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Abstract

We show that, in string theory, the quantum evaporation and decay of black holes

in two-dimensional target space is related to imaginary parts in higher-genus string am-

plitudes. These arise from the regularisation of modular infinities due to the sum over

world-sheet configurations, that are known to express the instabilities of massive string

states in general, and are not thermal in character. The absence of such imaginary parts

in the matrix-model limit confirms that the latter constitutes the final stage of the evapo-

ration process, at least in perturbation theory. Our arguments appear to be quite generic,

related only to the summation over world-sheet surfaces, and hence should also apply to

higher-dimensional target spaces.
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1 Introduction and Summary

Recently a lot of attention has been paid to black-hole solutions of two-dimensional
string theories [1, 2, 3], which are discretized by certain matrix models describing
c = 1 conformal matter coupled to the Liouville mode. This connection is possible
thanks to the discovery of non-critical strings [4, 5], that has opened the way for
studying non-trivial string dynamics. These string theories are described by non-
compact coset Wess-Zumino models on an arbitrary world-sheet [2, 4]. They provide
a powerful theoretical laboratory for seeing how ideas about black hole physics fare in
the context of string theory. In particular, the existence of an infinite set of ‘W-hair’
sufficient to maintain quantum coherence has been conjectured and demonstrated
[6, 7]. Several authors [8] have now extended the black-hole construction to higher-
dimensional target spaces by gauging more complicated groups,offering eventually
the hope of understanding black holes in four-dimensional target space.

So far all known black-hole solutions are static, which restricts their physical sig-
nificance. One expects that physical black holes are produced by collapsing matter,
and that quantum effects make them evaporate [9, 10]. Therefore, static solutions
cannot be the whole story. The main purpose of this note to argue that the static
character of the black hole is a feature only of the classical string tree level, and that
formulating the theory on summed-up higher-genus world-sheets leads to quantum
instabilities, that correspond to evaporation and decay of the black hole, and do not
have a finite-temperature interpretation. These instabilities manifest themselves as
imaginary parts in string correlation functions arising from the regularisation of
modular infinities [11]. These imaginary parts are absent for the discrete states in
the corresponding c = 1 matrix model, confirming (at least within string pertur-
bation theory) their interpretation as the end-points of black hole evaporation, and
strengthening their role as guardian angels of quantum coherence [6, 7]. We shall
concentrate on the two-dimensional black-hole case although our arguments appear
to be quite generic to the divergences emerging from world-surface summations, and
can be applied to higher-dimensional cases as well.

The outline of the paper is as follows: in section 2 we review briefly the origin of
the imaginary parts in correlation functions in ordinary string theories. In section
3 we discuss some aspects of the two-dimensional strings that will be useful in
our discussion. Section 4 is devoted to a discussion of string propagation in a
Minkowskian black-hole background on the torus. We construct the corrections to
the tree-level effective action coming from summing up genus-zero and -one world-
sheet surfaces, and show explicitly the existence of imaginary mass-shifts for the
black-hole solution. The latter are interpreted as a signal for evaporation induced
by quantum effcts in target space-time. In section 5 we discuss the interpretation
of the Euclidean (thermal) black hole, and in section 6 we briefly discuss higher-
dimensional target-space black holes. Finally, we present some conclusions and
discuss prospects for future progress in section 7.
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2 Critical String Theory in Higher Genera

There is a rather extensive literature on this issue [12, 13, 14, 15]. Here we shall
recall only the parts that are relevant for our purposes, namely the regularisation of
modular infinities arising from summing over world-sheet tori in the one-string-loop
approximation. The relevant analysis has been done first by Marcus [11], whose
method will be followed here.

Consider an N-point tachyon amplitude in closed bosonic string theory. Unitarity
requires factorisation in the sense that the amplitude exhibits poles whenever a
particular combination of external momenta approaches an ‘on-shell’ value for any
of the intermediate string modes. The formal origin of the amplitude poles can be
traced back to the well-known operator product singularity, which occurs when two
(or more) of the vertex operators approach each other.

Using the factorisation formula,

Γ(k1, ..., kn) →
∑

states

ΓL(k1, ..., kl,−k)
1

k2 +m2 − iǫ
ΓR(k, kl+1, ...kn) (1)

and combining the tree and torus amplitudes, one can deduce a mass renormalisation
for the intermediate massive string modes, which was discussed by Weinberg [16].
The relevant mass shift is given by the two-point function on the torus:

δm2 = −Γ(k,−k) (2)

The latter expression in general diverges when one sums over tori, as required in
a string theory formulation. Such a procedure involves integration over the Teich-
muller parameters τ = τ1 + iτ2 which describe the various tori (e.g. τ2 is related
to the area of the torus). The modular infinities arise from the region of the τ2
integration where τ2 → ∞, i.e. large tori, and are, therefore, considered by many
as ‘infrared’ infinities. As Marcus [11] observed, the relevant part of the divergences
encountered in generic string amplitudes is similar in structure to the ‘tachyon’ in-
finity of the bosonic string. This means that even in the superstring case, where the
tachyons are absent, there will be infinities of the form

∫

M>R

d2τ

τ 22
τ−12
2

1

|∆12|2
(3)

where the integration is over the part of the fundamental region which is above
the cut-off R. The final results expressing regularised divergences turn out, as
expected, to be independent of R. The rest of the τ -integration over M ′ < R yields
modular-convergent results that we shall not be concerned with in this note. The
quantity ∆12 is a cusp form of weight 12, related to the Dedekind η-function by

η(τ) = q
1

24Π∞
n=1(1 − qn) ≡ ∆

1

24

12 , in standard notation with q = exp(i2πτ). In the
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limit where τ2 → ∞, ∆12 → exp(−2πτ2). It is therefore evident that the modular-
divergent part has the generic form

∫

M>R

d2τ

τ 22
τ−12
2 e4πτ2 (4)

It should be stressed again that this type of divergence, although it is similar in form
to the ones induced by tachyons in bosonic strings, exists independently of tachyons
in the theory. This will be relevant for the case of two-dimensional strings, where
the tachyons are massless. Divergences of the form (4) exist in that case as well.

Marcus [11] applied analytic continuation to regularise these modular divergences.
He used the integral

∫ ∞

R

dx

x
x−βe−αx (5)

which was first evaluated at α > 0, and then he analytically continued it to complex
values of α. The result is,

∫ ∞

R

dx

x
x−βe(α+iǫ)x = [αe−i(π−ǫ)]β

∫ ∞

−αR−iǫ

dx

x
x−βe−x (6)

The imaginary part of the integral is independent of R, as expected, and constitutes
the only remnant of the divergence [11]:

Im

∫ ∞

R

dx

x
x−βe(α+iǫ)x =

π

Γ(1 + β)
αβ (7)

In this way , in ordinary string theories one evaluates the imaginary part of the one-
loop induced cosmological constant of the bosonic string, expressing the instability

of the false tachyonic vacuum.

Imaginary parts, similar to the one appearing in the cosmological constant, also
appear in higher-point functions of massive string modes, and reflect decay of the
massive states with life-times determined by Γ = −Im(δm), where δm is the mass
shift of the state in question.

In closed bosonic strings, imaginary parts also appear in the two- and three-point
functions of the (massless) graviton-dilaton multiplet, whose mass is now shifted due
to the induced cosmological constant term. This graviton mass shift is consistent
with general covariance [17]. Such lowest-order computations of string amplitudes
contain information about the string effective action, to lowest order in target-space
derivatives, or equivalently to first order in the Regge slope parameter α′. The one-
loop amplitudes, involving an integration over tori, yield in this way a cosmological
constant term and a shift in the Einstein term of the effective string action [12, 14].
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Standard computational techniques yield for the one-string-loop corrected effective
action the following form:

Seff =
∫

dDx
√
GeΦ[(1− 3

4π
Ctorus

∫

M d2ττ−14
2

1

|∆12|2
E(τ, 1))R +

Ctorus

∫

M d2ττ−14
2

1

|∆12|2
+ ...] (8)

where Ctorus is a positive constant [14]. The modular τ -integration is over the
fundamental region and the function E(τ, 1) is given by the formula [14]

E(τ, 1) = limε→0
1

ε
+ 2π(γ − 1

2
lnτ2 −

1

12
ln|∆12|) (9)

in ζ-function regularisation, where γ is Euler’s constant. The logarithmic 1
ε
diver-

gence in (9) is ‘absorbed’ in the dilaton tadpole, and corresponds to higher-genus
corrections to tree-level beta-function equations (local infinities) [15]. This is a
rather general rule [11]. Logarithmic divergences are the ones that cannot be reg-
ularised by analytic continuation. In addition to these divergences there are τ2
modular infinities arising from the region of τ2 integration where τ2 → ∞.The latter
are the types of divergences that are going to interest us in this note. They can
be regularised by analytic continuation in the way outlined in (5), yielding imagi-
nary parts of the form (7). Indeed, the leading τ2 divergences in the cosmological
constant and Einstein parts of the action (8) are similar in form, up to irrelevant
proportionality constants,1 and are of the type (5). The regulated expressions have
imaginary parts which in ordinary bosonic string theories are attributed to the tachy-
onic contributions in the string tadpole graphs. However, as Marcus [11] noticed,
such divergences exist also in superstring theories where they express the decay of
massive string states. For instance, N-point superstring amplitudes involving mass-
less modes as external states contain similar divergences expressing the decay rates
of the exchanged states.

3 Aspects of Two-dimensional Bosonic Strings

The consistent formulation of closed bosonic string theory in two target-space di-
mensions is possible, provided one allows for non-trivial backgrounds. It is sufficient
to have a non-zero dilaton background which is linear in the ‘spatial’ target space
coordinate, associated with the Liouville mode [4, 5, 18]. The only propagating field
in this string theory is the scalar ‘tachyon’ mode - which is however massless in two
dimensions. The rest of the string modes are ‘topological’ in the sense that they
make non-trivial contributions to amplitudes only for particular values of the energy
and momenta [19]. There is a simple reason for this. Consider, for example, the first

1The leading divergence in the E(τ, 1) function comes from −ln|∆12| which behaves like τ2 for
large τ2.
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‘massive’ string multiplet that consists of the graviton-dilaton modes. The massive
character of the multiplet is due to the cosmological constant terms in the action,
as a result of the non-critical dimensionality of space-time. The graviton is massive

with mass proportional to Q =
√

25−c
3

= 2
√
2 (c = 1). The conformal invariance

conditions on a flat space read [20, 6]

qµ(qµ +Qµ) = 0

(qµ +Qµ)hµν(q) = 0 (10)

qµh̃µν(q +Q) = 0

where hµν is the polarisation tensor for the graviton-dilaton multiplet, Qµ = (Q, 0)
and the tilde denotes Q-conjugation in the sense of [19] 2. In two-dimensional target
space, the above relations imply the decoupling of all the gravitons whose momenta
are different from 0 or −Q,since they are longitudinal and hence can be gauged
away. However, for the discrete values 0 or −Q there is a discontinuity in the
degrees of freedom, and extra modes become relevant. Due to the definite energy
and momentum they possess, their propagators cannot be defined, since the latter
involve analytic continuations off-mass-shell. It is in this sense that these modes
are considered ‘semi-topological’ or ‘of co-dimension two’ [19]. The same is true for
all the higher string modes. Each one of them is associated with a stringy gauge

symmetry, leading to Ward identities satisified by the relevant string amplitudes
defined on-shell [22, 6] 3. Such Ward identities imply the gauging away of any
massive mode whose momentum is off mass-shell, and this is the reason why in two
dimensions the only remnants of the higher string states are discrete semi-topological
modes 4.

The impossibility of applying analytic continuation to the mass-shell of the dis-
crete massive states of the two-dimensional string implies the absence of any modular
infinities in closed string loops associated with these modes. If this were not the
case, then according to the Marcus analysis [11] it would be impossible to regulate
such divergences either by absorbing them in tree-level σ-model coupling constants,

2In the original works on stringy representations of Liouville theory [21], people gave arguments
for disregarding Q-conjugate states. However, it turns out that these states have physical signif-
icance. For instance the Q-gravitons constitute the last stage of black hole evaporation [6, 1], as
we discuss below.

3In this sense two-dimensional target-space general covariance is considered as the gauge sym-
metry associated with the first excited string multiplet (graviton-dilaton). In the two-dimensional
example, general covariance is expressed via Ward-identities of the form [22, 6]
(qµ+Qµ) < V G

µν(q)Πj=1,...,NV T (kj) >= 0, for a closed string amplitude involving, say, one graviton

and N tachyons.
4It should be noticed that the presence of these extra modes is necessitated by the same ar-

guments of unitarity that require the factorisation of the convnentional S-matrix in string theory.
A similar factorisation, but now involving the exchange of co-dimension two states, occurs in
the two-dimensional string case [19, 23], thereby explaining the extra poles in tachyon scattering
amplitudes of the c = 1 theory [19].
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or by analytic continuation, and therefore the theory would be sick. Fortunately
this is not the case. It can be shown, when considering tachyon amplitudes on the
torus, that the only propagating field in the loop is again the tachyon whilst the
massive states yield non-zero but finite contributions [19]. The latter result has also
been confirmed in the Das-Jevicki [24] string field theory approach to the c = 1
matrix model, where it has been shown that the extra discrete states yield non-zero
but real contributions to the scattering amplitudes of the massless propagating fields
(tachyons) of the theory [25].

4 Minkowskian Two-dimensional Black Holes and

the Summation over Riemann Surfaces

The previous Ward-identity arguments about the decoupling of higher string
states except at discrete values of their momenta do not apply if some of the modes’
polarisation tensors exhibit singularities, as is the case of target space-time black
holes [1, 2]. In that case, the familiar Einstein terms in the effective action for
graviton-dilaton modes appear, and one finds the black-hole solutions by the usual
variational principles that one applies to dynamical graviton fields in ordinary point-
like theories. It will be useful, for subsequent purposes, to recall some of the basic
properties of the static black hole solutions in 2D string theory.

Such objects are found as solutions of the beta function equations for a bosonic σ-
model to lowest order in the Regge slope parameter α′. It was Witten’s observation
[2] that such constructions on an arbitrary Riemann surface arise from appropriate

gauging of a Wess-Zumino coset model 5 on SL(2,R)
U(1)

with the correspondence of k−2

to 1
4πα′

, where k is the level parameter of the Wess-Zumino term.The lowest order (in
α′) solutions of the σ-model correspond therefore to the large-k limit of the group-
theoretic model. The effective action at tree level for graviton-dilaton backgrounds
reads

∫

d2x
√
Geφ(R + Λ +O[(∇φ)2] + ...) (11)

where for our discussion we ignore matter (tachyon) parts. In two-dimensional target
spaces the non-trivial solutions of the equations of motion obtained from (11) are
of black-hole type [1, 2], leading to singular metrics in a certain coordinate system,
although, as usual, such singularities can be eliminated by going to an appropriate
coordinate system. The black hole solutions are static and can be thought of as
the classical final state of gravitational collapse of two-dimensional matter [26]. The
mass of the black hole is essentially determined by an arbitrary constant α, which
expresses a shift in the dilaton field. Indeed, if we make the change φ → φ + α,

the mass of the black hole turns out to be [2] Mbh =
√

2
k−2

eα. The family of black

5The Minkowskian black hole is obtained by gauging a non-compact subgroup of SL(2, R).
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hole solutions leads to invariant line elements in space-time given by the following
expression [1]

ds2 = (1−MeQρ)dt2 − 1

1−MeQρ
dρ2 (12)

where ρ is the space coordinate (Liouville mode). In the limiting case M → 0, the
black hole solution (12) becomes identical to a Q-graviton perturbation, which can,
at least in this sense, be identified with the last stage of black hole evaporation.
In addition to the graviton mode, all the rest of the higher massive string modes
are also excited. This underpins the interpretation of the continuum version of the
c = 1 matrix model as the final stage of the black-hole evaporation, as conjectured
by Witten [2].

It is the purpose of this section to discuss the origin of the evaporation proccess.
In ordinary local gravity theories the evaporation of a black hole is a quantum

phenomenon which must therefore be associated with loop corrections [9, 10]. If a
similar mechanism operates in our case, one should expect to see the evaporation
process when one performs the sum over world-sheet genera, that represents the
string analogue of the loop corrections to the gravity action. This is precisely what
happens in our case, as we shall argue below. We shall demonstrate our arguments
by restricting ourselves to the torus case, which is sufficient for our purpose.

There is also a formal reason for this. In a stringy formulation of two-dimensional
quantum gravity, the Liouville field is usually considered as a free field whose space
is unrestricted. However, since this mode is associated with the covariant short-
distance cut-off in the theory, it is natural to think of it as being bounded from
below at a value defining the cut-off, α, in a flat two-dimensional world-sheet [27].
Representing the covariant cut-off, then, as eρα, the ρ integration extends from
0 to ∞ [20]. These ‘boundaries’ in Liouville space have important consequences
for Liouville energy non-conservation in string amplitudes, except in the torus case
[20]. To see this in a simplified way, let us complexify the Liouville field by going
to the iρ-formalism, and therefore considering complex two-dimensional surfaces.
Due to boundaries in the integration over the zero-modes of ρ, the result in string
amplitudes is not a delta-function conservation of the energy associated with the
coordinate ρ (in a Fourier expansion of the backgrounds) but rather resonant forms
1
s
[19], where s =

∑

i ε(ki) + Q(g − 1), with βµ ≡ (ǫ(k), k) being the two-vectors
representing conformal charges in the Liouville and matter sectors, and the sum is
over states in the relevant string amplitude. The residues of these resonances are the
string amplitudes we are considering [19]. In any other topology except that of the
torus, the Liouville energy conservation law is modified by the ‘charge at infinity’ Q
[4, 19]. At genus one one there is exact energy conservation despite the presence of
Q. This makes the contribution of this particular topology somewhat special. This
also implies that the regularisation of the associated modular infinities coming from
this topology could not be cancelled by higher genera.
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After these parenthetic remarks we are now in a position to discuss the evapora-
tion of the static black hole solution (12) induced by quantum effects in the torus
case. Energy conservation, even in the in Liouville sector, implies that the torus
computation can be considered formally identical to the one in critical strings out-
lined in previous sections. The only point that deserves attention concerns the role
of the target-space dimensionality. In the case of closed bosonic strings living in non-
critical dimensions D of target space-time the (modular invariant) torus partition
function is given by [4]

ZD = (2τ2)
2−D

2 (η(τ)η(τ))2−D (13)

Naively one expects no modular τ2 infinities in D = 2, and indeed this is the case
in matrix model backgrounds [29]. However, when computing correlation functions
in Liouville theory with a world-sheet cosmological constant it seems necessary to
continue analytically the matter central charge [28], which in turn implies a formal
continuation away from the D = 2 value. Upon such a procedure, which could be
viewed as the analogue of target-space dimensional regularisation, loop corrections
to the string effective action acquire, in the limit D → 2+, finite imaginary parts
from the regularisation of τ2-modular infinities that appear in the case D > 2, as
becomes clear from (13). Similarly to the critical string theory, the imaginary parts
of the corrections to the Einstein term of the two-dimensional string are given by
the α → 0 and β → 0 limit of (7): the result is π. The imaginary parts of the
torus correction to the (tree-level) cosmological constant, on the other hand, are
given by (7) upon setting α = ε → 0, β = 1: the result is επ

2
6. Hence, in the

case of two-dimensional strings there are no imaginary parts in the one-string-loop
corrected cosmological constant. This reflects the stability of the two-dimensional
flat-space tachyonic vacuum, which is massless.

The important point is that the proportionality constant in front of the Einstein
term can be identified with the mass of the black hole [2]. If a represents a constant
shift in the dilaton, then, by computing the stress-tensor of the graviton-dilaton
system (in the absence of matter) one can determine the (conserved) energy, i.e.
mass, of the black hole as

Mbh =

√

2

k − 2
ea (14)

Therefore, the torus contribution is to shift the mass of the tree-level black hole by
an amount related to an infinite integral over the moduli space of genus-one sur-
faces. The latter, as we have mentioned, has both logarithmic divergences, that can
be absorbed in a renormalisation of the dilaton field at tree-level à la Fischler and

6It should be noted that this is the form of the imaginary parts in the correction to the Einstein
term arising from regularisation of subleading τ2 divergences. If there are singularities in the
curvature terms, as is the case of the Minkowskian black hole solution in the asymptotic region
where the dilaton approaches −∞ [2], then the above analysis implies the existence of additional
finite imaginary parts in the torus correction to the Einstein term in the effective action.

9



Susskind [15], and modular τ2 infinities whose analytic continuation and regularisa-
tion yield imaginary parts in the black-hole mass shifts 7. The situation, therefore,
is similar in nature to what happens in critical string theories, where massive string
states acquire complex mass-shifts in higher genera, reflecting their decay with a
life-time inversely proportional in magnitude to the imaginary part of the perti-
nent mass-shift. In our case it is the Minkowski black-hole state that is unstable

due to quantum effects, although classically, at the tree string-level, it is a stable
background configuration. It is in this sense that we exhibit the evaporation of the
two-dimensional quantum black hole. In this point of view, evaporation is expressed
as an instability of the black hole vacuum with respect to stringy quantum correc-
tions. It should be stressed that imaginary parts arising from the regularisation of
modular τ2-infinities appear in any target-space dimensionality D ≥ 2, which gives
a sort of universality to this decay mechanism. This mechanism for evaporation
is purely stringy and has no counterpart in local gravity theories. The imaginary
parts that express the instability arise from the regularisation of large-area tori,
and therefore rely on the concept of an underlying world-sheet structure, i.e. string
theory. This is to be contrasted with local point-like theories of gravity, where such
phenomena do not occur. One could still refer to this type of process as ‘Hawking
radiation’, due to the fact that it is triggered by quantum effects, but is not thermal
as in the local field theory case.We cannot, however, yet exclude the possibility that
thermal instabilities might arise in our picture in higher-dimensional target-spaces.

We can now answer questions concerning the manner of the black hole evaporation,
as well as its final stage. As argued in [6, 7] there is an infinity of gauge conservation
laws that accompany black hole solutions in two-dimensional strings, which express
stringy gauge symmetries associated with the infinite tower of string states. These
laws imply the existence of conserved charges that constitute the ‘hair’ of black
holes. These quantum numbers, being expressible as total spatial derivatives, remain
conserved during the evaporation process, thereby restricting the modes of black-
hole radiation. It can be shown that the gauge group associated with these charges
contains classical w∞-symmetries [30] which preserve the phase-space area (two-
dimensional volume) of the matrix model [31]. There is no loss of quantum coherence
due to the evaporation process, for the reasons explained in [7]. From the observation
that the vanishing mass limit of the black-hole solution describes the Q-graviton and
the other discrete topological states of the two-dimensional string, as well as the fact
that the contribution of the latter to scattering amplitudes determining the matrix-
model target-space effective action contains no imaginary parts, we conclude that
the continuum version of the c = 1 matrix model constitutes, at least in string
perturbation theory, the final stage of black-hole evaporation.

7In string perturbation theory the real part of the one-string-loop correction to the Einstein-
term cannot reverse the positive sign of the tree-level coefficient, so the combined result of the
tree and one-loop string level computations can still be represented as an exponential of a shifted
dilaton field.

10



Unfortunately, it is not known how to perform in the continuum language the sum
over genera in closed string cases [32]. The matrix model approach for c < 1 looks
helpful, but the situation concerning c = 1 matrix models is still unclear. However,
in our case we have shown that higher-genus corrections make black hole solutions
unstable even in perturbation theory, thereby implying their decay (evaporation).
At least as far as two-dimensional continuum string theory is concerned, the pertur-
bation theory result seems to indicate that the flat-space linear dilaton background
solution of the latter is the final point of the evaporation. It is of course possible
that non-perturbative effects lead to a different end-point, but such a possibility
goes beyond the scope of this analysis.

A final comment we would like to make in this section concerns the possibility of
regarding the static (classical) black hole solution as the result of some sort of grav-
itational collapse. This would be useful in considering the two-dimensional black
hole as a laboratory for the study of higher-dimensional physically interesting cases,
where such phenomena occur. In two dimensions the concept of collapsing matter
is not obvious. The matter-stress tensor obtained naively from the Einstein tensor
vanishes, since in two-dimensional target spaces Rµν − 1

2
GµνR vanishes identically.

However, in string effective theories there are non-trivial dilaton terms that accom-
pany the Einstein curvature term in the effective action. Their presence make the
matter (tachyon) stress tensor non-zero even classically [6, 33]. Shifting the dilaton
field by a constant defines a family of objects characterised by various masses. Thus
collapsing matter could lead to a black-hole. By matching - in the boundary of the
dust (matter) - the static black hole solutions studied in [2, 3], with the solutions
obtained from non-zero matter-stress tensors, it can be shown [26] that the former
correspond to the final state of such a collapse, at the classical level.

5 Euclidean Black Holes

Euclidean black holes are described by coset models in which the gauged subgroup
of the SL(2, R) is compact. They can be thought of as being obtained from the eu-
clideanisation of the Minkowski time [2]. From the point of view of Liouville theory,
Euclidean black holes correspond to a two-dimensional Liouville theory coupled to
matter described by a field compactified on a circle [29, 34]. In such models the
partition function on the torus is known to possess no modular τ2 infinities, since
the pertinent η-function factors cancel between Liouville and matter sectors [29]. In
physical terms, this means that such black holes are static thermal objects which are
in constant interaction with a heat bath, and therefore one does not expect them to
lose any mass [3]. We cannot yet exclude the possibility that in higher-dimensional
target spaces, there might be thermal instabilities of such objects in higher genera,
due to the non-cancellation of η-factors that generate modular infinities. However,
there is no example known so far that supports this idea. For instance, in certain
string theories, like the open D = 4 string [35], it is known that below the Hage-
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dorn temperature, although there exist thermal mass shifts which do not occur in
the zero-temperature formalism [36], nevertheless they are modular finite. It might
therefore be that there exists some sort of cancellation of ‘infrared’ infinities in ther-
mal (static) string configurations, at least in certain cases [37]. However such an
analysis falls beyond the scope of the present work.

Before closing this section it is worth mentioning another difference between the
Euclidean and the Minkowski framework within the context of two-dimensional
strings. In models with a compactified matter boson field (as is also the case of
c < 1 matrix models) the form of the Ward identities that express certain stringy
symmetries is modified with respect to the uncompactified case. The higher string
modes do not decouple any longer due to the discrete matter momenta. Consider,
for instance, the graviton-dilaton Ward identity expressing general covariance of the
theory. In the compactified case it reads [22, 19]

(qµ+Qµ) < V G
µν(q)Πj=1,...,NV

T (kj) >=
∑

j=1,...,N

kjν < V T (kj + q)Πi 6=jV
T (ki) > (15)

The right hand-side part is a contact term and vanishes ‘on-shell’ for the uncompact-
ified case due to analyticity properties (the well-known [38] ‘cancelled propagator
argument’). This is no longer true in the compact case due to the discrete momenta
in the matter sector [19]. This can be interpreted formally as the breakdown of
general covariance which is to be expected in a thermal theory. This is one of the
main differences between Minkowskian and Euclidean formalisms of the c = 1 string
theory.

6 Higher-Dimensional Target Spaces

Analogous descriptions of higher-dimensional singular space-times seem possible.
Support for this was recently given in a number of works [8, 39] where it was shown
that by gauging more complicated coset Wess-Zumino models (even supersymmet-
ric ones [39]) on arbitrary Riemann surfaces, one can get interesting singular field
configurations for higher dimensional target spaces, among which one finds black
holes [40] and black strings [41]. In view of the arguments presented in this work,
the summation over Riemann surfaces is expected to lead to instabilities in the
Minkowski formalism. That this is indeed the case can be demonstrated explicitly
by looking at the four-dimensional black hole of ref. [40] and the three-dimensional
black string of [41]. Let us start from the latter.

The existence of the antisymmetric tensor field Bµν (which is gauged away in two
dimensions) leads to a conventional axionic charge Q for the black hole, in addition
to its mass M . For completeness, we briefly outline the construction [41]. One adds
a free boson field z to the Wess-Zumino action, which is equivalent to considering a
group G = SL(2, R)×R. Then one gauges an appropriate one-dimensional subgroup
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generated by that of the two-dimensional case [2] together with a translation in the
boson field z. This leads to two arbitrary parameters in the problem, the Wess-
Zumino level parameter k, and an extra parameter, λ, which is associated with the
translation of z. The effective action describing gravitational dynamics contains
again a non-trivial dilaton conformal factor acompanying the Einstein term. In
non-singular curvature cases in dimensions higher than two, one can absorb these
factors in a conformal rescaling of the graviton. However, we choose not to do it in
singular cases such as black strings. The reason is that the arbitrariness in shifting
the dilaton field by a constant α determines a family of solutions characterised by
various values of Q and M [41],

Q = eα

√

2λ(1 + λ)

k

M = eα(1 + λ)

√

2

k
(16)

The summation over higher genera will produce imaginary parts in α and therefore
one has complex shifts for the black hole mass and axion charge, which are again
interpreted as signal for evaporation. The quantum three-dimensional black string
will therefore evaporate parts of its mass and axion charge. The exact conservation
of these quantum numbers (due to their being total space derivatives) implies that
the evaporated parts of the charges have to be carried away by particles emitted
from the black hole.

In a similar way, one can study four-dimensional black hole solutions [40]. These
may be obtained by twisted products of one Euclidean and one Minkowskian two-
dimensional black hole. The antisymmetric tensor vanishes in this case, but the
four-dimensional metric is off-diagonal. Again the role of the dilaton field is essential
in defining families of solutions, and our arguments on the instabilities induced by
higher genera apply as in the black string case. One can even construct direct
higher-dimensional black holes by gauging more complicated Wess-Zumino models,
involving antisymmetric tensor fields [42]. In such a case there is axionic charge on
the black hole solutions. From standard field-theoretic arguments [43] one expects
the three-dimensional black hole not to evaporate all of its axion charge. Similarly to
the two-dimensional case, however, one expects quantum coherence to be restored,
not because of the axion charge alone, but because of an infinity of hair provided
by the higher string modes. In two dimensions this type of hair is phase-space
area-preserving [7, 31]. In view of the general description of black holes by Wess-
Zumino models, and the relation of the latter in certain cases to such area-preserving
(w-type) symmetries [44] we conjecture that the existence of a phase-space volume-
element-preserving symmetry is a general feature of such a Wess-Zumino theory,
and thus coherence is maintained during the evaporation process. This fits in with
the observation [45] that the Hawking temperature of an evaporating black hole is
reduced as the amount of hair characterising the black hole is increased. This leads
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one to expect that a black hole with infinite hair evaporates at zero temperature 8.
However, this conjecture remains to be investigated further in future work.

Another comment concerns the extension of these ideas to supersymmetric cases.
Supersymmetric Wess-Zumino models have been considered [46] with the result
that the effective two-dimensional theory describes supersymmetric σ-models in
black hole backgrounds. In space-time supersymmetric backgrounds there are non-
renormalisation theorems [13] that prevent the Einstein terms from receiving correc-
tions in higher genera. This is equivalent to the vanishing of the dilaton tadpoles in
supersymmetric string theories. One might naively think that the breaking of space-
time supersymmetry by the black hole background seems to be essential in allowing
imaginary parts in the higher-genus corrections to the mass of the black hole, and
hence leading to evaporation in a way similar to the bosonic case. However, in view
of Marcus’s analysis [11], instabilities of the kind discussed in the present work also
appear in superstring theories, expressing in general the decays of massive states.
An explicit example of such a situation is the type-I open superstring [47]. Thus we
expect that a similar mechanism of non-thermal black hole decay will also operate
in superstrings and heterotic strings.

7 Conclusions and Prospects

Let us now summarise the view of black hole quantum physics that has emerged
from this analysis and our previous papers [6, 7]. We have identified an infinite set
of gauge w-symmetries that are sufficient to maintain quantum coherence for two-
dimensional black holes [6], and characterize an infinite set of ‘topological states’
that constitute the final states of black hole evolution described by a matrix model
[48]. These w-symmetries have the geometrical interpretation [31] of preserving
the phase-space volume-element of the matrix model, and thereby exclude [7] the
general form of non-quantum-mechanical, non-Hamiltonian modification of the evo-
lution equation for the density matrix [49], which would otherwise have caused all
quantum-mechanical systems to appear ‘open’ as a conjectured consequence of mi-
croscopic space-time topology change [50]. In this paper we have shown that the
evaporation of two-dimensional Minkowskian black holes can be understood as a
quantum instability appearing in higher genera, analogously to the normal decays
of massive string states [11]. This mechanism for Minkowskian black hole decay
does not have a direct thermal interpretation, and, moreover, the two-dimensional
Euclidean finite-temperature black hole solution [3] is static and does not exhibit
this decay instability [29].

It is now appropriate to speculate on the possible extension of these results to
four-dimensional black holes. As yet, there is no general characterisation of four-

8This is consistent with the fact that the two-dimensional black hole under consideration re-
sembles an extreme Reissner-Nordstrom type [2].
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dimensional stringy black holes at the conformal field theory level, but some partial
results are becoming available [8]. These generalize, and often incorporate, the non-
compact coset Wess-Zumino models describing the two-dimensional solutions. As
such, we expect them to include and extend the w-symmetries that save quantum
coherence in two dimensions. A very large set of gauge symmetries is in fact known
to exist in generic four-dimensional string models [22], possibly in correspondence
to the number of massive string states and providing an amount of ‘hair’ sufficient
to quench the entropy usually associated with four-dimensional black holes 9. It
certainly seems that the intrinsically stringy non-thermal higher-genus black hole
decay mechanism identified in this paper could carry over to four dimensions, al-
though we cannot yet exclude the existence of additional thermal instabilities. It
seems that the string answer to the conundrum of reconciling quantum mechanics
with general relativity is at hand.
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