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Abstract

In this paper we first give a simple parametrization of the scalar coset manifold of the only known
anomaly free chiral gauged supergravity in six dimensions in the absence of linear multiplets,
namely gauged minimal supergravity coupled to a tensor multiplet, E6×E7×U(1)R Yang-Mills
multiplets and suitable number of hypermultiplets. We then construct the potential for the
scalars and show that it has a unique minimum at the origin. We also construct a new BPS
dyonic string solution in which U(1)R × U(1) gauge fields, in addition to the metric, dilaton
and the 2-form potential, assume nontrivial configurations in any U(1)R gauged 6D minimal
supergravity coupled to a tensor multiplet with gauge symmetry G ⊇ U(1). The solution
preserves 1/4 of the 6D supersymmetries and can be trivially embedded in the anomaly free
model, in which case the U(1) activated in our solution resides in E7.
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1 Introduction

The most symmetric ground state solutions in all of the higher dimensional supergravity theories,
as the low energy limit of the superstring theories or the M theory, are the flat 10 dimensional
manifolds ( Rd×flat torus) and the pp waves. Such backgrounds have 32 real supersymmetries
and are not a suitable starting point for building realistic phenomenology. The Calabi-Yau
compactifications have less supersymmetries but also a lesser degree of uniqueness. There exist
many of them with a lot of moduli with unknown potentials.

In the gauged minimal supergravity theories inD = 6 this is not the case. In fact in these theories
the 6-dimensional flat spaces do not solve the supergravity equations. The most symmetric
solution is R4 × S2 [1] which has been shown recently to be the unique maximally symmetric
solution of such models [2]. This result has been obtained essentially in the minimal version of
such models for which the gauge group is simply U(1), i.e. the D = 6 supersymmetric Einstein
Maxwell theory, known as the Salam-Sezgin model in the literature [1]. The model by itself is
anomalous but it can be embedded into an anomaly-free model [3] with suitable Yang-Mills and
hypermatter sector couplings [4, 5].

The uniqueness of the supersymmetric R4 × S2 solution should be contrasted with the plethora
of solutions of Calabi-Yau type or the ones with exceptional holonomy groups such as G2 in
higher dimensional low energy string theories. For this reason we consider this property as very
interesting and believe that such models deserve further study. This is the aim of the present
note.

This paper contains two results. First, after giving the multiplet structure of general gauged
N = 1 supergravity models inD = 6, we shall concentrate on the hypermatter sector. This sector
contains the scalars and fermions which can be in anomaly free representation of the Yang-Mills
gauge groups and therefore are of primary importance in any phenomenological application
of such models. So far we know of only one anomaly free gauged minimal supergravity in
D = 6 [3] in the absence of linear multiplets 1. For this reason we shall construct in detail the
scalar manifold and the potential for the scalars in this particular model. However, our simple
parametrization of the quaternionic scalar manifold and the construction of the scalar potential
should be applicable in other cases too. The first result of this construction is the observation
that the scalar potential admits a unique minimum at the origin. There are no moduli. As we
shall see this trivially implies the uniqueness of the R4 × S2 solution in the anomaly free full
fledged model.

The second main point of the paper is the construction of new dyonic string solutions. These
solutions have a rather nontrivial structure and leave 1/4 of the D = 6 supersymmetries unbro-
ken. The search for such solutions is motivated by the general philosophy that they can help us
to study string and field theories from a non-perturbative, semiclassical point of view.

The choice of the model to be considered here is dictated by anomaly cancellation. It belongs
to a general class of (1,0) supergravity models constructed some time ago [4, 5]. It is based on a
six-dimensional (1, 0) supergravity theory coupled to a tensor, Yang-Mills and hyper multiplets
[3]. At present this is the only known gauged (1, 0) anomaly free supergravity in D = 6 in the
absence of linear multiplets. Its string or M-theory origin is still not quite well understood,

1The linear multiplet is a hypermultiplet in which one of the four scalars is dualized to a 4-form potential. In
this case, an additional Green-Schwarz counterterm is possible for anomaly cancellation [6], and this may lead to
new anomaly free models.
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although some progress has been made in connecting a subset of the model to M-theory in 11-
dimensions [7], and Horava-Witten type construction in 7-dimensions [8]. Note, however, that
in the latter case the R-symmetry group is not gauged in the resulting D = 6 supergravity.

Recently, our model has attracted interest in connection with a possibility of obtaining a small
cosmological constant in D = 4 [9]. These ideas make use of an extension of the old magnetic
monopole solution [10] to a situation in which 3-branes are distributed over a transverse S2

[11, 12]. In order for the mechanism to work it is required that the supersymmetry breaking
on the brane does not propagate to the bulk. This is the weak point of the scheme for a finite
volume 2-manifold, as has been argued in a very general context in [13]. We hope that some
other variations of the idea will make a dent on this very important unsolved problem.

All the supersymmetric solutions of our model known so far, whether compactifying solutions
with a direct product geometry or more involved stringy solutions, use only the U(1)R gauge
fields as part of their ansatz. It seems quite difficult to excite the gauge fields in the non-Abelian
E6 × E7 component of the gauge group in search of a supersymmetric solution. In this paper
we report on one such solution in which the gauge field in a U(1) subgroup of E7, in addition
to that of the U(1)R factor in the gauge group, is also nonzero. The configuration is quite
involved and does not have a 4-dimensional Poincaré invariance. It has a natural dyonic stringy
interpretation similar to the one in [14]. In fact it reduces to the solution in [14] upon setting
the E7 gauge field to zero, which in turn generalizes the the 6D dyonic strings preserving 1/4
supersymmetry found in [15, 16].

Thus, in our dyonic string solution, in addition to the tensor fields and the gauge field of U(1)R,
a U(1) gauge field embedded in E7 as well as the dilaton field are also active. The only fields
which do not participate in the solution are the E6 gauge fields and the hyperscalars.

The composition of the paper is as follows: In section 2 we give a detailed description of the
model with explicit form for the potential in the hyperscalars. In this section we also give the
field equations and the supersymmetry transformation rules. In section 3 we show that the
absolute minimum of the scalar potential is at φ = 0. This fact excludes a solution of the form
M4 ×K2 with a nonzero vev for any of the gauge fields in E6 ×E7 and with any unbroken susy.
In section 3 we discuss the ansatz for the dyonic string with a nonzero vev for the gauge fields
in U(1)R × E7 as well as the tensor fields. In section 4 we verify that our ansatz satisfies the
field equations and leaves 1/4 of the original supersymmetries, i.e. one complex susy in 1 + 1
dimensions, unbroken. In the limit of a vanishing E7 field it reduces to the solution found earlier
in [14] where only U(1)R field was activated. In this section we also show that our solution has
a horizon at r = 0, while at r = ∞ it approaches a cone over a squashed S3 × Minkowski2.
The dilaton diverges in both limits. Section 5 contains our conclusions. We give the anomaly
polynomial in an Appendix correcting the misprints of [3].
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2 The Model

2.1 Field Content and the Scalar Manifold

The six-dimensional gauged supergravity model we shall study involves the following N = (1, 0)
supermultiplets 2

graviton erM ψAM+ B−
MN

tensor(dilaton) ϕ χA− B+
MN

hypermatter φα ψa−

YangMills AM λA+

(2.1)

where coordinate basis and tangent space indices are denoted by M,N, ... and r, s, ..., respec-
tively. The antisymmetric tensor potentials, B±

MN , give rise to selfdual and anti-selfdual 3-form
field strengths. All the spinors are symplectic Majorana-Weyl, A = 1, 2 label the doublet of the R
symmetry group Sp(1)R and a = 1, ..., 912 labels the 912 dimensional pseudoreal representation
of E7. The chiralities of the fermions are denoted by ±.

The hyperscalars φα, α = 1, ..., 912 × 2 parameterize the quaternionic Kahler coset

Sp(456, 1)

Sp(456) × Sp(1)R
(2.2)

The global Sp(456, 1) symmetry is broken by the gauging of its compact E7 × U(1) subgroup.
The composite local Sp(456) × Sp(1)R symmetry is left intact by this gauging. Thus, together
with the “external” E6 gauge symmetry, the full symmetry of the model is

[E7 × E6 × U(1)]local × [Sp(456) × Sp(1)]composite local (2.3)

Note that E7 in Sp(456) is such that the 912 of Sp(456) is irreducible under E7. This spectrum
is anomaly free [3] and so far is the only known anomaly free gauged supergravity model in
D = 6 in the absence of linear multiplets.

It will prove useful to present the model of [3] in alternative forms. To this end, we need to
introduce some notation and outline the building blocks. To begin with, we define the vielbein,
Sp(n) and Sp(1) composite connections on the coset via the Maurer-Cartan form as

(L−1∂αL)
aA = V aA

α , (L−1∂αL)
ab = Aabα , (L−1∂αL)

AB = AABα . (2.4)

The vielbeins obey the following relations

gαβV
α
aAV

β
bB = ΩabǫAB , V α

aAV
βaB + α↔ β = gαβδBA , (2.5)

2There also exists a linear multiplet consisting of a 4-form potential, a symplectic Majorana-Weyl spinor and
three real scalars but it is not coupled in the model we study here.
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where gαβ is the metric on the coset and Ω and ǫ are the symplectic invariant antisymmetric
matrices. Next, we define the components of the E7 × U(1)R gauged Maurer-Cartan form as

(L−1DL)aA = P aA , (L−1DL)ab = Qab , (L−1DL)AB = QAB , (2.6)

where
DL =

(
d− g1A

3T 3 − g7A
IT I

)
L . (2.7)

Here A3
M and AIM (I = 1, ..., 133) are the U(1)R × E7 gauge fields and g1 and g7 are the corre-

sponding gauge coupling constants. The following relations hold

P aA = (Dφα)V aA
α , Qab = (Dφα)Aabα , QAB = (Dφα)AABα − g1A

3(T 3)AB , (2.8)

The covariant derivative can be written as

DMφ
α = ∂Mφ

α − g1A
3
MK

3α − g7A
I
MK

Iα , (2.9)

where K3α and KIα are the Killing vectors associated with E7 × U(1)R ⊂ Sp(456, 1) isometry.

Other building blocks to define the model are certain C-functions on the coset (2.2). These were
defined in [5], and studied further in [17] where it was shown that they can be expressed as

C3
AB =

(
L−1T 3L

)
AB

, CIAB

(
L−1T IL

)
AB

,

CaA3 =
(
L−1T 3L

)aA
, CaAI =

(
L−1T IL

)aA
, (2.10)

where T 3 and T I are the anti-hermitian generators of U(1)R and E7.

2.2 The Choice of L

From the foregoing description it is clear that the main ingredient in this construction is the
section L, which maps the coset G/H to the group manifold G. We begin thus with a brief
description of the groups involved here. Firstly, by Sp(n, 1) what is really meant is the group
of pseudounitary (2n+2)-dimensional matrices

Sp(n+ 1) ∩ SU(2n, 2) (2.11)

It is convenient to represent these matrices by (n + 1)-dimensional arrays whose elements are
2-dimensional matrices,

g = (gµ
ν) µ, ν = 0, 1, . . . n

= (gµA
νB) A,B = 1, 2

(2.12)

With this notation we have two kinds of metric:

J = diag(σ2, . . . , σ2,−σ2)
η = diag(12, . . . , 12,−12) (2.13)

4



where σ2 and 12 denote the matrices

σ2 =

(
0 −i
i 0

)
, 12 =

(
1 0
0 1

)

The group elements are required to satisfy two conditions

gtJg = J (symplectic)

g†ηg = η (pseudounitary) (2.14)

where gt and g† denote transpose and hermitian conjugate—in the (2n+2)-dimensional sense—
respectively. It is straightforward now to show that each 2×2 element in the (n+1)-dimensional
array satisfies the reality condition,

gµ
ν = σ2gµ

ν†tσ2 (2.15)

It can be interpreted as a real quaternion.

Having defined the group USp(n, 1) we may restrict to its maximal compact subgroup, USp(n)×
USp(1) by choosing

g0
µ = gµ

0 = 0, µ = 1, . . . , n

The matrices g0
0 belong to SU(2), i.e.

USp(1) = Sp(1) ∩ SU(2) = SU(2)

To coordinatize the manifold, consider the ‘boost’,

Lφ =

(
a+ bφφ† φ

φ† c

)
(2.16)

where φ is a 2n × 2 matrix, φ† is its hermitian conjugate, a, b are real and proportional to the
2n × 2n identity matrix, and c is real and proportional to the 2 × 2 identity matrix. We can
write

φ =



φ1
...
φn




where the elements of this column are 2×2 matrices satisfying the reality condition given above
(and repeated below). It follows that Lφ belongs to the group USp(n, 1) provided it is also
unitary,

L†
φηLφ = η
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This is achieved by choosing

a = 1

b = (−1 +
√
1 + φ†φ)/φ†φ

c =
√
1 + φ†φ

(2.17)

In obtaining this result we have used the fact that the 2 × 2 matrix φ†φ is proportional to the
identity 12.

In our problem n = 456 and thus the scalars have 912 × 2 complex components. As real
quaternions they can be considered as a 456× 1 matrix whose elements, φm, are 2× 2 matrices
subject to the reality condition

φ∗m = σ2 φm σ2, m = 1, . . . , 456 (2.18)

where σ2 is the Pauli matrix, then we have a total of 456 × 4 = 1824 real components. Thus,
the following two notations are equivalent:

φaA ↔ (φm)A′
A (2.19)

where a = 1, ..., 912 and A,A′ = 1, 2. Using the particular form of the coset representative
described above, the following C-functions take a particularly simple form

C3
AB = (1 + |φ|2) (T 3)AB , CIAB = (φ†T Iφ)AB , (2.20)

where |φ|2 ≡ tr φ†φ. These are the only components we need in order to construct the scalar
potential.

2.3 Field Equations and Supersymmetry Transformation Rules

The Lagrangian for the anomaly free model we are studying can be obtained from [4] or [5]. We
shall use the latter in the absence of Lorentz Chern-Simons terms and Green-Schwarz anomaly
counterterms. Thus, the bosonic sector of the Lagrangian is given by [5]

L = R ∗1l− 1
4∗dϕ ∧ dϕ− 1

2e
ϕ ∗H ∧H − 1

2e
1
2ϕ tr (∗F∧F )

−1
2∗Dφα ∧ Dφβ gαβ − 4 e−

1
2ϕ (trC2) ∗1l , (2.21)

where

dH = 1
2trF ∧ F

tr (∗F∧F ) ≡ ∗F 3 ∧ F 3 + ∗F I ∧ F I + ∗F I′ ∧ F I′ , I = 1, ..., 133, I ′ = 1, 2, ..., 78 ,

trC2 ≡ g21C
3
ABC

3,AB + g27C
I
ABC

I,AB . (2.22)
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We have let Aµ → Aµ/
√
v and g → g

√
v in the results of [5] to absorb the factors v1, v6, v7

defined in the appendix, so that that the normalizations of the Yang-Mills kinetic terms and
the Chern-Simons terms in H are the same as those in [4]. The bosonic field equation following
from the above Lagrangian are [4, 5]

RMN = 1
4∂Mϕ∂Nϕ+ 1

2e
1
2ϕ tr (F 2

MN − 1
8F

2 gMN ) +
1
4e
ϕ (H2

MN − 1
6H

2 gMN )

+1
2P

aA
M PNaA + e−

1
2ϕ(trC2) gMN ,

ϕ = 1
4e

1
2ϕ trF 2 + 1

6e
ϕH2 − 4 e−

1
2ϕ trC2

d(e
1
2ϕ ∗ F 3) = eϕ ∗H ∧ F 3 − g1 ∗ P aAC3

aA ,

d(e
1
2ϕ ∗ F I) = eϕ ∗H ∧ F I − g7 ∗ P aACIaA ,

d(e
1
2ϕ ∗ F I′) = eϕ ∗H ∧ F I′ ,

d (eϕ ∗H) = 0 ,

DMP
MaA = 2eϕ

(
g21C

AB
3 (C3)

a
B + g27C

AB
I (CI)

a
B

)
. (2.23)

The local supersymmetry transformations of the fermions, up to cubic fermion terms that will
not effect our results for the Killing spinors, are given by [5]

δψM = DMε+
1
48e

1
2ϕH+

NPQΓ
NPQΓM ε ,

δχ = 1
4

(
ΓM∂Mϕ− 1

6e
1
2ϕH−

MNPΓ
MNP

)
ε ,

δλ3A = −1
8F

3
MNΓ

MNεA − g1e
−
1
2ϕC3

AB εB ,

δλIA = −1
8F

I
MNΓ

MNεA − g7e
−
1
2ϕCIAB εB ,

δλI
′

A = −1
8F

I′

MNΓ
MNεA ,

δψa = P aAM ΓMεA ,

(2.24)

where DMεA = ∂MεA + 1
4ωMrsΓ

rsεA + QMA
BεB . In addition to the constant re-scalings of

(Aµ, g) mentioned above, we have also re-scaled λ → λ/
√
v in the results of [5]. Furthermore,

the transformation rules for the gauge fermions differ from those in [4], and used in [14], by a
field redefinition.
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2.4 The Potential and its Minimum

It is convenient to re-write the hyperscalar field equation as

gαβDMDMφβ =
∂V

∂φα
. (2.25)

Upon the use of (2.20), we obtain the potential

V (φ) = 4 e−
1
2ϕ (trC2)

= e−
1
2ϕ
[
2g21(1 + |φ|2)2 − g27tr (φ

†T Iφ)2
]
. (2.26)

Observe that since T I are anti-hermitian, the second term is positive definite by itself, as is the
first term. From the above potential, it is obvious that the absolute minimum is at φα = 0. Thus
the potential has a unique minimum. There are no moduli. Note that if we could set g1 = 0 there
could be other nontrivial configurations which could break E7 spontaneously. However in this
particular model g1 has to be different from zero for the anomaly cancellation. The nonvanishing
of g1 is also the basic reason why the manifold R4×S2 is a solution. Essentially, at the minimum

of the hyperscalars the exponential potential for the dilaton is given by 2g21e
−
1
2ϕ. For a constant

dilaton this acts like a 6-dimensional cosmological constant. When a U(1) gauge field assumes
a magnetic monopole configuration on S2 we obtain the solution R4 × S2.

By examining the susy transformation rules it becomes clear that there can be no product space
solution of the formM4×K2 with a nonzero vev of any of the non-Abelian gauge fields preserving
any amounts of supersymmetries.

The fact that the minimum of the hyperscalar potential is at φ = 0 implies that the E7 symmetry
can not be broken spontaneously by a vev of the hyperscalars at the tree level. The only
possibility of a tree level breaking of E7 (as well as E6) is to give a vev to the components of
vector potential of these groups tangent to the internal manifold S2. If the monopole sits in
E6×E7 factor, the configuration is generally unstable, unless the monopole charge is chosen to be
the least possible value [18]. Since such configurations also break all the D = 6 supersymmetries
it follows that at the tree level E6 × E7 and susy break at the same scale.

The mass of the fluctuations of the scalar fields around the minimum at φ − 0 will have two
contributions for their masses. The first is the mass term coming from the potential in (2.26) and
the second is the KK mass originating from the fact that the scalars are charged with respect
to the U(1)×E7 gauge fields. Therefore a magnetic monopole background sitting in this group
will generate a nonzero mass for all the scalars, unless the magnetic charge of the two groups
cancel out mutually. If the effective magnetic coupling of a scalar field on S2 is n, then the mass
squared of the lightest Kaluza Klein mode in the expansion of φ will be proportional to |n|/a2
where a is the radius of S2.

On the other hand since the fermions will couple to the magnetic monopole embedded in E7,
there will be many chiral fermions in the low energy spectrum in R4, exactly in the same manner
as in [3] where the monopole in a U(1) subgroup of E6 gave rise to two families of 16 of SO(10)
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in R4. Several models of this type in which the Higgs scalars may originate from the extra
components of the gauge field have been studied in detail in [19]

Having established that the minimum of the hyperscalar potential is at φ = 0 the proof of the
uniqueness of the R4 × S2 solution should follow along the same lines as given in [2] for the
Salam-Sezgin model.

3 The Ansatz, the F and H Field Equations and Supersymmetry

In this section we present the dyonic string ansatz and determine the equations that follow
from the requirement of F and H field equations, and supersymmetry. Once these equations
are satisfied, we show that the Einstein and dilaton field equations are automatically satisfied
as well. We then proceed to solve all the required equations in section 4 where we present our
dyonic string solution.

The Ansatz

Now we turn to the dyonic string ansatz. But before stating our ansatz we will briefly summarize
all the known brane solutions in our model. In [2] it was shown that the most general solution
of our model compatible with the Poincaré symmetry in R4 is a 3-brane with warped metric.
The brane is a δ-function singularity which can also be interpreted as a deficit angle in the
2-dimensional transverse space. This solution breaks all the supersymmetries. It reduces to 1/2
supersymmetric solution when the deficit angle vanishes. In [14] solutions of the type AdS3×S3
as well dyonic string solution have been studied. It has also been shown that the AdS3 × S3

solution goes over to the maximally symmetric R4 × S2 configuration.

Our solution will be a generalization of the dyonic string of [14], in which in addition to the
U(1)R gauge field a U(1) component in E7 will also be nonzero, in a nontrivial way. We thus
start from the following ansatz:

ds26 = c2 dxµ dxµ + a2 (σ21 + σ22) + b2 σ23 + h2 dr2 ,

H = P σ1 ∧ σ2 ∧ σ3 + u d2x ∧ dr ,

F 3 = k σ1 ∧ σ2,

F 7 = v σ1 ∧ σ2 + v′ σ3 ∧ dr , (3.1)

where d2x = dxµ ∧ dxνǫµν , k is a constant, a, b, c, h, u, v, P and ϕ are functions of r, and the
σi are left-invariant 1-forms on the 3-sphere, satisfying the exterior algebra

dσi = −1
2ǫijk σj ∧ σk . (3.2)

They can be represented, in terms of Euler angles (θ, ϕ, ψ), by

σ1 + iσ2 = e−iψ (dθ + i sin θ dϕ) , σ3 = dψ + cos θ dϕ . (3.3)

9



The function h which may be removed by a coordinate transformation, dr′ = h(r) dr, will be
chosen later to simplify the solution. Locally, we can choose the potential for F 3 to be given by
A3 = −k σ3, and for F 7 by A7 = −v σ3. It is also useful to record

∗F 3 =
khbc2

a2
σ3 ∧ dr ∧ d2x ,

∗F 7 = c2
(
v′a2

hb
σ1 ∧ σ2 +

vhb

a2
σ3 ∧ dr

)
∧ d2x ,

∗H = −uba
2

hc2
σ1 ∧ σ2 ∧ σ3 −

Phc2

.ba2
d2x ∧ dr . (3.4)

The F and H Field Equations

The H-field equation and the Bianchi identity dH = 1
2trF

2 are solved, respectively, by

u = −Q0hc
2

ba2
e−ϕ , P = P0 − 1

2v
2 , (3.5)

where P0 and −Q0 are integration constants. The F 3 and F 7 field equations are solved by

b2 = Pe
1
2ϕ , v′ =

v0hb

a2c2
e−

1
2ϕ , (3.6)

where v0 is an integration constant.

Killing Spinor Conditions

Next, we examine the consequences of supersymmetry. Following [14], we impose the following
conditions on the which break supersymmetry by a factor of four:

1
2Γ

12εA = (T 3)A
BεB , Γ1234 εA = εA . (3.7)

Thus, the conditions δλ3 = 0 and δλ7 = 0 give

a2 =
ke

1
2ϕ

2g1
,

v′

v
=
hb

a2
. (3.8)

The condition δψa = 0 is trivially satisfied, while δχ = 0 is solved by

ϕ′ = −e
1
2ϕ
(
u

c2
+
Ph

ba2

)
. (3.9)
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There remains the supersymmetry transformations of the gravitini. To this end, it is useful to
note that in the orthonormal frame defined by

e0̃ = c dt , e1̃ = c dx e1 = a σ1 e2 = a σ2 e3 = b σ3 , e4 = hdr ,

the non-vanishing components of the spin connection take the form

ω23 = − b

2a2
e1 , ω31 = − b

2a2
e2 , ω12 =

(
b

2a2
− 1

b

)
e3 ,

ω14 =
a′

ah
e1 , ω24 =

a′

ah
e2 , ω34 =

b′

b h
e3 , ωµ4 =

c′

c h
eµ . (3.10)

Using these results, and taking ε = ε(r), it follows from δψµ = 0, δψi = 0 (i = 1, 2) and δψ3 = 0,
respectively, that

c′

c
= 1

4e
1
2ϕ
(
u

c2
− Ph

ba2

)
, (3.11)

a′

a
= 1

4e
1
2ϕ
(
− u

c2
+
Ph

ba2

)
− bh

2a2
, (3.12)

b′

b
= 1

4e
1
2ϕ
(
− u

c2
+
Ph

ba2

)
+

bh

2a2
+

(kg1 − 1)h

b
. (3.13)

Finally, δψ4 = 0 gives

ε′ = 1
8e

1
2ϕ
(
u

c2
− Ph

ba2

)
. (3.14)

Comparing with (3.11), we learn that

ε(r) = c1/2 ε0 . (3.15)

The Einstein and Dilaton Field Equations

Let us begin by writing the Einstein and dilaton equations given in (2.23) as

RMN = TMN , ϕ = J . (3.16)

Substitution of the ansatz into these equations yields rather complicated field equations which
have provided in the Appendix. Instead of solving these complicated second order field equations,
it is much easier to show that they are automatically satisfied once the Killing spinor conditions,
and the F andH-field equations/Bianchi identities are satisfied. To see this, let us first introduce
the notation

11



δψM = D̃Mε , δχ = ∆ε . (3.17)

It is then straightforward to show that

ΓN [D̃M , D̃N ]ε (RMN − TMN ) Γ
Nε+XM ,

ΓM [D̃M ,∆]ε = ( ϕ− J) ε+ Y , (3.18)

where XM and Y are expressions which vanish upon the use of the F and H field equa-
tions/Bianchi identities. Therefore, the dilaton equation is evidently satisfied, and so is the
Einstein equation, once we note that RMN is diagonal for our ansatz, as shown in the Ap-
pendix.

4 The Dyonic String Solution

As in [14], we make the gauge choice

h = −2a2bc2

r3
. (4.1)

Then, defining the combinations

ϕ± = ϕ± 4 ln c , (4.2)

we find from (3.9) and (3.11), with the help of (3.5),(3.6) and (3.8) that

ϕ′
− =

4Q0

r3
e−

1
2ϕ− ,

ϕ′
+ =

4P0

r3

(
e
1
2ϕ+ − β2e−

1
2ϕ+

)
,

β =
v0√
2P0

, (4.3)

These have solutions

eϕ = βH1 coth (βH2) , c−4 =
H1

β
tanh (βH2) , (4.4)

where

H1 = Q̃0 +
Q0

r2
, H2 = P̃0 +

P0

r2
. (4.5)

12



Here, we have introduced the integration constants Q̃0 and P̃0. Next, from (3.13), making use
of (3.5), (3.6), and (3.8) we find

P0 =
k(1 − kg1)

2g1
. (4.6)

Note that (3.5), (3.6), and (3.8) also yield the results

v =
v0e

−
1
2ϕ

c2
, P =

P0

cosh2 (βH2)
. (4.7)

The remaining quantities in the ansatz, namely, the functions (a, b, u) can now be evaluated in
terms of (ϕ, c) via algebraic equations (3.8), (3.6), (3.5) and (4.7). The result for the ansatz can
now be summarized as follows:

ds26 =
√
βH1 coth(βH2)

[
dxµdxµ
H1

+
k

2g1

(
σ21 + σ22

)
+

P0

cosh2(βH2)
σ23 +

P0β
2k2

g21 sinh
2(βH2)

dr2

r6

]
,

eϕ = βH1 coth (βH2) ,

H =
P0

cosh2 (βH2)
σ1 ∧ σ2 ∧ σ3 − d2x ∧ dH−1

1 ,

F 3 = k σ1 ∧ σ2 ,

F 7 =
√
2P0

(
tanh (βH2)σ1 ∧ σ2 +

β

cosh2 (βH2)
σ3 ∧ dH2

)
, (4.8)

with (4.6) holding, and (H1,H2) and β are defined in (4.5) and (4.3), respectively, and (P0, k, v0)
are constants. Furthermore, from (3.6) (3.8),(4.6) and (4.7), we learn that

P0 ≥ 0 , k ≤ 1

g1
. (4.9)

In the limit of β → 0, the U(1) ⊂ E7 gauge field vanishes and the non-vanishing fields become

ds26 =

√
H1

H2

[
1

H1
dxµdxµ +

k

2g1

(
σ21 + σ22

)
+ P0 σ

2
3 +

P 2
0

g21(H2)2
dr2

r6

]
,

eϕ =
H1

H2
,

H = P0 σ1 ∧ σ2 ∧ σ3 − d2x ∧ dH−1
1 ,

F3 = k σ1 ∧ σ2 , (4.10)

with (4.6) holding. This is the solution obtained in [14].
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Turning to our solution (4.8), in order to study its global structure, following [14] we change to
a new radial coordinate ρ related to r as

P̃0 +
P0

r2
=
P 2
0

ρ4
, (4.11)

Our solution then is given by (4.8) with

H1 =

(
Q̃0 −

Q0P̃0

P0

)
+
Q0P0

ρ4
, H2 =

P02

ρ4
. (4.12)

We now observe that both our metric (4.8) as well as its β → 0 limit given in (4.10) take the
same form at spatial infinity reached by taking the ρ→ ∞ limit, and the resulting metric is

ds26 =
4k2

√
Q̂0

g21P02

(
dρ2 +

g1P0

8k
ρ2
(
σ21 + σ22 +

2g1P0

k
σ23 +

2g1

k Q̂0

dxµdxµ

))
, (4.13)

where Q̂0 ≡
(
Q̃0P0 −Q0P̃0

)
/P0. This metric indeed describes a cone over the product of

Minkowski2× the squashed 3-sphere [14]. In this limit F7 vanishes, F3 and H are finite but the

dilaton diverges as eϕ → Q̂0

P02
ρ4.

Our metric (4.8) has a horizon at ρ = 0, just as its β → 0 limit given in (4.10) does. In this
limit we obtain

ds26 =

√
β

Q0P0

[
ρ2dxµdxµ +

kQ0P0

2g1ρ2

(
σ21 + σ22 +

2g1P0

k
e

−2βP02

ρ4 σ23

)
+

4k2β2P0

g21
e

−2βP2
0

ρ4
dρ2

ρ12

]
.

(4.14)

Furthermore, while H vanishes and F3, F7 become constants, the dilaton diverges as eϕ →
βQ0P0/ρ

4 in this limit. Interestingly, taking the v0 → 0 limit of this near horizon metric (4.14)
does not yield the same result as first taking such a limit in the full metric (4.8) and then going
to the horizon at ρ = 0. In the latter case, as shown in [14], one obtains a direct product of
AdS3 with squashed 3-sphere.

5 Discussion

In this paper we have given the precise form of the potential for the scalars in the hypermatter
multiplet of the only known anomaly free gauged (1, 0) supergravity in D = 6 in the absence of
linear multiplets. The model has the gauge group of E6 × E7 × U(1)R. The hyperscalars are
charged with respect to U(1)R and transform in the 912 dimensional pseudo real representation
of E7. They are singlets of E6. We showed that the potential has a unique minimum at φ = 0.
Despite the fact that there is no obvious mass term in the D=6 action for the scalars their
Kaluza Klein tower, on a background of R4 × K2 will be all massive due to their U(1) × E7

charges. The hypermatter fermions on the other hand will give rise to plenty of chiral fermions
in D = 4. Thus opening the road for a detailed phenomenological study of our model.
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One interesting direction in further study of our model would be cosmological investigation
along the lines of [20, 21, 22]. The quantum loop of the massive scalars in this model are the
natural candidates to stabilize the radius of the compact space in a cosmological context at
finite temperature. It has been shown long time ago that the effect of such loops can generate
a constant radius for the internal space while the scale factor of our 3-dimensional universe
expands according to the standard Friedman Robertson Walker law [23]. It is a very interesting
question to seek for an accelerating universe solution. Such solution should exist according to
the criteria given in [24].

In this paper we also constructed a dyonic string solution in the same model. Our solution
leaves 1/4 of the original supersymmetries, i.e. one complex supersymmetry in 1+1 dimensions,
unbroken. Furthermore a U(1) component of the E7 gauge field needs to be nonzero. In fact it
assumes a rather complicated form. The solution approaches a cone as r → ∞ over a squashed
S3× Minkowski2, while at r = 0 it has a horizon.

Another important question is to complete the search, initiated in [7], for a higher dimensional
origin of this gauged supergravity model in D = 6.
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Appendix

The Anomaly Polynomial

There are few misprints in the anomaly polynomial formulae of [3] which we wish to correct
here. We begin by listing the individual contributions:

P (ψµ) =
5

24
F 4
1 − 19

96
F 2
1 trR2 +

1

5760

[
245 tr R4 − 5× 43

4
(tr R2)2

]
, (5.1)

−2P (ψR) =
1

24
Tr912 F

4 +
1

96
Tr912 F

2 trR2 +
912

5760

[
tr R4 +

5

4
(trR2)2

]
, (5.2)

−P (χR) =
1

24
F 4
1 +

1

96
F 2
1 trR2 +

1

5760

[
tr R4 +

5

4
(tr R2)2

]
, (5.3)

P (λL) =
1

24
( Tr78 F

4 + 6 F 2
1 Tr78F

2 + 78F 4
1 )

+
1

24
( Tr133 F

4 + 6 F 2
1 Tr133 F

2 + 133F 4
1 ) +

1

24
F 4
1

+
1

96

[
Tr78 F

2 +Tr133 F
2 + (78 + 133 + 1)F 2

1

]
tr R2

+
(78 + 133 + 1)

5760

[
tr R4 +

5

4
(trR2)2

]
, (5.4)

where F1 denotes the U(1)R field strength. Using the relations between the traces in various
representations involved above and the fundamental representations, provided in [3], and adding
all the contributions, we find that P = P (ψµ) + P (ψR) + P(χR) + P (λR) is given by

P = − 1

16
(trR2)2 +

1

24
trR2 Tr27F

2 − 1

8
trR2 Tr56F

2 + 2 F 2
1 trR2

+
1

48
Tr27 (F 2)2 + F 2

1 Tr27F
2 − 3

64
(Tr56 F

2)2

+
3

4
F 2
1 Tr56 F

2 + 9F 4
1 . (5.5)

The signs of the (trR2)2 terms in (5.2), (5.3), (5.4) and a factor of two in the coefficient of
trR2 Tr56F

2 in (5.5) have been corrected relative to those in [3].

It is possible to factorize this expression and write it as

P = − 1

16

(
trR2 + 4F 2

1 +
1

3
Tr27F

2 +
1

2
Tr56F

2
)(

trR2 − 36F 2
1 − Tr27F

2 +
3

2
Tr56F

2
)

≡ −X4X̃4 , (5.6)
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where, upon writing the traces in the adjoint representations by means of the formula given in
[3], we have

X4 =
1

4

(
vL trR

2 + v1 F
2
1 + v6 Tr78F

2 + v7 Tr133F
2
)

X̃4 =
1

4

(
ṽL trR

2 + ṽ1 F
2
1 + ṽ6 Tr78F

2 + ṽ7 Tr133F
2
)
, (5.7)

where (vL, v1, v6, v7) = (1, 4, 1/12, 1/6) and (ṽL, ṽ1, ṽ6, ṽ7) = (1,−36,−1/4, 1/2).

The Einstein and Dilaton Field Equations

Writing the Einstein’s equation for the model as Rrs = Srs, where, we recall that r, s =
0̃, 1̃, 1, 2, 3, 4 label the tangent space frame defined in (3), the non-vanishing components of
Rrs evaluated for the ansatz (3.1) are

Rµν = −
[
c′2

h2 c2
+

2a′ c′

a c h2
+

b′ c′

b c h2
+

1

c h

(c′

h

)′
]
ηµν ,

R11 = R22 = − 2a′ c′

a c h2
− a′ b′

a b h2
− a′2

a2 h2
− 1

ah

(a′

h

)′
− b2

2a4
+

1

a2
,

R33 = − 2b′ c′

a c h2
− 2a′ b′

a b h2
− 1

b h

(b′

h

)′
+

b2

2a4
,

R44 = − 2

ah

(a′

h

)′
− 1

b h

(b′

h

)′
− 2

c h

(c′

h

)′
, (5.8)

while the non-vanishing components of Srs take the form

Sµν = −
[
k2

8a4
e
1
2ϕ + 1

8

(v2

a4
+

v′2

h2b2

)
e
1
2ϕ + 1

4

( u2

h2 c4
+

P 2

a4 b2

)
eϕ − 1

2g
2
1 e

−
1
2ϕ

]
ηµν ,

S11 = S22 =
3k2

8a4
e
1
2ϕ +

(3v2

8a4
− v′2

8h2b2

)
e
1
2ϕ + 1

4

( u2

h2 c4
+

P 2

a4 b2

)
eϕ + 1

2g
2
1 e

−
1
2ϕ ,

S33 = − k2

8a4
e
1
2ϕ −

( v2

8a4
− 3v′2

8h2b2

)
e
1
2ϕ + 1

4

( u2

h2 c4
+

P 2

a4 b2

)
eϕ + 1

2g
2
1 e

−
1
2ϕ ,

S44 = − k2

8a4
e
1
2ϕ −

( v2

8a4
− 3v′2

8h2b2

)
e
1
2ϕ − 1

4

( u2

h2 c4
+

P 2

a4 b2

)
eϕ + 1

2g
2
1 e

−
1
2ϕ . (5.9)

Finally, writing the dilaton field equation as ϕ = J , the evaluation of J for our the ansatz
(3.1) yields

J =
k2

2a4
e
1
2ϕ + 1

2

(v2

a4
+

v′2

h2b2

)
e
1
2ϕ +

( P 2

a4 b2
− u2

h2 c4

)
eϕ − 2g21 e

−
1
2ϕ . (5.10)
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