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Abstract

We treat free large N superconformal field theories as holographic duals of higher spin (HS)
gauge theories expanded around AdS spacetime with radius R. The HS gauge theories contain
massless and light massive AdS fields. The HS current correlators are written in a crossing
symmetric form including only exchange of other HS currents. This and other arguments point
to the existence of a consistent truncation to massless HS fields. A survey of massless HS
theories with 32 supersymmetries in D = 4, 5, 7 (where the 7D results are new) is given and
the corresponding composite operators are discussed. In the case of AdS4, the cubic couplings
of a minimal bosonic massless HS gauge theory are described. We examine high energy/small
tension limits giving rise to massless HS fields in the Type IIB string on AdS5 × S5 and M
theory on AdS4/7 × S7/4. We discuss breaking of HS symmetries to the symmetries of ordinary
supergravity, and a particularly natural Higgs mechanism in AdS5 × S5 and AdS4 × S7 where
the HS symmetry is broken by finite gYM. In AdS5 × S5 it is shown that the supermultiplets
of the leading Regge trajectory cross over into the massless HS spectrum. We propose that
g2
YM = 0 corresponds to a critical string tension of order 1/R2 and a finite string coupling of

order 1/N . In AdS7 × S4 we give a rotating membrane solution coupling to the massless HS
currents, and describe these as limits of Wilson surfaces in the AN−1(2, 0) SCFT, expandable
in terms of operators with anomalous dimensions that are asymptotically small for large spin.
The minimal energy configurations have semi-classical energy E = s for all s and the geometry
of infinitely stretched strings with energy and spin density concentrated at the endpoints.
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1 Introduction

The strong form of the Maldacena conjecture states that Type IIB closed string theory on
AdS5×S5 withN units of five-form flux and string coupling gs corresponds to d = 4, N = 4 SYM
theory with SU(N) gauge group and Yang-Mills coupling g2

YM = gs [1, 2, 3]. This conjecture
has been primarily tested for N >> g2

YMN >> 1, where supergravity is a valid approximation
[4, 5]. It is natural to study the correspondence for N >> 1 >> g2

YMN , and possibly g2
YM = 0,

where the SYM theory becomes a theory of a free SU(N) valued d = 4, N = 4 vector singletons.
At weak ’t Hooft coupling λ ≡ g2

YMN << 1 the natural gauge invariant operators are composite
single-trace operators which can be arranged into ‘trajectories’ according to the value of the
twist E − s, where E is the conformal dimension and s is the spin. The twist is the anomalous
contribution to E, which becomes small at weak ’t Hooft coupling and large N .

A basic observation [6] is the non-intersection principle in a CFT which states that as the
coupling varies there cannot be any mixing between operators that are not mixing already at
the free level. This applies to both the spectrum of composite operators of 4d SYM in the
limit N >> 1 >> g2

YMN and the spectrum of vertex operators of the sigma model for N >>
g2
YMN >> 1. Thus an important test of Maldacena conjecture is to verify that the trajectories

of SYM operators with constant twist cross over into the closed string Regge trajectories.

In this paper we shall show that this is indeed the case for the leading trajectories, which consist
of the states with minimal E for fixed s. In fact, on the SYM side the leading trajectory, i.e.
the operators with minimal twist, consists of bilinear higher spin (HS) tensors. In the free limit,
these have twist 2 and the s ≥ 1 sector coincides with the space of conserved HS currents.
General aspects of these currents have been discussed in [7, 8]. The precise spectrum of twist 2
operators and the corresponding HS symmetry algebra extension of the conformal/AdS group
was constructed in [9, 10] using group theoretic methods which shows that the twist 2 operators
in fact form an irreducible ‘gauge’ multiplet of the HS algebra.

In [9, 10] it was also shown how to describe the HS gauge multiplet on the bulk side at the level
of a linearized AdS field theory containing HS gauge fields as well as other interesting HS fields
generalizing the self-dual two-form of the supergravity multiplet contained in the spectrum. This
immediately raises the following questions; is it possible to extend this picture to an interacting
theory of massless HS fields in AdS5, and if so, is this theory the result of a consistent truncation
of the full closed string theory in the limit N >> 1 >> g2

YMN?

There is increasing evidence for the existence of an interacting 5D massless HS gauge theory [9,
10, 11, 12, 13]. This theory has been constructed at the linearized level [9, 10], and certain cubic
interactions of the minimal bosonic theory have already been constructed [12]. The structures
involved are natural generalizations of those in D = 4, and we expect that a similar development
will unfold in D = 5.

For those readers not too familiar with massless HS gauge theories, in this paper we review some
of their basic properties in dimensions of interest, namely, D = 4, 5, 7. The general formulation
of interacting massless HS gauge theory has been known in D = 4 for quite some time [14]
(see, [15] for a review). In testing the free CFT/HS gauge theory correspondence ideas, it is
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important to exhibit the couplings of the HS gauge theory. The D = 4, N = 8 theory has been
examined in great detail in [16, 17]. In D = 4 the basic interactions are contained in a minimal
bosonic model which can be embedded as a consistent truncation into HS gauge theories with
N ≥ 0. The explicit couplings of the minimal bosonic model in D = 4 are given in a generally
covariant curvature expansion scheme in [18, 19]. Here we shall summarize the results of [19] at
the level of cubic couplings. The analogous bosonic truncation in D = 5 was given in [9] and in
D = 7 in [20], though the full interactions still remains to be found. In this paper we also give
the symmetry algebra and massless spectrum of the D = 7, N = 2 HS gauge theory.

The issue of consistent truncation is crucial since the subleading trajectories in the gauge theory
correspond to massive AdS fields which are light, meaning that their AdS energies are not
separated from the massless ones by a mass-gap. Here it is important to note that regardless
of the detailed structure of the bulk interactions, it is still possible [21] to arrange the effective
bulk action into a 1/N2 expansion such that its extremum reproduces the 1/N2 expansion of
the correlators of the composite operators of the SU(N) invariant singleton theory. In fact, this
expansion remains highly nontrivial even in the limit g2

YM = 0 [22, 23]. In particular, if one sets
to zero all the massive fields on the boundary, then the extremum of the full effective action
should reproduce the correlators of the bilinear twist 2 operators. The massive fields may still
become excited in the bulk, if massless fields act as sources for massive fields. If this is the case,
then the massless HS gauge theory cannot serve as a good approximation for studying these
processes, not even as an effective theory since it is not possible to eliminate the light massive
fields while preserving locality (the non-localities which one encounters in massless HS theory
are not that bad). Thus, for the massless HS gauge theory to be relevant, it must be possible
to consistently set the massive fields to zero in the full theory, at least in the leading nontrivial
order in the 1/N2 expansion.

There are several ways to test this consistent truncation. Firstly, it requires consistent interac-
tions among massless fields, for which there are many indications as already mentioned. Given
the consistent equations of motion or action for the massless fields, one must then compute the
bulk tree amplitudes, which by definition will only contain massless excitations in the internal
lines, and check that they correspond to the correlators of bilinear composite operators computed
in the singleton theory [19, 24]. This direct method is technically rather involved, however, and
in this paper we instead provide indirect evidence for consistent truncation by examining the
nature of the correlators between bilinear operators in singleton theories with large N . We also
suggest that the arguments given in [25, 26, 27] for the consistent truncation of Type IIB and
eleven-dimensional supergravities on AdS4/7×S7/4 to gauged supergravity carry over to the HS
context.

In this paper, we also emphasize the fact that the relations between the closed string parameters
gs and α′ in AdS5×S5 and the SYM parameters g2

YM and N have so far been tested only in the
limit N >> gsN >> 1. In this regime the relations can be derived e.g. by first identifying the
gauge theory parameters with the closed string parameters in flat 10D spacetime, and then use
D3-brane soliton description to interpolate from flat spacetime down to AdS5 × S5. Since only
16 supersymmetries are preserved globally by the D3 brane, there may be string corrections to
this computation.
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It is important to note that the strong coupling tests of the AdS/CFT duality which are based on
exact calculations on the SYM side ( see, for example, [28] and references therein) are still limited
on the bulk side in that they do not go beyond the leading

√
λ approximation to the closed string

theory in AdS background. As g2
YMN becomes small (keeping N large), we do not know the

precise relations between closed string parameters in AdS and the gauge theory parameters. It
is clear that the string coupling gs decreases and the sigma model coupling α′/R2 increases as
g2
YM decreases. We shall speculate that the bulk parameters approach critical values as g2

YM = 0
where the bulk theory is described by closed string theory with coupling 1/N2 and a singleton
worldsheet CFT based on critical level k affine PSU(2, 2|4) algebra, and that the left- and
right-moving singleton spin fields can be used in the construction of vertex operators describing
massless HS fields in the bulk. The level k is related to the worldsheet sigma model coupling
constant, i.e. α′/R2 = l2s/R

2. The corrected relations between the closed string parameters in
AdS5 × S5 and the gauge theory parameters we propose are given by

gs = f1(λ)g2
YM , ls = f2(λ)R , (1.1)

f1(λ) ∼ 1 , f2(λ) ∼ λ−1/4 for λ >> 1 ,

f1(λ) ∼ 1

λ
, f2(λ) ∼ 1 , for λ << 1 . (1.2)

Another aspect of massless higher spins and holography which we emphasize in this paper is
a Higgs mechanism by which the HS symmetries are spontaneously broken [21] down to the
symmetries of ordinary supergravity. This phenomenon is best studied in the case of AdS5×S5,
primarily due to the fact that the free boundary SYM theory can be continuously deformed
by switching on the coupling constant gY M . As a result, the HS currents with spin s > 2 will
no longer be conserved. The resulting anomalies in the conservation laws for these currents
are encoded in operators which can be coupled to Higgs fields which undergo their landmark
shift transformations. Consequently, the Higgs mechanism mentioned above is expected to take
place.

Given that the full interacting HS theory theory in 5D is still not known, of course we cannot
work out the details of the Higgs mechanism here. However, we do provide kinematic framework
for it which suggests that the Higgsing phenomenon takes place in an infinite number of massless
N = 8, D = 5 multiplets containing HS fields, which together with the supergravity multiplet
make up the spectrum of the massless HS gauge theory. In particular, we focus on the Higgsing
of the Konishi multiplet, which has smax = 4 and is expected to play an important role in study
of the first massive Type IIB closed string level, and outline how the Higgs mechanism can be
extended to all the HS multiplets. This phenomenon of anomalies in the HS current conservation
laws in the boundary having a holographic dual description in the bulk as spontaneous breaking
of the corresponding HS gauge symmetries is similar to a phenomenon of a chiral U(1) anomaly
having its gravity dual in a particular AdS5 supergravity, as has been recently shown in [29].

Switching our discussion to the case of M theory, we first recall that the Maldacena conjecture
[1, 4] states the equivalence between M theory on on AdS4/7 × S7/4 with N units of 7/4-form
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flux on S7/4, and superconformal field theories (SCFT) with 16 supercharges describing the
low energy dynamics of N parallel coinciding M2/5 branes in flat eleven dimensional spacetime.
Apparently, these SCFTs are isolated fixed points of the renormalization groups (RG) that do not
admit any marginal deformations, with or without preservation of supersymmetry. Consequently
they do not admit any coupling constants and Lagrangian descriptions. The main window for
viewing these strongly coupled theories is therefore through the bulk supergravity, which is a
valid approximation to M theory at fixed energies provided N >> 1. This corresponds to a
subset of the SCFT operators with fixed conformal dimensions as N >> 1 [1, 4]. Recently other
limits of the correspondence based on considering large internal spin have been proposed [30].

In analogy with Type IIB closed string theory on AdS5 × S5, it is natural to ask whether M
theory on AdS4/7 × S7/4 has an unbroken phase in which M theory corrections become relevant
at fixed energy and the effective description of the bulk theory becomes a HS gauge theory
with holographic dual given by a free SCFT in d = 3 or d = 6. In other words, we wish to
examine whether it is possible to have a ‘phase diagram’ with two fixed points, one corresponding
to the free singleton SCFT describing the unbroken HS phase and another one corresponding
to the strongly coupled SCFT describing the broken phase. From the bulk point of view the
broken phase is described by membranes interacting in the flat eleven dimensional center of
AdS4/7 × S7/4, while the unbroken phase, which is specific to AdS, is described by membranes
interacting close to the boundary of AdS.

By examining the RG flows on M2/5 branes and D2/4 branes we are led to propose that the
relevant free SCFTs in d = 3, 6 are described by free SU(N) valued OSp(8|4) singletons and
free SU(N) valued d = 6, N = (2, 0) tensor singletons. These theories have of course figured
in the literature before (see, for example, [27]), and have been used in many circumstances in
order to unravel information about the strongly coupled SCFTs 1. Our point here is that due to
the salient features of the large N limit the free SCFTs make sense on their own as holographic
images of the interesting unbroken phases of M theory. Technically speaking, large N implies
factorization and 1/N expansion of correlators which can be matched with the expansion of the
bulk amplitudes in terms of the fundamental Planck scale.

As in the case of the Type IIB theory, an important issue is whether there is a consistent
truncation down to a massless sector. The ideas for examining this are similar to those described
above for the Type IIB theory. TheD = 4 case is particularly tractable as in this case we already
know the full form of the interactions among massless HS fields, which makes it possible to test
directly the consistent truncation without first having to construct the interactions.

An intriguing feature of the proposed unbroken phases of M theory on AdS4/7 × S7/4 is that
the spectrum is discrete and that there is a finite coupling, 1/N . Thus the unbroken phases of
M theory appears to be on the same footing as the unbroken phase of the Type IIB theory on
AdS5 × S5. This suggests that the unbroken phases in AdS4/7 × S7/4 are theories of M2 branes
with fixed tension.

1Free singletons, which form N − 1 plets of the Weyl group of SU(N), appear in various ‘trivial’ IR limits
describing stacks of separated branes sitting at certain orbifold singularities [31]. These free singletons should not
be confused with the SU(N) valued singletons, though they are curious from the HS perspective and they should
presumably be included into the phase diagram as separate HS phases.
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To gather further evidence for this, we examine a family of rotating membrane solutions in
AdS7 × S4 that are curved space generalizations of those given in flat spacetime in [32, 33]
and membrane analogs of the string solutions found recently in [34] (which in fact describe the
leading Regge trajectory states). The minimal energy configurations have semi-classical energy
E = s for all s, and the geometry of infinitely stretched membranes of zero width, whose energy
and spin densities are concentrated in the asymptotic region. By examining the supersymmetry
enhancement in this region we can further show that the rotating membranes indeed couple to
the bilinear HS currents in the SCFT.

There is an important difference between the membrane solitons and the string solitons given in
[34]. The string solitons couple to operators whose anomalous dimensions become asymptotically
small only for large s, (E − s)/s → 0 as sα′/R2 → ∞. The membrane solitons, on the other
hand, couple to anomaly free operators for any value of s. This is because they arise by taking
the limit of zero width which has the dual interpretation of shrinking a Wilson surface which
means that the holographic dual flows to the free singleton SCFT in d = 6.

We find it rather compelling that relatively simple, free SCFTs contain information about the
unbroken, and perhaps more fundamental, phases of Type IIB closed string and M theory.
Moreover, this means that the results on free SCFT which are scattered over the literature can
now be given a more direct physical interpretation.

In AdS/CFT correspondence, it is important that both the bulk and the boundary theories
admit 1/N expansions which define the physically relevant, i.e. asymptotically convergent,
expansions. In the unbroken HS phase, the bulk side may also admit a strongly coupled closed
string/membrane sigma model description, which we propose has large, but fixed, coupling given
by a critical tension, as mentioned above. In any event, consistent truncation makes it possible
to directly test the AdS/CFT correspondence using only the action for the massless HS fields
which does not require strongly coupled sigma model computations.

The breaking of the HS symmetries requires the inclusion of Higgs fields whose interactions
require us to go beyond the consistent truncation to massless fields. Whether this can be done
at the level of some effective field theoretical construction in the bulk or whether it requires
extracting information from the strongly coupled sigma model is not clear at present. Here we
can only speculate that the large amount of symmetry present in the unbroken phase should
make the critical string and membrane sigma models amenable to exact methods.

This paper is organized as follows. In Section 2, the properties of HS gauge theories in D = 4, 5, 7
are reviewed, including their underlying symmetry algebras and field contents. The results for
the HS superalgebra and spectrum in 7D are new. In Section 3, the composite singleton operators
corresponding to the massless states of HS gauge theories, their KK towers and Higgs multiplets
are discussed. In Section 4, important aspects of the CFT/HS gauge theory correspondence,
and in particular the 1/N expansion in the free CFT on the boundary are described. In Section
5, the 5D HS gauge theory as the bulk theory arising in the critical limit of Type IIB string
theory and a Higgs mechanism breaking the HS gauge symmetries down to those of ordinary
supergravity are discussed. In Section 6, first the CFT3/HS gauge theory correspondence for M
theory on AdS4 × S7 is described. Then, the minimal bosonic truncation of the theory and its
cubic interactions are described. In Section 7, first the CFT6/HS gauge theory correspondence
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for M theory on AdS7 × S4 is discussed. Then our rotating membrane solution in AdS7 × S4

is given and its properties and relevance to the 7D HS gauge theory are described. Section
8 is devoted to a summary and discussion. In Appendix A, we present several tables which
show various sectors of the massless HS gauge theory spectra in D = 5, 7. In Appendix B,
we summarize the UIRs and BPS states of the maximal AdS superalgebras in D = 4, 5, 7. In
Appendix C and D, we collect further group theoretical information that is useful for Section 2
and 3.

2 Massless Higher Spin Gauge Theories in D = 4, 5, 7

HS gauge theories are generally covariant theories which admit AdS as a vacuum and have
an infinite number of local HS supersymmetries based on HS superalgebras which are infinite
dimensional extension of the finite dimensional AdS superalgebras [35] . The fundamental UIRs
of the HS super algebras inD = d+1 = 4, 5, 7 dimensions are ultra-short d-dimensional conformal
supermultiplets, which we will refer to as singletons 2. Gauging of such a HS superalgebra yields
a D-dimensional theory based on a massless HS supermultiplet given by the symmetric product
of two singletons. In this paper we shall focus our attention on the HS extension of the AdS
superalgebras in D = 4, 5, 7 with 32 real supersymmetries because these are the most natural
ones to explore from the string/M theory point of view. In Section 8, we shall comment on
possible extensions to higher D and higher number of supersymmetries.

The massless HS multiplet is an infinite tower of massless AdS supermultiplets with supergravity
at the lowest level. One key property is the fact that a HS gauge theory in D > 3 cannot be
consistently truncated to an AdS supergravity. Basically, this is due to the fact that derivatives
of lower spin fields serve as sources for HS fields, and it can also be seen from the structure of
the OPE of free field theory stress-energy tensors in d > 2 [7]. However, in D = 4, 5, 7 there
exist minimal bosonic truncations which have remarkably simple physical field content, namely
massless fields of spin s = 0, 2, 4, 6, ... described by doubly traceless, symmetric tensors φµ1...µs .
The embedding of these theories in their supersymmetric extensions is explained in Tables 1, 2
and 3.

As for the full and covariant (i.e. background independent) interactions among the massless
fields, they are known in the 4D theory [14, 18, 19]. A condensed account of how to extract
cubic couplings in D = 4 will be given in Section 6.2. The fully interacting theories in D = 5, 7
have not yet been constructed, though the results obtained so far are promising [12, 9, 10, 20].

We next list the HS superalgebras in D = 4, 5, 7, their singleton and massless representations,
and how the latter ones are assembled into master 1-form and master 0-form fields. The results
in D = 4, 5 were obtained in [16, 10]. The minimal bosonic HS algebra in 7D was obtained in
[20]. The results presented here for its supersymmetric extension are new.

2In d = 4, 6, these are usually referred to as doubletons, due to the fact that their oscillator construction is
based on two sets of oscillators as opposed to a single set of oscillators used in d = 3.
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2.1 The D = 4, N = 8 Massless HS Gauge Theory

The 4D HS algebra hs(8|4) is realized in terms of oscillators obeying the following algebra
[35, 16, 17] 3

yα ⋆ yβ = yαyβ + iǫαβ , yα ⋆ ȳα̇ = yαȳα̇ , (yα)† = ȳα̇ , (2.1)

θi ⋆ θj = θiθj + δij , (θi)† = θi , (2.2)

where yα (α = 1, 2) is a Weyl spinor which is a Grassmann even generator of a Heisenberg algebra,
and θi (i = 1, ..., 8) is a Grassmann odd generator of an SO(8) Clifford algebra. The ⋆ denotes
the associative product between oscillators. The products on the right hand sides are Weyl
ordered, so that for example yαyβ = yβyα and θiθj = −θjθi. Using the above contraction rules
it is straightforward to compute the ⋆ product between two arbitrary Weyl ordered polynomials
of oscillators.

The algebra hs(8|4) consists of arbitrary Grassmann even and anti-hermitian polynomials P (y, ȳ, θ)
that are sums of monomials of degree 4ℓ+2 where ℓ = 0, 1, 2, ..., which will be referred to as the
level index. The Lie bracket between P,Q ∈ hs(8|4) is given by [P,Q]⋆. Thus, denoting by P (ℓ)

an ℓth level monomial, the commutation relations have the schematic form

[P (ℓ1), P (ℓ2)]⋆ =
∑

|ℓ1−ℓ2|≤ℓ≤ℓ1+ℓ2

P (ℓ) . (2.3)

In particular, the zeroth level of hs(8|4) is the maximal finite subalgebra OSp(8|4) whose gen-
erators schematically take the form

Qαi = yαθi , Q̄α̇i = ȳα̇θi , Uij = θiθj ,

Mαβ̇ = yαȳβ̇ , Mαβ = yαyβ , Mα̇β̇ = ȳα̇ȳβ̇ . (2.4)

A generator P (ℓ) in the ℓth level of hs(8|4) can be expanded as

P (ℓ)(y, ȳ, θ) =
∑

m + n + p
= 4ℓ + 2

1

m!n! p!
ȳα̇1 · · · ȳα̇myβ1 · · · yβnθi1 · · · θipPα̇1...α̇m β1...βn i1...ip . (2.5)

The spins of the components are given by s = 1
2(m+ n). The components with integer spin are

Grassmann even and those with half-integer spin are Grassmann odd. Bosons are in the 1, 28

3The algebra hs(8|4) is called shsE(8|4) in [9] and shsE(8, 4|0) in [35], where it is also shown to be isomorphic
to ho(8; 8|4).
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and 35± irreps of SO(8) and fermions in the 8 and 56 irreps. The reality properties follow from
P † = −P .

A UIR of OSp(8|4) is denoted by D(E0, s; a1, a2, a3, a4), where the notation is explained in
Appendix B. The fundamental UIR of OSp(8|4), which is also a UIR of hs(8|4), is the ultra-
short singleton [36, 37]

D(1
2 , 0; 0, 0, 0, 1) ⊕D(1, 1

2 ; 0, 0, 1, 0) . (2.6)

By taking products of singletons we obtain further unitary representations of hs(8|4). Two
singletons yield OSp(8|4) weight spaces corresponding to massless AdS4 fields with E0 = s + 1
[38, 39, 40].

The massless sector of the hs(8|4) gauge theory is formulated in terms of an hs(8|4) valued
master gauge field Aµ(y, ȳ, θ) (with expansion given by (2.5)) and a master zero-form Φ(y, ȳ, θ)
in a quasi-adjoint representation of hs(8|4) with expansion

Φ(y, ȳ, θ) =
∑

−m + n + p
= 0 mod 4

1

m!n! p!
ȳα̇1 · · · ȳα̇myβ1 · · · yβnθi1 · · · θipΦα̇1...α̇m β1...βn i1...ip . (2.7)

The reality condition on Φ is discussed in detail in [16, 17]. The gauging gives rise to a set of
field equations for physical fields (the action still remains to be found) whose spectrum is given
by the symmetric product of two singletons which is given in Table 1. The physical spin s ≥ 1
fields are the gauge fields in Aµ(y, ȳ, θ) that correspond to hs(8|4) generators in (2.5) satisfying
|m − n| ≤ 1. Those with m = n contain the vierbein and its HS generalizations, while those
with |m − n| = 1 contain the gravitini and their HS generalizations. The physical fields with
s ≤ 1

2 arise in Φ(y, ȳ, θ) as the components in (2.7) with m+ n ≤ 1. The remaining fields in Aµ

and Φ are auxiliary and given in terms of derivatives of the independent fields.

So far we have discussed the free massless HS gauge theory. The general formulation of interact-
ing massless HS gauge theory has been given in D = 4 [14] (see, [15] for a review), and examined
in detail for N = 8 [16, 17]. There exists a minimal bosonic truncation of this theory whose
spectrum consist the physical states with spin s = 0, 2, 4, ..., each occurring once. This theory
exhibits the basics of any HS gauge theory rather well and it will be discussed in considerable
detail in Section 6.2, which is based on [19].

2.2 The D = 5, N = 4 Massless HS Gauge Theory

The 5D HS superalgebra hs(2, 2|4) [10] is realized in terms of the following oscillators 4

4The algebra hs(2, 2|4) is called ho0(1, 0|8) in [12].
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ℓ\s 0 1
2 1 3

2 2 5
2 3 7

2 4 9
2

5 11
2

6 · · ·

0 70 56 28 8 1
1 1+1 8 28 56 70 56 28 8 1
2 1 8 28 56 70 56 28 8 1
3 1 8 28 56 70 · · ·
4 1 · · ·
...

Table 1: The SO(3, 2)×SO(8) content of the symmetric tensor product of two d = 3, N = 8 singletons.

Each entry refers to the SO(8) content. All SO(8) irreps are irreducible except 70 = 35+ + 35
−

and all

the states have E0 = s+1 except the scalars in one of the 35-plets at level ℓ = 0 and one of the scalars at

level ℓ = 1. The representations have been arranged into a tower of OSp(8|4) supermultiplets labeled by

a level index ℓ. The zeroth level is the D = 4, N = 8 supergravity multiplet with 28 degrees of freedom.

The level ℓ ≥ 1 multiplets have 2 × 28 degrees of freedom. The spin s ≥ 1 fields arise in the hs(8|4)

valued master gauge field and the spin s ≤ 1

2
arise in the quasi-adjoint master zero-form. The minimal

bosonic truncation of the spectrum is obtained by keeping the maximum spin fields at each level and the

(non-pseudo) scalar at level ℓ = 1.

yα ⋆ ȳβ = yαȳβ + Cαβ , yα ⋆ yβ = yαyβ , (y†iΓ0C)α = ȳα , (2.8)

θi ⋆ θ̄j = θiθ̄j + δi
j , θi ⋆ θj = θiθj , (θi)† = θ̄i , (2.9)

where yα (α = 1, . . . , 4) is a Grassmann even Dirac spinor and θi (i = 1, ..., 4) is a Grassmann
odd SO(6) ≃ SU(4) spinor. The charge conjugation matrix Cαβ is anti-symmetric. The algebra
hs(2, 2|4) consists of Grassmann even and anti-hermitian polynomials P (y, ȳ, θ, θ̄) that are sums
of monomials of degree 4ℓ+ 2 (ℓ = 0, 1, 2, ...) that are invariant under the U(1)Z generated by

Z = 1
2 (ȳy + θ̄θ); (2.10)

and traceless in their spinor indices:

P (ℓ)(y, ȳ, θ, θ̄) =
∑

m + n + p + q
= 4ℓ + 2

m + p = n + q

1

m!n! p! q!
ȳα1 · · · ȳαmyβ1 · · · yβnθi1 · · · θip θ̄j1 · · · θ̄jq Pα1...ip

j1...jq ,

(2.11)

where

Cα1β1Pα1...αm β1...βn i1...ip
j1...jq = 0 , Pi

i = 0 . (2.12)
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The tracelessness of Pi
j means the removal of the outer U(1)Y automorphism generator

Y = θ̄θ . (2.13)

The Lie bracket between P,Q ∈ hs(2, 2|4) is given by [P,Q]⋆/I where I is the ideal generated
by elements of the form

∞∑

n=1

Pn(y, ȳ, θ, θ̄) ⋆ Z ⋆ · · · ⋆ Z︸ ︷︷ ︸
n factors

, (2.14)

where Pn are polynomials which are traceless in their spinor indices. The structure of the Lie
bracket is similar to (2.3).

The zeroth level of hs(2, 2|4) is the maximal finite subalgebra

PSU(2, 2|4) = PU(2, 2|4)/U(1)Z , (2.15)

where PU(2, 2|4) is the centrally extended superalgebra (with 31 bosonic generators). The
PSU(2, 2|4) generators are realized schematically as

Qαi = yαθ̄i , Q̄i
α = ȳαθ

i , Mαβ = ȳαyβ − 1
4Cαβ(ȳy) , U i

j = θ̄iθj − 1
4δ

i
j(θ̄θ) . (2.16)

The Lorentz spin of a generator in (2.11) is given by (jL, jR) = (1
2m,

1
2n) and the U(1)Y charge

by Y = p − q. The components with integer jL + jR are Grassmann even and those with half-
integer jL + jR are Grassmann odd. Bosons are in the 10, 150, 20′0, 62, 102 and 14 irreps of
SU(4) × U(1)Y and fermions in the 41, 43 and 103 irreps. The reality properties follow from
the condition P † = −P which, in particular, implies that the irreps with Y = 0 are real. The
generators of the algebra are summarized in Table 4 and Table 5 in Appendix A.

A UIR of SU(2, 2|4) is denoted by D(E0, jL, jR; a1, a2, a3)Y where the notation is explained in
Appendix B. The fundamental UIRs of SU(2, 2|4) are the ultra-short singletons given in Table
6 [41] in Appendix A. Due to the modding out of the ideal I generated by elements of the
form (2.14) the fundamental UIR of hs(2, 2|4) is the singleton with vanishing Z charge, i.e. the
Maxwell supermultiplet [42, 43, 44, 41]

D(1, 0, 0; 0, 1, 0)0 ⊕D(3
2 ,

1
2 , 0; 1, 0, 0)−1 ⊕D(3

2 , 0,
1
2 ; 0, 0, 1)1

⊕D(2, 1, 0; 0, 0, 0)
−2 ⊕D(2, 0, 1; 0, 0, 0)2 . (2.17)

By taking products of this multiplet we obtain further unitary representations of hs(2, 2|4). In
particular, the product of two singletons yields massless AdS5 fields whose energies, which are
given by E0 = 2 + jL + jR saturate the unitarity bound of a continuous series (denoted as series
A in Appendix B)[42, 41].

11



ℓ\s 0 1
2 1 3

2 2 5
2 3 7

2 4 9
2

5 11
2

6 · · ·

0 42 48 27 8 1
1 1 8 28 56 70 56 28 8 1
2 1 8 28 56 70 56 28 8 1
3 1 8 28 56 70 · · ·
4 1 · · ·
...

Table 2: The symmetric tensor product of two d = 4, N = 4 SYM singletons arranged into levels ℓ = 0, 1, 2... of

PSU(2, 2|4) multiplets. The entries denote USp(8) representations: 28 = 27+1, 56 = 48+8, 70 = 42+27+1, which

branch under SU(4)×U(1)Y as follows: 1 = 10, 8 = 41+4̄−1, 27 = 150 +62+6̄−2, 42 = 20′

0 +102+1̄0−2+14+1̄−4

and 48 = 201 +2̄0−1 +43 +4̄−3. Each entry also carries SO(4) ≃ SU(2)L×SU(2)R ⊂ SO(4, 2) spins (jL, jR). The

total spin s is defined as s = jL + jR and the U(1)Y charge is given by Y = 2(jR − jL). The level ℓ = 0 multiplet

is the D = 5, N = 8 supergravity multiplet. The level ℓ = 1 multiplet is the massless Konishi multiplet. The level

ℓ ≥ 0 multiplets have (4ℓ + 1) × 28 degrees of freedom. The states in the s ≤ 1
2

sector arise as the physical states

in the master scalar field Φ, as shown in Table 7. For s ≥ 1, the states with Y = 0,±1 arise in the sector of the

master gauge field Aµ corresponding to the generators of hs(2, 2|4) listed in Table 4. Those with Y = ±2,±3,±4

arise in the master scalar field Φ. With the exception noted in Table 7, these have dual gauge fields corresponding

to the generators of hs(2, 2|4) listed in Table 5. The minimal bosonic truncation of the spectrum is obtained by

keeping the maximum spin fields at each level and the scalar at level ℓ = 1.

The massless sector of the hs(2, 2|4) gauge theory is formulated in terms of an hs(2, 2|4) valued
master gauge field Aµ(y, ȳ, θ, θ̄) and a master zero-form Φ(y, ȳ, θ, θ̄) in a certain quasi-adjoint
representation of hs(8|4) [9, 10], which contains the Weyl tensors and the extra ‘matter’ fields
given in Table 7 in Appendix A. The gauging gives rise to physical fields whose spectrum is
given by the symmetric product of two singletons given in Table 2. The fields with |Y | ≤ 1 and
|Y | ≥ 2, jL + jR ≥ 1

2 carry SO(4, 1) weights such that the analysis of the curvature constraints
in this sector is analogous to that in D = 4. In the |Y | ≥ 2, jL + jR ≥ 1 sector the fields
carry SO(4, 1) weights that require a separate analysis. One finds that [10] the physical fields
arise as two-form potentials in Φ obeying the odd-dimensional self-duality equation B2 = ⋆dB2

or higher-spin analogs of this equation (such equations have been more recently studied in the
lightcone gauge in [45]). The gauge fields in Aµ with |Y | ≥ 2 are auxiliary fields which are
related to the independent two-forms in Φ by generalized Hodge dualization rules [10].

So far we have discussed the free massless HS gauge theory. The full interacting theory based
on hs(2, 2|4) has not been constructed yet. However, the kinematics established in [10] and
summarized above, together with the already established principles [14] that govern the structure
of the interacting HS gauge theory in D = 4, suggest that the full 5D interacting theory is
perfectly within reach. Indeed certain cubic interactions of the minimal bosonic HS theory in
5D have already been constructed by Vasiliev [12].
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2.3 The D = 7, N = 2 Massless HS Gauge Theory

The linearized gauge theory of the minimal bosonic HS subalgebra, hs(8∗) in D = 7 was intro-
duced in [20]. Here we shall construct its supersymmetric extension hs(8∗|4). This algebra is
realized in terms of the following oscillators :

yα ⋆ ȳβ = yαȳβ + Cαβ , yα ⋆ yβ = yαyβ , (y†iΓ0C)α = ȳα , (2.18)

θi ⋆ θ̄j = θiθ̄j + Ωij , θi ⋆ θj = θiθj , (θi)† = θ̄jΩji , (2.19)

where yα (α = 1, . . . , 8) is a Grassmann even Dirac spinor and θi (i = 1, ..., 4) is a Grassmann
odd Dirac spinor of SO(5) ≃ USp(4). The charge conjugation matrix Cαβ is symmetric and
Ωij is the antisymmetric USp(4) invariant tensor. The algebra hs(8∗|4) consists of Grassmann
even and anti-hermitian polynomials P (y, ȳ, θ, θ̄) that are sums of monomials of degree 4ℓ + 2
(ℓ = 0, 1, 2, ...) which are invariant under the SU(2)Z generated by

Z3 = 1
4(ȳαyα + θ̄iθi) , Z+ = 1

4(yαyα + θiθi) , Z− = 1
4(ȳαȳα + θ̄iθ̄i) . (2.20)

and traceless in their spinor indices. The Lie bracket between P,Q ∈ hs(8∗|4) is given by
[P,Q]⋆/I where I is the ideal generated by elements of the form

∞∑

n=1

P I1...In
n (y, ȳ, θ, θ̄) ⋆ ZI1 ⋆ · · · ⋆ ZIn , (2.21)

where P I1...In
n (y, ȳ, θ, θ̄) has an expansion in terms of traceless, Weyl ordered multispinors and the

SU(2)Z indices I1 . . . In are symmetric. The structure of the Lie bracket is again similar to (2.3).
The zeroth level of hs(8∗|4) is the maximal finite subalgebra OSp(8∗|4) realized schematically
as

Qαi = yαθ̄i − ȳαθi , Mαβ = ȳ[αyβ] , Uij = θ(iθ̄j) . (2.22)

An ℓth level generator P (ℓ) in hs(8∗|4) can be expanded as

P (ℓ)(y, ȳ, θ, θ̄) =
∑

m + n + p + q
= 4ℓ + 2

m + p = n + q

1

m!n! p! q!
ȳα1 · · · ȳαmyβ1 · · · yβnθi1 · · · θip θ̄j1 · · · θ̄jqPα1...jq ,

(2.23)

where the components are traceless in their Lorentz spinor indices and belong to super Young
tableaux with two rows of length 2ℓ + 1. A single box in the super Young tableaux represents
the superoscillator ξA = (yα, θi) or ξ̄A = (ȳα, θ̄i). An arbitrary Weyl ordered monomial in
these superoscillators corresponds to a super Young tableaux with two rows. The restriction
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m+n = p+ q in (2.23) (i.e. equal number of ξA and ξ̄A) follows from the condition [Z3, P ]⋆ = 0,
while the condition [Z±, P ]⋆ = 0 rules out super Young tableaux with rows of unequal length.
The resulting super Young tableaux of width 2ℓ + 1 splits into a set of Young tableaux of
spinors. Each SO(6, 2) Young tableaux branches into a set of Young tableaux of SO(6, 1)
spinors. The spinorial SO(6, 1) × SO(5) Young tableaux can be converted into tensorial ones
by multiplying with appropriate Dirac matrices of both groups. The resulting SO(5) irreps are
10, 50, 100, 140, 12, 52, 102, 14 in the bosonic sector and 41, 161, 43 in the fermionic sector, where
the subscripts denote the U(1)Y charge defined as

Y = nθ̄ − nθ , (2.24)

with nθ̄ = q and nθ = p, as specified in the expansion (2.23). The SO(6, 1) highest weights
(m1,m2,m3) are given by

m1 = 2ℓ+ 1− 1
2(nθ + nθ̄) ≥ m2 ≥ m3 = 1

2 |Y | . (2.25)

Note that since P is assumed to be Grassmann even the components in (2.23) with integer
weights are Grassmann even and those with half-integer weights are Grassmann odd. The
reality properties follow from P † = −P . As a result, all SO(6, 1) × SO(5) representations obey
symplectic reality conditions. For example, the supercharge Qαi obey a symplectic Majorana
condition so that it has 32 real components:

Q̄αi ≡ (Qβj)
†(iΓ0C)βαΩji = Qαi . (2.26)

These results are summarized in Tables 8 and 9 in Appendix A.

A UIR of OSp(8∗|4) is denoted by D(E0, J1, J2, J3; a1, a2)Y where the notation is explained in
Appendix B. The fundamental UIRs of OSp(8∗|4) are the singletons given in Table 10 [46] in
Appendix A. The singleton which is singlet of SU(2)Z also forms an UIR of hs(8∗|4). This
singleton is the (2, 0) tensor multiplet [46, 44, 47, 48]

D(2, 0, 0, 0; 0, 1)0 ⊕D(5
2 , 1, 0, 0; 1, 0)1 ⊕D(5

2 , 0, 0, 1; 1, 0)−1

⊕D(3, 0, 0, 2; 0, 0)2 ⊕D(3, 2, 0, 0; 0, 0)
−2 . (2.27)

By taking products of this singleton one obtains further unitary representations of hs(8∗|4). In
particular, the square yields massless AdS7 fields with energy E0 = 4 + s where s ≡ J1. These
energies belong to an isolated series ( denoted as series B in Appendix B)[48], unlike in D = 4, 5
where the massless fields have energies that saturate a continuous series (the continuous series
is saturated by lowest weight spaces arising in the product of three singletons).

The superalgebra hs(8∗|4) has a minimal bosonic HS subalgebra hs(8∗) whose representation
theory and gauging was described in [20]. We shall assume that the massless sector of the hs(8∗|4)
gauge theory is formulated in terms of an hs(8∗|4) valued master gauge field Aµ(y, ȳ, θ, θ̄) and
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ℓ\s 0 1
2 1 3

2 2 5
2 3 7

2 4 9
2

5 11
2

6 · · ·

0 14 16 15 4 1
1 1 4 16′ 24 36 24 16′ 4 1
2 1 4 16′ 24 36 24 16′ 4 1
3 1 4 16′ 24 36 · · ·
4 1 · · ·
...

Table 3: The symmetric tensor product of two d = 6, N = (2, 0) tensor singletons arranged into levels ℓ = 0, 1, 2...

of OSp(8∗|4) multiplets. The entries denote SO(5) × U(1)Y representations as follows: 14 = 140, 16 = 161,

15 = 100 + 52, 4 = 41, 16′ = 100 + 52 + 12, 24 = 161 + 41 + 43, 36 = 140 + 50 + 10 + 102 + 52 + 14. The

SO(6) ⊂ SO(6, 2) highest weights (n1, n2, n3) associated with each entry are given by n1 = s, n2 = 1
2
|Y | and

n3 = 1
2
Y . The level ℓ = 0 multiplet is the D = 7, N = 2 supergravity multiplet. The level ℓ ≥ 0 supermultiplets

contain 1
3
(ℓ + 1)(2ℓ + 1)(4ℓ + 3) × 28 degrees of freedom. The states with |Y | ≤ 1, s ≥ 1 are expected to arise in

the sector of the master gauge field Aµ corresponding to the generators given in Table 8. The states with s ≤ 1
2
,

or |Y | ≥ 2 and s ≥ 1, which are listed in Table 11, are expected to arise in a quasi-adjoint master zero-form Φ.

With a few low-lying exceptions which are given in Table 11, these are generalized Hodge duals of the |Y | ≥ 2

sector of the master gauge field Aµ which corresponds to the hs(8∗|4) generators listed in Table 9. The minimal

bosonic truncation of the spectrum is obtained by keeping the maximum spin fields at each level and the scalar

at level ℓ = 1.

a master zero-form Φ(y, ȳ, θ, θ̄) in a quasi-adjoint representation 5 of hs(8∗|4) and that the
gauging gives rise to physical fields whose spectrum is given by the symmetric product of two
tensor singletons listed in Table 3. The gauge fields with Y = 0 carry SO(6, 1) weights which
are similar to those in the minimal bosonic theory [20]. The gauge fields with |Y | ≥ 1 carry
SO(6, 1) weights which are analogous to those carried by the |Y | ≥ 1 fields in the hs(2, 2|4)
theory in D = 5. Thus we expect that the physical fields with |Y | ≤ 1, s ≥ 1 arise in Aµ. The
remaining physical fields, which have s ≤ 1

2 , or s ≥ 1 and |Y | ≥ 2, must arise in Φ and be
those given by Table 11 in Appendix A. In particular we expect that the physical fields with
|Y | ≥ 2, s ≥ 1 arise as three-form potentials in Φ obeying the odd-dimensional self-duality
equation B3 = ⋆dB3 and their HS analogs, and that the corresponding gauge fields in Aµ are
related to these three-forms by generalized Hodge dualization rules analogous to those found in
the hs(2, 2|4) theory in D = 5 [10].

So far we have discussed the free massless HS gauge theory. The interacting theory has not
been constructed yet. However, the kinematics of theory established here, together with what
we know in lower dimensions about interacting HS gauge theories should help a great deal in
such a construction. In particular, there are many parallels with the kinematics of the 5D HS
gauge theory which is noteworthy.

5This representation was defined for hs(8∗) in [20]. Its generalization to hs(8∗|4) will not be given here.
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3 Composite Operators in Singleton Theories

In this section we describe the singleton theories in d = 3, 4, 6 with 16 supersymmetries that are
of relevance to the HS gauge theories in D = 4, 5, 7 described in the previous section. We shall
also identify the superfield realization of the HS currents in terms of these singletons, whenever
possible.

Explicit expressions for the supersymmetric currents have been constructed so far in d = 3, and
for a minimal bosonic truncation, in arbitrary dimensions. The bosonic currents are formed out
of a set of real scalar singletons and that are primary fields carrying SO(d, 2) lowest weights
(E0;m1, . . .m[d/2]) = (d − 2 + s; s, 0, ..., 0), where s = 0, 2, 4, .... These tensors are conserved
currents for s ≥ 2. The minimal bosonic HS theories are still ‘maximal’ in the sense that
the twist d − 2 currents with even spin are the only composites which are both conserved and
primary. There are conserved currents with E0 − s > d − 2 as well as E0 − s = d − 2 and odd
spin, though these can be shown to be descendants of those with twist d− 2 and even spin.

3.1 The d = 3, N = 8 Singleton and Its Composites

The fundamental UIR of OSp(8|4), which is also a UIR of hs(8|4), is the ultra-short singleton
specified in (2.6). This is just the d = 3,N = 8 scalar multiplet, and its superfield realization
has been known for sometime. In particular, it has arisen in the superembedding formulation
of M2-branes [49]. Following [50], let us work with a realization related to the one in [49] by
triality. The singleton superfield is then carries a spinor representation of SO(8) and obeys the
constraint

DαiΦA = (Γi)A
Ḃ χαḂ , (3.1)

where χαḂ is a spinor superfield, i, A, Ḃ = 1, ..., 8 label the 8v , 8s, 8c representations of SO(8),
respectively, and Γ-matrices are the chirally projected SO(8) Dirac matrices. The singleton
superfield ΦA carries the irrep D(1/2, 0; 0, 0, 0, 1), which belongs to series B and it is BPS 1/2
multiplet. See Appendix B for notation and further details.

Several composite operators built out of two singletons superfields ΦA and their derivatives are
known [50, 51, 52, 53, 54]. Let us identify those which correspond to the spectrum of massless
field in the D = 4 HS gauge theory based on hs(8|4) as shown in Table 1. The level ℓ = 0
supercurrent is realized as [50]

JAB = ΦAΦB − 1
8 δAB Φ2 , Φ2 := ΦAΦA . (3.2)

The superfield JAB carries the irrep D(1, 0; 0, 0, 2, 0) which belongs to series B and it is BPS
1/2 multiplet. Its lowest component carries the 35s irrep of SO(8). Together with the scalars
in 35c that arise in the θ-expansion, they form the 70-plet corresponding to the 70 scalar fields
of level ℓ = 0 supergravity multiplet in AdS4 which has 28 degrees of freedom.
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At level ℓ = 1, we have the supercurrent [50]

J = Φ2, (3.3)

which, as a consequence of the basic singleton constraint (3.1), obeys [50]

DijJ − trace = 0 , Dij := DαiDj
α . (3.4)

The superfield J carries the irrep D(1, 0; 0, 0, 0, 0), which is semi-short IUR that saturates the
unitarity bound of series A. Its lowest component is a scalar, and another scalar arises in the
θ-expansion. Altogether, 2×28 degrees of freedom arise [53] and they correspond to the massless
fields of level ℓ = 1 shown in Table 1.

Finally, the level ℓ ≥ 2 supercurrents can be realized in terms of the singleton superfield as
follows [50]

Jα1...α4ℓ−4
=

2ℓ−2∑

k=0

(−1)k[32i∂(α1α2...∂α2k−1α2k
ΦA ∂α2k+1α2k+2

...∂α4ℓ−5α4ℓ−4)ΦA (3.5)

+(ΓiΓj)AB ∂(α1α2...∂α2k−1α2k
Di

α2k+1
ΦA Dj

α2k+2
∂α2k+3α2k+4

...∂α4ℓ−5α4ℓ−4)
ΦB] .

These currents obey the constraint [50]

DiαJαα2...α4ℓ−4
= 0 . ℓ ≥ 2 , (3.6)

The superfield Jαα2...α4ℓ−4
carries the irreps D(2ℓ− 1, 2ℓ − 2; 0, 0, 0, 0), which is semi-short IUR

that saturates the unitarity bound of series A. Its lowest component is the current with spin
smin = 2ℓ − 2 and higher components go up to smax = 2ℓ + 2. They correspond to the level
ℓ ≥ 2 massless multiplets listed in Table 1.

As discussed in the introduction, and to be elaborated further in Section 5, if interactions can
be switched on in the 3d CFT such that the HS gauge symmetry breaks down to OSp(8|4), then
the HS currents for level ℓ ≥ 1 will no longer be conserved. Assuming such breaking, we can
characterize the anomalies in conservation law for these currents as

DijJ − trace = gΣij − trace , (3.7)

DiαJαα2...α4ℓ−4
= gΣi

α2...α4ℓ−4
, (3.8)

where g is some coupling constant, and the right hand sides denote superfields which are to be
determined. These superfields carry the following irreps
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Σij : D(2, 0; 2, 0, 0, 0) , (3.9)

Σi
α2...α4ℓ−4

: D(2ℓ− 1
2 , 2ℓ− 5

2 ; 1, 0, 0, 0) . (3.10)

This means that Σij describes a BPS 1/8 multiplet and it satisfies the unitarity condition of
series B. In [50], a BPS short multiplet of this type is built out of four singletons using harmonic
superspace technique. In terms of ordinary superfields we write it as

Σij = (Γimnp)AB (Γj
mnp)CD ΦAΦBΦCΦD − trace . (3.11)

This is just the 35-plet contained in the symmetric product (8s × 8s × 8s × 8s)S . Since the
superfield Σij represents a BPS 1/8 multiplet, its components go up to smax = 7/2. Therefore,
it is natural to consider this superfield as a candidate for coupling to Higgs superfield in the
bulk which can be eaten by the massless Konishi multiplet to become massive.

Turning to the candidate anomaly superfield Σi
α2...α4ℓ−4

given in (3.10), we observe that it carries
a semi-short IUR that saturates the unitarity bound of series A. In general, such multiplets have
been constructed as [50]

S [ai] = Φ2BPS[ai] , (3.12)

S{µ1...µs}[ai] = J{µ1...µs}BPS[ai] , (3.13)

where BPS[ai] is any one of the BPS short multiplets listed in (2.4)-(2.6), and J{µ1...µs} is a spin
s current. Assuming that the candidate anomaly superfield Σi

α2...α4ℓ−4
belongs to an irreducible

representation of OSp(8|4), since it is an 8-plet of SO(8), it requires the BPS 1/8 multiplet
D(1, 0; 1, 0, 0, 0) and a spin s = 2ℓ − 1

2 current in (3.13). However, the BPS 1/8 multiplet
cannot be built out of one type of singleton field. Thus, the construction of Σi

α2...α4ℓ−4
, which

is important for a Higgs mechanism that can work at all levels ℓ ≥ 1, remains an open problem.

The BPS multiplets that can be constructed from the product of one type of singletons are all
the BPS 1/2 and BPS 1/4 multiplets listed in (2.4) and (2.5), and all those BPS 1/8 multiplets
listed in (2.6) with integer s [51] . These multiplets, as well as the semi-short multiplets discussed
above which make use of them, are likely to play a significant role in the description of the full
HS gauge theory based on hs(8|4). In particular, the KK supermultiplets associated with level ℓ
supermultiplets of the massless HS theory are expected to be BPS 1/2 multiplets. For example,
the level ℓ = 0 multiplet and its KK towers are realized as [53]

D(k/2, 0; 0, 0, k, 0) : Φ(A1
ΦA2 · · ·ΦAk) − traces , k = 2, 3, ... (3.14)

Taking k = 2 gives the massless supergravity multiplet and k = 3, 4, ... give their massive KK
descendants. Similarly, the semi-short multiplets (3.12) and (3.13) with BPS 1/2 composites
carrying the irrep D(k/2, 0; 0, 0, k, 0) are candidates for KK descendants of the level ℓ > 0
massless multiplets of the HS gauge theory based on hs(8|4).
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3.2 The d = 4, N = 4 Singleton and Its Composites

The fundamental UIR of SU(2, 2|4), which is also a UIR of hs(2, 2|4), is the ultra-short singleton
specified in (2.17). This is the d = 4,N = 4 Maxwell multiplet realized in terms of superfield
Wij, where i = 1, ..., 4 labels the 4-plet of SU(4) and W ij = −Wji. 6. It satisfies the following
constraints and reality condition

D(i
αW

j)k = 0 , D̄αiW
jk − trace = 0 ,

Wij ≡ (W ij)† = 1
2ǫijklW

kl . (3.15)

The singleton superfield Wij carries the irrep D(1, 0, 0; 0, 1, 0). It belongs to series C and it
describes a BPS 1/2 multiplet. There are several papers which deal with the construction
of the composite operators built out of the Maxwell (or SYM) singleton. See, for example,
[55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65]. Here we shall follow closely the treatment of [50].

For each state in the spectrum of the HS gauge theory listed in Table 2, one can construct the
corresponding conserved current out of two Maxwell singletons and their derivatives. To begin
with, the level ℓ = 0 supercurrent is contained in the superfield Jij,kl, which is in 20′ of SU(4)
and is given by [55, 56]

Jij,kl = WijWkl − 1
12ǫijklW

mnWmn . (3.16)

Defining W a ≡ (Γa)ij W
ij (a = 1, 2, ..., 6), where Γa are the chirally projected SO(6) Dirac

matrices, the current superfield (3.16) can equivalently be written as Jab = WaWb− 1
6δabWcWc.

Defining Jkl
ij = ǫklmnJij,mn, on the other hand, it obeys the constraint [56]

Dm
α J

kl
ij = χmkl

αij + δm
[i λ

kl
αj] + δ

[k
[i λ

l]m
αj] , (3.17)

where λ and χ are both totally anti-symmetric in lower and upper indices and totally traceless.
The superfield Jij,kl carries the irrep D(2, 0, 0; 0, 2, 0). It belongs to belongs to series C and
it describes a BPS 1/2 multiplet. Its components can be shown to contain the composite
operators that correspond to the level ℓ = 0 supergravity multiplet shown in Table 2, and that
the components with spin s ≥ 1 are conserved currents.

6This is the unique singleton multiplet of PSU(2, 2|4) and it has vanishing U(1)Z central charge. The centrally
extended PU(2, 2|4) superalgebra admits an infinite number of singleton multiplets. These have jR = 0 (their
complex conjugates have jL = 0), and E0 = jL + 1. Each singleton multiplet forms a massless UIR of the
d = 4,N = 4 Poincaré superalgebra and is characterized by central charge ℓ = 2|Z| = 0, 1, 2, .... Viewed as
massless states of d = 4 Poincaré group, they carry Lorentz spin (i.e. maximum SO(2) helicity) s = jL. The
first three levels of the singleton spectrum shown in Table 6 are special because they are the only singleton
multiplets which contain scalar fields. They are D(1, 0, 0; 0, 1, 0), D(1, 0, 0; 1, 0, 0) and D(1, 0, 0; 0, 0, 0) with Z
charges (0, 1/2, 1) and they can be described by superfields (Wij , W

i, W ), respectively. The level ℓ ≥ singletons
D( ℓ

2
, ℓ

2
− 1, 0; 0, 0, 0) have central charge Z = ℓ

2
and can be described by superfield ωα1...αℓ−2

. The constraints
satisfied by all singleton superfields can be found in [50].

19



The level ℓ = 1 supercurrent is also a special one and is known as the massless Konishi multiplet.
It has the simple form [56]

J = WijW
ij . (3.18)

As a result of the basic singleton constraint (3.15), this current obeys the constraint

DijJ = 0 , Dij := Dα(iDj)
α . (3.19)

This multiplet has 5× 28 and they precisely correspond to the level ℓ = 1 massless states shown
in Table 2. It is characterized by the irrep D(2, 0, 0; 0, 0, 0) carried by its lowest component. It
is a semi-short multiplet which saturates the unitarity bound of series A.

In the Poincaré limit, the states are labelled by the little group SO(3) × SU(4). Denoting the
irreps by Rs, where R is denotes an USp(8) irrep (which should be decomposed into SU(4)
irreps)and s is the SO(3) spin, the level ℓ = 1 massless Konishi multiplet can be obtained by
tensoring the level ℓ = 0 supergravity multiplet with an SU(4) singlet spin s = 2 state as follows:

Massless Konishi : (420 + 481/2 + 271 + 83/2 + 12)× 12 =

10 + 81/2 + (27 + 1)1 + (48 + 8)3/2 + (42 + 27 + 1)2

+(48 + 8)5/2 + (27 + 1)3 + 87/2 + 14 (3.20)

The massless multiplets arising at level ℓ ≥ 2 in the spectrum shown in Table 2 are generic in
their structure. The corresponding conserved currents are contained in a superfield

Jµ1µ2...µ2ℓ−2
, ℓ ≥ 2 , (3.21)

which obey the constraints [50]

(σ̄µ1)α̇β D
iβ Jµ1µ2...µ2ℓ−2

= 0 , (σµ1)α
β̇ D̄iβ̇ Jµ1µ2...µ2ℓ−2

= 0 . (3.22)

The superfield Jµ1µ2...µ2ℓ−2
carries the irrep D(4ℓ − 2, 2ℓ − 2, 2ℓ − 2; 0, 0, 0) and its components

have spins that range from (2ℓ− 2) to (2ℓ+ 2). This superfield saturates the unitarity bound of
series A and it describes a semi-short multiplet.

The explicit construction of all the supercurrents in terms of Maxwell singleton is straightforward
but tedious exercise which apparently has not been carried so far. They are known, however,
for the minimal bosonic truncation of the massless HS gauge theory in D = 5 discussed above.
They take the form [8, 13]

jµ1···µ2ℓ−2
=

2ℓ−2∑

k=0

(−1)k

(k!)2!((s − k)!)2 ∂µ1 · · · ∂µk
φ∗ ∂µk+1

· · · ∂µ2ℓ−2
φ− traces . (3.23)
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So far we have considered free SYM singletons. Switching on the SYM interactions, the currents
listed above for ℓ ≥ 1 will no longer be conserved. The resulting anomalies can be characterized
as follows

DijJ =
√
λΣij ,

(σ̄µ1)α̇β D
iβ Jµ1µ2...µℓ−2

=
√
λΣi

µ2...µ2ℓ−2,α̇ ,

(σµ1)α
β̇ D̄iβ̇ Jµ1µ2...µ2ℓ−2

=
√
λΣiµ2...µℓ−2,α , (3.24)

where the constant normalization factor is introduced for later convenience (see Section 5).

The superfields on the right hand side carry the following UIRs of SU(2, 2|4)

Σij : D(3, 0, 0; 2, 0, 0) , (3.25)

Σµ2...µ2ℓ−2,α̇ : D(2ℓ− 3
2 , ℓ− 3

2 , ℓ− 1; 0, 0, 1) , (3.26)

Σµ2...µ2ℓ−2,α : D(2ℓ− 3
2 , ℓ− 1, ℓ− 3

2 ; 1, 0, 0) . (3.27)

In the interacting SYM singleton theory the anomaly superfield Σij takes the well known form
(see, for example, [61, 65]):

Σij =
4

N3/2
TrW k(iW j)ℓWkℓ , (3.28)

where the constant normalization factor is introduced for later convenience (see Section 5). This
superfield belongs to series B and it describes a BPS 1/8 multiplet. Consequently its components
go up to smax = 7/2 and therefore it is a candidate for coupling to Higgs superfield in the bulk
which can be eaten by the massless Konishi multiplet to become massive. All the components
of the massive Konishi multiplet of PSU(2, 2|4) have been tabulated in [57].

The candidate anomaly superfields Σi
α2...α2ℓ−2,α, on the other hand carries a semi-short IUR that

satisfy the unitarity bounds of series A or B. In general, such multiplets have been constructed
as [50]

S [ai] = Φ2BPS[ai] ,

S{µ1...µs}[ai] = J{µ1...µs}BPS[ai] , (3.29)

where BPS[ai] is any one of the BPS operators listed in (2.11)-(2.13), and J{µ1...µs} is a spin
s current, to be constructed out of the free SYM singleton in our case. For the BPS 1/2
and BPS 1/4 cases, both of the above operators saturate the series A unitarity bound (2.8),
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while in the case of BPS 1/8, they belong to series B. Assuming that the candidate anomaly
superfield Σi

α2...α2ℓ−2,α carries an irreducible representation, and given that it is in (100) of SU(4),
attempting to construct it as in (3.29) requires the use of BPS 1/8 multiplet D(3/2, 0, 0; 1, 0, 0),
as follows from (2.13). However, these BPS multiples cannot be built out of SYM singletons
alone [50].

The BPS multiplets that can be constructed out of products of SYM singleton alone are all the
BPS 1/2 and BPS 1/4 multiplets listed in (2.11) and (2.12), and all those BPS 1/8 multiplets
listed in (2.13) with integer r [51]. These multiplets, and the semi-short multiplets discussed
above which make use of them, are likely to play a role in finding the massive states of the full
HS gauge theory based on hs(2, 2|4). In particular, the KK supermultiplets associated with level
ℓ supermultiplets of the massless HS theory are expected to make use of the BPS 1/2 states.
For example, the level ℓ = 0 multiplet and its KK towers are realized as [3, 58, 59]

D(k, 0; 0, k, 0) : W(a1
Wa2 · · ·Wak) − traces , k = 2, 3, ... (3.30)

Setting k = 2 gives the massless supergravity multiplet and k = 3, 4, ... their massive KK descen-
dants. Similarly, the semi-short multiplets (3.12) and (3.13) involving the BPS 1/2 composites
carrying the irrep D(k, 0; 0, k, 0) are candidates for KK descendants of the level ℓ > 0 massless
multiplets of the HS gauge theory based on hs(2, 2|4).

3.3 The d = 6, N = (2, 0) Tensor Singleton and Its Composites

The fundamental UIRs of OSp(8∗|4) are the singletons given in Table 10 in Appendix A [48, 46].
Each row in the Table denotes an irreducible singleton multiplet. The superfield realization of
the 6d singletons have been studied by several authors. Here we shall follow [50, 51] where several
references to earlier literature can also be found. There exist several papers on the construction
of the composite operators out of the 6d singletons as well; see [66, 50, 51, 67], for example.

There exist an infinite set of singletons of OSp(8∗|4). They are shown in Table 10 and listed in
Appendix B. The (2, 0) tensor singleton is the only one which is singlet under an SU(2)Z defined
in Section 2.3. Here we shall focus our attention to the level ℓ = 0 singleton described by the
superfield W ij which forms the tensor multiplet of d = 6,N = (2, 0) Poincaré supersymmetry,
since all the HS gauge theory states will be formed out of them. To begin with, we shall
take a single copy of the tensor multiplet. Abelian nature of the singletons is essential for the
construction of conserved currents. The superfield Wij satisfies the following constraints and
reality condition [66]

D(i
αW

j)k = 0 , W̄ij = ΩikΩjlW
kl . (3.31)

The singleton superfield Wij carries the irrep D(2; 0, 0, 0; 0, 1) which belongs to series D and it is
BPS 1/2 supermultiplet. For each state in the spectrum of the HS gauge theory listed in Table
3, one can construct the corresponding conserved current out of two tensor singletons and their
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derivatives. To begin with, the level ℓ = 0 supercurrent is contained in the superfield Jij,kl,
which is in 14-plet of USp(4) and is given by

Jij,kl = WijWkl − 1
6Ωk[iΩj]ℓW

mnWmn . (3.32)

Defining W a ≡ (Γa)ij W
ij (a = 1, 2, ..., 5), where Γa are the SO(5) Dirac matrices, the current

superfield (3.32) can equivalently be written as Jab = WaWb − 1
6δabWcWc.

The superfield Jij,kl carries the irrep D(4; 0, 0, 0; 0, 2), which belongs to series D and it describes
a BPS 1/2 multiplet. This is the level ℓ = 0 supergravity multiplet shown in Table 3.

The level ℓ = 1 supercurrent is similar to the ones in d = 3, 4 and it takes the form

J = WijW
ij . (3.33)

This current obeys the constraint [50]

ǫαβγδ D(i
αD

j
βD

k)
γ J = 0 . (3.34)

The superfield J carries the irrep D(4; 0, 0, 0; 0, 0). It has 14 × 28 components and it can be
obtained group theoretically by tensoring the level ℓ = 0 supergravity multiplet with the graviton
state which has 14 degrees of freedom. It is a semi-short multiplet which belongs to series B.

The massless multiplets arising at level ℓ ≥ 2 in the spectrum shown in Table 2 are generic and
the corresponding conserved currents are contained in the superfield

Jα1...α2ℓ−2,β1...β2ℓ−2
, ℓ ≥ 2 , (3.35)

where the α and β indices are symmetrized separately. These current superfields obey the
constraint [50]

ǫδγα1β1 Di
γJα1...α2ℓ−2,β1...β2ℓ−2

= 0 . (3.36)

The superfield Jα1...α2ℓ−2,β1...β2ℓ−2
carries the irrep D(2ℓ + 2; 0, 2ℓ − 2, 0; 0, 0). It is a semi-short

multiplet which belongs to series B.

An explicit construction of these supercurrents in terms of the (2, 0) tensor singleton apparently
has not been carried out so far. They are known, however, for the minimal bosonic truncation
of the massless HS gauge theory in D = 7 discussed earlier. They take the form [8, 13]

jµ1···µ2ℓ−2
=

2ℓ−2∑

k=0

(−1)k

k!(k + 1)!(s − k)!(s − k + 1)!
∂µ1 · · · ∂µk

φ∗ ∂µk+1
· · · ∂µ2ℓ−2

φ− traces . (3.37)
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So far we have considered free (2, 0) tensor singletons. Interactions for multi-copies of these
singletons are not known and they are expected to be radically different than those familiar from
ordinary field theory. These interactions are also expected to break the HS gauge symmetries
down to those of level ℓ = 0 supergravity. Let us characterize the break-down in the conservation
laws of the supercurrents of level ℓ ≥ 1 as follows

ǫαβγδ D(i
αD

j
βD

k)
γ J = gΣδijk , (3.38)

ǫδγα1β1 Di
γJα1...α2ℓ−2,β1...β2ℓ−2

= gΣδi
α2...α2ℓ−2,β1...β2ℓ−2

, (3.39)

where g is some coupling constant. Unlike in the cases of d = 3, 4, here we see that the
representation content of the candidate anomaly superfields do not correspond to any BPS
short or semi-short multiplets listed in Appendix B. Of course, here we are assuming that these
anomaly superfields are irreducible. Their computation from first principles may in principle
reveal that they are reducible, and possibly derivatives of some irreducible superfields. The
nature of the anomaly superfields should also reflect the fact that there there are no local non-
abelian interactions for tensor fields that can be described by continuous deformations of the
free theory [90]. This is a qualitative difference between d = 6 and d = 3, 4, where the free fields
admit SYM deformations (after dualization of a scalar in d = 3).

The semi-short multiplets, as in 3d and 4d cases, have also been constructed in terms of building
blocks discussed above, and they take the form [50]

S [ai] = Φ2BPS[ai] , (3.40)

S{µ1...µs}[ai] = J{µ1...µs}BPS[ai] , (3.41)

where BPS[ai] is any one of the BPS operators listed in (2.20) and (2.21), and J{µ1...µs} is a spin
s current, which is to be constructed out of the free (2, 0) tensor singleton in our case. Both of
these saturate the unitary bound of series B.

The BPS multiplets that can be constructed out of products of the tensor singleton alone are
all the BPS 1/2 multiplets listed in (2.20) and all those BPS 1/4 multiplets listed in (2.21) with
integer q[51]. In particular, the level ℓ = 0 multiplet and its KK towers are realized as [50]

D(2k, 0, 0, 0; 0, k) : W(a1
Wa2 · · ·Wak) − traces , k = 2, 3, ... (3.42)

As in the cases of 3d and 4d, here too, setting k = 2 gives the massless supergravity multiplet
and k = 3, 4, ... give their massive KK descendants. Similarly, the semi-short multiplets (3.40)
and (3.41) with BPS 1/2 composites carrying the irrep D(2k, 0, 0, 0; 0, k) are candidates for KK
descendants of the level ℓ > 0 massless multiplets of the HS gauge theory based on hs(8∗|4).
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4 Higher Spin Gauge Theory and Holography

We shall first discuss some general features of HS gauge theory/singleton correspondence before
we turn to the cases of interest in Type IIB string theory and M theory. In particular, the
properties of the free boundary CFT’s which indicate that the massless HS gauge theories in
the bulk provide effective descriptions of the full HS gauge theories truncated to their massless
sector will be emphasized.

Consider a CFTd consisting of N ′ supersingletons W i, where i = 1, ..., N ′ is an internal index
and each W i belongs to some singleton representation of the superconformal group. Let each
singleton belongs to an irreducible representation of some internal symmetry group G and con-
sider G invariant composite operators O. Our first basic assumption is that the correlation
functions of invariant composite operators factorize as N ′ → ∞. For example, by using the
operator product expansion, a four-point function < O1O2O3O4 > can be decomposed as

< O1O2O3O4 >=< O1O2 >< O3O4 > + < O1O2O3O4 >conn , (4.1)

< O1O2O3O4 >conn=
∑

r

< O1O2Or >< OrO3O4 >

< OrOr >
, (4.2)

where the disconnected terms are the contributions from the unit operator and the connected
terms are the contributions from the remaining operators. The factorization means that the the
connected terms are suppressed by powers of 1/N ′:

< O1O2O3O4 >conn

< O1O2 >< O3O4 >
→ 0 as N ′ →∞ . (4.3)

In general, there can be several parameters in addition to N ′ in CFTd. Fortunately, supersym-
metry puts considerable amount of constraint on these possibilities. With application to Type
IIB string and M theory in mind, we shall assume that G = SU(N) and consider SU(N) valued
singleton scalar superfields denoted byW I , I = 1, ..., n. In this case we have N ′ = N2−1 and the
singletons transform in the fundamental representation of the R-symmetry group SO(n). For the
cases of interest, namely in d = 3, 4, 6, we have in mind the R-symmetry groups SO(8), SO(6)
and SO(5), respectively, which correspond to 16 ordinary plus 16 special supersymmetries in
the CFTd. The SU(N) valued singletons in d = 4 are adequate for discussing the tensionless
limit of the Type IIB theory on AdS5 × S5. The extent to which SU(N) valued singletons in
d = 3, 6 may encode the properties of (an unbroken phase of) M theory on AdS4/7 × S7/4 is
discussed in Sections 6 and 7.

The basic composite operators in CFTd are primary bilinear single-trace operators O(2)r, where
the index r labels collectively the set of SO(d, 2) × R-representations involved [7, 8]. These
operators do not mix with any other operators and provide conserved HS currents with spin
s ≥ 1, and certain composite operators of lower spin s < 1. Together they form an HS multiplet
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that corresponds in a one-to-one fashion to an HS multiplet of physical massless bulk fields 7,
φ(2)r. In the supersymmetric singleton models of special interest to Type IIB/M theory the
bilinear primaries are discussed in Section 3 and the corresponding massless spectra are listed
in Tables 1, 2 and 3.

The free CFTd also contains composite operators which are pth order monomials in the basic
singleton and its derivatives. Those composites which are not normal ordered products of other
composites as N ′ →∞ are interpreted as massive single-particle states in AdS. We shall denote
these operators and the corresponding massive bulk fields by O(p)r and φ(p)r, respectively, where
p ≥ 3 and r is an additional set of indices labeling the SO(d, 2) × R weights. The massiveness
means that there is no shortening of the associated SO(d, 2) weight spaces. This implies that
the massive operators are not conserved and hence there are no gauge symmetries associated
with the corresponding massive AdS fields. However, as discussed in the previous section, some
of the massive operators belong to shortened supermultiplets, provided that the superconformal
weights saturate certain unitarity bounds or belong to discrete series. This is the case, for
example, for 1/2 BPS KK modes and the Higgs multiplets listed in the previous section.

For fixed p the space of massive operatorsO(p)r clearly decomposes into irreducible HS multiplets,
though the representation theory of HS algebras, such as their root structure, has not yet been
developed far enough to characterize the precise ‘lowest’ weights carried by these multiplets (
see [20] for a discussion of this point).

Composite operators which are normal ordered products of other composite operators as N ′ →
∞ are interpreted as many-particle states. In the case of SU(N) valued singletons, the single-
particle states, O(p)r (p = 2, 3, ...) are given in the large N limit by single-trace operators. The
n-particle states, which we shall denote by O(p1,...,pn)r are given in this limit by multi-trace
operators in the form of normal ordered products of single trace operators O(pi)ri

and their
derivatives, pi = 2, 3, ..., i = 1, ..., n.

For finite N there is mixing between the single-trace and multi-trace operators [7, 23]. This is
because n-particle states in the bulk couple to operators that diagonalize the two-point function:

< OROS >= ηRS , (4.4)

where R = (p1, . . . , pn)r and ηRS is an N -independent diagonal matrix. For example, consider
the minimal bosonic truncation based on a single SU(N) valued singleton field W . The bilinear
and tri-linear composites, which have to be single-traces, do not mix. However, the quartic
composites do mix, and they do so as follows. The diagonal scalar states of energy ∆ = 2d − 4
are given schematically by

O(4) = J(4) + fJ(2,2) , O(2,2) = J(2,2) −
2f

1 + f2
J(4) , (4.5)

7In the minimal bosonic truncation this dictionary has been extended to also include local currents correspond-
ing to the auxiliary HS gauge fields of the bulk theory [8]. This offers an opportunity to compute bulk amplitudes
in a first order formalism.
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where f(N) = a
N + b

N3 , with a and b being some constants, and

J(4) ∼
1

N2
: tr(W 4) : , J(2,2) ∼: tr(W 2)tr(W 2) : , (4.6)

are assumed to be normalized such that

< J(4)J(4) >= ∆4 , < J(4)J(2,2) >= f(N)∆4 , < J(2,2)J(2,2) >= ∆4 , (4.7)

where ∆ = |x|−d+2 is the singleton propagator.

Having introduced the main notation and kinematics, we now continue with the discussion of the
factorization of correlators as N →∞. From (4.4) it follows that as N →∞ a general n-point
correlator either vanishes if n is odd or can be written as the sum of products of n/2 two-point
functions. Thus, in the limit N → ∞ the singleton CFTd describes an ‘anti-holographic’ bulk
theory of free n-particle states corresponding to O(p1,...,pn)r. For finite N , the 1/N corrections
to the singleton CFT give rise to nontrivial connected parts of the correlation functions which
we wish to represent as anti-holographic interactions. To be more precise we wish to examine
whether the SU(N) valued singleton field theory is the holographic dual of an interacting (d+1)-
dimensional theory based on an effective action, consisting of a bulk term plus a boundary term

Γeff [φ(p)r] = Γeff,bulk[φ(p)r] + Γeff,boundary[φ(p)r] , (4.8)

which admit perturbative expansions in powers of 1/N around an AdSd+1 vacuum[21]. The
boundary term plays a role in representing certain correlators, such as the extremal correlators
discussed below, that cannot be reproduced from a bulk action. This boundary term is needed
because the variational principle requires Γeff [φ(p)r] to be stationary when the fields are varied
subject to Dirichlet conditions. The variation of Γeff,boundary[φ(p)r] should therefore cancel the
total derivatives from the variation of Γeff,bulk[φ(p)r] that give rise to boundary terms that in-
volve normal derivatives of the variations. For example, Γeff,bulk[φ(p)r] is expected to contain
an ordinary R-term for the spin 2 fields and consequently that Γeff,boundary[φ(p)r] contains the
corresponding Brown-York term.

In the case of 16 supersymmetries (4.8) can be expressed formally as

eiΓeff [φ(p)r(V )] =< e
i
∑

p,r

∫
ddxd16θO(p)rV(p)r > , (4.9)

where the effective action on the left hand side is evaluated subject to boundary conditions
dictated by superconformal tensors V(p)r. These superfields are prepotentials for super Weyl
multiplets containing the boundary conditions on the AdS curvatures.

The correlators of composite operators on the right hand side of (4.9) are well-behaved functions
of the insertion points as long as they are separated. However, as these points coincide, the
correlators are in general rather badly behaved distributions. Thus a more careful definition
of the generating functional of correlators requires the choice of a regularization scheme. This
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leaves room for anomalous effects, even though the singleton theory is free, which may serve
the purpose of selecting critical field content and number of supersymmetries. In other words,
consistency of the right hand side of (4.9) in the case of a free SCFT in d dimensions with finite
sources for composite operators should be about as restrictive as consistency of an interacting
SCFT in d dimensions. Moreover, the fact that a successful definition of (4.9) in principle would
give rise to a consistent bulk theory including quantum gravity 8 suggests that only the special
supersymmetric singletons corresponding to limits of string/M theory will be viable in the above
sense. Thus we shall assume that ultimately (4.9) makes sense only for free SCFTs in d ≤ 6
with less than or equal to 16 supersymmetries 9. We address these issues further below when
we discuss the subleading 1/N corrections to the definition of the vacuum used in the correlator
on the right hand side of (4.9).

The generating functional makes sense only as an asymptotic expansion in 1/N in which a given
order is a formal power series expansion in φ(p)r, which has a finite radius of convergence by the
combinatorial counting rules for double line diagrams of fixed topology. From the normalization
(4.4) and assuming that < O >= 0 it follows that as far as the 1/N counting goes the effective
action has the form

Γeff [φ] = φ2 +
1

N
f3

(
1

N2

)
φ3 +

1

N2
f4

(
1

N2

)
φ4 + · · · ,

fn

(
1

N2

)
∼ 1 +O

(
1

N2

)
. (4.10)

The singleton field theory determines Γeff [Φ(p)r] up to non-linear field redefinitions of the type

φ→ φ+ 1
N φ

2 + · · ·. After rescaling the fields as

φ = NΦ , (4.11)

we define the classical action as follows

Γeff [Φ] = Γcl[Φ] +O(1/N2) , (4.12)

Γcl[Φ] =
N2

Rd−1

∫
dd+1xL(Φ, R∂Φ, (R∂)2Φ, . . .) + boundary term , (4.13)

8As the basic mechanism behind holography is general covariance, this raises the question whether holography
exhibits any new features as general covariance is extended by HS symmetries. To analyze this, we presumably
need to refine our present, mainly algebraic, understanding of HS symmetries by formulating these in a more
geometric language, perhaps by extending the set of spacetime coordinates as to realize HS gauge transformations
as extended reparametrizations [11].

9Massless HS fields admit background independent self-interactions in D = 4, and it is most likely that
this is the case for all D (though interactions in D > 7 bring in symplectic spacetime symmetries). However,
the theories of massless HS fields in higher dimensions are presumably not consistent truncations of quantum
consistent theories.
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where R is the AdS radius. We can now state the properties of the HS gauge theories as follows.
They possess:

a) a set of one-particle states forming HS multiplets

b) a corresponding set of ‘vertex operators’ of a free CFTd;

c) a fundamental mass scale, 1/R where R is the AdS radius, and a fundamental expansion
parameter, lPl/R where the Planck length lPl determines the normalization of the effective
AdS action to be 10

1

ld−1
Pl

=
N ′

Rd−1
. (4.14)

Given these facts we would like to determine the effective action Γeff [φ(p)r] from a set of bulk
interactions, without any direct reference to the boundary singleton. The basic issue is whether
the interactions can be derived from a string or membrane sigma model, that can be coupled
to the HS background fields. The mass-scale of the HS spectrum is set by the AdS radius R,
which is suggestive of a sigma-model with a fixed critical tension of order 1 in units where the
AdS radius R = 1, as we shall discuss further in Section 5,6 and 7.

Due to the absence of mass-gap it is not possible to separate the massless fields, φ(2)r, from the
massive AdS fields, φ(p)r, p > 2, by taking a low energy limit. In a local process in AdS with
energies of the order E ∼ n/R, n >> 1, the massive modes with E0 < n/R behave essentially
as the KK modes which arise in an AdS compactification of string/M theory. Thus the only
reasonable possibility in which the massless modes can be separated from the massive modes
in a HS theory is by consistent truncation to the massless sector 11, which is similar to what
happens in the (maximally supersymmetric) sphere compactifications of Type IIB and eleven-
dimensional supergravities. There are examples, however, of compact manifolds, such as T 1,1,
where the higher dimensional supergravity theory does not admit a consistent truncation despite
the fact that there does exist a lower-dimensional gauged supergravity. 12

Thus we propose that the HS gauge theories in D = 4, 5, 7 with gauge groups hs(8|4), hs(2, 2|4)
and hs(8∗|4) admit consistent truncation down to the corresponding massless theories, which we
described in Section 2. This consistent truncation can be directly tested by verifying that the
massless bulk theory reproduces exactly the correlators of the corresponding bilinear operators
in the singleton theory. This is a nontrivial test since nothing is known about higher-dimensional
covariant description of the HS theory so far.

Consistent truncation of the full HS gauge theory to its massless sector requires that there are no
terms in the effective bulk action of the form

∫
φ(p)φ(2) · · ·φ(2) for p ≥ 3. Let us show this in the

10In the case of SU(N) valued singletons N ′ = N2 − 1, which means that the Planck constant in the bulk is
given by h̄ = 1/N2. The 1/N corrections to the bulk theory are therefore weighted by positive integer powers of
the Planck’s constant.

11We thank L. Rastelli for helpful discussions on this point.
12We thank C. Pope for pointing this to us.
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case of scalar bulk fields. Then the corresponding singleton correlators are non-zero provided
that ∆(p) ≤ n∆(2) where n ≥ 2 is the number of massless fields. The case ∆(p) = n∆(2) is
called an extremal correlator. The extremality condition implies p = 2n and in that case it is
straightforward to use free field contraction rules to show that

< O(p)(x)O(2)(x1) · · · O(2)(xn) >=
n∏

i=1

(∆(x− xi))
2 , (4.15)

where ∆(x) = |x|−d+2 is the singleton propagator. Consider, on the other hand, the bulk integral

I =

∫
dd+1z

zd+1
0

K∆(p)
(z, x)K∆(2)

(z, x1) · · ·K∆(2)
(z, xn) , (4.16)

where K∆(z, xi) is the standard bulk-to-boundary propagator. K∆(z, xi) ∼ zd−∆
0 δd(z − xi) for

small z0, and as z → xi,

I ∼
∫
dz0
z0
z
−∆+n∆(2)

0

n∏

i=1

(∆(x− xi))
2 . (4.17)

Thus, in the extremal case this integral diverges logarithmically, and the residue of the pole,
treating ∆ as a variable, has the same structure as the extremal correlation function. By
assumption, the anti-holographic dual should, however, give rise to finite amplitudes. The
resolution is that a term which diverges logarithmically is scale-invariant, which means that it can
be represented equivalently by a boundary term which is finite. Thus extremal correlators give
rise to couplings that are boundary terms and therefore they do not upset consistent truncation.

A similar argument applies to the near-extremal case, when d − 2 < ∆ < n∆(2). Here the
integral I is finite, but the dependence on the x’s is not of the same form as the singleton
CFT correlator. There are exchange diagrams, though, with the correct structure of the x-
dependence [5]. Thus the near-extremal correlators must be represented anti-holographically in
terms of exchange diagrams, and there cannot be any contact term in the bulk action that can
upset consistent truncation we are examining.

The above evidence for consistent truncation is similar to the one given for ordinary Type IIB
supergravity AdS ×S5 [25, 26] and eleven dimensional supergravity on AdS4/7 ×S7/4 [27]. The
main difference is that whereas the arguments in SUGRA only holds for 1/2 BPS states, the
arguments given here for HS theory hold for more general operators since the holographic dual
is by assumption a singleton.

To provide further evidence for consistent truncation, we examine the correlator of four massless
scalar operators Oi = O(2)(xi), i = 1, ..., 4. Using free field theory contraction rules it can be
written on manifestly crossing symmetric form as

< O1O2O3O4 > = η12η34 + η14η23 + η13η24+ < O1O2O3O4 >conn , (4.18)
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< O1O2O3O4 >conn = A
(s,t)
1234 +A

(t,u)
1324 +A

(u,s)
1243 , (4.19)

where

A
(x,y)
ijkl =<: OiOk : : OjOl :>conn (4.20)

and x and y denote in which of the s-, t- and u-channels the quantity A
(x,y)
ijkl has singularities.

In the limit x12, x34 → 0, the correlator can be expanded in the s-channel by using the OPE

O1O2 = η12 + C12
(2)rO(2)r(x2) + C12

(4)rO(4)r(x2) + C12
(2,2)rO(2,2)r(x2) , (4.21)

where we recall that O(2)r denotes the set of all primary bilinear single-trace operators labeled
by an index r, and O(4)r and O(2,2)r are as given in (4.5). The resulting s-channel expansion is
given by

< O1O2O3O4 >s−ch= η12η34 + C12
(2)rC34,(2)r+ < O1O2O3O4 >s−ch,finite , (4.22)

where CRST = CRS
UηUT =< OROSOT >, and < O1O2O3O4 >s−ch,finite, which is finite in the

s-channel, is given by

< O1O2O3O4 >s−ch,finite = <: O1O2 : : O3O4 :>= η13η24 + η14η23 +A
(t,u)
1324 , (4.23)

A
(t,u)
1324 = C12

(4)rC34,(4)r + C12
(2,2)rC34,(2,2)r . (4.24)

The structure of (4.24) appears to be problematic for consistent truncation, and cannot be
ignored in the large N limit as follows from

C(2)(2)
(2)r ∼ 1

N , C(2)(2)
(4)r ∼ 1

N , C(2)(2)
(2,2)r ∼ 1 . (4.25)

It is possible, however, to write (4.24) in a more tractable form as a manifestly crossing symmetric
sum of terms involving only exchange of bilinear operators. To this end we first note that the
crossing symmetry of the singleton theory implies that the complete s-channel expansion (4.22)
is equal in the sense of analytical continuation to the complete t- and u-channel expansions in
the limits x14, x23 → 0 or x13, x24 → 0, respectively. Thus (4.22) must contain contributions
that are singular in the t- and u-channels. From the form of (4.19) we therefore deduce that the
singular part of (4.22) actually must consist of two separate contributions, one which becomes
singular in the t-channel and another one which becomes singular in the u-channel. We also
see that the problematic term in (4.22) must have singularities in both the t- and u-channels,
which by crossing symmetry should describe massless exchanges. In fact, from (4.21) and free
field theory contraction rules it follows that
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A
(s,t)
1234 ≡ <: O1O3 : : O2O4 :>conn= 1

2C12
(2)rC34,(2)r + 1

2C32
(2)rC14,(2)r , (4.26)

A
(t,u)
1324 ≡ <: O1O2 : : O3O4 :>conn= 1

2C13
(2)rC24,(2)r + 1

2C14
(2)rC23,(2)r , (4.27)

A
(u,s)
1243 ≡ <: O1O4 : : O2O3 :>conn= 1

2C12
(2)rC43,(2)r + 1

2C13
(2)rC42,(2)r . (4.28)

To compute the first term in (4.26) we use (4.21) to expand the single contraction connecting O1

to O2 in terms of C12
(2)rO(2)r and similarly for 3 and 4. The remaining two contractions that

contribute to the connected part give rise to 1
2ηrs, where the factor of 1

2 arises due to the normal
ordering prescription which forbids contractions connecting 1 with 2 and 3 with 4, respectively.
The second term in (4.26) contains the single contractions connecting 1 to 4 and 3 to 2. The
relations (4.27)and (4.28) are obtained analogously. Eqs. (4.26)and (4.28) imply that the finite
contribution (4.24) can be rewritten in terms of partial wave expansions involving only exchange
of bilinear operators in the crossed channels. Thus the complete four-point correlator can be
written in a manifestly crossing symmetric form involving only massless partial waves:

< O1O2O3O4 > = η12η34 + η23η14 + η24η13+ < O1O2O3O4 >conn , (4.29)

< O1O2O3O4 >conn = C12
(2)sC34,(2)s + C23

(2)tC14,(2)t + C13
(2)uC42,(2)u . (4.30)

This generalizes so that any correlator of bilinear operators can be written as a manifestly
channel duality invariant sum of conformal blocks involving only exchange of bilinear operators.

The test of holography requires that the result (4.30) is consistent with that obtained from the
corresponding Witten diagram that uses the classical action of the HS gauge theory truncated
to its massless sector. Now it has been shown in [68] that a Witten diagram with four external
scalars and exchange of an internal scalar φ equals the sum of the conformal block with exchange
of the scalar operator O coupling to φ plus terms which have the same structure as, but do not
exactly agree with, the conformal blocks with exchange of operators corresponding to the two-
particle states formed out of the external scalar states. In [68] it has also been shown that a
Witten contact diagram with four external scalars has the form of two-particle exchange.

Thus (4.30) has the form required by consistent truncation, provided that the quartic bulk
interactions in the cases of interest lead to cancellation of the parts in bulk four-point amplitudes
that have the structure of conformal blocks with massless two-particle state exchange. The
remaining terms, which come from the Witten diagrams with exchange of massless bulk fields,
can then be written in manifestly s-t-u channel duality invariant form as conformal blocks with
exchange of the corresponding bilinear operators, as in (4.30). Thus, the bulk side of the story
remains to be established. It would be interesting to examine to what extent the requirement
that two-particle partial waves must cancel determines the structure of higher order interactions
in the action for massless fields. We shall return to this point below in discussing the interaction
ambiguity in the massless sector.
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Having gathered evidence for the consistent truncation, let us now proceed to explore some of
its consequences. In the above discussion, we have implicitly made the assumption that the
correlators in the free singleton theory are given by ordinary vacuum expectation values on a
conformal plane. Let us assume that this is indeed correct in the large N limit. The generating
functional for correlators of bilinear operators is then given for large N by a one-loop functional
determinant, i.e. the connected n-point correlators are planar diagrams that scale like N−(n−2).
Thus, the effective bulk action for the massless fields is ‘classical’ and takes the form

Γcl[Φ(2)r ] =
N2

Rd−1

∫
dd+1xL(Φ(2)r, R∂Φ(2)r , (R∂)2Φ(2)r, . . .) + boundary terms , (4.31)

where R is the AdS radius. The Lagrangian contains higher derivative interactions and the
quadratic part is ghost and tachyon free. It is important to note that the quantity R∇ is not
small in an expansion around AdS.

By construction, both Γcl[Φ(2)r], and the full classical action Γcl[Φ(p)r] defined in (4.12), re-
produce the correlators of bilinear operators holographically to the leading orders in the 1/N
expansion, i.e. the extrema of the two actions are equal provided the massive modes Φ(p)r, p ≥ 3
are set to zero at the boundary of AdS. The consistent truncation can now be phrased as the
stronger condition

Γcl[Φ(2)r] = Γeff [Φ(p)r,Φ(3) = 0, . . .] . (4.32)

This offers the following possibility to test consistent truncation directly. Based on the results
in D = 4, we expect that HS gauge symmetry together with the requirement of manifest local
Lorentz symmetry determines a family of actions

S[φ(2)r ;V] (4.33)

for massless fields where V represents a set of arbitrary parameters. As explained in Section 6.2,
and in more detail in [19], there exist an interaction ambiguity in the 4D HS gauge theory which
involves the introduction of an odd function V(x) =

∑∞
n=1 b2n+1x

2n+1. Already the simplest
choice V(x) = b1x gives rise to a highly nontrivial model with a structure of the type indicated
in (4.31). The n’th order term in V(x) results in higher order derivative corrections starting
at order 2n + 2 in the Lagrangian. Thus, in D = 4 the consistent truncation (4.32) implies a
specific choice V(x) = VΓ(x) such that

Γcl[φ(2)r] = S[φ(2)r;VΓ] . (4.34)

Thus, consistent truncation means that there exists a set of parameters VΓ for which the ex-
tremum of S[φ(2)r ;VΓ] corresponds to the generating functional of correlators of bilinear opera-
tors in the singleton theory. A perturbative scheme for obtaining the interactions in D = 4 to
any desired order is given in [18, 19], and described in Section 6 for the case of quadratic terms
in the field equations. We are still lacking the description of the full interactions for massless
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fields in D > 4, though we expect that the basic building blocks are of the kind described in
[9, 12, 10, 20].

The supersymmetric HS gauge theories in D = 4, 5, 7 can be truncated consistently to a minimal
bosonic HS theory with massless and massive fields. Moreover the massless minimal bosonic
theory is a consistent truncation of the massless supersymmetric HS theory. Hence, if the
truncation of the massive modes is consistent in the supersymmetric theory then this must also
be the case in the minimal bosonic theory. In particular, in D = 4 the interaction ambiguities
in the supersymmetric theory and the minimal bosonic theory are parametrized by the same
function V.

Let us now examine more closely the qualitative behavior of the 1/N dependence of some sin-
gleton correlators involving higher than second order traces of singletons. For example, the con-
nected part of the correlator of four cubic scalar single-trace operators, O(3) ∼ 1

N3/2 : tr(W 3) :
(these operators do not mix with any other operators) contains both planar and non-planar
double-line graphs which scale like 1/N2 and 1/N4, respectively, in the large N limit. Another
interesting example is the correlator of three O(4) operators, which contain 1/N and 1/N3 con-
tributions. In the supersymmetric case, one can arrange the cyclic orders of R-symmetry indices
carried by the singletons to cancel the leading 1/N contribution, and thus the corresponding
cubic coupling in the effective action [22]. Hence, the full singleton theory encodes information
about a nontrivial 1/N expansion of the anti-holographic dual.

As we have already mentioned, we think of these corrections as being generated by a quantum
theory in the bulk which is generated by a string theory or some other sigma model which can
be coupled to the massless HS fields. From this point of view, it would be natural to have
subleading 1/N corrections also to the interactions in the massless sector, so that (4.31) would
only be valid for large N . We would also expect corrections to Γeff [Φ(p)r] which violate the
consistent truncation (4.32). These effects do not arise, however, if we treat the correlators
in the singleton theory as ordinary vacuum expectation values of operators inserted on the
conformal plane.

We conclude this section by speculating on possible subleading in 1/N corrections to the free
singleton correlators on the right hand side of (4.9). To this end, let us assume that the free
singleton theory in question is an actual limit of a CFT describing the low energy dynamics of
open string modes in string theory or ‘open membrane’ modes in M theory. For concreteness, let
us consider the case of the SU(N) invariant singleton theory that arises as a limit of the d = 4,
N = 4 SYM theory. For finite open string length the prescription for computing open string
theory amplitudes is to attach open string vertex operators to open string boundaries and sum
over all open string fluctuations. This includes virtual processes including formation of closed
string loops. A closed string loop can be created by inserting a ‘sewing operator’

Rs =
∑

s

Vs(z)V̄
s(0) (4.35)

on the string worldsheet where the sum runs over a complete set of physical closed string states.
In taking the low energy limit leading to the conformal SYM theory, the physical effect of the
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sewing operation is included into the 1/N expansion of the SYM theory with finite g2
YM. Thus

the limit g2
YM → 0 is not smooth in the sense that the closed string sewing operations, which are

present for any finite g2
YM are absent for g2

YM = 0, simply because there are no virtual processes
in the singleton theory that leads to the addition of internal ‘handles’ in the 1/N expansion.
This is reminiscent of the fact that the deformation of the free singleton theory corresponding
to switching on finite g2

YM cannot be described directly at the level of the composite operators
built from the singleton superfield, which contains the abelian field strength but not any explicit
gauge potential. In fact, this requires that we introduce gauge couplings by hand, after which
g2
YM can be shifted to any finite value by marginal deformations.

The above arguments suggest that we modify the definition of the generating functional in the
singleton theory by working with full singleton correlators given schematically by

< O1 · · · On >full =
∑

k

1

k!
< RkO1 · · · On > , (4.36)

where the (super)conformally invariant singleton sewing operator R is defined as the sum over
a complete set single trace operators describing a virtual closed string process:

R =
∑

p

∫
ddxddy

|x− y|2d
ηrs(x− y)O(p)r(x)O(p)s(y) . (4.37)

Since each power of R adds an extra power of 1/N2, the above definition does not affect the
classical limit though it yields the desired nontrivial subleading 1/N corrections to the correla-
tors. The insertion of R formally corresponds to taking a trace, which in turn implies that the
correlation function becomes periodic along a cycle on the conformal plane. In string theory,
Rs acts similarly, and has the geometric effect of adding a handle to the two-dimensional world-
sheet. This suggests that R insertions describe large fluctuations of the D3 brane worldvolume
in the singleton limit. As in the closed string theory, the consistency of the sewing operation in
the free singleton theory may lead to restrictions on the spacetime superdimension.

In summary, we propose to use HS symmetries in diverse dimensions to determine actions (or
field equations) for massless HS multiplets up to certain well-defined interaction ambiguities
and then to compare the resulting Witten amplitudes with correlators of bilinear operators
in corresponding large N singleton theories. The next step in this program is to explain the
consistent singleton/HS correspondences as limits of string and M theories, which in particular
require the identifications of possible schemes for breaking HS symmetries.

We emphasize that the tests of CFT/AdS in the HS regime involve a free CFT on the boundary,
unlike the tests in the supergravity regime where the boundary CFT is strongly coupled. This
is possible due to the proposed consistent truncation and the fact that there still remains the
expansion parameter 1/N .

It is not clear exactly how the state of affairs will change once the HS symmetries are broken.
In Section 3 we have identified candidate Higgs multiplets in d = 3, 4. Presumably this can be
done also in d = 6 provided that we develop the proper mathematical language for describing
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the interactions on the M5 brane. In general, we expect that the Higgsing upsets the consistent
truncation to the massless sector alone. Moreover, it is not obvious if there exists a generalized
consistent truncation scheme that retains the massless, Higgs and other relevant massive fields.
In any event, it will be interesting to see whether HS field theoretic methods can be used to
describe the Higgsing or one has to resort to some more basic definition of the bulk interactions,
based on some sigma model. We believe it is too early to make any conclusive remarks on this,
though it seems possible to describe couplings between massless HS fields and Higgs fields, which
should form HS multiplets fitting into master fields of the type discussed in Section 2.

In Sections 5-7 we shall discuss these issues in more detail, and case by case for the theories
described in Section 2.

5 Type IIB on AdS5 × S5 and 5D Higher Spin Gauge Theory

According to the strong version of the Maldacena conjecture [1, 4, 5] d = 4, N = 4 SYM theory
with SU(N) gauge group, gauge coupling g2

YM and ’t Hooft coupling λ = Ng2
YM is equivalent

to Type IIB string theory on AdS5×S5 of radius R with string coupling gs and string length ls
given by

gs = f1(λ)g2
YM , f1(λ) ∼ 1 for λ >> 1 ,

ls = f2(λ)R , f2(λ) ∼ λ−1/4 for λ >> 1 . (5.1)

For large λ, these relations are deduced by interpolating between the AdS5 × S5 vacuum with
radius R and dilaton eφ = gs, and the ten-dimensional Minkowski vacuum, using the classical
D3-brane solution with harmonic function H(r) = 1 + 4πNgsl

4
sr

−4. The functions f1,2(λ) ac-
count for possible string corrections to the interpolating region, where only 16 supersymmetries
are preserved. The Type IIB string/4d SYM correspondence is an AdS/CFT correspondence
whereby the 4d SYM theory is identified as the holographic dual of the Type IIB closed string
theory. The closed string theory is based on a non-linear sigma-model with coupling constant
ls/R. A (dimensionless) closed string amplitude A(str) has the doubly asymptotic expansion

A(str) =
∞∑

g=0

g2g−2
s A(str)

g (ls/R) , (5.2)

where the amplitude A
(str)
g (ls/R), which is obtained from worldsheet perturbation theory on a

Riemann surfaces of fixed genus g, is given by an asymptotic expansion in ls/R. The 5D Planck
length is given by

1

l3Pl

=
N2

R3
. (5.3)
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Thus the perturbative string expansion in AdS5 × S5 makes sense provided that

N >> 1 , gs << 1 , ls << R . (5.4)

The ’t Hooft expansion of the corresponding correlation function A(SYM) in the SYM theory
reads

A(SYM) =
∞∑

g=0

N2−2gA(SYM)
g (λ) , (5.5)

where the amplitude A
(SYM)
g (λ) is obtained from double-line Feynman graphs with fixed topology

and is given by an analytical expansion in λ. Hence the conjectured correspondence A(str) =
A(SYM) can be examined order-by-order in string loop expansion and SYM 1/N expansion,

leading to a set of strong/weak coupling dualities between A
(str)
g (ls/R) and A

(SYM)
g (λ).

As discussed earlier, it has been proposed that the HS gauge theory emerges in the description
of the Type IIB string theory on AdS5 × S5 in the limit [22, 23, 9, 21]

gs → 0 , ls →∞ ; N >> 1, R fixed . (5.6)

In this limit the dual free SYM theory is described by an SU(N) valued d = 4, N = 4 SYM
singleton. As discussed in the previous section, the bulk physics is conjectured to be an HS
gauge theory in 5D which admits a consistent truncation to an effective action Γcl[Φ(2)r] for
massless fields. The HS gauge group hs(2, 2|4) and its massless gauge theory has been described
in [10]. We emphasize that there should be direct agreement between the individual terms in
the 1/N expansions of massless gauge theory amplitudes and the correlators of bilinear currents
in the free CFT as described in (4.34) (without having to first obtain strong coupling results).

There still remains the task of constructing the full interacting HS gauge theory in 5D, though
cubic interactions for massless spin s = 2, 4, 6, ... fields have already been constructed in [12].
These form a subset of the cubic interactions of the minimal bosonic truncation Sbos of S[φ(2);V]
provided that it is consistent to set the scalar field φ in Sbos equal to zero at the cubic level.
This requirement means that Sbos must not have any cubic interactions that are linear in φ and
quadratic in spin s ≥ 2 fields. On the other hand, from the known stress-energy tensor OPEs
(see, for example, eq. (4.58) in [7]), it follows that the effective action Γeff [φ(2)] should give rise
to a non-zero cubic graviton-graviton-scalar amplitude. Thus the scalar can only be consistently
truncated at the cubic level if this amplitude is represented by a boundary term in Γeff [φ(2)],
i.e. if the correlator in question is extremal or near-extremal. Whether or not this is the case
remains to be seen.

We next discuss breaking of the HS symmetry. The level ℓ = 0 supergravity multiplet of the
massless spectrum of the hs(2, 2|4) theory contains a dilaton, ϕ which is an SU(4) singlet with
energy ∆ = 4 and AdS mass m2 = 0. Since m2 = 0 it is consistent to give ϕ a VEV in the
linearized theory, and we shall assume that this is possible also in the full HS gauge theory. This
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corresponds to switching on a finite g2
YM in the 4d SYM theory. As result the 4d supercovariant

derivative Di
α becomes also gauge covariant. This does not upset the stress-energy conservation

law (3.17), as it is first order in the superderivative, while it breaks the Konishi multiplet
conservation law (3.19), which is second order in derivatives. Using the relation

DijW kl = −2gYM[W k(i,W j)l] , (5.7)

which follows from the superspace formulation of the N = 4 SYM system in 4d, one finds that
the anomalous conservation law for the Konishi current is given by (see, for example, [61, 65]):

DijJ =
4gYM

N
trW k(iW j)lWkl ≡

√
λΣij . (5.8)

The operator Σij belongs to the massive Higgs multiplet with smax = 7
2 discussed in Section

3. Thus, for finite g2
YM the anomalous conservation law (5.8) describes how Σij is ‘eaten’ by

the massless Konishi operator J to form a massive operator which belongs to the long massive
Konishi multiplet with smax = 4 containing 216 states. The coupling between the corresponding
bulk fields, which are described on the boundary by prepotentials V and Vij, and the massless
Konishi operator J and its Higgs descendant Σij is described by

Sboundary =

∫
d4xd16θ

(
JV + ΣijVij

)
. (5.9)

For finite g2
YM, the action Sboundary is invariant under modified gauge transformations involving

a Stückelberg shift transformation of the massive Higgs field,

δV = DijΛij , δVij = −
√
λΛij . (5.10)

We thus expect that for finite < ϕ >= gs the effective action Γeff [φ(p)r] contains kinetic terms

of the schematic form |dφ(2)|2 + |dφ(3) +
√
λφ(2)|2, describing a single massive gauge field with

non-critical mass [21]

m2 −m2
crit ∼

λ

R2
, (5.11)

where (D2 −m2
crit)φ = 0 for an AdS massless field φ.

As discussed in Section 3, the massive spectrum also contains 1/2 BPS massive states that
have the interpretation of KK modes built on the massless HS multiplets. We shall assume
that the Higgs mechanism can be described at the level of KK towers as well, and that the
remaining massive HS multiplets can be organized into massive HS multiplets and their KK
towers. This picture is suggestive of a covariant theory in D = 10 with ‘critical’ length scale
l10 and coupling constant g = 1/N which admits AdS5 × S5 with radius R = l10 as a vacuum.
Since HS interactions in AdS spaces blow up in the flat limit for finite g, we do not expect the
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10D HS theory to admit 10D Minkowski space as a vacuum for finite g > 0. For g = 0 we get
a quadratic Lagrangian, however, which is second order in derivatives, and as it contains no
positive powers of R, it does admit a flat space limit. Thus, the tensionless limit of the Type
IIB string theory in 10D flat spacetime is trivial.

Higgsing of the critical theory leads to a non-critical theory with l10 < R which for l10 << R
should be identified with Type IIB string theory in AdS5 ×S5 with ls ∼ l10. For small ls/R the
spectrum of string states with AdS energy (measured in units of 1/R) satisfying the condition
E << R2/l2s , and spin s << R2/l2s , can be obtained by KK reducing the 10D Minkowski space
spectrum on S5 by means of group theoretical methods (at the classical level these states are
described by ‘short’ strings with energy E = Rl/l2s and length l << R). In particular, for fixed
SO(4) × SO(6) highest weight, the worldsheet Hamiltonian has a ground state which is the
‘lightest’ state carrying that highest weight. The lightest states states correspond to the leading
Regge trajectory in 10D Minkowski space and form supermultiplets in both 10D Minkowski
space and in AdS5 × S5 with smax = 2, 4, 6, ... In 10D Minkowski space these arise at closed
string level ℓ = 1

2smax−1 (see, for example, [69]), where all multiplets are massive except for level
ℓ = 0 where the supergravity multiplet resides. For example, the lightest smax = 4 multiplet is
the massive Konishi multiplet which resides at level ℓ = 1.

As ls/R varies from ls/R << 1 to ls/R >> 1 the different Regge trajectories do not mix [6]
even though the five-form flux and other terms of order 1 in units of R will become comparable
to the mass-term. This follows from the fact that in an exact CFT that admits a perturbative
formulation, such as the worldsheet theory and the boundary SYM theory, there cannot be
mixing between two operators that do not mix in the free theory. Note that such an admixture
would require the introduction of a mass-parameter in the perturbative formulation, which is
not compatible with conformal invariance.

Indeed, there is an exact agreement between the supermultiplet structures of the leading Regge
trajectory for large string tension and the set of massless states of the critical hs(2, 2|4) theory,
such that the level ℓ multiplet on the leading Regge trajectory flows, after reversed Higgsing, to
the level ℓ multiplet of the massless spectrum given in Table 2.

We have already argued in Section 4 and 5 that there should exist a consistent truncation of
the full hs(2, 2|4) theory down to its massless sector. There is no analogous truncation of the
non-critical string theory down to the leading Regge trajectory because the lightest states of
level ℓ ≥ 1 consist of massless states plus Higgs states. The Higgs states belong to the massive
sector of the hs(2, 2|4) theory and therefore break the consistent truncation.

Since the HS symmetries are broken spontaneously it would be interesting to construct a HS
field theoretic description in AdS of the couplings between the massless fields and the Higgs
fields. Clearly the master field formalism described in Section 2 should be useful in doing this,
though one presumably needs to invoke some additional information, perhaps from the structure
of the factorization of the SYM correlation functions for λ << 1. Thus we should try to find
a HS action S(Φ(2)r,Hr;V,M) for massless fields Φ(2)r and Higgs fields Hr, where V are the
parameters describing the gauge interactions, as will be discussed in Section 6.2, and M are
the parameters describing the coupling of the gauge multiplet to the massive Higgs fields. We
can then study the issue of whether the ‘weak/weak’ version of the AdS/CFT correspondence,
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which is valid for the massless sector at λ = 0, can be generalized to include the leading Regge
trajectory for λ > 0.

The connection between the leading Regge trajectory at small ls and the bilinear HS currents
in the SYM theory at small λ has also been made by the authors of [34] who give ‘long string’
solutions to the worldsheet sigma model in the limit ls/R << 1. These solutions describe
states on the the leading Regge trajectory with spins s >> R2/l2s >> 1 and AdS energies
E ∼ s+R2/l2s log(sl2s/R

2) ∼ s, which couple to bilinear HS currents in the SYM theory. These
operators arise in the OPE of Wilson lines making up the boundaries of worldsheets of infinitely
long strings on the leading Regge trajectory. The leading Regge trajectory also contains ‘short
strings’ which have spins s << R2/l2s and energies E ∼ √sR/ls. Since E/s ∼ 1 for long
strings, and E/s >> 1 for short strings, the long ones cannot decay into large number of
short ones. Furthermore, in any Regge trajectory there should be long string with large spins
and asymptotically small anomalous dimensions, suggesting that string interactions in the limit
s >> R2/l2s >> 1 have a consistent description in terms of long strings with E ∼ s. Upon
increasing ls/R, we expect a short string state with fixed s to become long for large enough
ls/R. In the limit in which λ → 0 on the SYM side, there should exist a hs(2, 2|4) invariant
worldsheet sigma model describing closed string interactions in the bulk corresponding to the
free SYM theory.

From the above discussions we are led to propose that there is a cross-over from large to small
λ in the expressions for the AdS string length and string coupling in terms of the gauge theory
quantities given in (5.1), such that

f1(λ) ∼ 1/λ , f2(λ) ∼ 1 +O(λ) for λ << 1 . (5.12)

Then ls/R ∼ 1 and gs ∼ 1/N as λ → 0. This suggests that the hs(2, 2|4) higher spin gauge
theory is described by a string theory which has a left-moving and right-moving PSU(2, 2|4) KM
algebra with critical level k = kcrit ∼ 1 which admits a singleton representation and an affine
hs(2, 2|4) extension. To be more precise, the critical value for the level should be such that there
exists a maximally reducible Verma module based on the singleton which contains a maximal
number of null-states. In fact, it has been shown [70] that the affine SO(3, 2) ≃ Sp(4) algebra
admits singleton-like representations for k = 5/2. It would be interesting to generalize this
result to SO(D − 1, 2) and supersymmetric cases. For critical level the closed string spectrum
then contains physical massless HS states states formed by multiplying a left-moving and a
right-moving singleton. The algebra hs(2, 2|4) can be identified with the following coset

hs(2, 2|4) = Env(PSU(2, 2|4))/R , (5.13)

where R is a certain ideal generated by elements in Env(PSU(2, 2|4)) which vanish identically
when the PSU(2, 2|4) generators are realized in terms of a single super-oscillator as described
in Section 2.1. For k = kcrit this construction should lift to the affine case. The symmetry
enhancement from AdS group to HS algebra for critical level, i.e. critical radius in units of fixed
string length, would be similar in spirit to the SU(2) enhancement occurring at the self-dual
radius for string theory on a circle.
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The possibility to realize massless higher spins directly in the bulk as products of left-moving
and right-moving singleton representations at critical KM level is rather appealing. Perhaps the
close resemblance between the HS gauge theories in D = 4, 5, 7 is an indication of that singletons
play a similar role on critical membranes in D = 4, 7.

6 M Theory on AdS4 × S7 and 4D Higher Spin Gauge Theory

6.1 Holography

Already in [71] it was observed that the OSp(8|4) singleton may play a role in the description
of the supermembrane on AdS4 × S7. In [40] the quantization of the d = 3, N = 8 singleton
theory corresponding to a single membrane was shown to yield the infinite set of massless HS
fields contained in the symmetric tensor product of two singleton weight spaces [38]. Moreover,
it was conjectured in [40] that these massless states, as well as the massive states contained
in the higher order tensor products, arise in the supermembrane theory 13. Subsequently, the
group theoretical HS/singleton connection was utilized in [35] and the fully interacting massless
HS field equations in D = 4 were constructed in [14]. In the light of [1], the 4D HS/singleton
connection found in [40] was revived as an actual AdS/CFT correspondence in [16, 17].

Importantly, the role of large N discussed in Section 4 was not emphasized in these early
formulations of the correspondence. Thus we need to refine the formulation of the correspondence
by identifying the appropriate dependence on N of the free OSp(8|4) singleton.

Let us first recall the Maldacena conjecture [1] on the correspondence between M theory on
AdS4 × S7 with N units of 7-form flux on S7 and the low energy dynamics of N parallel M2
branes in flat eleven-dimensional spacetime, which is described by a strongly coupled d = 3,
N = 8 CFT with SO(8)R symmetry [1, 4]. This theory defines a nontrivial IR fixed point of
d = 3, N = 8 SYM theory with SU(N) gauge group. The resulting SO(7)R-invariant flow
has an anti-holographic description as a D2 brane near-horizon geometry, which is reliable in
the UV where the dilaton is small. In the IR the dilaton blows up and the IIA solution lifts
to the SO(8)R invariant AdS4 × S7 near horizon region of a stack of N coinciding M2 branes.
The resulting anti-holographic description of the strongly coupled SCFT is conjectured to be M
theory on AdS4 × S7. For large N the membrane tension scales like

TM2 =
1

l3M2

∼
√
N

R3
, (6.1)

where R is the AdS radius, and the 4D Planck length is given by

1

l2Pl

=
N3/2

R2
. (6.2)

13To describe the S7 compactified M theory all higher tensor products are needed. The resulting theory lives
on the double cover of AdS4 times S7. It is consistent to truncate the theory to only even powers of the singleton.
This corresponds to M theory on the single cover of AdS4 times S7/Z2 ≃ RP

7.

41



Hence, for large N ,

R >> lM2 >> lPl . (6.3)

For AdS energies E obeying 1 << E << R/lM2 the low-energy dynamics of the anti-holographic
dual is conjectured [1] to be described by D = 4, N = 8 gauged supergravity. In particular, it

follows from the normalization (6.2) that the strongly coupled SCFT has ∼ N
3
2 massless degrees

of freedom for large N [72, 73].

In the UV limit of the D2 brane geometry the dilaton eφ vanishes and the 10D gravitational
curvature diverges (which one might interpret as the appearance of the new massless HS states
that we shall define below). The D2 brane field theory becomes a SU(N) invariant theory of free
3d super Maxwell multiplets. Here we note that the Yang-Mills coupling in the dual SYM theory
on the stack of N coinciding D2-branes, g2

YM = gs/ls, is held fixed in taking the near-horizon
limit. This coupling also coincides with the ‘local’ Yang-Mills coupling on a stack of probe D2-
branes placed at energy scale u in the near-horizon region, g2

YM(u) ≡ eφ(u)
√
−g00(u)/l2s = g2

YM,
as required for interpreting the stack of probe branes as describing a Higgs branch of the dual
SYM theory. Thus both the dilaton and running string length vanishes in the UV limit, which is
why we can trust the free SU(N) field theory even though the gravitational curvature diverges.

Dualizing the vector fields and using g2
YM to rescale the fields, we obtain a free SU(N) valued

OSp(8|4) singleton Φi ∈ 8v described by the SO(8)R invariant Lagrangian 14

∫
d3x tr

(
(∂Φi)2 + fermions

)
. (6.4)

Conversely, assuming that this Lagrangian describes a fixed point on the membrane we can
break SO(8)R → SO(7)R by taking the M theory to have a finite radius R11 and take Φ8 to be
periodic:

Φ8 ∼ Φ8 + g , (6.5)

where the radius g is a constant with dimension 1/2 which we identify as g = R11/(l11)
3/2 and

l11 is the eleven-dimensional Planck length. We recover the free OSp(8|4) invariant singleton
in the decompactification limit R11 → ∞. We may instead use g to dualize Φ8 and introduce
Yang-Mills interactions with gYM = g. The effective coupling is g2

eff = g2/u, where u is the 3d
energy scale, and as a result the theory now decompactifies in the IR [1, 4, 31, 74, 25]. Thus
we have two decompactification limits, the free SU(N) valued OSp(8|4) singleton field theory
which resides in the UV and the strongly coupled SO(8)R invariant d = 3, N = 8 SCFT in the
IR.

Thus it is natural to describe the low energy dynamics of M2 branes in terms of an UV fixed point
of free SU(N) valued OSp(8|4) singletons and an IR fixed point of strongly coupled OSp(8|4)

14The singleton consists of 8 scalars in 8v and 8 spinors in 8s of SO(8)R. By triality one can also obtain a
singleton multiplet in which the scalars are in 8s and the spinors in 8c.
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singletons. We note that the number of massless degrees of freedom indeed decreases along the
RG flow, from N2 to N3/2.

We conjecture that the free singleton theory at the UV fixed point mentioned above is the
holographic dual of the hs(4|8) gauge theory which admits the massless hs(4|8) gauge theory
described in Section 2.2 as a consistent truncation. This theory describes an unbroken phase of
M theory with N units of M2 brane charge. The strongly coupled fixed point is the holographic
image of a broken phase, which admits an effective supergravity description at low energies.

There are also IR fixed points containing free OSp(8|4) singletons forming N − 1 dimensional
representation of the Weyl group of SU(N) [31]. These are curious points from the point of
view of HS dynamics, and it may be that one should also include them as nontrivial points in
the phase diagram.

As discussed in the previous section, the unbroken phase of the Type IIB theory on AdS5 × S5

arises either as the critical limit λ → 0 at fixed E and s, or as the high energy limit s >>
√
λ

at fixed λ and N >> 1. Moreover, as we shall see in the next section, the unbroken phase of
M theory on AdS7 × S4 arises at high energies whereby certain membrane solitons propagate
close to the boundary of AdS7. This suggests that also the unbroken phase of M theory on
AdS4×S7 arises in a high energy limit in which bulk membranes couple to HS operators in the
strongly coupled SCFT3 with asymptotically small anomalous dimensions, (E − s)/s → 0, as
s→∞. The four-form flux in the AdS4 directions results ensures the M2-brane equations admit
spherical membrane solutions in AdS4 × S7 [75, 76, 77]. These solutions carry internal SO(8)
spin, and are hence closely related to the matrix-model found in the pp-wave limit [30]. It is
natural to expect that these solutions can be deformed into time-dependent membrane solutions
carrying also AdS spin, in analogy with the string solutions in AdS3 with NS-fluxes [78]. We also
expect the anomalous part of the energy to be minimized and certain fractional supersymmetry
to be restored by taking large AdS radius, i.e. large bulk energies, such that the solution couples
to the conserved HS currents of the hs(8|4) theory. The fact that the holographic dual resides
at a UV fixed point should be encoded into the local geometry of the solution and to how it
minimizes the AdS energy, as in the case of the rotating membrane in AdS7 × S4.

It will be interesting to examine the above picture in more detail and in particular to examine
the fluctuation spectrum about this solution, where we expect to find some critical membrane
theory with fixed tension, and perhaps singletons in the worldvolume, giving rise to the massless
HS states.

We expect that the Higgsing of the massless HS fields and the resulting spontaneous breaking
of the hs(4|8) is described by a radially dependent solution to the HS theory which is the anti-
holographic dual of the 3d SYM flow obtained by switching on a finite g2

YM as discussed above. It
will be interesting to see whether HS field theoretic methods are still relevant for describing this
solution, which would then yield ‘weak/weak’ correspondence between the HS theory coupled
to Higgs sector and the SYM theory with expansions in both 1/N and g2

YM. It may also be
necessary to exhibit in more detail the nature of the above-mentioned critical membrane.
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6.2 Cubic Couplings in the 4D Higher Spin Gauge Theory

In this section we shall outline the structure of the minimal bosonic HS gauge theory in D = 4
which is a consistent truncation of the supersymmetric HS theory discussed in Section 2.1. The
spectrum consists of massless fields with spin s = 0, 2, 4, ..., each occurring once. The underlying
algebra, called hs(4), is an infinite dimensional extension of the bosonic AdS4 group. Similar
truncation exists also in D = 5, 7 at the spectrum level but only in D = 4 a full interacting
theory is known, both supersymmetric and minimal bosonic.

The 4D minimal bosonic model is of great interest because it is the simplest interacting HS gauge
theory (with propagating HS degrees of freedom), and yet it exhibits all the essential principles
that underlie such theories. It is a very good starting point for finding ways to construct the
D = 5, 7 HS gauge theories as well. Moreover, it is amenable to calculations and it is possible
to test directly in this model the consistent truncation of the kind discussed in Section 4 which
is required for the holography picture to make sense. Here, we will not go as far as carrying out
these tests [24] but we will nonetheless exhibit the structure the couplings to give the reader an
idea about how they actually look like, as well as providing enough ingredients to facilitate the
required holography computations.

Here we shall focus our attention on the quadratic terms in all the field equations, which, of
course, mean all the cubic couplings at the action level. In an accompanying paper [19], we
shall give a more detailed treatment involving an expansion scheme where the gravitational
gauge fields are treated exactly and the gravitational curvatures and the HS gauge fields as
weak perturbations to all orders. The 4D HS/3d singleton correspondence in the hs(4) theory
at the level of quadratic field equation/cubic action will be provided elsewhere [24].

The massless field equations (including general interaction ambiguities) have been given in [14]
and studied in more detail in [16, 17, 18] and more recently in [19]. These studies are based on a
curvature expansion scheme. The most important step in the expansion scheme is the linearized
analysis which shows that all auxiliary fields are non-propagating. As a result it is possible to
solve iteratively for the auxiliary fields and obtain the physical field equations to any order. In
fact, this scheme yields field equations in terms of only the physical fields.

The HS spin algebra hs(4) is obtained from hs(4|8) defined in Section 2.1 by setting the fermionic
generators θi equal to zero. To describe the field equations in 4D spacetime, which has coor-
dinates xµ, one introduces an auxiliary set of coordinates (zα, z̄α̇) which are Grassmann even
spinors that are non-commutative in nature, and consider extensions ϕ(x; z, z̄) of the basic space-
time fields ϕ(x). One then imposes an integrable curvature constraint in the extended space,
whose (x; z, z̄)-components determine the (z, z̄) dependence of the extended fields ϕ(x; z, z̄) in
terms of “initial” conditions φ(x). Setting z = z̄ = 0 in the remaining x-components of the
curvature constraint leads to reduced curvature constraints in spacetime, which are integrable
by construction and one can show that they contain the physical field equations of the HS gauge
theory. Since (z, z̄) are non-commutative, the reduced constraints contain interactions even
though the original constraint in (x; z, z̄) space has a simple form.

The basic building blocks of the theory are a master 0-form Φ and a master 1-form
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Â = dxµÂµ + dzαÂα + dz̄α̇Âα̇ , (6.6)

where the hats are used to indicate quantities that depend on (z, z̄). The hatted fields are
given as expansions order by order in z and z̄, with expansion coefficients which are functions of
(x, y, ȳ) with the (y, ȳ) expansions determined by suitable group theoretical conditions. These
conditions are engineered such that at z = z̄ = 0, the pulled-back components

Aµ = Âµ|Z=0 , Φ = Φ̂|Z=0 (6.7)

define an hs(4) valued spacetime one-form and a spacetime zero-form in a certain quasi-adjoint
representation of hs(4) [18]:

Aµ(x; y, ȳ) =
1

2i

∑

m+n=2 mod 4

1

m!n!
ȳα̇1 · · · ȳα̇myα1 · · · yαnAµα1...αnα̇1...α̇m(x) , (6.8)

Φ(x; y, ȳ) =
∑

|m−n|=0 mod 4

1

m!n!
ȳα̇1 · · · ȳα̇myα1 · · · yαnΦα1...αnα̇1...α̇m(x) . (6.9)

The curvature constraints giving rise to the spacetime field equations read

F̂ = dÂ+ Â ⋆ Â = i
4dz

α ∧ dzαΦ̂ ⋆ κ+ i
4dz̄

α̇ ∧ dz̄α̇Φ̂ ⋆ κ̄ , (6.10)

D̂Φ̂ = dΦ̂ + Â ⋆ Φ̂− Φ̂ ⋆ π̄(Â) = 0 , (6.11)

where the operators κ, κ̄ are defined as

κ = exp(iyαzα) , κ̄ = κ† = exp(−iȳα̇z̄α̇) , (6.12)

the π-map, and its complex conjugate π̄, acting on an arbitrary polynomial f(y, ȳ; z, z̄) are
defined as

π(f(y, ȳ; z, z̄)) = f(−y, ȳ;−z, z̄) , π̄(f(y, ȳ; z, z̄)) = f(y,−ȳ; z,−z̄) , (6.13)

and the ⋆-product between two arbitrary polynomials f(y, ȳ, x; z̄) and g(y, ȳ; z, z̄) is defined as

f ∗ g = f exp

[
i

( ←−
∂

∂zα
+

←−
∂

∂yα

)( −→
∂

∂zα
−
−→
∂

∂yα

)
+ i

( ←−
∂

∂z̄α̇
−
←−
∂

∂ȳα̇

)(−−→
∂

∂z̄α̇
+

−→
∂

∂ȳα̇

)]
g . (6.14)

The constraints (6.10) and (6.11) have the gauge symmetry
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δÂ = dǫ̂+ [Â, ǫ̂]⋆ , δΦ̂ = ǫ̂ ⋆ φ̂− Φ̂ ⋆ ǫ̂ . (6.15)

Given the initial conditions (6.7), the components of the constraints (6.10-6.11) which have at
least one α or α̇ index can be solved by expanding Â and Φ̂ in powers of Φ, which contains
curvatures and the scalar field, as follows:

Φ̂ =
∞∑

n=1

Φ̂(n) , Âα =
∞∑

n=1

Â(n)
α , Âµ =

∞∑

n=0

Â(n)
µ , (6.16)

where

Φ̂(n)|Z=0 =

{
Φ , n = 1
0 , n = 2, 3, ...

(6.17)

Â(n)
µ |Z=0 =

{
Aµ , n = 0
0 , n = 1, 2, 3, ...

(6.18)

Âα|Z=0 = 0 , (6.19)

and Φ̂(n) (n = 2, 3, ...), Â
(n)
α (n = 1, 2, 3, ...) and Â

(n)
µ (n = 2, 3, ...) are nth order in Φ. Note that

Â
(n)
µ are linear in Aµ. The condition (6.19) is a physical gauge condition, which can be imposed

by using the gauge symmetry (6.15).

As shown in detail in [19], one first solves iteratively the constraints F̂µα = F̂αβ = F̂α̇β̇ = 0 and

DαΦ̂ = 0 to determine the Φ expansions of Âµ, Âα and Φ̂, which schematically take the form

Âµ = Âµ[Aµ,Φ] , Âα = Âα[Φ] , Φ̂ = Φ̂[Φ] . (6.20)

Having solved the Z-space part of (6.10) and (6.11), the remaining constraints F̂µν = 0 and
D̂µΦ̂ = 0 yield spacetime field equations of the form

Fµν = −
∞∑

n=1

n∑

j=0

(
Â

(j)
[µ ⋆ Â

(n−j)
ν]

)
|
Z=0

, (6.21)

DµΦ =
∞∑

n=2

n∑

j=1

(
Φ̂(j) ⋆ π(Â(n−j)

µ )− Â(n−j)
µ ⋆ Φ̂(j)

)
|Z=0 , (6.22)

where F = dA+A ⋆ A and DΦ = dΦ +A ⋆ Φ− Φ ⋆ π̄(A).

Next, we define the physical scalar φ and expand the master gauge field Aµ(x, y, ȳ) as

Φ|Y =0 = φ. (6.23)
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As for the vierbein and HS gauge fields, requiring that they transform homogeneously under
Lorentz transformation, one is led to the following expansion scheme for the master gauge field

Aµ = eµ + ωµ +Wµ +
(
iωαβ

µ Âα ⋆ Âβ − h.c
)

Z=0
, (6.24)

where the vielbein and the Lorentz connections are defined as

eµ =
1

2i
eαα̇
µ yαȳα̇ , ωµ =

1

4i

(
ωαβ

µ yαyβ + h.c
)
, (6.25)

and Wµ contains the fields with spin s = 4, 6, 8, ... and their corresponding auxiliary fields.

We are now ready to state the result for the cubic couplings [19]. They give rise to quadratic
terms in the field equations given by [19]

(∇2 + 2)φ =

(
∇µP (2)

µ − i
2(σµ)αα̇ ∂

∂yα

∂

∂ȳα̇
P (2)

µ

)

Y =0

, (6.26)

(σµνρ)β̇α Rνρ β̇γ̇ = (σµνρ)β̇α

(
∂

∂ȳβ̇

∂

∂ȳγ̇
J (2)

νρ

)

Y =0

, (6.27)

(σµνρ)β̇
α1
F

(1)

νρ α2...αs−1β̇γ̇α̇2...α̇s−1
= (σµνρ)β̇α1

(
∂

∂yα2
· · · ∂

∂yαs−1

∂

∂ȳβ̇
· · · ∂

ȳα̇s−1
J (2)

νρ

)

Y =0

(6.28)

where Rµνα̇β̇ ≡ Fµνα̇β̇ is the (self-dual part of) the AdS4 valued Riemann curvature, while the
curvature associated with spin s = 4, 6, 8, .. fields is defined as

F
(1)

νρ α2...αs−1β̇γ̇α̇2...α̇s−1
= 2∇[νWρ]α2...αs−1β̇γ̇α̇2...α̇s−1

−(s− 2)(σνρσµ)α2
δ Wµ α3...αs−1β̇γ̇δ̇α̇2...α̇s−1

−s(σµσνρ)β̇
γ Wµ γα2α3...αs−1γ̇α̇2...α̇s−1 . (6.29)

The covariant derivatives in (6.26) and (6.29) are with respect to lo the Lorentz connection ω.
Furthermore, in (6.28) and (6.29), separate symmetrization in the dotted and undotted indices
is understood. Further definitions are

P (2)
µ = Φ ⋆ π̄(Wµ)−Wµ ⋆ Φ

+
[
Φ ⋆ π̄(êµ

(1))− ê(1)µ ⋆ Φ + Φ̂(2) ⋆ π̄(eµ)− eµ ⋆ Φ̂(2)
]
Z=0

(6.30)
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J (2)
µν = −

([
ê(1)µ ⋆ ê(1)ν + {eµ, ê(2)ν }⋆ + {eµ, Ŵν

(1)}⋆ + {Wµ, ê
(1)
ν }⋆

]

Z=0

+
[
iRµν

αβÂ(1)
α ⋆ Â

(1)
β + h.c.

]
Z=0

+Wµ ⋆ Wν

)
+

(
µ↔ ν

)
, (6.31)

and the hatted quantities occurring in the above equations are given by [19]

Â(1)
α = − i

2
zα

∫ 1

0
tdt Φ(−tz, ȳ)κ(tz, y) , (6.32)

Â(2)
α = zα

∫ 1

0
tdt
(
Â(1)β ⋆ Â

(1)
β

)
z→tz,z̄→tz̄

(6.33)

+ z̄β̇
∫ 1

0
tdt
[
Â(1)

α , Â
(1)

β̇

]
z→tz,z̄→tz̄

Ŵ (1)
µ = −i

∫ 1

0

dt

t

([
∂Wµ

∂yα
, Âα(1)

]

∗

+

[
Âα̇(1),

∂Wµ

∂ȳα̇

]

∗

)

z→tz,z̄→tz̄

Φ̂(2) = zα
∫ 1

0
dt
[
Φ ⋆ π̄(Â(1)

α )− Â(1)
α ⋆ Φ

]
t→tz,z̄→tz̄

(6.34)

+ z̄α̇
∫ 1

0
dt
[
Φ ⋆ π(Â

(1)
α̇ )− Â(1)

α̇ ⋆ Φ
]
t→tz,z̄→tz̄

ê(1)µ = −ieαα̇
µ

∫ 1

0

dt

t

([
ȳα̇, Â

(1)
α

]
∗
+
[
Â

(1)
α̇ , yα

]
∗

)

z→tz,z̄→tz̄

,

ê(2)µ = −ieαα̇
µ

∫ 1

0

dt

t

([
ȳα̇, Â

(2)
α

]
∗
+
[
Â

(2)
α̇ , yα

]
∗

)

z→tz,z̄→tz̄

,

−eαα̇
µ

∫ 1

0

dt

t

∫ 1

0

dt′

t′

[
Âβ(1) ⋆

(
∂

∂zβ
− ∂

∂yβ

)( [
ȳα̇, Â

(1)
α

]
∗
+
[
Â

(1)
α̇ , yα

]
∗

)
z→t′z,z̄→t′z̄

+Âβ̇(1) ⋆

(
∂

∂z̄β̇
+

∂

∂ȳβ̇

)([
ȳα̇, Â

(1)
α

]
∗
+
[
Â

(1)
α̇ , yα

]
∗

)
z→t′z,z̄→t′z̄

+

(
∂

∂zβ
+

∂

∂yβ

)([
ȳα̇, Â

(1)
α

]
∗
+
[
Â

(1)
α̇ , yα

]
∗

)
z→t′z,z̄→t′z̄

⋆ Âβ(1)

+

(
∂

∂z̄β̇
− ∂

∂ȳβ̇

)([
ȳα̇, Â

(1)
α

]
∗
+
[
Â

(1)
α̇ , yα

]
∗

)
z→t′z,z̄→t′z̄

⋆ Âβ̇(1)

]

z→tz,z̄→tz̄

.
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In the above formulae, the replacement of (z, z̄) by (tz, tz̄) is to be made inside the integrals

and after performing the ⋆ products. Note also the quantity Â(1)
α is a basic building block which

occurs in many of the formulae above and that it is first order in Φ.

It is important to note that not all the fields occurring in (6.8) and (6.9) are independent. An
analysis of the constraints (6.10) and (6.11) shows a) Φα1...α2s(s = 2, 4, ...) are the Weyl tensors
which can be in terms of the curvatures, b) Φα(m)α̇(n) for m+n > 2 can be solved in terms of φ,

the Weyl tensors and their derivatives, c) ωαβ
µ is, of course, the Lorentz spin connection which

can be solved in terms of the vierbein eαα̇
µ , and d) Wµα(m)α̇(n) for |m−n| ≥ 2 are auxiliary gauge

fields which can be solved in terms of the physical fields Wα(s−1)α̇(s−1) [19].

The general solution for the auxiliary fields is given by [19]

Wαα̇,β1...βmβ̇1...β̇n
= 2

m+1∇̂Wβ̇1β̇2,αβ1...βmα̇β̇3...β̇n
+ ǫα̇β̇1

2n
n+1

[
n−1

m+n+2∇̂Wβ̇2

γ̇
,αβ1...βmγ̇β̇3...β̇n

+ n+1
m+n+2∇̂W(α

γ
,β1...βm)γβ̇2...β̇n

− m
(m+1)(m+2) ǫαβ1∇̂W γδ

,γδβ2...βmβ̇2...β̇n

]

+mǫαβ1ξβ2...βmα̇β̇1...β̇n
, n > m ≥ 0 , (6.35)

Φα1...αmα̇1...α̇n = −i∇̂α1α̇1Φα2...αmα̇2...α̇n , (6.36)

where the the modified covariant derivatives are defined by

∇̂Wαβ,γ1...γmγ̇1...γ̇n = 1
2 (σµν)αβ

(
∇µWν,γ1...γmγ̇1...γ̇n − 1

2J
(2)
µν,γ1...γmγ̇1...γ̇n

)
, (6.37)

∇̂α1α̇1Φα2...αmα̇2...α̇n =
(
∇α1α̇1Φα2...αmα̇2...α̇n − P (2)

α1α̇1,α2...αmα̇2...α̇n

)
, (6.38)

and separate total symmetrization of dotted and undotted indices is understood. Since J and
P depend on the auxiliary fields, eqs. (6.35) and (6.36) must be iterated within the curvature
expansion scheme. This leads to explicit expressions of all auxiliary components of Wµ and Φ
in terms of the remaining physical fields.

Further comments about the above results are in order:

1) The z-dependence of all the fields involved are exhibited. The above results are explicit and
the remaining task is reduced to performing certain star products and doing some elementary
parameter integrals. These steps, as well as the derivation of the above results and their gener-
alization to all orders will be provided elsewhere [19].

2) It is easy to rewrite the field equation (6.27) for the graviton as 15

15We have set the AdS radius R = 1 but it is straightforward to re-introduce R by dimensional analysis in
which the master 0-form and the master 1-form fields are dimensionless.
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Rµν(ω)− gµν =

[
(σµ

λ)αβ
(

∂

∂yα

∂

∂yβ
J

(2)
λν

)

Y =0

+ (µ↔ ν) + h.c.

]
, (6.39)

where Rµν(ω) is the Ricci tensor obtained from the Riemann tensor associated with the Lorentz
connection ωµ. It is important to note that this connection contains torsion as can be seen from
(6.35) and (6.37) which for m = 0, n = 2 give

ωµ
ab = ωµ

ab(e) + κµ
ab , (6.40)

where κµ
ab is the con-torsion tensor related to the torsion tensor Tµν

a as

κµ
ab = Tµ

ab − T ba
µ + T ab

µ , (6.41)

where

Tµν
a = (σa)αβ̇

(
∂

∂yα

∂

∂ȳβ̇

J (2)
µν

)

Y =0

. (6.42)

3) The elimination of the auxiliary fields by means of the equations (6.35) and (6.36) gives rise
to higher derivative interactions. In particular, in a given spin sector, the auxiliary fields are
Wµα1...αkα̇k+1...α̇2s−2 with k = 0, 1, ..., s/2 and they are related to the physical fieldsWµα(s−1)α̇(s−1)

schematically as

Wµ,α(m)α̇(n) ∼ ∂|m−n|/2Wµ,α(s−1)α̇(s−1) , m+ n = 2s − 2 . (6.43)

Similarly, the components Φα(m)α̇(n)of the master scalar field are related to the Weyl tensors
which are purely chiral, their derivatives as well as the derivatives of the scalar as (taking m > n
without loss of generality)

Φα(m)α̇(m) ∼ ∂m φ ,

Φα(m)α̇(n) ∼ ∂(m−n)/2 Φα(m−n) , m− n = 0mod 4 . (6.44)

4) Whether the master constraints (6.10) and (6.11) are unique is an important question. In
fact, there exist a generalization of (6.10) in which [19] we let

Φ̂ ⋆ κ → V(Φ̂ ⋆ κ) , Φ̂ ⋆ κ̄ → V̄(Φ̂ ⋆ κ̄) , (6.45)

where V(X) is a ⋆-function, with its complex conjugate V̄(X†) = (V(X))†. In [19] we argue that
this function must be of the form
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V(X) =
∞∑

n=0

b2n+1X
2n+1 , |b1| = 1 . (6.46)

A similar interaction ambiguity is expected to arise in HS theories yet to be constructed in 5D
and 7D as well, and implications of this are discussed in Section 4, in the context of 5D HS
gauge theory and holography. In particular, we argued that the freedom in choosing b2n+1 is
important in order to find the precise agreement between the bulk amplitudes and the boundary
correlators required for the massless theory to be a consistent truncation.

7 M Theory on AdS7 × S4 and 7D Higher Spin Gauge Theory

The low-energy dynamics of a stack of N parallel coinciding M5 branes in flat eleven dimensional
spacetime is described by a strongly coupled d = 6, N = (2, 0) SCFT with SO(5)R symmetry
group [1, 4], known as the the AN−1(2, 0) theory [79, 80, 81, 31]. The theory is conjectured to
have no marginal operators, which means that it describes an isolated UV fixed point of the
renormalization group. It is not known whether the theory has any relevant operators which
preserve the R-symmetry (the supergravity dual description provides relevant operators which
break the R-symmetry). Conversely, starting in the IR with a number, N ′ say, of free d = 6,
N = (2, 0) tensor singletons, it is not known how to describe non-abelian interactions among
tensor fields; in fact, there are no local perturbations with this effect [82] 16. This is believed
to reflect the fact that open membranes ending on coinciding M5 branes give rise to tensionless
closed strings and that the proper language for formulating the dynamics on the fivebrane is
therefore not ordinary field theory but rather some nonlocal extension of it.

However, if we are willing to give up 6d covariance, then we can use lower-dimensional RG flows
based on ordinary interacting field theories to define the AN−1(2, 0) theory [1, 4, 31, 25, 74].
In particular, circle reductions of the 6d theory describes RG flows of 4d and 5d SYM theories
with SU(N) gauge group. The SO(4)R invariant RG5 flow has a Type IIA supergravity dual
description in terms of the near horizon region of a D4 brane solution. In the UV limit the
dilaton diverges and the solution uplifts to the AdS7 × S4 near horizon region of the stack of
M5 branes. The resulting anti-holographic description of the AN−1(2, 0) theory is conjectured
to be M theory on AdS7 × S4 [1]. For large N the membrane tension scales like

TM2 ∼
N

R3
, (7.1)

where R is the AdS radius, and the 7D Planck length is given by

1

l5Pl

=
N3

R5
. (7.2)

16A single tensor multiplet admits self-interactions, such as for example those describing the motion of a single
M5 brane [83, 84, 85].
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For large N the Planck length is much smaller than the M2 length scale, lM2 which in in turn is
much smaller than the radius. Thus, for energies E obeying 1 << E << R/lM2 the low-energy
dynamics of the anti-holographic dual is described by D = 7, N = 2 gauged supergravity. The
AN−1(2, 0) theory has been conjectured to admit an expansion in terms of integer powers of
1/N which factorize for large N [4] 17 From (7.2) it follows that the AN−1(2, 0) theory has ∼ N3

massless degrees of freedom for large N which contain the N−1 massless (2, 0) tensor multiplets
of the ‘Higgs branch’ of the theory.

In the IR limit of the D4 brane geometry the dilaton eφ vanishes and the gravitational curvature
diverges. As for the D2-brane discussed in Section 6.1, the dual SYM coupling g2

YM = gsls is
held fixed in taking the near horizon limit and equals the local Yang-Mills coupling g2

YM(u) ≡
eφ(u)/

√
−g00(u)/l2s = g2

YM. Hence the local string length diverges in the IR (unlike the case of
the D2 brane where the local string length disappears together with the dilaton in the UV).
Hence, naively the D4 brane field theory becomes a free SU(N) valued d = 5, N = 2 Maxwell
theory with SO(5)R symmetry and finite Yang-Mills coupling g2

YM. This theory can be made
scale invariant by absorbing g2

YM into the fields, but this symmetry is superficial since it cannot
be lifted to superconformal invariance.

Instead a more natural interpretation is that superconformal invariance is restored by uplifting
to a free SU(N) valued d = 6, N = (2, 0) tensor singleton described by the superconformal
action18

S6 =

∫
d6x tr

(
|dΦa|2 + |dB|2 + fermions

)
, (7.3)

where Φa (a = 1, ..., 5) and Bµν have dimension 2. The superspace formulation of this theory is
described in more detail in Section 3.3. The 6d superconformal invariance can be spontaneously
broken by compactifying (7.3) on a circle of radius R11 (after which R11 can of course be used
to rescale the fields):

S5+1 =
1

R11

∫
d5x tr

(
|dφa|+ |dA|2 + KK modes and fermions

)
, (7.4)

where all bosonic fields have dimension 1. Taking S5+1 as the generic starting point for describing
the fivebrane dynamics there are thus two ways in which the theory can decompactify and
become superconformally invariant: either by directly taking R11 →∞ which yields back S6; or
by throwing away the KK modes and switching on the Yang-Mills interaction with g2

YM = R11,
which then reaches the AN−1(2, 0) limit in the UV limit R11 → ∞. Note that the Yang-Mills
deformation does not lead to loss of degrees of freedom since the KK modes are exchanged with
monopoles with mass proportional to g2

YM = R−1
11 .

We conclude that it is natural to describe the low energy dynamics of N coinciding M5 branes
in terms of an IR fixed point of free SU(N) valued d = 6, N = (2, 0) tensor singletons and a

17From (7.1) it follows that M theory on AdS7×S4 has an expansion in terms of integer powers of 1/TM2 rather
than integer powers of the 7D Plank’s constant. The same remark applies to M theory on AdS4 × S7, which has
M2 tension given by (6.1) and has been conjectured to have an expansion in terms of integer powers of 1/

√
N [4].

18Tensor self-duality and supersymmetry can be restored at the level of the field equations [85].
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UV fixed point given by the AN−1(2, 0) theory in the unbroken HS phase. We note that the
number of massless degrees of freedom indeed decreases along the RG flow, from N3 to N2.

We conjecture that the free singleton theory at the IR fixed point mentioned above is the
holographic dual of an hs(8∗|4) gauge theory which admits a consistent truncation to the massless
hs(8∗|4) gauge theory in D = 7 described in Section 2.2. This theory describes an unbroken
phase of M theory with N units of M5 brane charge. The strongly coupled fixed point is the
holographic image of a broken phase which admits an effective supergravity description at low
energies.

As in the case of M theory on AdS4 × S7, there are also curious IR fixed points consisting of
N − 1 free tensor multiplets acted upon by the Weyl group of SU(N) [31] which should also be
included as nontrivial points in the phase diagram of M theory on AdS7 × S4.

We can motivate further our proposal by constructing and examining the properties of ‘long
membrane’ solutions to the M2-brane action [86]

SM2 = N

∫
d3σ

√
−det γ +N

∫
C3 , (7.5)

where we have set the fermions equal to zero, γαβ = ∂αX
M∂βX

NgMN and C3 is the pull-back of
the M-theory three-form potential which has non-zero components only in S4. The worldvolume
field equations are

∂α(
√−γγαβ∂βX

MgMQ)− 1

2

√−γγαβ∂αX
M∂βX

N∂QgMN +ǫαβγ∂αX
M∂βX

N∂βX
PHQMNP = 0 ,

(7.6)

where H4 = dC3. In order to describe the solution, which is similar to the string solution of
[34], we use the global coordinates in AdS7:

ds2 = − cosh2 ρdt2 + dρ2 + sinh2 ρ(dθ2 + sin2 θ(dφ2 + sin2 φdΩ2
3)) . (7.7)

The M2 brane worldvolume coordinates are (τ, σ, ϕ) and our rotating membrane solution is
given by

t = τ , ρ = ρ(σ) , θ = θ(ϕ) , φ = ωτ , fixed point in S3 , (7.8)

where the membrane has the topology of a cylinder −1 < σ < 1, 0 ≤ ϕ < 2π, which has been
flattened such that the portion with 0 < ϕ < π is folded on top of the portion with π < ϕ < 2π.
The induced metric becomes

ds2 = −(cosh2 ρ− ω2 sinh2 ρ sin2 θ)dτ2 + (ρ′)2dσ2 + sinh2 ρ(θ′)2dϕ2 , (7.9)
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where ρ′ ≡ dρ/dσ and θ′ ≡ dθ/dϕ. It is straightforward to verify the nontrivial components
of the field equations (7.6) which are the t, ρ, θ, φ component. The energy and spin of the
configuration (7.8) are given by

E = 4N

∫ ρ0

0
dρ

∫ θ2

θ1

dθ
cosh2 ρ sinh ρ√

cosh2 ρ− ω2 sinh2 ρ sin2 θ
, (7.10)

s = 4Nω

∫ ρ0

0
dρ

∫ θ2

θ1

dθ
sinh3 ρ sin2 θ√

cosh2 ρ− ω2 sinh2 ρ sin2 θ
, (7.11)

where

θ1 = θ(0) = θ(2π) , θ2 = θ(π) , ρ0 = ρ(±1) . (7.12)

The solution which minimizes the energy for a fixed spin and fixed width ℓ = θ2 − θ1 (we shall
minimize the energy with respect to the width below) is obtained by centering θ(ϕ) around
θ = 0 and maximizing the extension in the ρ-direction by taking

coth ρ0 = ω . (7.13)

If we assume that ℓ is small then

E =
ℓN

ω2 2F1[2, 1; 3/2; 1/ω
2 ] , (7.14)

s =
2ℓN

3ω3 2F1[2, 2; 5/2; 1/ω
2 ] . (7.15)

For ω >> 1 this describes short membranes with length ρ0 ∼ 1/ω and energy and spins given
by

E3 = 8ℓN s2 , E, s << ℓN . (7.16)

In flat eleven-dimensional spacetime an analogous relation holds between mass and spin for all
values of the spin (in flat space this relation follows from dimensional analysis). Thus, in flat
spacetime the mass is minimized for given spin by sending ℓ → 0 and ω → 0 (keeping s fixed).
The flat space spectrum therefore contains massless states arbitrary spin, which can be thought
of as infinitely long, thin string-like membranes which are virtually at rest.

In fact, long ago bosonic open membrane (a disk) rotating simultaneously about two axis was
considered in [32] where the relation a relation like (7.16) was derived. Such solutions are
possible for D ≥ 5. Later, this solution was generalized in [33] for the D = 11 supermembrane
[86], by gluing two copies of the open membrane of [32] along their edges to obtain a ‘pancake’
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membrane. The zero-point energy of this membrane was studied by these authors and later in
[87]. It was conjectured in [33] that the (semi-classical) energy-angular momentum relation of
the kind (7.16) would be modified by an integral or half integral number due to the fact that
the fermionic coordinates of the supermembrane also carry intrinsic angular momentum. See
[88] for a review of this fascinating subject.

Going back to AdS7 × S4, for slow rotation, ω ∼ 1, ω > 1 and finite width ℓ, the solution (7.8)
describes long membranes whose energy and spin now obeys

E − s =
3π2/3

21/3
(ℓN)2/3s1/3 , E, s >> ℓN . (7.17)

For ω → 1 the energy and spin diverges and the rotating membrane develops a boundary given
by a folded closed string of length ℓ which trace out a Wilson surface in the stack of five-branes.
Thus, the long membranes of width ℓ with finite energy describe operators in the the AN−1(2, 0)
theory which arise in the operator product expansion of the Wilson surface. The shape of the
Wilson surface together with (2.21) suggest that its expansion contains bilinear higher spin
operators which have asymptotically small anomalous dimensions, (E−s)/s << 1 for high spin,
s >> ℓN >> 1. In the limit s → ∞ their interactions should be equivalent to those described
by the singletons.

Suppose there is no boundary condition which fixes ℓ to a finite value. The prescription is then
to vary ℓ keeping s fixed as to minimize E. The minimal energy configuration for given spin
s is obtained by taking ℓ → 0, ω → 1 which results in an infinitely long string-like membrane
with energy E = s (the ratio E/s is larger for short wide membranes than for long thin ones).
Note that this geometry is assumed for any value of s, unlike in the case of the Type IIB closed
string which became infinitely long only as s/

√
λ → ∞. As ℓ → 0 the dual Wilson surface

collapses and the higher derivative corrections to the AN−1(2, 0) theory becomes suppressed,
resulting in a flow down to the free tensor theory describing the unbroken phase with hs(8∗|4)
gauge symmetry.

Let us examine the supersymmetry of this solution. The condition for worldvolume supersym-
metry is [75]

Γǫ = ǫ , Γ =
1√−det γ

1

3!
ǫαβγ∂αX

M∂βX
N∂γX

N , (7.18)

and that ǫ is the Killing spinor of the AdS7 × S4 background. An important property of these
Killing spinors is that as we approach the boundary of AdS7, i.e. as ρ → ∞, they become an
eigenstate of a constant Γ-matrix as follows [75]

Γ̃ǫ = ǫ , Γ̃ = Γ012345 , (7.19)

where Γa are flat Dirac matrices and a = 0, ..., 5 are the indices tangent to the boundary of
AdS7. We have relabeled the coordinates of AdS7 as
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(t, φ, θ, ψ′, θ′, φ′, ρ)→ (x0, x1, ..., x5, ρ) , (7.20)

where (ψ′, θ′, φ′) are the S3 angles. Now, inserting the solution (7.8) into the definition of Γ in
(7.18) gives

Γ =

(
cΓ0 + (ωs) sin θΓ1

)
Γ62

√
c2 − ω2s2 sin2 θ

. (7.21)

where c = cosh ρ and s = sinh ρ. Next, we find that [Γ, Γ̃] = 0. Therefore the worldvolume
supersymmetries can be written as

ǫ = (1 + Γ)(1 + Γ̃)η , (7.22)

for arbitrary η. We conclude that in the limit ℓ → 0, ω → 1, ρ → ρ0 → ∞ keeping s fixed, the
solution (7.8) preserves the 8 supersymmetries described by (7.22). The remaining 8 supersym-
metries are broken, which means that the limiting solutions belong to semi-short multiplets which
we identify as the massless HS multiplets arising in the tensor product of two tensor singletons
listed in Table 3. Hence the corresponding anomaly free operators in the dual SCFT must fall
into the same semi-short multiplet. This suggests that the dual operators are the Konishi-like
superfields (3.33) and (3.35) containing the conserved HS currents described Section 3.

In the above limit the energy and the spin of the membrane accumulate at its ends which in
turn move along light cones at the the boundary of AdS7. The condition (7.22) has a natural
interpretation as the supersymmetry condition for an intersection between the five-brane and the
boundary of an open membrane. This suggests that the relevant part of the membrane dynamics
are the fluctuations in this asymptotic region. It will be interesting to study more carefully the
fluctuation spectrum about these worldvolume singletons, and in particular to examine whether
they exhibit features such as fixed critical tension and discrete spectrum.

From the fact that the membrane interactions are concentrated at the boundary of the AdS
spacetime we conclude that the hs(8∗|4) gauge theory is a high energy limit of M theory on
AdS7 × S4.

We remark that the rotating membrane limit is a Lorentzian analog of the pp-wave limit on
AdS7×S4 [30] which can be thought of as a collapsed membrane rotating around the equator of
S4. A difference that might be important is that the collapsed membrane has spherical topology
while the rotating membrane has cylindrical topology.

One important test of the free CFT6/7D HS gauge theory correspondence is the matching of
the holographic Weyl anomaly [73]. It was shown in [89] that the 6d trace-anomaly of (free)
tensor singletons does not match the holographic anomaly computed in gauged supergravity in
D = 7 [73]. To be more precise, the relative strength of the Euler invariant and the remaining
invariant differs in the two cases by a factor of 4/7. It was argued in [89], however, that the
trace anomaly of any CFT6 picks up contributions from four-point stress-energy correlators.
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This makes the 6d trace anomaly sensitive to the actual interactions of the bulk theory, unlike
in e.g. d = 4, where the trace anomaly can be computed at weak coupling. Thus the 6d free
field trace anomaly should be compared with the holographic anomaly of the corresponding 7D
massless hs(8∗|4) gauge theory (which does not admit any consistent truncation to gravity).
Note that the corrections from massless HS exchange in the bulk are higher order in derivatives
but of the same order in 1/N . The matching of the overall strength is a consequence of the
normalization (4.14), though the interactions should correct the factor of 4/7 [89].

Finally we comment on the breaking of HS gauge symmetries in AdS7. The situation is much
less clear here than in D = 4, 5, basically due to the fact that we do not know how to deform
the boundary theory. As was discussed in Section 3.3, we do not have any candidates for the
Higgs fields, which may have to do with the fact that we are writing local expressions whereas
a more drastic, perhaps nonlocal construction, is what is actually required to break the HS
symmetries in D = 7. Another important difference between the massless spectra in D = 7
and in D = 4, 5 is the fact that the latter saturate the unitarity bound for UIRs belonging to
certain continuous series of the corresponding AdS supergroups, while the former belongs to an
isolated series (see Section 3). In fact, this can be used to show that there can be no continuous
(marginal) deformations taking the free SCFT to the strongly coupled fixed point [90]. Another
curious fact is that the massless HS theory described in Section 2.3 does not make use of the
‘massless’ states which saturate the unitarity bound for UIRs belonging to the continuous series
A. These operators are described by cubic tensor singletons, and it will be interesting to attempt
to incorporate these into the master field formulation for the 7D HS theory described in Section
2.3.

8 Summary and Discussion

We have proposed that Type IIB string theory with N units of D3-brane charge and M theory
with N units of M2-brane or M5-brane charge have unbroken phases described by HS gauge
theories which admit consistent truncations to massless HS gauge theories in D = 4, 5, 7 with
holographic duals given by SU(N) valued scalar singleton theories in d = 3, 4, 6 with 16 super-
symmetries. The corresponding HS algebras are

hs(8|4) ⊃ OSp(8|4) , (8.1)

hs(2, 2|4) ⊃ PSU(2, 2|4) , (8.2)

hs(8∗|4) ⊃ OSp(8∗|4) , (8.3)

which are described in Section 2 together with the corresponding massless HS gauge theories.
These theories also contain massive fields, some of which are Higgs fields that can be eaten by
the massless fields. Both massless and massive fields also have KK towers which can be used to
re-construct the spectrum of the Type IIB string and M theory in appropriate limits as discussed
in more detail in Section 5.
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In the case of Type IIB string on AdS5 × S5, we have conjectured that the hs(2, 2|4) gauge
theory arises in a critical limit of the Type IIB theory in which

gs ∼ 1/N , ls ∼ R fixed R , N >> 1 , (8.4)

and that this limit corresponds to the free 4d,N = 4, SU(N) SYM in which gY M = 0 . This
means that the relations between the closed string parameters in AdS5 × S5 and the gauge
theory parameters for λ >> 1, which are read off from the D3-brane solution obtained in the
supergravity approximation, are renormalized, as discussed in Section 5, and summarized in
(1.1) and (1.2).

In the case of M theory on AdS4/7×S7/4, we have conjectured the holographic boundary theories
to be a SU(N) valued OSp(8|4) singleton field theory which resides at a UV fixed point in 3d,
and a free SU(N) valued (2, 0) tensor singleton field theory residing at a IR fixed point in 6d.

The spectrum of massless states in all the HS gauge theories discussed here have the universal
property that they all arise in the symmetric product of two singletons. This motivates a world-
sheet sigma model description of these theories based on an affine extension of AdS superalgebras
in D = 4, 5, 7 with critical KM levels leading to left-moving and right-moving singleton Verma
modules with a maximal number of null-states. In this respect, the existence of a singleton-like
representations of affine SO(3, 2) with level kcrit = 5/2 found in [70] is encouraging.

The idea of obtaining the massless states of a D = 4,N = 8 HS theory starting from the free
OSp(8|4) singleton theory, which in turn was obtained from the eleven dimensional supermem-
brane on AdS4×S7, already appeared long ago [40]. We recall that all the massless fields in this
theory, with the exception of a pseudoscalar, satisfy the energy-spin relation E0 = s + 1. More
recently, long rotating strings that extend to the boundary of AdS5 and couple to operators
which are asymptotically anomaly free, i.e. (E− s)/s→ 0 as E, s→∞, have been studied [34].

Motivated by above the considerations, we have found rotating long membrane solutions (7.8)
to the equations which describe the M2-brane in AdS7×S4 background. These membranes have
width ℓ and the geometry of infinitely stretched strings with energy and spin density concentrated
at the end points. They satisfy the semi-classical energy-spin relation E = s. A feature not
present in the string case is that the energy is minimized for fixed spin by sending the angular
velocity ω → 1 and the width ℓ→ 0 keeping s fixed, resulting in infinitely long membranes with
string-like geometry and semi-classical energy E = s. In Section 7, we have interpreted these as
the lowest weight states of the massless supermultiplets of the 7D HS gauge theory discussed in
Section 2 (see Table 3). Further aspects of this picture, especially the quantization issue, remain
to be studied.

It would also be interesting to study the spherical membrane in AdS4 and examine whether it
admits ‘breathing’ and ‘rotation’ modes similar to those of strings in AdS3 with NS-fluxes [78].

As there is effectively no separation in AdS energy between the massless HS fields and the massive
HS fields, we have proposed that the massless HS theories (based on HS extension of the 32
supercharge AdSd+2 superalgebras in d = 3, 4, 6) arise as a result of consistent truncation of the
full HS theories. This proposal can be tested explicitly since for large N , the singleton theory
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and the HS gauge theory can be compared order by order in the 1/N expansion: consistent
truncation implies that the massless HS theory action is the generating functional of correlators
of bilinear operators. Indeed, a correlation function of four bilinear operators in a singleton
theory can be written in a manifestly s-t-u symmetric form in terms of two- and three-point
functions involving only bilinear operators, as discussed in Section 4.

We have also examined mechanisms for spontaneous breaking of HS gauge symmetry down
to the symmetries underlying ordinary supergravity. In D = 4, 5 the ‘order parameter’ for
breaking of HS gauge symmetry is the holographic Yang-Mills coupling. In 4d this is a marginal
deformation which corresponds to a finite dilaton VEV in the bulk. The broken theory has an
AdS vacuum in which the broken gauge fields have non-critical masses m2−m2

crit ∼ Ng2
YM/R

2.
Using the non-intersection principle we argue these cross over into the leading Regge trajectory
as Ng2

YM. We have also identified the Higgs multiplets at arbitrary level in the HS spectrum,
and the realization of the level-one Higgs multiplet in terms of composite operators (i.e. anomaly
multiplets) in the free singleton SCFT.

Also in 3d, where the Yang-Mills coupling is a relevant perturbation, we have identified the
Higgs multiplets at arbitrary level in the HS spectrum, and the realization of the level-one
Higgs multiplet in terms of composite operators (i.e. anomaly multiplets) in the free OSp(8|4)
singleton field theory.

In D = 7 we do not know what is the order parameter for breaking HS gauge symmetry, nor
have we identified the Higgs multiplets. This is presumably related to the fact that the massless
gauge fields in D = 7 belong to the discrete B series (see (2.16) in Appendix B). We believe
this issue should have a simple resolution in a framework where the nature of the mysterious
interactions on the fivebrane is well understood. We stress that the Higgsing of the 7D HS gauge
theory is dual to weak irrelevant perturbations of the tensor theory in the IR, which should be
describable using a field theoretic, perhaps non-local, construction in 6d. One may also speculate
that the continuous A series (see (2.15)) could play a role in this, since the corresponding fields
can be Higgsed, which signals the existence of the corresponding anomaly multiplets. This, in
turn, would provide valuable data on the details of the interactions in 6d.

An interesting open problem is to use the HS gauging techniques described in Section 2 and 6 to
construct interactions between massless HS fields and Higgs fields. Clearly, the issue of consistent
truncation becomes moot once we include (massive) Higgs fields. It is therefore a challenge to
examine whether some generalized truncation scheme, perhaps of the type described in [27],
may temper the fluctuations in the massive sector.

In testing various aspects of the AdS/HS gauge theory correspondences discussed in this paper,
it will be very useful to develop a deeper understanding of the geometrical nature of HS interac-
tions, possibly formulating them in a generalized superembedding approach. This would provide
a universal tool for studying the HS dynamics [91] which would not only simplify the task of
coupling Higgs master fields to HS gauge theories but also yield a superfield formulation [91]
that would simplify the treatment of the bulk interaction and the computations of the attendant
Witten diagrams. On the boundary side, the existing literature on the OPE computations in-
volving free fields should be extended to cases where subleading in 1/N contributions will arise
[22]. We have described few examples of such correlators in Section 4.
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In this paper we have focused our attention on HS gauge theories in D = 4, 5, 7. No doubt
these results can be extended to AdS6 as well. In D = 3 the HS gauge fields do not propagate
physical degrees of freedom. Nonetheless, physical matter fields of spin s = 0, 1/2 can be coupled
to massless HS gauge theory [92, 93]. The advantage here is that an action principle is known
and the mathematics is much simpler than in higher dimensions. It would be interesting to
study this model in the context of massless higher spins and holography.

At the algebraic level there is in principle no bound on the number of supersymmetries in HS
gauge theories and we expect consistent massless interactions for any N in D ≤ 7, though
certain restrictions follow from the requirement of an R symmetry neutral vierbein [91]. As
discussed in Section 4, the restrictions on the spacetime superdimension are instead expected
to be related to the consistency of the full HS quantum theory, including both massless and
massive states, which requires the full generating functional (4.9) of the free singleton SCFT
with finite sources for composite operators. Effectively, the condition that this quantity exists is
expected to be as restrictive in the free singleton SCFT as in the (strongly) interacting singleton
SCFT. This may lead to the restriction that the holographic dual cannot have more than 16
supersymmetries in d ≤ 6. Similar restrictions should follow from the quantum consistency of
the yet to be constructed dual bulk sigma models. In Section 4, similar effects were argued to
arise in the holographic theory due to insertions of sewing operators in the free singleton field
theory required for unitarity.

Another particularly interesting class of singleton CFTs, which we have not considered here,
are the free 4d conformal HS theories constructed in [11]. Here the singleton field is a master
field comprising an infinite set of ordinary singletons which together form an irreducible rep-
resentation of a HS extension of the d-dimensional conformal group. In that case the relevant
HS symmetry algebra is an infinite dimensional extension of Sp(8, R) which contains the AdS
group in 5D.

To conclude, we believe that the remarkable algebraic and geometric structures underlying HS
gauge symmetry are natural extensions of supergravity and will be important guides towards
the true foundations of string and M theory. In particular, the simplicity of their holographic
duals together with the fact that the bulk physics can still be phrased in a relatively simple
language is both gratifying and compelling. Clearly much remains to be done in this subject
which may be viewed as being still in its infancy.
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A Spectra of Massless Higher Spin Gauge Theories in D = 5, 7

In this Appendix, we tabulate the spectra of singletons and the generators of the super HS
groups and the field content of the master scalar fields in AdS5 and AdS7. The case of D = 4
is relatively simpler and has been presented in Section 2.1. The spectrum of physical states
described by the master gauge fields in D = 4, 5, 7 are also given in Section 2.

ℓ\s 1 3
2 2 5

2 3 7
2 4 9

2
5 11

2
6 · · ·

0 15 4 1
1 16′ 24 36 24 16′ 4 1
2 1 4 16′ 24 36 24 16′ 4 1
3 1 4 16′ 24 36 · · ·
4 1 · · ·
...

Table 4: The hs(2, 2|4) generators with Y = 0,±1 arranged into levels labeled by ℓ = 1
4
(ny + nȳ + nθ + nθ̄ − 2).

The entries are SU(4)×U(1)Y representations as follows: 15 = 150, 4 = 41, 1 = 10, 16′ = 150 +10, 24 = 201 + 41

and 36 = 20′

0 + 150 + 10, where the U(1)Y charge is defined by Y = ny − nȳ . The SO(4, 1) content is given by

the highest weights m1 ≥ m2 ≥ 1
2
|Y | where m1 = 1

2
(ny + nȳ). Upon gauging, these generators give rise to spin

s = m1 + 1 gauge fields which can be used to write a canonical set of covariant curvature constraints. As a result

the gauge fields for m2 ≥ 1
2
|Y | + 1, s ≥ 2 are auxiliary while those for m2 = 1

2
|Y | contain physical degrees of

freedom.

ℓ\s 2 5
2 3 7

2 4 9
2

5 11
2

6 · · ·

1 16 4 6
2 6 4 16 + 1 4 6
3 6 4 16 + 1 · · ·
...

Table 5: The hs(2, 2|4) generators with Y = ±2,±3,±4. The entries are SU(4) × U(1)Y representations as

follows: 16 = 102 + 62, 4 = 43, 6 = 62 and 1 = 14. Further notation is defined in Table 4. These generators are

associated with gauge fields dual to generalized anti-symmetric tensor fields contained in the scalar master field

Φ; see Table 7 for s ≥ 1.
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|Z|\s 0 1
2 1 3

2 2 5
2 3 · · ·

0 6 4 1
1
2

4 6 + 1 4 1
1 1 4 6 4 1
3
2

1 4 6 4 1
2 1 4 6 4 1
...

...

Table 6: The d = 4, N = 4 singletons. The quantity Z is the SU(2, 2|4) central charge carried by the

supermultiplet. The entries in the Table denote SU(4) representations. Each entry carries an SO(4) ⊂ SO(6) ⊂
SO(6, 2) representation (jL, 0), and their complex conjugates (0, jR). The states for each value of |Z| form a

single massless irrep of d = 4,N = 4 Poincaré superalgebra, and the states carry spin s = jL. For all the states

E0 = s +1, where E0 is the lowest AdS5 energy. There exists an outer automorphism group U(1)Y of SU(2, 2|4),
and the U(1)Y charges of 6, 4 and 1 are 0, ±1 and ±2, respectively. The Z = 0 multiplet is the d = 4, N = 4

SYM singleton multiplet which has 8 + 8 degrees of freedom. All the other singleton multiplets have 16 + 16

degrees of freedom. For superfield realization of all the singletons listed in this Table, see Section 3.2.

ℓ\s 0 1
2 1 3

2 2 5
2 3 7

2 4 9
2

5 11
2

6 · · ·

0 42 48 6
1 1 8 6 4 16 + 1 4 6
2 6 4 16 + 1 4 6
3 6 4 16 + 1 · · ·
...

Table 7: The physical fields contained in the master scalar field Φ arising in the hs(2, 2|4) gauge theory in

D = 5. The entries are the following SU(4)×U(1)Y representations for s < 1: 42 = 20′

0 + 102 + 1̄0−2 + 14 + 1̄−4,

48 = 201 + 2̄0−1 + 43 + 4̄−3, 8 = 41 + 4̄−1 and 10; for s ≥ 1: 62, 43, 16 = 102 + 62 and 14. The spin s ≥ 1 sector is

realized in the field theory in terms of two-form potentials and their higher spin generalizations. These fields obey

self-duality in D = 5 and have dual one-form gauge fields corresponding to the generators given in Table 5, with

the exception of the underlined representations, which have no one-form duals. Here the form degree refers to the

number of curved indices as opposed to the tangential multi-spinor indices arising from the (y, ȳ)-expansion.
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ℓ\s 1 3
2 2 5

2 3 7
2 4 9

2
5 11

2
6 · · ·

0 10 4 1
1 10 20 20′ 20 10 4 1
2 1 4 10 20 20′ 20 10 4 1
3 1 4 10 20 20′ · · ·
4 1 · · ·
...

Table 8: The hs(8∗|4) generators with Y = 0,±1 arranged into levels labelled by ℓ = 1
4
(ny + nȳ + nθ + nθ̄ − 2).

The entries are SO(5) × U(1)Y representations as follows: 10 = 100, 4 = 41, 1 = 10, 20 = 161 + 41 and

20′ = 140 + 50 + 10, where the U(1)Y charge is defined by Y = ny − nȳ . The SO(6, 1) content is labelled by

highest weights m1 ≥ m2 ≥ m3 = 1
2
|Y | where m1 = 1

2
(ny + nȳ). Upon gauging, these generators give rise to spin

s = m1 + 1 gauge fields which can be used to write a canonical set of covariant curvature constraints. As a result

the gauge fields for m2 ≥ 1
2
|Y | + 1, s ≥ 2 are auxiliary while those for m2 = 1

2
|Y | contain physical degrees of

freedom.

ℓ\s 2 5
2 3 7

2 4 9
2

5 11
2

6 · · ·

1 15 4 6
2 6 4 16 4 6
3 6 4 16 · · ·
...

Table 9: The hs(8∗|4) generators with Y = ±2,±3,±4. The entries are SO(6) × U(1)Y representations as

follows: 15 = 52 + 102, 4 = 43, 6 = 52 + 12 and 16 = 102 + 52 + 14. These generators are associated with gauge

fields dual to generalized anti-symmetric three-form tensor fields contained in the scalar master field Φ; see Table

11 for s ≥ 1. Further notation is defined in Table 8.
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|Z|\s 0 1
2 1 3

2 2 5
2 3 · · ·

0 5 4 1
1
2

4 6 4 1
1 1 4 6 4 1
3
2

1 4 6 4 1
2 1 4 6 4 1
...

...

Table 10: The d = 6, N = (2, 0) singletons. The quantity Z denotes the SU(2)Z spin defined in Section 2.3.

The entries denote USp(4)Y ≃ SO(5)×U(1)Y representations, which are irreducible except 6 = 5+1. The U(1)Y

charges of 1, 4, 5 are 0, ±1 and ±2, respectively. The SO(6) highest weights (n1, n2, n3) associated with each

entry are given by n1 = n = 2 = n3 = s, and the AdS7 energy byE0 = s + 2. The level ℓ = 0(Z = 0) multiplet

is the d = 6, N = (2, 0) tensor singleton; see Section (3.3) for superfield realization of all the singletons shown in

the Table, and composites formed out of the tensor singleton.

ℓ\s 0 1
2 1 3

2 2 5
2 3 7

2 4 9
2

5 11
2

6 · · ·

0 140 161 52

1 10 41 62 43 152 + 14 43 62

2 62 43 152 + 14 43 62

3 62 43 152 + 14 · · ·
...

Table 11: The physical fields expected to arise in the master scalar field Φ in the hs(8∗|4) gauge theory in

D = 7. The entries are SO(6)×U(1)Y representations, where 6 = 5+1 and 15 = 10+5. The spin s ≥ 1 sector is

expected to be realized in Φ in terms of three-form potentials and their higher spin generalizations. These fields

obey self-duality in D = 7 and have dual one-form gauge fields corresponding to the generators given in Table 9,

with the exception of the underlined representations, which have no one-form duals. Here the form degree refers to

the number of curved indices as opposed to the tangential multi-spinor indices arising from the (y, ȳ)-expansion.
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2 UIRs of AdS Superalgebras in D = 4, 5, 7

In this Appendix, we define notation for the irreps of AdS superalgebras in D = 4, 5, 7, and list
these irreps as well as the BPS short supermultiplets. These results are especially useful for the
discussions of Section 2 and 3.

2.1 The UIRs of OSp(8|4) and BPS Multiplets

Recall that a UIR of OSp(8|4) is a multiplet of SO(3, 2) × SO(8) UIR’s denoted by

D(E0, s; a1, a2, a3, a4) , (2.1)

where E0 is the minimum eigenvalue of the AdS energy generator M05, s denotes SO(3) ⊂
SO(3, 2) spin and (a1, a2, a3, a4) are the Dynkin labels of the SO(8) irrep carried by the lowest
energy state. There exist two series of supermultiplets [48]:

A) E0 ≥ 1 + s+ a1 + a2 + 1
2 (a3 + a4) , (2.2)

B) E0 = a1 + a2 + 1
2 (a3 + a4) , s = 0 . (2.3)

These are the irreps carried by the lowest components of the supermultiplets, and the entire
OSp(8|4) supermultiplets are obtained by acting with supercharges.

The lowest components of the massless supermultiplets shown in Table 1 saturate the unitarity
bound of series A as E0 = s + 1, except in level ℓ = 0 supergravity multiplet, in which case
D(1, 0; 0, 0, 2, 0) belongs to series B. The discrete series B contains the BPS multiplets. In
particular, the singleton multiplet is characterized by the irrep D(1/2, 0; 0, 0, 0, 1) carried by
its lowest component and it belongs to series B. It can be described by a suitably constrained
superfield. Taking a suitably symmetrized and constrained product of 2E0 singleton superfields
one can construct BPS superfields whose lowest components carry the following irreps [50]

BPS 1/2 : D (p/2, 0; 0, 0, p, 0) , (2.4)

BPS 1/4 : D ((p+ 2q)/2, 0; 0, q, p, 0) , (2.5)

BPS 1/8 : D ((p+ 2q + 3r + 4s)/2, 0; r + 2ℓ, q, p, r) . (2.6)

All of these belong to series B. In particular, the lowest components of the KK towers of the
level ℓ = 0 supergravity multiplet carry the irrep D(k/2, 0; 0, 0, k, 0) for k = 3, 4, ... [53].

2.2 The UIRs of PSU(2, 2|4) and BPS Multiplets

A UIR of SU(2, 2|4) consists of UIRs of SO(4, 2) × SO(6) denoted by
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D(E0, jL, jR; a1, a2, a3)Y , (2.7)

where E0 is the eigenvalue of the AdS energy generator M06 and (jL, jR) label the SO(4) ⊂
SO(4, 2) irrep, (a1, a2, a3) denote the Dynkin labels of the SO(6) ≃ SU(4) R-symmetry irrep
carried by the minimum energy states and Y denotes the outer U(1)Y automorphism charge,
which will often be suppressed when it is vanishing. There exist three series of supermultiplets
[42]:

A) E0 ≥ 2 + JL + JR + a1 + a2 + a3 , JL − JR ≥ 1
2(a3 − a1) (2.8)

B) E0 = 1
2 (a1 + 2a2 + 3a3) ≥ 2 + 2JL + 1

2(3a1 + 2a2 + a3) , JR = 0 (2.9)

which implies

E0 ≥ 1 + JL + a1 + a2 + a3 , 1 + JL ≤ 1
2 (a3 − a1)

C) E0 = 2a1 + a2 , a3 = a1 , JL = JR = 0 (2.10)

In the case of series B, irreps with (JL ↔ JR, a1 ↔ a3) must also be included. The irreps listed
above are carried by the lowest components of the supermultiplets, and the entire PSU(2, 2|4)
supermultiplets are obtained by acting with supercharges.

The lowest components of the massless supermultiplets shown in Table 2 saturate the unitarity
bound of series A as E0 = s+2, with JL = JR = s/2, except in level ℓ = 0 supergravity multiplet
in which case D(2, 0, 0; 0, 2, 0) belongs to series C. The discrete series C contains the BPS
multiplets. In particular the Maxwell singleton multiplet is characterized by D(1, 0, 0; 0, 1, 0)
carried by its lowest component and it belongs to series C. It can be described by a suitably
constrained superfield. Taking a properly symmetrized and constrained product of E0 singletons
superfields one can construct BPS superfields whose lowest components carry the following irreps
[50]

BPS 1/2 : D(p, 0, 0; 0, p, 0) , (2.11)

BPS 1/4 : D (p+ 2q, 0, 0; q, p, q) , (2.12)

BPS 1/8 : D (p+ 2q + 3r, 0, 0; q, p, q + 2r) . (2.13)

The BPS 1/2 and BPS 1/4 multiplets belong to series C, and the BPS 1/8 multiplets belong
to series B. The KK towers of the level ℓ = 0 supergravity are the BPS 1/2 multiplets given by
D(k, 0, 0; 0, k, 0) with k = 3, 4, ... [3, 58, 59].

There exists an extensive literature on the OPEs of various BPS 1/2 operators. The UIRs which
can appear in these OPEs belong to series A with JL = JR = s/2, and series C [51].
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2.3 The UIRs of OSp(8∗|4) and BPS Multiplets

A UIR of OSp(8∗|4) consists of UIRs of SO(6, 2) × USp(4) denoted by

D(E0, J1, J2, J3; a1, a2)Y , (2.14)

where E0 is the eigenvalue of the AdS energy generator M08, (J1, J2, J3) denote the Dynkin labels
of the SU(4) ≃ SO(6) ⊂ SO(6, 2) irrep, (a1, a2) denote the Dynkin labels of the USp(4) irrep
carried by the minimum energy states and Y denotes the outer U(1)Y automorphism charge,
which will often be suppressed when it is vanishing. There exist four series of supermultiplets
[48]:

A) E0 ≥ 6 + 1
2(J1 + 2J2 + 3J3) + 2(a1 + a2) , (2.15)

B) E0 = 4 + 1
2 (J1 + 2J2) + 2(a1 + a2) , J3 = 0 , (2.16)

C) E = 2 + 1
2J1 + 2(a1 + a2) , J3 = J2 = 0 , (2.17)

D) E0 = 2(a1 + a2) , J3 = J2 = J1 = 0 . (2.18)

These are the irreps carried by the lowest components of the supermultiplets, and the entire
OSp(8∗|4) supermultiplets are obtained by acting with supercharges.

The lowest components of the massless supermultiplets shown in Table 3 have E0 = s + 4 and
belong to series B, while the level ℓ = 0 supergravity multiplet carries the irrep. D(4, 0, 0, 0; 0, 2)
which belongs to series D. The discrete series D contains the BPS multiplets. The singletons
are contained in series C and D. The superfields in terms of which they are realized, and the
UIRs carried by their lowest components are as follows [48, 46, 50]:

D) W ij D(2, 0, 0, 0; 0, 1)

D) W i D(2, 0, 0, 0; 1, 0)

C) W D(2, 0, 0, 0; 0, 0)

C) ωα1...αℓ−2
D( ℓ

2 + 1, ℓ− 2, 0, 0; 0, 0)

(2.19)

The index i = 1, ..., 4 labels the 4-plet of USp(4), the index α = 1, ..., 4 labels the chiral spinor
of SO(6), W ij = −W ji and symplectic traceless, ΩijWij = 0, and ωα1...αℓ−2

is totally symmetric
in its indices (see Table 10 for further details). The superspace constraints imposed on these
superfields can be found in [50]. The superfield Wij represents the well known (2, 0) tensor
singleton and it is singlet under an SU(2)Z group defined in Section 2.3. The singleton superfields
(W i,W, ωα1...αℓ−2

), on the other hand, carry SU(2)Z spins (1/2, 1, ℓ/2), respectively. These are
the level ℓ = 1, 2 and ℓ ≥ 3 singletons shown in Table 10.
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Taking suitably symmetrized and constrained products of singleton superfields, one can construct
BPS superfields whose lowest components carry the following UIRs [50]:

BPS 1/2 : D(2p, 0, 0, 0; 0, p) , (2.20)

BPS 1/4 : D (2p+ 4q, 0, 0, 0; 2q, p) . (2.21)

Both of these belong to series D. The KK towers of the level ℓ = 0 supergravity are the BPS
1/2 multiplets given by D(2k, 0, 0, 0; 0, k) with k = 3, 4, ... [50].

The OPEs of BPS 1/2 operators have been studied [51, 90]. The supermultiplets that can appear
in the OPE of two BPS 1/2 operators belong to series A with (J1, J2, J3) = (0, s, 0); series B
with (J1, J2) = (0, s) and E0 = 4 + s+ 2(a1 + a2); series C with J1 = 0 and E0 = 2 + 2(a1 + a2),
and series D [51].

3 Labeling of USp(8), SU(4), USp(4) and SO(8) Irreps

3.1 USp(8)

The highest weight state (HWS) labels (n1, n2, n3, n4) of USp(8) satisfy n1 ≥ n2 ≥ n3 ≥ n4 and
are related to the Dynkin labels [a1, a2, a3, a4] as follows:

n1 = a1 + a2 + a3 + a4 , n2 = a2 + a3 + a4 , n3 = a3 + a4 , n4 = a4 .

3.2 SU(4) ∼ SO(6)

The HWS labels of SU(4) irreps are (n1, n2, n3). They satisfy n1 ≥ n2 ≥ n3 and they are related
to the Dynkin labels [a1, a2, a3] as follows:

n1 = a1 + a2 + a3 , n2 = a2 + a3 , n3 = a3 .

The SO(6) HW labels by (m1,m2,m3) obey m1 ≥ m2 ≥ |m3| and they are related to the SO(6)
Dynkin labels [b1, b2, b3] as

m1 = b1 + 1
2(b2 + b3) , m2 = 1

2(b2 + b3) , m3 = 1
2(−b2 + b3) .

These are related to the SU(4) HW labels (n1, n2, n3) and SU(4) Dynkin labels [a1, a2, a3] as

m1 = 1
2(n1 + n2 − n3) m2 = 1

2(n1 − n2 + n3) m3 = 1
2(−n1 + n2 + n3)

b1 = a2 b2 = a1 b3 = a3
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3.3 USp(4) ∼ SO(5)

The USp(4) irreps have the HWS labels (n1, n2) which satisfy n1 ≥ n2 ≥ and they are related
to the Dynkin labels [a1, a2] as

n1 = a1 + a2 , n2 = a2

The irreps of SO(5) have HW labels (m1,m2) which satisfy m1 ≥ m2 ≥ 0 and they are related
to the SO(5) Dynkin labels [b1, b2] as

m1 = b1 + 1
2 b2 , m2 = 1

2 b2

These are related to the USp(4) HW labels (n1, n2) and USp(4) Dynkin labels [a1, a2] as

m1 = 1
2(n1 + n2) m2 = 1

2(n1 − n2)
b1 = a2 b2 = a1

3.4 SO(8)

The irreps of SO(8) have HWS labels (n1, n2, n3, n4) which satisfy n1 ≥ n2 ≥ 0 ≥ n3 ≥ |n4| and
they are related to the SO(8) Dynkin labels [a1, a2, a3, a4] as

n1 = a1+a2+ 1
2(a3+a4) , n2 = a2+ 1

2(a3+a4) , n3 = 1
2(a3+a4) , n4 = 1

2(−a3+a4) .

4 Compact and Non-compact Bases for SO(d, 2)

We write the SO(d, 2) algebra in canonical form as (A = 0, . . . , d, d+ 2):

[MAB ,MCD] = iηBCMAD + 3 more , (4.1)

where η = diag(−,+, ...,+,−). The compact basis, which is suitable for describing physical AdS
fields, consists of the AdS energy E = −M0,d+2, the SO(d) generators Mij (i = 1, ..., d) and
the spin-boosts L±

i = Mi,d+2 ∓ iM0i, which shift the AdS energy by ±1. In compact basis the
SO(d, 2) weight spaces D(E0;m1, . . . m[d/2]) are obtained by acting with L+

i on lowest weight
states, which have minimal energy E = E0 and carry SO(d) highest weights (m1, . . . m[d/2]).
Note that the label m1 is the SO(3) ⊂ SO(3, 2) spin in the case of AdS4 and the sum jL +
jR of SU(2)L × SU(2)R ≃ SO(4) ⊂ SO(4, 2) spins in the case of AdS5. The non-compact
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basis, which is suitable for describing conformal fields, consists of the dilatation generator D =
Md,d+2, the SO(d−1, 1) generators Mµν (µ = 0, 1, . . . , d−1), and the d-dimensional momentum
Pµ = Mµd + Mµ,d+2 and generator of special conformal transformations Kµ = Mµd −Mµ,d+2.
The compact basis (E,Mij , L

±
i ) and non-compact basis (D,Mµν ,Kµ, Pµ) are related [94] by a

similarity transformation executed by the (non-unitary) operator

S = exp iL+
d , (4.2)

with the following properties

SDS−1 = −iE +
1

2
L−

d , (4.3)

SM0aS
−1 = −iMa,d −

i

2
L−

a , SMabS
−1 = Mab , (4.4)

SK0S
−1 = − i

2
L−

d , SKaS
−1 = −1

2
L−

a , (4.5)

where we have split the indices as follows

i =

a︷ ︸︸ ︷
1, 2, ..., d − 1, d , µ = 0,

a︷ ︸︸ ︷
1, 2, ..., d − 1 . (4.6)

Hence (d + 1)-dimensional time-evolution and spatial rotation are equivalent to d-dimensional
dilatation and Lorentz rotation. Thus

S−1D(E0;m1, . . . ,m[d/2]) = O∆(0)|0〉

where |0〉 is the vacuum of the CFTd and O∆(x) = eix
µPµO∆(0)e−ixµPµ is a conformal tensor

with scaling dimension
∆ = E0

and Lorentz spin given by (m1, . . . ,m[d/2]).
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