesopores using 

carbon nanotubes and their derivatives as analogies and proved the existence of surface 

transport under various conditions; then we provided a unique method to convert the 3-D 

kerogen porous network from TEM tomography into a simplified molecular model, 

without sacrificing simulation accuracy. The brief methodology is illustrated in Figure 

66. The methods from this study can be used to evaluate novel oilfield technologies 

including CO2 fracturing, huff & puff to enhance hydrocarbon recovery.  

Despite our current 3-D modeling approach only used kerogen sample size of 

~100nm, thanks to the potential future improvement in parallel computing, especially  

 

 

Figure 66. Methodology of building the simplified 3-D kerogen molecular model for 

molecular dynamics flow simulation 
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GPU accelerated computing, together with better algorithm design to minimize the 

transient period, it is possible to scale up this approach to larger pore network samples 

(Figure 67). This also allows simulations using lower pressure gradients by using longer 

simulation time. For samples even larger, multiple random segments from the entire 

sample can be extracted to build models and to run simulations, thus a reasonable 

estimate of the permeability of the large sample can be achieved by calculating the mean 

and variance.  

 Moreover, once a better understanding of the kerogen maturation process is 

achieved, if there is limited TEM tomography available, one can always make 

assumptions of the pore connectivity, and come up with a pore network generating 

algorithm, and randomly generates a series of pore network molecular models to run 

molecular simulation with. In this way, a reasonable estimation of the permeability can 

also be achieved. 

 

Figure 67. Forty years of microprocessor trend data (with y-axis to be floating 

point calculation speed), showing the advantage of GPU over CPU. (Nvidia, 2018) 
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In the future, it is meaningful to use more experimental results to better validate 

the modeling and simulation work, and to apply the same methodology to inorganic 

nanopores. The 3-D models can be further tested and modified to match transport 

simulation for additional components and their mixtures, especially polar molecules (e.g. 

H2O). It can also be potentially improved to match adsorption and phase behavior 

prediction. Another possible work is to use the 3-D simulation results and experimental 

pore-size characterization results to better parameterize the 1-D model. 
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APPENDIX 

 

DETAILS FOR MOLECULAR SIMULATION 

 

The OPLS united atom model (William L Jorgensen, Maxwell, & Tirado-Rives, 1996; 

Kaminski, Friesner, Tirado-Rives, & Jorgensen, 2001) is used to simulate CH4 molecule 

and -CH3, -CH2- groups in butane and octane, in other words, Hydrogen atoms are not 

treated separately. If the carbon atoms are allowed to move freely, to model the carbon 

atoms within carbon nanotube, the 3-body Tersoff potential is used, otherwise, they are 

kept at fixed positions (Tersoff, 1988, 1989).  

Prior to molecular dynamics simulation, the simulation boxes are charged using 

GCMC (μVT) simulations, varying chemical potentials, at the given temperatures, to 

find the chemical potential ~ pressure relationships for both single and multicomponent 

cases. Also, the pressure gradient ~ external force relationship can be calculated with 

these correlations. Specifically, a grand canonical Monte Carlo (GCMC) simulation 

simulate the real fluid behavior under the given chemical potentials of each component, 

 

Table 4. Lennard-Jones parameters used in Monte Carlo simulations and 

molecular dynamics simulations. 

Atom/molecule Model 𝜖/𝑘𝐵 , K 𝜎, nm 

Carbon - 28.0 0.340 

Methane OPLS-UA 147.9 0.373 

-CH2- OPLS-UA 46.0 0.395 

-CH3 OPLS-UA 97.9 0.375 
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volume and temperature. The equilibrium can be reached by allowing intra-box, creation 

and annihilation moves in the simulation box. Intra-box moves controls temperature, and 

creation/annihilation moves controls chemical potential. The three types of moves are of 

the same probability. The creation move is done by creating a molecule at a random 

location and random orientation; the annihilation move is done by randomly choosing a 

molecule and removing it from the simulation. The creation and annihilation moves are 

accepted to ensure microscopic reversibility and guarantee that the distribution of states 

conforms to the Boltzmann distribution. During the GCMC simulation, intra-box moves, 

rotation move, creation move, and annihilation move are all allowed and only limited in 

the confined space inside the carbon nanotubes.  
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FORCEFIELD PARAMETERS 

 

In the flow simulation, OPLS-AA force field is used to describe fluid molecules, 

with bond, angles, dihedrals described in the equation forms below.  

𝐸 = 𝐾(𝑟 − 𝑟0)2 
Equation 33 

𝐸 = 𝐾(𝜃 − 𝜃0)2 
Equation 34 

𝐸 =
1

2
𝐾1[1 + 𝑐𝑜𝑠(𝜙)] +

1

2
𝐾2[1 − 𝑐𝑜𝑠(2𝜙)]

+
1

2
𝐾3[1 + 𝑐𝑜𝑠(3𝜙)] +

1

2
𝐾4[1 − 𝑐𝑜𝑠(4𝜙)] 

Equation 35 

 

Table 5. Force field parameters used to calculate average parameters for the 

simplified molecular model  

Atom 

name 

Corresponding 

atom type in 

PCFF force 

field 

𝜖, Kcal/mole 
𝜎, 

Angstroms 

Atomic mass, 

grams/mole 

q, 

electron 

charge 

C c1 0.054 3.573 12.0107 0 

H hc 0.020 2.668 1.00794 0 

N nh 0.134 3.626 14.0067 0 

O oc 0.240 3.149 15.9994 0 

S sc 0.071 3.588 32.065 0 
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Table 6. Other force field parameters used in molecular simulations 

(Makrodimitris, Papadopoulos, & Theodorou, 2001; Martin & Siepmann, 1998, 

1999) 

Atom type 𝜖, Kcal/mole 𝜎,  
Atomic mass, 

grams/mole 

q, electron 

charge 

CH4 0.2941 3.730 16.0425 0 

CH3 0.1947 3.75 15.035 0 

CH2 0.09141 3.95 14.027 0 

C (in CO2) 0.05589 2.757 12.0107 0.6512 

O (in CO2) 0.15998 3.033 15.9994 -0.3256 

 

Bond type Bond coefficient, Kcal/Angstrom2 Distance, Angstrom 

CHx-CHy 317.0 1.54 

C=O (in CO2) 1283.34 1.15 

 

Angle type Angle coefficient, Kcal/rad2 Angle, degree 

CHx-(CH)-CHy 62.1 114 

O=C=O (in CO2) 147.7 180 

 

Dihedral type K1, Kcal K2, Kcal K3, Kcal K4, Kcal 

CHx-(CH2)-(CH2)-CHy 1.4108 -0.27104 3.14477 0 
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BASIC INFORMATION OF KEROGEN BUILDING BLOCKS 

 

Table 7. Statistical information of kerogen building blocks  

Kerogen building 

block 

Total number of 

Atoms 
C H N O S H/C O/C 

I-A 659 251 385 7 13 3 1.53 0.05 

II-A 579 252 294 6 24 3 1.17 0.10 

II-B 518 234 263 5 14 2 1.12 0.06 

II-C 481 242 219 5 13 2 0.90 0.05 

II-D 292 175 102 4 9 2 0.58 0.05 

III-A 468 233 204 4 27 0 0.88 0.12 
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SUPPLEMENTARY INTERACTION TERMS FOR PCFF, CVFF FORCE FIELDS 

 

To validate the simplified molecular model, CVFF and PCFF shall include more 

interactions to better describe the exact kerogen molecule building block. For CVFF 

force field, the equivalency table is slightly expanded to accommodate more interaction 

types, both CVFF and PCFF have included additional bond and angle coefficients based 

on similar bonds and angles. For dihedrals and improper dihedrals which are not 

included in CVFF and PCFF, they are not taken into consideration. These parameters are 

listed in Table 8 through Table 12.  

 

Table 8. Equivalency table for CVFF force fields  

Type NonB Bond Angle Torsion OOP 

hs h h h h h 

hn hn h h h h 

c5 c' cp cp cp cp 

cs c' cp cp cp cp 

np n cp cp cp cp 

sh s s s s s 

sp s' s s o o 

 

Table 9. Supplementary bond coefficients for CVFF  

Quadratic bond Parameters Equivalent to 

I J R0 K2 I J 

cp c= 1.34 280 cp c5 

cp o 1.37 400 c' o 
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Table 10. Supplementary angle coefficients for CVFF  

Quadratic angle  Parameters Equivalent to  

I J K Theta0 K2 I J K 

cp cs sp 111.039 88.7595 sp cs c5 

c2 sh hs 106 58.5 c o ho 

cp c1 oh 109.5 70 o c o 

c5 c2 c' 110.5 46.6 c= c c= 

c2 n c5 118 111 c' n c 

c1 n c5 118 111 c' n c 

c5 c1 oh 109.5 70 o c o 

cp c2 c' 110.5 46.6 c= c c= 

o c2 cp 109.5 70 o c o 

c5 c5 op 120 90 c5 cp np 

h c5 op 120 40 h c5 np 

cp c1 o 109.5 70 o c o 

cp cp c= 120 90 cp cp no 

cp c= c= 120 90 c5 c5 c5 

cp c= c2 120 44.2 c c5 c5 

cp c= h 120 37 c5 c5 h 

c1 c2 c= 110.5 46.6 c= c c= 

cp o cp 114 75.1 cp np c5 

o c2 np 109.5 70 o c o 

o c1 c5 110.5 46.6 c= c c= 

cp c1 c' 110.5 46.6 c= c c= 

c1 c' cp 120 44.2 c c5 c5 

 

 

Table 11. Supplementary bond coefficients for PCFF 
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Quadratic bond Parameters   Equivalent to 

I J R0 K2 K3 K4 I J 

c nn 1.452 327.1657 -547.899 526.5 c n 

cp c=2 1.3521 545.2663 -1005.63 1225.742 c= c=1 

npc c1 1.452 327.1657 -547.899 526.5 c n 

npc c2 1.452 327.1657 -547.899 526.5 c n 

 

Table 12. Supplementary angle coefficients for PCFF  

Quadratic angle Parameters Equivalent   to 

I J K Theta0 K2 K3 K4 I J K 

c1 c5 nh 120.05 44.7148 -22.735 0 c cp np 

c2 c5 nh 120.05 44.715 -22.735 0 c cp np 

c1 nb c2 107.513 42.518 -21.756 -4.3372 h* nn h* 

c1 nb c5 111.68 84.516 -48.553 0 cp np cp 

c2 c1 nb 117.2847 55.443 0 0 c c n= 

c2 c2 nb 117.2847 55.443 0 0 c c n= 

c2 nb c5 111.68 84.5159 -48.553 0 cp np cp 

c5 c1 oh 106.1764 74.4143 -12.602 -48.785 c_0 c o 

c5 npc c1 108.22 119.04 -24.206 0 cp np nh 

c5 npc c2 108.22 119.04 -24.206 0 cp np nh 

cp c=2 c=2 118.9 61.023 -34.993 0 cp cp cp 

cp c=2 c2 120.05 44.715 -22.735 0 c cp np 

cp c=2 hc 117.94 35.1558 -12.468 0 cp cp h 

cp c1 oc 106.1764 74.4143 -12.6018 -48.785 c_0 c o 

cp c1 oh 106.1764 74.4143 -12.6018 -48.785 c_0 c o 

cp c2 c_1 111 44.3234 -9.4454 0 cp c h 

cp c2 oc 106.1764 74.4143 -12.6018 -48.785 c_0 c o 
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Table 12. Supplementary angle coefficients for PCFF (Continued) 

Quadratic angle Parameters Equivalent   to 

cp cp c=2 118.9 61.0226 -34.9931 0 cp cp cp 

cp oc cp 104.5 35.7454 -10.0067 -6.2729 c o c 

hc c1 nb 107.4989 62.7484 0 0 h c n=2 

hc c2 nb 107.4989 62.7484 0 0 h c n=2 

npc c1 c1 117.2847 55.4431 0 0 c c n= 

npc c1 c2 117.2847 55.4431 0 0 c c n= 

npc c1 hc 107.4989 62.7484 0 0 h c n=2 

npc c2 hc 107.4989 62.7484 0 0 h c n=2 

oc c1 c5 106.1764 74.4143 -12.6018 -48.785 c_0 c o 

oc c1 cp 106.1764 74.4143 -12.6018 -48.785 c_0 c o 

oc c2 cp 106.1764 74.4143 -12.6018 -48.785 c_0 c o 

oc c2 npc 117.2847 55.4431 0 0 c c n= 

oh c5 nh 123.42 73.6781 -21.6787 0 cp cp o 

 




