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We present the reach of the Large Hadron Collider (LHC) into the parameter space of No-Scale
F-SU(5), starting our analysis with the current operating energy of

√
s = 7 TeV, and extending

it on through the bright future of a 14 TeV beam. No-Scale F-SU(5) is a model defined by the
confluence of the F-lipped SU(5) Grand Unified Theory, two pairs of hypothetical TeV scale vector-
like supersymmetric multiplets with origins in F-theory, and the dynamically established boundary
conditions of No-Scale Supergravity. When searching for a five standard deviation signal, we find
that the CMS experiment at the

√
s = 7 TeV LHC began to penetrate the phenomenologically

viable parameter space of this model at just under 1 fb−1 of integrated luminosity, and that the
majority of this space remains intact, subsequent to analyses of the first 1.1 fb−1 of CMS data. On
the contrary, the ATLAS experiment had not reached the F-SU(5) parameter space in its first 1.34
fb−1 of luminosity. Since the CMS and ATLAS detectors have now each amassed a milestone of
5 fb−1 of collected luminosity, the current LHC is presently effectively probing No-Scale F-SU(5).
Upon the crossing of the 5 fb−1 threshold, the 7 TeV LHC will have achieved five standard deviation
discoverability for a unified gaugino mass of up to about 532 GeV, a light stop of 577 GeV, a gluino
of 728 GeV, and heavy squarks of just over 1 TeV. Extending the analysis to include a future LHC
center-of-mass beam energy of

√
s = 14 TeV, the full model space of No-Scale F-SU(5) should be

visible to CMS at about 30 fb−1 of integrated luminosity. We stress that the F-SU(5) discoverability
thresholds discussed here are contingent upon retaining only those events with nine jets or more for
the CMS experiment and seven jets or more for the ATLAS experiment.

PACS numbers: 11.10.Kk, 11.25.Mj, 11.25.-w, 12.60.Jv

I. INTRODUCTION

The exploration of physics beyond the Standard Model
by the Large Hadron Collider (LHC) at CERN has been
steady since 2010, gathering data from proton-proton col-
lisions at a center-of-mass beam energy of

√
s = 7 TeV.

The detectors have reached an integrated luminosity of 5
fb−1 at the end of 2011, and conservatively, are expected
to attain 20 fb−1 by the end of 2012. Subsequent to 2012,
the LHC is anticipated to feature an increased beam en-
ergy of

√
s = 10-14 TeV. The first significant milestone

of 1 fb−1 was achieved in 2011, in the process generat-
ing a multitude of comprehensive experimental and phe-
nomenological analyses by the CMS Collaboration [1–7]
and the ATLAS Collaboration [8–13] on the first few data
collections.
The leading candidate for an extension to the Stan-

dard Model is Supersymmetry (SUSY), a natural solu-
tion to the gauge hierarchy problem. Supersymmetric
Grand Unified Theories (GUTs) with gravity mediated
supersymmetry breaking, known as minimal Supergrav-
ity (mSUGRA) and the Constrained Minimal Supersym-
metric Standard Model (CMSSM), have been thoroughly
evaluated against the first 1 fb−1 of data. However, stud-
ies have shown that most of the experimentally viable

parameter space of mSUGRA and the CMSSM has been
excluded by the initial LHC constraints (for example, see
Ref. [14]). The severe attenuation of the mSUGRA and
CMSSM model space imposed by the early LHC results
stimulates the question of whether SUSY and/or super-
string post-Standard Model extensions exist that do un-
equivocally evade the LHC constraints thus far imposed,
while remaining within the present and near-term reach
of the LHC.

We investigate here such a model, that being No-Scale
F -SU(5) with vector-like particles [15–28]. The full No-
Scale F -SU(5) model space allowed by a set of “bare
minimal” experimental constraints was studied in [21],
which we apply as our baseline parameter space in this
work. As we shall show, when searching for a five stan-
dard deviation signal, this model began to be probed by
the CMS experiment at the LHC at just under 1 fb−1 of
luminosity at

√
s = 7 TeV. Thus, most of the F -SU(5)

model space has remained wholly intact through accu-
mulation of the first 1.1 fb−1 of data, an accomplishment
certainly not shared by mSUGRA or the CMSSM. With
recent news of each of the CMS and ATLAS experiments
reaching 5 fb−1, the penetration of the LHC into the
viable F -SU(5) parameter space has reached a modest
level. Nonetheless, if a SUSY discovery is not imminent
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at
√
s = 7 TeV, we shall show that coverage of the entire

No-Scale F -SU(5) model space will only be achieved af-
ter the scheduled escalation to

√
s = 14 TeV in 2013 or

beyond.

II. THE NO-SCALE F-SU(5) MODEL

In the traditional framework, supersymmetry is broken
in the hidden sector, and then its breaking effects are
mediated to the observable sector via gravity or gauge
interactions. In the mSUGRA and CMSSM, the super-
symmetry breaking soft terms can be parameterized by
four universal parameters plus the sign of the Higgs bi-
linear mass term µ: gaugino mass M1/2, scalar mass M0,
trilinear soft term A, and the ratio of Higgs vacuum ex-
pectation values (VEVs) tanβ at low energy. The µ
term and its bilinear soft term Bµ are determined by
the Z-boson mass MZ and tanβ after the electroweak
symmetry breaking. To solve the cosmological constant
problem, No-Scale supergravity is proposed [29–33]. For
the simplest stringy No-Scale supergravity, we obtain the
boundary condition M0 = A = Bµ = 0 [32, 33] while
M1/2 could be non-zero at the unification scale.

The No-Scale F -SU(5) models [15–28] represent the
unification of the F -lipped SU(5) Grand Unified The-
ory (GUT) [34–36], two pairs of hypothetical TeV scale
vector-like supersymmetric multiplets with origins in F -
theory [37–41], and the dynamically established bound-
ary conditions of No-Scale Supergravity [29–33]. For a
thorough review on the No-Scale F -SU(5) model, the
reader is directed to the appendix of Ref. [20].

Employing No-Scale boundary conditions at the F -
SU(5) unification scale, we have illustrated an excep-
tionally constrained “golden point” [15] and “golden
strip” [16, 25] which satisfy the most recent experimental
constraints, while featuring also an imminently observ-
able proton decay rate [42]. The boundary constraint on
Bµ = 0 is, in particular, very severe, drastically condens-
ing the viable parameter space. Furthermore, by utilizing
a Super No-Scale condition, we have dynamically deter-
mined M1/2 and tanβ [17, 18, 21, 26]. The modulus was
thus stabilized dynamically [17, 18, 21, 26] due to the fact
that M1/2 is related to the modulus field of the internal
space in string models.

In the simplest No-Scale supergravity, all the super-
symmetry breaking soft terms arise from a single param-
eter M1/2, therefore, the particle spectra are proportion-
ally similar up to an overall rescaling on M1/2, hence
leaving invariant most of the “internal” physical proper-
ties. This rescaling ability on M1/2 is not apparent in
alternative supersymmetric models, due to their larger
parameterization freedom, including in particular that of
M0. The rescaling symmetry can likewise be broken to a
certain degree by the vector-like particle mass parameter,
although this effect is weak.

III. SUPERSYMMETRY DISCOVERY

We presented a SUSY cold dark matter Discovery In-
dex in Reference [23], drawing on a well known indicator
of the statistical significance of a collider signal in rela-
tion to a competing background. The ratio S/

√
B + 1 of

signal events S to the square root of background events
B, plus one, was applied to the number of events for a
No-Scale F -SU(5) signal with greater than or equal to
nine jets [19, 20, 24], as a function of the Lightest Su-
persymmetric Particle (LSP) mass. In the event of very
small background samples, the “plus one” limiter in the
denominator prevents the signal count S from being nu-
merically smaller than the intended ratio. The minimally
favorable discovery ratio is generally considered to be in
the vicinity of S/

√
B + 1 ≥ 5, with much larger ratios

more favorable.

We extend the Discovery Index study of [23] using
the ratio S/

√
B + 1 to evaluate not just the LSP, but

also the unified gaugino mass M1/2, light stop mass mt̃1
,

gluino mass mg̃, and as an example of a heavy squark,
the right-handed up squark mass mũR

. We strategically
choose to focus on these sparticles due to the distinc-
tive No-Scale F -SU(5) SUSY mass spectrum hierarchy
of mt̃1 < mg̃ < mq̃, a possibly unique mass pattern,
which is unseen in any of the “Snowmass Points and
Slopes” (SPS) benchmark points [43]. The Snowmass
benchmarks were specifically chosen by a consensus of
proposals to represent a broad range of the most popu-
lar SUSY breaking mechanisms, and the exclusion of the
aforementioned mass pattern is therefore highly indica-
tive of its potential rarity. The logic of our derivation
is that if we take the minimum ratio of five to signify
a discovery threshold, then we can obtain from this ra-
tio the minimum sparticle mass that is observable for a
given integrated luminosity and center-of-mass beam en-
ergy, providing a detailed illustration of the reach of the
LHC into the F -SU(5) parameter space.

Our Monte Carlo detector simulation has been per-
formed using the MadGraph [44, 45] suite, including
the standard MadEvent [46], PYTHIA [47] and PGS4 [48]
chain, with post-processing performed by a custom script
CutLHCO [49] which implements the desired cuts, and
counts and compiles the associated net statistics. All
2-body SUSY processes are included in our simula-
tion. We employ a proprietary modification of the
SuSpect 2.34 [50] codebase to run the RGEs, and our
SUSY particle spectrum computations are executed with
MicrOMEGAs 2.1 [51]. Our Standard Model sample is
borrowed from the estimated backgrounds derived by the
CMS experiment [7] and the ATLAS experiment [13],
which include all QCD, W-boson, Z-boson, and tt pro-
cesses. For collision energies above the current

√
s =

7 TeV operational phase, we proportionally index the of-
ficial collaboration backgrounds against the Monte Carlo
scaling of F -SU(5). For the CMS analysis, we mimic the
CMS post-processing cuts of Ref. [7] processed without
the cut on the αT statistic and binned according to jet
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FIG. 1: No-Scale F-SU(5) sparticle mass discovery threshold as a function of integrated luminosity utilizing the S/
√
B + 1 ≥ 5

condition, using the CMS experiment post-processing cuts and Standard Model background sample of Reference [7]. We
augment the CMS jet cutting strategy of [7] by retaining only those events with greater than or equal to nine jets. Annotated
are the maximum and minimum SUSY masses allowable by the application of the “bare minimal” experimental constraints
of [21]. Each plot space visibly depicts that the 1 fb−1 mass threshold is close to the minimum mass permitted within the
No-Scale F-SU(5) model space, thus leaving the parameter space mostly intact after the first 1.1 fb−1 of LHC data. As shown,
the No-Scale F-SU(5) began to be probed at just under 1 fb−1, however, the entire model space is not within reach of the

√
s

= 7 TeV LHC (bottom curve in each plot), with full coverage requiring a minimum of
√
s = 14 TeV (top curve in each plot)

for 30 fb−1, if a signal discovery is not accomplished at
√
s = 7 TeV.
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FIG. 2: No-Scale F-SU(5) sparticle mass discovery threshold as a function of integrated luminosity utilizing the S/
√
B + 1 ≥ 5

condition, using the ATLAS experiment post-processing cuts and Standard Model background sample of Reference [13]. We
augment the ATLAS jet cutting strategy of [13] by retaining only those events with greater than or equal to seven jets.
Annotated are the maximum and minimum SUSY masses allowable by the application of the “bare minimal” experimental
constraints of [21]. Each plot space visibly depicts that the 1 fb−1 mass threshold is just below the minimum mass permitted
within the No-Scale F-SU(5) model space, thus leaving the parameter space entirely intact after the first 1.34 fb−1 of LHC
data. As shown, the No-Scale F-SU(5) will not begin to be probed until just under 2 fb−1, however, the entire model space
is not within reach of the

√
s = 7 TeV LHC (bottom curve in each plot), with full coverage requiring a minimum of

√
s = 14

TeV (top curve in each plot) and much more than 30 fb−1, if a signal discovery is not accomplished at
√
s = 7 TeV.
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count, including the ultra-high jet multiplicities we have
vigorously advocated [19, 20, 24, 27, 28], where we re-
tain only those events with greater than or equal to nine
jets. We have argued that the CMS αT cut is actually
actively biased against high jet multiplicities, and that it
is moreover unnecessary in this regime, given a substan-
tial natural suppression of the background based simply
on the jet count threshold itself. For the ATLAS analy-
sis, in the same manner as the CMS analysis, we likewise
mimic the ATLAS post-processing cuts of Ref. [13] for the
case of jet pT > 80 GeV and Hmiss

T /
√
HT in the range

(3.5 → inf). However, in the case of these ATLAS cuts,
we retain only those events with greater than or equal to
seven jets, due to the more suppressive nature of the AT-
LAS cuts in the high jet multiplicity regime. Nonetheless,
even with the lower cut on the number of jets at seven
for the ATLAS data, the F -SU(5) signal is discoverable
at five standard deviations, though at a larger necessary
integrated luminosity than the less suppressive CMS jet
cutting strategy.

As exhibited in Figure Sets (1-2), the logarithm of the
integrated luminosity varies nearly linearly with the spar-
ticle mass discovery threshold. We demarcate a range of
luminosities from 1 fb−1 to 30 fb−1 in order to encom-
pass the full operational range of the “once and future”
LHC. Also annotated on each plot space is the maximum
and minimum mass allowed using only the “bare mini-
mal” experimental constraints of [21]. Each plot clearly
shows that the SUSY mass discovery threshold for 1 fb−1

is near or comfortably below the minimum mass allowed
within the No-Scale F -SU(5) model space. As a con-
sequence, where the traditional SUSY models such as
mSUGRA and the CMSSM have already experienced se-
vere reductions in their experimentally viable parameter
space, the No-Scale F -SU(5) has just begun to be pene-
trated. However, recent reports place the presently col-
lected raw luminosities at 5 fb−1 for each of the CMS
and ATLAS experiments. Therefore, as Figure Sets (1-
2) depict, the No-Scale F -SU(5) parameter space is now
currently being probed at the

√
s = 7 TeV LHC. How-

ever, only roughly half of the viable mass range can be
probed by the

√
s = 7 TeV LHC, and if no discovery

occurs by the conclusion of 2012, we shall eagerly antic-
ipate the planned commencement of the

√
s = 14 TeV

LHC era. This upgraded machine would be capable of
covering the entirety of the No-Scale F -SU(5) parameter
space with 30 fb−1 of integrated luminosity.

We present an alternative perspective in Figure Sets
(3-4) of the SUSY mass discovery threshold as a function
of the center-of-mass beam energy

√
s for the three key

luminosity milestones of 1 fb−1, 5 fb−1, and 10 fb−1.
We further submit Tables (I-IV), reflecting the SUSY
mass coverage of the

√
s = 7 TeV and

√
s = 14 TeV

LHC for five luminosities of 1 fb−1, 5 fb−1, 8 fb−1, 10
fb−1, and 20 fb−1. In particular, revealed in Table (I) at
the early LHC run are the 5 fb−1 mass targets of a 532
GeV gaugino mass M1/2, 105 GeV LSP, 577 GeV light
stop, 728 GeV gluino, and 1061 GeV right-handed up

TABLE I: Reach of the
√
s = 7 TeV LHC into the No-Scale

F-SU(5) model space utilizing the S/
√
B + 1 ≥ 5 condition,

using the CMS experiment post-processing cuts and Standard
Model background sample of Reference [7]. We augment the
CMS jet cutting strategy of [7] by retaining only those events
with greater than or equal to nine jets. All masses are in GeV.

Luminosity M1/2 mχ̃0

1

mt̃1
mg̃ mũR

1 fb−1 411 78 427 569 841

5 fb−1 532 105 577 728 1061

8 fb−1 559 111 610 766 1106

10 fb−1 571 114 624 782 1125

20 fb−1 604 122 662 826 1178

TABLE II: Reach of the
√
s = 14 TeV LHC into the No-Scale

F-SU(5) model space utilizing the S/
√
B + 1 ≥ 5 condition,

using the CMS experiment post-processing cuts and Standard
Model background sample of Reference [7]. We augment the
CMS jet cutting strategy of [7] by retaining only those events
with greater than or equal to nine jets. All masses are in GeV.

Luminosity M1/2 mχ̃0

1

mt̃1
mg̃ mũR

1 fb−1 695 143 768 945 1331

5 fb−1 774 162 860 1050 1463

8 fb−1 798 168 889 1081 1505

10 fb−1 811 170 903 1098 1526

20 fb−1 859 182 960 1161 1610

squark for the CMS experiment, representing a modest
infiltration into the No-Scale F -SU(5) model space next
year.
It must be emphasized that the entirety of the analysis

presented here is highly dependent upon adoption of the
ultra-high jet multiplicity cutting methodology described
in Refs. [19, 20, 24, 27, 28]. Here, we have adopted
cuts that retain events with only nine jets or more for
the CMS experiment jet cutting strategy and only those
events with seven jets or more for the ATLAS experiment
jet cutting strategy. We have previously demonstrated
that more conventional searches which include smaller
jet counts than these do not take similar advantage of
the strong four-top based decay chain which is distinc-
tively characteristic of the No-Scale F -SU(5) SUSY mass
hierarchy. As such, all detection thresholds would in this
case, be subject to a potentially substantial increase of
luminosity.

IV. CONCLUSIONS

The surprising drastic reductions in the viable param-
eter space experienced by mSUGRA and the CMSSM
following only 1 fb−1 of LHC data compels a study into
a more experimentally robust model, such as the No-
Scale F -SU(5) with vector-like particles. We showed
that by employing the standard condition S/

√
B + 1 ≥ 5
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post-processing cuts and Standard Model background sample of Reference [13]. We augment the ATLAS jet cutting strategy
of [13] by retaining only those events with greater than or equal to seven jets.

to observe a signal over and above the background, the
F -SU(5) model space had just begun to be probed in
the first 1 fb−1. Consequently, the No-Scale F -SU(5)
remained mostly intact by the early LHC imposed con-
straints. The F -SU(5) model did not begin to be pierced
until the LHC had attained just under 1 fb−1, and at
the present estimated accumulated luminosity of about
5 fb−1, modest access to the F -SU(5) parameter space
is currently in progress. While we carry optimism for an
early SUSY discovery at a center-of-mass energy of

√
s =

7 TeV, an absence of a definitive SUSY signal will require
the future

√
s = 14 TeV LHC for full coverage of No-

Scale F -SU(5), along with at least 30 fb−1 of integrated
luminosity. Nevertheless, for an integrated luminosity of
5 fb−1 at the present

√
s = 7 TeV LHC, an impressive

range of masses will have been reached, including a 532

GeV gaugino massM1/2, a 105 GeV LSP, a 577 GeV light
stop, a 728 GeV gluino, and a 1061 GeV right-handed up
squark.

Our recent explorations into all aspects of the No-Scale
F -SU(5) with vector-like particles construction have fur-
nished a remarkable array of deeply motivated theoreti-
cal and phenomenological correlations. We thus suggest
that this model makes an excellent concrete choice for the
presently undertaken examination of the current and fu-
ture LHC reach. The rapid decay of the viable mSUGRA
and CMSSM parameter spaces which the early LHC data
has brought on moreover suggests the necessity of sup-
plementing such popular and frequently researched SUSY
models with phenomenologically and theoretically favor-
able alternatives, such as No-Scale F -SU(5). The ulti-
mate fate of the ongoing search for a genuine supersym-
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TABLE III: Reach of the
√
s = 7 TeV LHC into the No-Scale

F-SU(5) model space utilizing the S/
√
B + 1 ≥ 5 condition,

using the ATLAS experiment post-processing cuts and Stan-
dard Model background sample of Reference [13]. We aug-
ment the ATLAS jet cutting strategy of [13] by retaining
only those events with greater than or equal to seven jets.
All masses are in GeV.

Luminosity M1/2 mχ̃0

1

mt̃1
mg̃ mũR

1 fb−1 349 65 358 473 714

5 fb−1 484 94 519 664 984

8 fb−1 522 102 565 715 1046

10 fb−1 537 106 582 735 1069

20 fb−1 574 115 627 785 1130

TABLE IV: Reach of the
√
s = 14 TeV LHC into the No-

Scale F-SU(5) model space utilizing the S/
√
B + 1 ≥ 5 con-

dition, using the ATLAS experiment post-processing cuts and
Standard Model background sample of Reference [13]. We
augment the ATLAS jet cutting strategy of [13] by retaining
only those events with greater than or equal to seven jets. All
masses are in GeV.

Luminosity M1/2 mχ̃0

1

mt̃1
mg̃ mũR

1 fb−1 649 133 714 885 1250

5 fb−1 724 150 802 983 1379

8 fb−1 744 155 826 1010 1414

10 fb−1 754 157 836 1022 1431

20 fb−1 785 164 873 1063 1484

metry signal at the LHC could very well now rest with
precisely such outside hopes.
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