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Abstract

The instability of a Fermi-liquid drop with respect to bulk density distortions

is considered. It is shown that the presence of the surface strongly reduces

the growth rate of the bulk instability of the finite Fermi-liquid drop because

of the anomalous dispersion term in the dispersion relation. The instability

growth rate is reduced due to the Fermi surface distortions and the relaxation

processes. The dependence of the bulk instability on the multipolarity of the

particle density fluctuations is demonstrated for two nuclei 40Ca and 208Pb.
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I. INTRODUCTION

In the vicinity of the equilibrium state of the nuclear Fermi-liquid drop the stiffness co-

efficients are positive and the system is stable with respect to particle density and surface

distortions. With decreasing bulk density or increasing internal excitation energy (temper-

ature) the liquid drop reaches the regions of mechanical or thermodynamical instabilities

with respect to small particle density and shape fluctuations and to separation into liquid

and gas phases. The process of the development of instability is a complicated one. We will

discuss some aspects of the process. In particular, we will study the influence of a sharp

liquid-drop boundary on the instability with respect to small particle density fluctuations.

In actual nuclear processes (heavy-ion reactions, nuclear fission etc.) nuclear matter is not

static, and consequently the development of instability depends not only on the equation of

state, but also on the dynamical effects such as the dynamical Fermi-surface distortion or

the relaxation processes. We will take into account these aspects in studying the stability

of the Fermi-liquid drop in both regimes of the first- and zero sound modes.

II. BULK INSTABILITY OF THE FERMI-LIQUID DROP

Let us consider small density fluctuations δρ(r, t) starting from the nuclear fluid dynamic

approach [1,2]. The linearized equation of motion reads (see Ref. [3]),

m
∂2

∂t2
δρ = ~∇ρeq ~∇

δE

δρ
+∇ν∇µP

′

νµ, (1)

where ρeq is the equilibrium density, E is the total energy and the pressure tensor, P ′

νµ,

represents the deviation of the pressure from its isotropic part due to the Fermi surface

distortions.

The variational derivative δE/δρ in Eq. (1) implies a linearization with respect to the

density variation δρ:

δE

δρ
=

(δE

δρ

)

eq
+ L̂[ρeq] δρ+O

(

δρ
)2
. (2)
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We point out that the first term on the r.h.s. of Eq. (2) does not enter Eq. (1) because of

the the equilibrium condition (δE/δρ)eq = λF = const, where λF is the chemical potential.

The operator L̂ can be derived from the equation of state E = E[ρ]. We will use the

extended Thomas-Fermi approximation for the internal kinetic energy [5] and the Skyrme-

type forces for the interparticle interaction [4]. In the special case of a spin saturated and

charge conjugated nucleus, and neglecting spin-orbit and Coulomb effects, the equation of

state reads

E[ρ] =
∫

dr
{ h̄2

2m





3

5

(3π2

2

)2/3
ρ5/3 +

1

4
η
(~∇ρ)2

ρ





+
3

8
t0 ρ

2 +
1

16
t3 ρ

3 +
1

64
(9 t1 − 5 t2) (~∇ρ)2

}

. (3)

The effective forces used in Eq. (3) leads to an overestimate of the incompressibility co-

efficient. This is a well-known feature of Skyrme forces which can be overcome by taking

non-integer powers of ρ in the potential energy density in Eq. (3). For our purposes we shall,

however, be content with the form (3). To make quantitative estimates of the finite size ef-

fects on the bulk instability of the liquid drop, we will assume a sharp surface behaviour of

ρeq(r) having a bulk density ρ0 and an equilibrium radius R0. Taking into account Eqs. (2)

and (3), the operator L̂[ρeq] is then reduced to the following form

L̂[ρeq] δρ =
K

9
∇2 δρ− 2 (β + ts ρ0)∇

2∇2 δρ at r < R0, (4)

where

β =
h̄2

8m
η, ts =

1

64
(9 t1 − 5 t2)

and K is the incompressibility coefficient

K = 6 eF (1 + F0)
(

1 +
1

3
F1

)−1

. (5)

The Landau parameters Fl are given by

F0 =
9 ρ0
8 ǫF

[

t0 +
3

2
t3 ρ0

]

m∗

m
+ 3

(

1−
m∗

m

)

, F1 = 3
(

m∗

m
− 1

)

, (6)
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where

m

m∗
= 1 +

mρ0

8 h̄2 (3 t1 + 5 t2)

and eF is the Fermi energy.

The pressure tensor P ′

νµ can be expressed through the displacement field ~χ(r, t) [6].

Assuming also δρ ∼ e−iωt, the pressure tensor P ′

νµ is given by [3]

P ′

νµ =
iωτ

1− iωτ
PeqΛνµ, (7)

where τ is the relaxation time and we used the symbol

Λνµ = ∇νχµ +∇µχν −
2

3
δνµ∇λχλ (8)

for this combination of gradients of the Fourier transform χν of the displacement field ~χ(r, t).

The equilibrium pressure of a Fermi gas, Peq, in Eq. (7), is given by

Peq =
1

3m

∫

dp

(2πh̄)3
p2 feq(r,p) ≈ ρ0 p

2
F/5m,

where feq(r,p) is the equilibrium phase-space distribution function and pF is the Fermi

momentum. We point out that Eq. (7) is valid for arbitrary relaxation time τ and thus

describes both the zero- and the first-sound limit as well as the intermediate case.

Taking into account the continuity equation and Eqs. (4), (7) and (8), the equation of

motion (1) can be reduced in the nuclear interior to the following form (we consider the

isoscalar mode):

−mω2 δρ =
(

1

9
K −

4

3

iωτ

1− iωτ
(Peq/ρ0)

)

∇2δρ− 2 (β + ts ρ0)∇
2∇2δρ. (9)

The solution of Eq. (9) for a fixed multipolarity L is given by

δρ(r, t) = ρ0 jL(qr) YLM(θ, φ)αLM(t), (10)

where q is the wave number and αLM(t) is the amplitude of the density oscillations. We

will distinguish between stable and unstable regimes of density fluctuations. In the case of
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a stable mode at K > 0, a solution of Eq. (9) of the form (10) has the following dispersion

relation

ω2 = u2 q2 − i ω
γ(ω)

m
q2 + κs q

4. (11)

Here, u is the sound velocity

u2 = u2
1 + κv, (12)

where u1 is the velocity of the first sound

u2
1 =

1

9m
K, (13)

γ(ω) is the viscosity coefficient

γ(ω) =
4

3
Re

( τ

1− i ω τ

)Peq

ρeq
(14)

and

κv =
4

3
Im

( ωτ

1− i ω τ

) Peq

mρeq
, κs =

2

m
(β + ts ρ0). (15)

The quantities κv and γ(ω) appear due to the Fermi-surface distortion effect. The dispersion

relation (11) determines both the real and the imaginary part of the eigenfrequency ω.

The equation of motion (9) has to be augmented by the boundary condition. This is

given by a condition of the balance of the surface pressure δPsurf with the volume sound

pressure δPsound on a free surface of the liquid drop, see Refs. [7,8]. It reads

mu2 ρ0 jL(qR0) =
1

q2R2
0

(L− 1) (L+ 2) σ
∂jL(qr)

∂r

∣

∣

∣

r=R0

. (16)

Let us consider now the volume instability regime, K < 0, and introduce a growth rate

Γ = −i ω (Γ is real, Γ > 0), see Ref. [9]. Using Eq. (11), one obtains

Γ2 = |u1|
2 q2 − ζ(Γ) q2 − κs q

4, (17)

where
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ζ(Γ) =
4

3m

Γτ

1 + Γτ

Peq

ρ0
. (18)

Equation (17) is valid for arbitrary relaxation time τ . From it one can obtain the leading

order terms in the different limits mentioned above.

(i) Frequent collision regime: τ → 0.

The contribution from the dynamic distortion of the Fermi surface, κv, can be neglected in

this case and we have from Eqs. (17) and (14),

Γ2 = |u1|
2 q2 − Γ (γ̃/m) q2 − κs q

4, (19)

where γ̃ = (8/15) eF τ is the viscosity coefficient. In the case of small viscosity coefficient γ̃,

one has from Eq. (19)

Γ2 ≈ |u1|
2 q2 − κs q

4 −
γ̃

m
q2

√

|u1|2 q2 − κs q4. (20)

The amplitude of the density oscillations, δρL(r, t), grows exponentially if Γ > 0. Ex-

pression (20) determines two characteristic values of the wave number q, namely, qmax where

the growth rate reaches a maximum of Γmax, and qcrit where Γ goes to zero, i.e., (see also

[10]),

Γ = Γmax at q = qmax < qcrit, and Γ = 0 at q = qcrit. (21)

The values of qmax and qcrit are obtained from, see Eq. (19),

∂Γ

∂q

∣

∣

∣

q=qmax

= 0 and q2crit =
|u1|

2

κs
, at u2

1 < 0. (22)

Thus, the critical wave number qcrit does not depend on the viscosity. However, the presence

of viscosity reduces the instability, see also Fig. 1 below.

(ii) Rare collision regime: τ → ∞.

In this case, we have from Eqs. (17), (15) and (14)

Γ2 = |u1|
2 q2 − κ′

v q
2 − κs q

4, (23)

where
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κ′

v =
4

3m

Peq

ρeq
. (24)

The critical value qcrit and the value qmax are given by

q2crit =
|u1|

2 − κ′

v

κs

, q2max =
1

2
q2crit. (25)

Thus, the distortion of the Fermi-surface leads to a decrease of the critical value qcrit, i.e.,

the Fermi-liquid drop becomes more stable with respect to the volume density fluctuations

due to the dynamic Fermi-surface distortion effects.

III. NUMERICAL RESULTS AND DISCUSSION

In Fig. 1 we have plotted the instability growth rate Γ as obtained from Eq. (17). The

calculation was performed for the Skyrme force SIII. The relaxation time was taken in the

form τ = h̄ α/T 2 [11] with α = 9.2MeV and α = 2.6MeV [12] and the bulk density ρ0 was

taken as ρ0 = 0.3 ρsat, where ρsat is the saturated density ρsat = 0.1453 fm−3. We show also

the result for the nonviscous infinite nuclear matter and the nonviscous finite liquid drop

neglecting Fermi surface distortion effects. In a finite system, the non-monotony behaviour

of the instability growth rate as a function of the wave number q is due to the anomalous

dispersion term in Eq. (11) created by the gradient terms in the equation of state. We

point out that the finite system becomes more stable with respect to short-wave-length

density fluctuations at q > qmax. We can also see that the presence of viscosity decreases the

instability. The strong decrease of instability in a Fermi liquid drop (FLD), when compared

with the corresponding result for the usual liquid drop (LD), is because of the Fermi surface

distortion effects. In Fig. 2, this peculiarity of the FLD can be seen in a transparent way

for both the infinite nuclear matter and the finite Fermi liquid drop.

For a saturated nuclear liquid one has for the force parameters t0 < 0, t3 > 0 and ts > 0.

Thus, the critical value qcrit, Eq. (22), increases with decreasing bulk density ρ0 at u2
1 < 0,

see also Eq. (6). The existence of the critical wave number qcrit for an unstable mode is a

feature of the finite system. The growth rate Γ depends on the multipolarity L of the nuclear
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density distortion and on the position of the eigenvalue, qL, in the interval of q = 0 ÷ qcrit

[10]. For a given R0, the value of qL increases with L for L ≥ 2 because of the boundary

condition (16), see Table 1. That means that if qL < qmax the instability increases with L

and the nucleus becomes more unstable with respect to an internal clusterization to small

pieces (high multipolarity regime) rather than to binary fission (low multipolarity regime).

In contrast, the binary fission is preferable if qmax < qL < qcrit.

We give in Table 1 the values qL/kF for two nuclei, 208Pb and 40Ca as obtained from

Eq. (16). The calculations were performed with the surface tension parameter 4 π r20 σ =

17.2MeV. We point out that the value of qmax is given here by qmax/kF = 0.69. In Fig.

3 we have plotted the instability growth rate at T = 6MeV and α = 9.2MeV as function

of the multipolarity L of the particle density fluctuations for two nuclei 208Pb and 40Ca.

As is seen from Fig. 3, the lowest values of L ≤ 3 give the contribution to the instability

growth rate Γ for the nucleus 40Ca. Thus, the nucleus 40Ca is unstable with respect to the

fission under the conditions considered above. In contrast, the instability growth rate of the

nucleus 208Pb includes the higher multipolarity L ≤ 8 and this nucleus has to be unstable

with respect to multifragmentation.

IV. SUMMARY AND CONCLUSION

Starting from the fluid dynamic equation of motion for the Fermi liquid drop with a

sharp surface, we have derived the dispersion relations (11) and (17) for both the stable and

the unstable regime. The dispersion relations are influenced strongly by the Fermi-surface

distortion effect and the anomalous dispersion caused by the finiteness of the system. The

presence of the Fermi surface distortion enhances the stiffness coefficient for a stable mode

and reduces the instability growth rate for an unstable one.

We have shown that the instability growth rate in an unstable finite system is a non-

monotony function of the wave number q because of the anomalous dispersion term. This is

in contrast with the infinite nuclear matter case where the instability growth rate increases
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with q. The non-monotony behaviour of the instability growth rate Γ(q) in a finite Fermi

liquid drop is accompanied with two characteristic wave numbers qmax and qcrit, see Eqs.

(21) and (22). The distortion of the Fermi-surface leads to a decrease of the critical value

qcrit. The decay mode of an unstable Fermi liquid drop depends on the location of the eigen

wave number q on the slope of the curve Γ(q). The Fermi liquid drop is more unstable with

respect to multifragmentation if q < qmax and the binary fission is preferable if q > qmax.

This is because the eigen wave number qL, derived from the secular equation (16), increases

with the multipolarity L of the particle density fluctuations. As an example, we have

demonstrated this phenomenon in the case of hot nuclei 40Ca and 208Pb. The nucleus 40Ca

is more unstable with respect to the short wave fluctuations and prefers to decay into the

binary fission channel. The multifragmentation channel is preferable at the development of

the instability in the heavy nucleus 208Pb.
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TABLES

TABLE I. Values of qL/kF , as obtained from Eq. (16) for the surface tension parameter σ

derived from 4π r20 σ = 17.2MeV and T = 1MeV, for two nuclei 208Pb and 40Ca.

L 2 3 4 5 6 7 8

40Ca 0.986 1.225 1.457 1.684 1.907 2.128 2.347

208Pb 0.569 0.707 0.841 0.972 1.101 1.228 1.355
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FIGURES

FIG. 1. The dependence of the instability growth rate Γ on the wave number q. The calculations

were performed for Skyrme force SIII, temperature T = 6MeV and density ρ0 = x ρsat with

x = 0.3. The solid curves are for the Fermi liquid drop from Eq. (17); the values α = 9.2MeV

and α = 2.6MeV of the relaxation time parameters are shown as labels to the curves. The dashed

lines are the results for the nonviscous liquid without the Fermi surface distortion effects: curve

(1) is the result for an infinite matter and curve (2) is for a finite liquid drop.

FIG. 2. The dependence of the instability growth rate Γ on the wave number q for the infinite

matter (dashed lines) and the finite system. The curves FLD and (2) are for the Fermi liquid; the

curves LD and (1) are for the usual liquid, i.e., neglecting the Fermi surface distortion effects. All

calculations were performed with α = 0 and T = 1MeV and with the force parameters and ρ0 as

in Fig. 1.

FIG. 3. The dependence of the instability growth rate Γ on the multipolarity L of the particle

density fluctuations for two nuclei 208Pb and 40Ca. The calculations were performed using the

FLD results of Fig. 1 at α = 9.2MeV and T = 1MeV and the surface tension parameter σ derived

as in Table 1.
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