
Research Article
Heuristics for Routing Heterogeneous Unmanned
Vehicles with Fuel Constraints

David Levy, Kaarthik Sundar, and Sivakumar Rathinam

Mechanical Engineering, Texas A&M University, College Station, TX 77843, USA

Correspondence should be addressed to Sivakumar Rathinam; srathinam@gmail.com

Received 6 January 2014; Revised 17 February 2014; Accepted 23 February 2014; Published 13 April 2014

Academic Editor: Masoud Rokni

Copyright © 2014 David Levy et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This paper addresses a multiple depot, multiple unmanned vehicle routing problem with fuel constraints. The objective of the
problem is to find a tour for each vehicle such that all the specified targets are visited at least once by some vehicle, the tours satisfy
the fuel constraints, and the total travel cost of the vehicles is a minimum. We consider a scenario where the vehicles are allowed
to refuel by visiting any of the depots or fuel stations. This is a difficult optimization problem that involves partitioning the targets
among the vehicles and finding a feasible tour for each vehicle. The focus of this paper is on developing fast variable neighborhood
descent (VND) and variable neighborhood search (VNS) heuristics for finding good feasible solutions for large instances of the
vehicle routing problem. Simulation results are presented to corroborate the performance of the proposed heuristics on a set of 23
large instances obtained from a standard library. These results show that the proposed VND heuristic, on an average, performed
better than the proposed VNS heuristic for the tested instances.

1. Introduction

Small unmanned vehicles (UVs) are being used in several
environmental monitoring applications [1–6] to collect infor-
mation such as temperature, moisture, and humidity. These
applications require UVs to visit specific target locations and
monitor large swathes of land to collect data. Even though
there are both economical and operational benefits [7] in
using small UVs, they also come with other resource con-
straints due to their size and limited payload. Typically, small
UVs due to their limited fuel capacity may have to revisit
the depots (or fuel stations) multiple times for refueling
while executing a surveillance mission. Path planning for
small vehicles becomes critical in this scenario if the available
resources such as fuel must be used as efficiently as possible.

This paper considers a fundamental routing problem
that arises in these monitoring applications and is stated as
follows: given a set of target locations, fuel stations (or depots)
and UVs, find a path for each vehicle such that each target
is visited at least once by a vehicle, each vehicle satisfies the
fuel constraint as it traverses along its respective path and
the travel cost of all the vehicles is a minimum. The travel
cost we consider is the total fuel consumed by all the vehicles.
To simplify the problem, we assume that the fuel consumed

by a vehicle is directly proportional to the distance traveled
by the vehicle. The vehicles are expected to refuel at the fuel
stations as they run out of fuel. Vehicles are heterogeneous as
they are allowed to carry fuel tanks with different capacities.
This problem is referred to as the multiple, heterogeneous
unmanned vehicle routing problem (MHUVRP).

In the absence of fuel constraints, MHUVRP is a gen-
eralization of the traveling salesman problem (TSP) and is
NP-hard [8]. The difficulty in solving the TSP is further
compoundedwhenmultiple vehicles are considered and even
more when fuel constraints are imposed on these vehicles.
Therefore, the focus of this paper is on developing heuristics
that can find good solutions to the MHUVRP as quickly as
possible. We accomplish this through the framework of the
variable neighborhood search (VNS) and variable neighbor-
hood descent (VND). VNS and VND are metaheuristics [9]
used to solve difficult combinatorial and global optimization
problems. These are iterative algorithms where in each itera-
tion, the algorithms search through multiple neighborhoods
of the current feasible solution to find a feasible solution with
lower cost. The use of multiple neighborhoods allows the
solution in the VNS and VND heuristics to move away from
local optima as quickly as possible.
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Routing for UVs has been addressed by several authors
in [10–12]. The single vehicle version of the MHUVRP
has been addressed by Khuller at al. [13] and Sundar and
Rathinam [14]. Authors in [13] present an approximation
algorithm for the symmetric version of the problem. An
𝛼-approximation algorithm is a polynomial time algorithm
that produces a solution whose cost is at most 𝛼 times the
optimal cost for any instance of the problem. Authors in
[14] present an approximation algorithm for the asymmetric
version of the problem. In addition to an approximation
algorithm, 2-opt and 3-opt heuristics were presented in [14]
to find good feasible solutions to the single vehicle problem.
Computational results [14] showed that the 𝑘-opt heuristics in
combination with the approximation algorithm can produce
near-optimal solutions for single vehicle instances with 25
targets within a couple of seconds of CPU time.

TheMHUVRP is also closely related to routing problems
with intermediate facilities [15, 16]. Other variants of the
MHUVRP have also been studied in the literature. Authors in
[17] consider a multiple vehicle TSP incorporating time win-
dows and equity constraints. Approximation algorithms for a
heterogeneous multiple vehicle TSP and a Hamiltonian path
problem were studied in [18, 19]. Oberlin et al. [20] present a
transformation of a heterogeneous multiple vehicle, multiple
depot TSP into an asymmetric TSP so that algorithms for the
standard TSP can be put to good use.

The contributions of this paper are as follows.

(i) We develop algorithms based on the VNS and VND
heuristics proposed by Hansen and Mladenovic [9]
for the MHUVRP using multiple neighborhoods.

(ii) To understand the effect of choosing different neigh-
borhoods and initial solutions on the quality of the
final solutions, we implement the proposed algo-
rithms and test them on large problem instances from
the multiple depot vehicle routing library by Cordeau
[21]. These results give insights as to which of the
neighborhoods provide substantial improvements in
the search process and the order in which the neigh-
borhoods must be selected for the VNS/VND algo-
rithms to obtain good solutions for the MHURVP.

2. Problem Statement

Let there be 𝐾 vehicles denoted by V
1
, V
2
, . . . , V

𝐾
with fuel

capacities denoted by 𝐿
1
, . . . , 𝐿

𝐾
, respectively. Without loss

of generality, we assume that 𝐿
1
≤ 𝐿
2
⋅ ⋅ ⋅ ≤ 𝐿

𝐾
. Let 𝑇 denote

the set of targets to be visited, and let 𝐷 denote the set of
depots (or fuel stations) that are available. Let𝑉 := 𝑇∪𝐷. Each
vehicle is initially located at one of the depots. The problem
is formulated on a complete undirected graph 𝐺 = (𝑉, 𝐸)

where 𝐸 is the set of edges joining any two vertices in 𝑉. Let
the amount of fuel (travel cost) required to travel between
any two vertices 𝑥, 𝑦 ∈ 𝑉 be represented by 𝑓

𝑥𝑦
. The travel

costs are assumed to be symmetric and satisfy the triangle
inequality; that is, for distinct vertices 𝑥, 𝑦, 𝑧 ∈ 𝑉, we have
𝑓
𝑥𝑦
= 𝑓
𝑦𝑥

and 𝑓
𝑥𝑦
+𝑓
𝑦𝑧
≥ 𝑓
𝑥𝑧
. Additionally, for any target 𝑡 ∈

𝑇, it is assumed that there is at least one vehicle V
𝑖
and a depot

𝑑 ∈ 𝐷 such that 2 ⋅ 𝑓
𝑡𝑑
≤ 𝐿
𝑖
. This is a reasonable assumption

because target 𝑡 will be unreachable for any vehicle if this
assumption is not true.

A tour for a vehicle is denoted by a sequence of vertices
(𝑠, 𝑡
1
, . . . , 𝑡

𝑝
, 𝑠) where 𝑡

𝑖
∈ 𝑉 for 𝑖 = 1, . . . , 𝑝 and 𝑠 ∈ 𝐷 is

the depot corresponding to the initial location of the vehicle.
The cost of traveling a tour is defined as the sum of the cost
of traveling all the edges in the tour. A tour satisfies the fuel
constraint for its corresponding vehicle if the vehicle does
not run out of fuel while traversing its tour. The objective of
MHUVRP is to find 𝐾 tours, one for each vehicle, such that
each target is visited at least once by some vehicle, the tours
satisfy the respective fuel constraints of the vehicles and the
total cost of traveling all the tours is a minimum.

3. Algorithms

Heuristics based on the variable neighborhood search (VNS)
are developed in this section for solving the MHUVRP. VNS
was proposed byHansen andMladenovic in [9, 22].Themain
idea of the VNS is to perform a local search systematically
using multiple neighborhoods. It explores increasingly dis-
tant neighborhoods of the current solution iteratively and
jumps from its current solution in the solution space to a new
one if and only if an improvement has been made.

The steps of the basic VNS are shown as in Algorithm 1.
In Algorithm 1, 𝑁

𝜅
(𝜅 = 1, . . . , 𝜅max) denotes a finite set

of neighborhood structures. The stopping conditions may
include criteria based on the allowable CPU time, maximum
number of iterations, or maximum number of iterations
between any two improvements. One can observe that the
basic VNS heuristic also contains a probabilistic component
in the shaking phase. The shaking step is a characteristic
feature of the VNS heuristic and it allows the algorithm to get
out of a local optimum.The solution obtained from the local
search phase is compared to the incumbent solution and is
accepted as a new starting point if an improvement can be
made; otherwise, it is rejected.Therefore, the VNS procedure
is a descent, first-improvement method with randomization.
This method can also be used without the randomization
phase. Such a method, named as the variable neighborhood
descent (VND) heuristic [9], is the same as the VNS heuristic
save for the absence of the shaking phase. In the following
sections, we describe our algorithms for generating the initial
solutions and the improvement procedures in detail.

4. Initial Solution: Construction Phase

Construction heuristics are developed by generalizing the
approach of the single vehicle algorithm in [13] to multiple
vehicles. In particular, we develop two construction heuristics
that provide two initial feasible solutions for the MHUVRP.
In the following discussion, we summarize the main steps
of these construction heuristics and give the details in the
appendix.

In the first construction heuristic, we first compute
a new, modified traveling cost for each vehicle that also
includes the fuel constraints of the vehicle. This traveling
cost will also include the extra fuel a vehicle may require
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Initialization: Select a set of neighborhood structures denoted by𝑁
𝜅
(𝜅 = 1, . . . , 𝜅max) that will be used in

the search; find an initial solution 𝑥; choose a stopping condition.
Repeat the following until the stopping condition is met:

(1) Set 𝜅 ← 1.
(2) Repeat the following steps until 𝜅 = 𝜅max:
(a) Shaking: Generate a feasible solution 𝑥󸀠 at random from the 𝜅th neighborhood of 𝑥 (𝑥󸀠 ∈ 𝑁

𝜅
(𝑥));

(b) Local search: Apply a local search method with 𝑥󸀠 as initial solution; denote the so obtained
local optimum as 𝑥󸀠󸀠;

(c) Move or not: If 𝑥󸀠󸀠 is better than incumbent 𝑥, set 𝑥 ← 𝑥
󸀠󸀠 and continue the search with𝑁

1
(𝜅 ← 1);

otherwise set 𝜅 ← 𝜅 + 1;

Algorithm 1: Steps of the basic VNS by Hansen and Mladenovic.

to visit all the refueling stops when it traverses between any
two targets. We compute this new traveling cost based on
the approach presented in [13]. For completeness, we have
presented the details of this approach in the appendix of this
article. Suppose 𝑙𝑖(𝑥, 𝑦) denote the modified cost of traveling
from target 𝑥 to target 𝑦 for the 𝑖th vehicle including the
refueling stops. It is easy to verify that these traveling costs
monotonically increase with the index of the vehicles since
the vehicles are ordered such that the fuel capacity of the
vehicles decreases, that is, 𝑙1(𝑥, 𝑦) ≤ 𝑙

2
(𝑥, 𝑦) ⋅ ⋅ ⋅ ≤ 𝑙

𝐾
(𝑥, 𝑦).

Once these traveling costs are computed, the primal-dual
heuristic presented in [23] is used to assign the targets to the
vehicles. After partitioning the targets to the vehicles, the best
single vehicle algorithm available in [14, 24] is used to find a
feasible tour for each vehicle. This construction heuristic is
referred to as theApproximate Primal Dual (APD) algorithm.

In the second construction heuristic, each target is
assigned to the nearest initial depot of the vehicle based on
the Euclidean distances between the targets and depots. Once
the targets are partitioned among the vehicles, the best single
vehicle algorithm available in [14, 24] is used to find a feasible
tour for each vehicle. This construction heuristic is referred
to as the Voronoi algorithm. Note that the two construction
heuristics primarily differ only in the partitioning of the
targets.

5. Variable Neighborhood Search:
Improvement Phase

This section explains the choice of neighborhoods and the
main steps in the improvement phase of the VNS algorithm
(Algorithm 1) that includes the shaking step, local search, and
themove or not step.

5.1. Neighborhood Selection. We use four neighborhoods;
three of these are intra-route neighborhoods (2-exchange
[25], 3-exchange [25], and depot exchange [24]) and the last
one is an inter-route neighborhood (relocate [26]). Any two
solutions can be present in an intra-route neighborhood only
if the assignment of targets to the vehicles are the same in both
the solutions. On the other hand, inter-route neighborhood
considers solutions where the assignment of targets to the
vehicles are different.

Solution S1 Solution S2

d1 d1

d2 d2

d3 d3

t1 t1

t2 t2

t3 t3
t4 t4

t6 t6

Figure 1: Depot exchange neighborhood; tour for some vehicle
V
𝑖
is shown. The solution 𝑆

2
is contained in the depot exchange

neighborhood of solution 𝑆
1
.

We first formally define all the neighborhoods in the
ensuing discussion. A solution 𝑆

2
is said to be in the 𝑘-

exchange neighborhood of solution 𝑆
1
if there is exactly one

vehicle V
𝑖
such that

(i) 𝑆
2
and 𝑆
1
may differ only in the tours of vehicle V

𝑖
, and

(ii) the tour for vehicle V
𝑖
in 𝑆
2
differs from the tour for

vehicle V
𝑖
in 𝑆
1
by at most 𝑘 edges.

A solution 𝑆
2
is said to be in the depot exchange neighborhood

(Figure 1) of solution 𝑆
1
if there is exactly one vehicle V

𝑖
such

that

(i) 𝑆
2
and 𝑆
1
differ only in the tours of vehicle V

𝑖
, and

(ii) the tour for vehicle V
𝑖
in 𝑆
2
differs from the tour for

vehicle V
𝑖
in 𝑆
1
by exactly two edges and one depot in

𝐷 \ 𝑢
𝑖
where 𝑢

𝑖
denotes the initial depot of vehicle V

𝑖
.

A solution 𝑆
2
is said to be in the relocate neighborhood

(Figure 2) of solution 𝑆
1
if there are exactly two distinct

vehicles V
𝑖
and V
𝑗
satisfying the following conditions:

(i) 𝑆
2
and 𝑆
1
differ only in the tours of vehicles V

𝑖
, V
𝑗
,

(ii) there is exactly one target 𝑢 such that 𝑢 is visited by V
𝑖

in 𝑆
1
whereas 𝑢 is visited by V

𝑗
in 𝑆
2
.

5.2. Shaking. The shaking step is the randomization part of
the VNS heuristic, the set of neighborhoods that are used
in this shaking step form the core of the VNS. The purpose
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Solution S1
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Figure 2: Relocate neighborhood; the solution 𝑆
2
is in the relocate

neighborhood of 𝑆
1
.

of these neighborhoods is to sufficiently perturb the initial
solution (computed in Section 4), while ensuring that this
new solution keeps certain aspects of the initial incumbent. In
this step, a random feasible solution of the currently selected
neighborhood of 𝑥 is found and denoted as 𝑥󸀠. This random
selection enables the algorithm to avoid local optima in the
local search procedure. For certain neighborhoods, it may
be possible that there are no feasible neighbors; that is, the
neighborhood of 𝑥 is empty. In this special case, the shaking
step is skipped, and 𝑥󸀠 is the same as 𝑥. Figure 3(a) shows the
solution spacewhere each solution is shownusing a black dot,
the neighborhood of 𝑥 is denoted by a circle, and the outcome
of the shaking step is denoted as 𝑥󸀠.

5.3. Local Search. The output solution (𝑥󸀠) from the shaking
procedure is then improved using a local search procedure.
The local search examines all the feasible neighbors of 𝑥󸀠 in
the current neighborhood and finds the solution 𝑥󸀠󸀠 which
has the least cost. Again, it may be possible that the current
neighborhood of 𝑥󸀠 is empty. If this is the case, 𝑥󸀠󸀠 is set to be
the same as 𝑥󸀠.

5.4. Move or Not: Acceptance Decision. In this step, the cost
of 𝑥󸀠󸀠 is compared to the cost of 𝑥.The two possible outcomes
of interest are when the cost of 𝑥󸀠󸀠 is less than the cost of 𝑥 and
when the cost of 𝑥󸀠󸀠 is greater than or equal to the cost of 𝑥. In
the first case, 𝑥 is set to be 𝑥󸀠󸀠 (see Figure 3(b)).When the first
outcome is true, the first neighborhood is set as the “current”
neighborhood (𝜅 ← 1 in Algorithm 1), and computations
continue with the shaking step. When the second outcome is
true, 𝑥󸀠󸀠 is forgotten, and the next neighborhood is set as the

“current” neighborhood (𝜅 ← 𝜅+1 in Algorithm 1). If there is
no next neighborhood, that is, the “current” neighborhood is
the last neighborhood designated, the algorithm terminates.

6. Computational Analysis

The VNS/VND heuristic proposed in Section 5 was imple-
mented using Visual C++ and the elements of the Standard
Template Library (STL). Simulations were performed on a
2.4GHz AMD Phenom machine. The problem instances
on which the simulations were performed derives from the
Cordeau’s benchmark instances [21] for the multiple depot
vehicle routing problem. Additional information was added
to these benchmark instances to satisfy the requirements of
the MHUVRP as follows.

(i) The number of customers in the benchmark instances
was used as the number of targets for the MHUVRP.

(ii) The depot locations in the benchmark instances were
used as the initial depot locations of all the vehicles.

(iii) The number of vehicles in the MHUVRP was set to
be equal to the number of depots in the benchmark
instances.

(iv) The fuel capacity of the 𝑘th vehicle in an instance was
computed using the formula 𝐿

𝑘
:= 𝑆 − 15(𝑘 − 1)

where 𝑆 is the size of the surveillance area. 𝑆 was set
to be equal to max

𝑖,𝑗∈𝑉
|𝑥
𝑖
− 𝑥
𝑗
| where 𝑥

𝑖
denotes the

𝑥 coordinate of vertex 𝑖 (rounded to the nearest 100
units).

The above modifications resulted in 23 distinct instances
(listed in Table 1) on which the computational study was
performed. The number of targets and vehicles in these
instances varied from 50 to 360 and 2 to 9, respectively. We
use a maximum allowable time of 1000 secs as the stopping
condition for the heuristics.

6.1. Quality of the Initial Feasible Solutions. Table 1 shows the
cost of the initial feasible solutions produced by the two con-
struction heuristics. On an average, these results show that
the initial feasible solution produced by the APD algorithm
was superior to the initial feasible solution produced by the
Voronoi partitioning algorithm for a majority of instances.

6.2. Analysis on the Best Sequence of Neighborhoods. In
this section, we first study the effect of the choice of the
neighborhoods used in the VNS and VND algorithms.The%
improvement in the quality of solutions using an algorithm
is defined as 100 × ((Cost

𝐼
− Costalg)/Cost𝐼) where Costalg

denotes the travel cost of the final solution produced by the
algorithm and Cost

𝐼
denotes the travel cost of the initial

solution produced by a construction heuristic. As there are
two construction heuristics used, we evaluate the effect of
the sequence of neighborhoods used on both the initial
solutions obtained using the construction heuristics. Table 2
shows the average improvement in the quality of the solutions
using a sequence of 4 neighborhoods. We only report the
sequences of the neighborhoods that produced the best
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Figure 3: Shaking step and move or not step of the VNS heuristic.

Table 1: Comparison of the initial feasible solutions.

Instance Targets Vehicles APD Cost (Costapd) Voronoi Cost (CostV) CostV/Costapd (%)
p01 50 4 2483.04 2474.2 99.64
p03 75 5 2170.27 3666.57 168.95
p04 100 2 2569.91 4354.53 169.44
p05 100 2 2588.21 2645.91 102.23
p06 100 3 5089.49 4158.92 81.72
p07 100 4 5759.59 5798.38 100.67
p08 249 2 40044.1 59003.2 147.35
p09 249 3 37783.8 51802.7 137.10
p10 249 4 34990.6 50382.6 143.99
p11 249 5 34610.9 71234.3 205.81
p12 80 2 5917.04 12618 213.25
p15 160 4 23619.6 9628.57 40.77
p21 360 9 77354.6 19131.9 24.73
pr01 48 4 6964.58 9940.97 142.74
pr02 96 4 7625.7 7854.82 103.00
pr03 144 4 21303.9 29336.8 137.71
pr04 192 4 14659.2 19382 132.22
pr05 240 4 9780.66 24196.3 247.39
pr06 288 4 24778.5 9144.85 36.91
pr07 72 6 4026.09 10006.3 248.54
pr08 144 6 9340.81 14959.8 160.16
pr09 216 6 12207.2 16921.7 138.62
pr10 288 6 9119.63 30491.9 334.35

improvements. In general, the order of the neighborhoods
did not significantly affect the improvement in the quality of
the solutions.

Table 3 shows the average improvement in the quality
of the solutions using a sequence of 3 neighborhoods.

These results show that the VND heuristic provides more
improvement in the quality of the solutions, on an average,
compared to the VNS heuristic. We also note that majority of
the best sequences has 3-opt neighborhood as the last search
neighborhood. In general, we found that the addition of the
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Table 2: Influence of 4 neighborhoods sequences on improving quality.

Scheme Construction
heuristic 𝑁

1
𝑁
2

𝑁
3

𝑁
4

Average
improvement

(%)

Average
computation
time (sec)

VND APD 2-opt Relocate 3-opt Depot 33.92 78.04881
VND APD 2-opt Relocate Depot 3-opt 33.79 77.33881
VND APD 2-opt 3-opt Relocate Depot 33.76 197.7543
VNS APD Relocate 2-opt 3-opt Depot 27.52 70.8876
VNS APD Relocate 2-opt Depot 3-opt 27.39 75.12725
VNS APD Relocate Depot 2-opt 3-opt 26.99 75.44715
VND Voronoi Depot Relocate 3-opt 2-opt 38.08 310.7845
VND Voronoi Relocate 3-opt Depot 2-opt 37.94 304.7469
VND Voronoi Depot Relocate 2-opt 3-opt 36.85 203.9593
VNS Voronoi Relocate Depot 2-opt 3-opt 42.22 221.0236
VNS Voronoi Relocate Depot 3-opt 2-opt 38.23 741.5726
VNS Voronoi Depot Relocate 3-opt 2-opt 37.52 799.8579

3-opt neighborhood produced high quality solutions for the
problem at the expense of computation time.

Table 4 shows the average improvement in the quality of
the solutions using a sequence of 2 neighborhoods.This table
provides a clear picture of the overall improvement capability
of the different neighborhoods. These results show that the
relocate and 3-opt neighborhoods appear most frequently
followed by the 2-opt, indicating that the neighborhood
combinations containing 3-opt or relocate are the most
effective, even though they take an order or two ofmagnitude
longer to run than the other neighborhood combinations.
They also provide the best improvement in the quality of
solutions on an average. Finally, Table 5 shows the effect of
choosing a single neighborhood in the improvement of the
quality of the solutions. Results in Table 5 shows a clear trade-
off in the quality of the solutions produced by an algorithm
versus the computation time the algorithm requires. In terms
of solution quality, algorithms using the 3-opt neighborhood
performed the best while using the maximum amount of
computation time. On the other hand, the algorithms using
only the relocate neighborhood ran quickly while producing
an improvement of up to 17.56%.

6.3. Effect of the Construction Heuristics on the Final Cost.
Table 6 shows the effect of the two construction heuristics
on the quality of the final solutions obtained by the VNS and
VND algorithms. In this table, Cost𝑓V and Cost𝑓apd denote the
cost of the final solution obtained by the algorithms using
the Voronoi and the APD heuristic, respectively. The table
shows the average values of ((Cost𝑓V −Cost

𝑓

apd)/Cost
𝑓

apd)×100

for some of the best combination of neighborhoods. For a
majority of instances, these results show that the choice of the
construction heuristic, on an average, does not significantly
affect the quality of the final solutions produced by the
algorithms. Figures 4 and 5 show the initial and the best
solution obtained using the proposed algorithms for the
instance pr05.

6.4. The Best Algorithm with the Neighborhood Combina-
tions. In this subsection, we specify the best combination
of the neighborhoods obtained for the instances and the
corresponding cost of the final solutions obtained by the
algorithms. For a single neighborhood, the VND heuristic
with 3-opt (Table 7) performed the best with the initial solu-
tion provided by the APD heuristic. This heuristic improved
the quality of the solutions by 22.96% on an average. For
two neighborhoods, the VND heuristic with relocate as the
first neighborhood and 3-opt as the second neighborhood
(Table 8) performed the best with the initial solution pro-
vided by the Voronoi heuristic. This heuristic improved the
quality of the solutions by 39.42% on an average. We found
that the relocate neighborhood in combination with either
2-opt or 3-opt were effective in improving the quality of the
solutions substantially.

For three neighborhoods, the VND heuristic with relo-
cate, depot exchange, and 3-opt neighborhoods (in the given
sequence) performed the best with the initial solution pro-
vided by the Voronoi heuristic. In particular, they improved
the quality of the solutions by 42.59% as shown in Table 9.
For four neighborhoods, the VNS heuristic with relocate,
depot exchange, 2-opt, and 3-opt neighborhoods (in the given
sequence) performed the best with the initial solution pro-
vided by the Voronoi heuristic. This heuristic improved the
quality of the solutions by 42.22% as shown in Table 10.
In general, using four neighborhoods as compared to three
neighborhoods only increased the computation time while
not providing any substantial improvements in the solution
quality.

7. Conclusion

The effects of different neighborhoods and partitioning
heuristics on benchmark instances for the MHUVRP were
examined. The neighborhoods included the 2-opt, 3-opt,
depot exchange, and the relocate neighborhoods. Simula-
tion results showed that, on an average, the construction
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Table 3: Influence of 3 neighborhoods sequences on improving quality.

Scheme Construction
heuristic 𝑁

1
𝑁
2

𝑁
3

Average
improvement

(%)

Average
computation
time (sec)

VND APD 2-opt Relocate 3-opt 33.99 483.1837
VND APD 2-opt 3-opt Relocate 33.86 595.6045
VND APD Relocate 3-opt 2-opt 33.49 89.5769
VNS APD Relocate 2-opt 3-opt 27.52 71.3513
VNS APD Relocate 3-opt 2-opt 26.77 178.1168
VNS APD 2-opt Relocate 3-opt 25.87 79.254
VND Voronoi Relocate Depot 3-opt 42.59 323.1872
VND Voronoi Relocate 2-opt 3-opt 36.24 225.4593
VND Voronoi Depot Relocate 3-opt 35.97 891.1418
VNS Voronoi Relocate 2-opt 3-opt 37.37 241.9253
VNS Voronoi Relocate 3-opt Depot 37.18 298.7079
VNS Voronoi Depot Relocate 3-opt 36.93 795.2278

Table 4: Influence of 2 neighborhoods sequences on improving quality.

Scheme Construction
heuristic 𝑁

1
𝑁
2

Average
improvement

(%)

Average
computation
time (sec)

VND APD Relocate 2-opt 32.82 417.9984
VND APD 2-opt Relocate 32.15 422.4113
VND APD Relocate 3-opt 31.99 495.1695
VNS APD Relocate 3-opt 22.76 170.846
VNS APD 3-opt Relocate 21.24 173.4163
VNS APD 3-opt 2-opt 20.38 121.7078
VND Voronoi Relocate 3-opt 39.42 753.4336
VND Voronoi 3-opt Relocate 33.73 1109.158
VND Voronoi Relocate 2-opt 30.32 11.05305
VNS Voronoi Relocate 3-opt 33.93 503.4305
VNS Voronoi 3-opt Relocate 29.22 479.8828
VNS Voronoi Relocate 2-opt 27.92 7.714526

Approximate primal dual Voronoi

Figure 4: Initial solutions for the instance 𝑝𝑟05 using the APD and Voronoi partitioning heuristics.
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Approximate primal dual Voronoi

Figure 5: The best solution obtained for the instance 𝑝𝑟05 using the proposed heuristics.

Table 5: Influence of one neighborhood on improving quality.

Scheme Construction
heuristic 𝑁

1

Average
improvement

(%)

Average
computation
time (sec)

VND APD 3-opt 22.96 1462.62
VND APD 2-opt 21.96 420.1842
VND APD Relocate 14.08 1.017391
VNS APD 3-opt 17.32 109.5311
VNS APD 2-opt 10.36 0.75705
VNS APD Relocate 8.13 0.30115
VND Voronoi 3-opt 21.29 835.2096
VND Voronoi Relocate 17.56 1.6659
VND Voronoi 2-opt 15.56 4.2504
VNS Voronoi 3-opt 19.92 459.5533
VNS Voronoi 2-opt 13.19 3.118789
VNS Voronoi Relocate 8.87 0.399421

heuristics did not affect the quality of the final solutions
obtained by the algorithms despite the fact that the primal-
dual heuristic produced better initial solutions compared to
the Voronoi heuristic. Overall, the VND heuristic produced
better solutions compared to the VNS heuristic. This result
shows that including the shaking step in the VNS may not
always yield better results. In general, heuristics with the 3-
opt neighborhood provided the best solutions for majority of
the instances. However, 3-opt neighborhoods can be replaced
with 2-opt neighborhoods whenever possible, to obtain
solutions of similar quality while reducing the computation
time.

This paper mainly focused on developing heuristics for
the MHUVRP. However, there are currently no algorithms in

the literature that can find optimal solutions to the problem
relatively quickly for the large instances considered in this
paper.Therefore, future work for the MHUVRP can focus on
finding good lower bounds and optimal solutions for these
instances.

Appendix

The purpose of this computation is to find a path for every
vehicle V

𝑘
to travel from any target 𝑥 ∈ 𝑇 to any other target

𝑦 ∈ 𝑇 such that the path can be a part of the feasible tour
for V
𝑘
, satisfies all the refueling constraints for V

𝑘
, and is of

minimum travel cost. Given a vehicle V
𝑘
, we note that the

maximum amount of fuel available for the vehicle when it
reaches target 𝑥 in any tour is 𝐿𝑘 − min

𝑑
𝑓
𝑑𝑥
. Also, in any

feasible tour, there must be at least min
𝑑
𝑓
𝑦𝑑

units of fuel
left when the vehicle reaches target 𝑦 so that the vehicle
can continue to visit other vertices along its tour. Define
𝐹
𝑥
:= min

𝑑
𝑓
𝑑𝑥

(also 𝐹
𝑥
= min

𝑑
𝑓
𝑥𝑑

since the travel costs are
symmetric) for any 𝑥 ∈ 𝑇.The first step of the algorithmfinds
a feasible path of least cost (also referred as the shortest path)
such that the vehicle starts at target 𝑥with atmost 𝐿−𝐹

𝑥
units

of fuel and ends at target𝑦with at least𝐹
𝑦
units of fuel. If there

is enough fuel available for the vehicle V
𝑘
to travel from 𝑥 to

𝑦 (or, if 𝐿𝑘 − 𝐹
𝑥
− 𝐹
𝑦
≥ 𝑓
𝑥𝑦
), the vehicle can directly reach 𝑦

from 𝑥 while respecting the fuel constraints. In this case, we
say that the vehicle V

𝑘
can directly travel from 𝑥 to 𝑦 and the

shortest path (also referred to as the direct path) is denoted
by PATH𝑘(𝑥, 𝑦) := (𝑥, 𝑦). The cost of traveling this shortest
path is just 𝑓

𝑥𝑦
. If the vehicle V

𝑘
cannot directly travel from

𝑥 to 𝑦 (if 𝐿𝑘 − 𝐹
𝑥
− 𝐹
𝑦
< 𝑓
𝑥𝑦
), the vehicle must visit some of

the depots on theway before reaching target𝑦. In this case, we
find a shortest path using an auxiliary graph, (𝑉󸀠, 𝐸󸀠), defined
on all the depots and the targets 𝑥, 𝑦, that is, 𝑉󸀠 = 𝐷 ∪ {𝑥, 𝑦}

(illustrated in Figure 6).
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Table 6: Comparison between the final solutions produced by the algorithms.

Scheme 𝑁
1

𝑁
2

𝑁
3

𝑁
4

(Cost𝑓apd − Cost𝑓V )/Cost
𝑓

apd (%)
VNS Relocate 2-opt Depot 3-opt 9.90
VND Depot 2-opt Relocate 3-opt 4.42
VND Depot 2-opt Relocate 3-opt 4.42
VNS Relocate 3-opt Depot −18.64
VND 3-opt Relocate Depot 1.80
VNS Relocate 2-opt 3-opt 8.73
VND Relocate 2-opt 3-opt 5.85
VNS Relocate 2-opt −1.52
VND Relocate 2-opt 6.47
VNS 3-opt 2-opt −35.45
VND Relocate 3-opt 2.10
VNS Relocate −51.36
VND 2-opt −3.04
VND Relocate −34.98

Table 7: Results using the VND heuristic with 3-opt.

Instance Initial cost (Cost
𝑖
) Final cost (Cost

𝑓
) (Cost

𝑖
− Cost

𝑓
)/Cost

𝑖
(%) Computation time (sec)

p01 2483.04 1942.48 21.77 7.368
p03 2170.27 1172.44 45.98 4.822
p04 2569.91 1301.3 49.36 15.816
p05 2588.21 1468.28 43.27 30.267
p06 5089.49 2904.23 42.94 180.685
p07 5759.59 4456.7 22.62 195.286
p08 40044.1 40044.1 0.00 192.995
p09 37783.8 37783.8 0.00 142.009
p10 34990.6 34990.6 0.00 374.885
p11 34610.9 34610.9 0.00 30.816
p12 5917.04 2064.31 65.11 25.047
p15 23619.6 3105.85 86.85 5842.052
p21 77354.6 76936.9 0.54 9000
pr01 6964.58 6885.05 1.14 11.20039
pr02 7625.7 7625.7 0.00 9.709453
pr03 21303.9 21303.9 0.00 29.87566
pr04 14659.2 13465.5 8.14 943.9597
pr05 9780.66 8137.73 16.80 286.9558
pr06 24778.5 14108.8 43.06 32975.92
pr07 4026.09 2151.59 46.56 2.17765
pr08 9340.81 7385.68 20.93 178.9951
pr09 12207.2 9294.9 23.86 480.1001
pr10 9119.63 9119.63 0.00 50.35585

An edge is present in this graph only if traveling the edge
can satisfy the fuel constraint. For example, as the vehicle V

𝑘

has at most 𝐿𝑘 − 𝐹
𝑥
units of fuel to start with, the vehicle can

reach a depot 𝑑 from 𝑥 only if 𝑓
𝑥𝑑

≤ 𝐿
𝑘
− 𝐹
𝑥
. Therefore, 𝐸󸀠

contains an edge (𝑥, 𝑑) if the constraint 𝑓
𝑥𝑑

≤ 𝐿
𝑘
− 𝐹
𝑥
is

satisfied. Similarly, the vehicle can travel from a depot 𝑑 to
target 𝑦 only if there are at least 𝐹

𝑦
units of fuel remaining

after the vehicle reaches 𝑦. Therefore, 𝐸󸀠 contains an edge

(𝑑, 𝑦) if the constraint 𝑓
𝑑𝑦
≤ 𝐿
𝑘
− 𝐹
𝑦
is satisfied. In summary,

the following are the edges present in 𝐸󸀠:

𝐸
󸀠
:=

{
{

{
{

{

{(𝑥, 𝑑) : ∀𝑑 ∈ 𝐷, 𝑓
𝑥𝑑
≤ 𝐿
𝑘
− 𝐹
𝑥
}

∪ {(𝑑
1
, 𝑑
2
) : ∀𝑑

1
, 𝑑
2
∈ 𝐷, 𝑓

𝑑
1
𝑑
2

≤ 𝐿
𝑘
}

∪ {(𝑑, 𝑦) : ∀𝑑 ∈ 𝐷, 𝑓
𝑑𝑦
≤ 𝐿
𝑘
− 𝐹
𝑦
} .

(A.1)
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Table 8: Results using the VND heuristic with relocate and 3-opt.

Instance Initial Cost (Cost
𝑖
) Final Cost (Cost

𝑓
) (Cost

𝑖
− Cost

𝑓
)/Cost

𝑖
(%) Computation time (sec)

p01 2474.2 1096.8 55.67 1.012
p03 3666.57 1253.25 65.82 16.18
p04 4354.53 1762.64 59.52 206.734
p05 2645.91 1465.84 44.60 38.875
p06 4158.92 1829.36 56.01 22.65
p07 5798.38 2224.81 61.63 48.702
p08 59003.2 59003.2 0.00 518.078
p09 51802.7 51802.7 0.00 557.311
p10 50382.6 50382.6 0.00 479.043
p11 71234.3 67496.8 5.25 9570.828
p12 12618 1573.43 87.53 8.731
p15 9628.57 2398.17 75.09 23.964
p21 19131.9 5543.1 71.03 58.40544
pr01 9940.97 9940.97 0.00 2.577926
pr02 7854.82 2425.53 69.12 16.12673
pr03 29336.8 22436 23.52 4844.833
pr04 19382 18776.1 3.13 508.4298
pr05 24196.3 17398.5 28.09 4531.525
pr06 9144.85 5088.55 44.36 252.208
pr07 10006.3 5294.35 47.09 2.493464
pr08 14959.8 8907.27 40.46 142.704
pr09 16921.7 5272.41 68.84 100.4253
pr10 30491.9 30491.9 0.00 46.63218

Table 9: Results using the VND heuristic with relocate, depot exchange and 3-opt.

Instance Initial Cost (Cost
𝑖
) Final Cost (Cost

𝑓
) (Cost

𝑖
− Cost

𝑓
)/Cost

𝑖
(%) Computation time (sec)

p01 2474.2 1096.8 55.67 0.962
p03 3666.57 1253.25 65.82 16.196
p04 4354.53 1634.81 62.46 186.685
p05 2645.91 1465.84 44.60 38.83
p06 4158.92 1829.36 56.01 22.633
p07 5798.38 2224.81 61.63 48.9
p08 59003.2 59003.2 0.00 515.802
p09 51802.7 51802.7 0.00 554.835
p10 50382.6 50382.6 0.00 476.858
p11 19327.5 4599.05 76.20 212.3943
p12 12618 1573.43 87.53 8.829
p15 9628.57 2398.17 75.09 24.106
p21 19131.9 5391.13 71.82 89.22671
pr01 9940.97 9940.97 0.00 2.634846
pr02 7854.82 2435.17 69.00 14.46503
pr03 29336.8 22475.2 23.39 4365.047
pr04 19382 18776.1 3.13 541.5995
pr05 24196.3 17403.7 28.07 4190.062
pr06 9144.85 5165.15 43.52 235.299
pr07 10006.3 5510.2 44.93 2.12073
pr08 14959.8 8689.09 41.92 179.7975
pr09 16921.7 5289.71 68.74 94.15305
pr10 30491.9 30491.9 0.00 46.17499
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Table 10: Results using the VNS heuristic with relocate, depot exchange, 2-opt and 3-opt.

Instance Initial Cost (Cost
𝑖
) Final Cost (Cost

𝑓
) (Cost

𝑖
− Cost

𝑓
)/Cost

𝑖
(%) Computation time (sec)

p01 2474.2 694.271 71.94 0.232
p03 3666.57 1143.62 68.81 4.915
p04 4354.53 1551.03 64.38 58.451
p05 2645.91 1476.75 44.19 19.571
p06 4158.92 1474.53 64.55 12.117
p07 5798.38 1464.33 74.75 26.84
p08 59003.2 59003.2 0.00 519.381
p09 51802.7 51802.7 0.00 559.957
p10 50382.6 50346.4 0.07 470.61
p11 71234.3 65498.1 8.05 1910.843
p12 12618 2385.06 81.10 53.939
p15 9628.57 2409.39 74.98 11.693
p21 19131.9 5492.56 71.29 78.08324
pr01 9940.97 9940.97 0.00 2.691766
pr02 7854.82 2107.41 73.17 14.26489
pr03 29336.8 22494.6 23.32 974.1806
pr04 19382 18603.2 4.02 213.7126
pr05 15198.4 9801.09 35.51 484.938
pr06 9144.85 5240.83 42.69 98.146
pr07 10006.3 4827.39 51.76 1.632319
pr08 14959.8 8357.23 44.14 64.22047
pr09 16921.7 4676.42 72.36 168.083
pr10 30491.9 30473.4 0.06 47.34827

Depot
Target

x
y

Lk − Fx

Lk − Fy

The shortest path from x to y

Figure 6: The first step of the algorithm: the solid edges represent the shortest path PATH𝑘(𝑥, 𝑦) for the vehicle V
𝑘
, to travel from target 𝑥 to

target 𝑦, and the cost of traveling this path is denoted by 𝑙𝑘(𝑥, 𝑦).

Any path starting at 𝑥 and ending at 𝑦 in this auxiliary graph
will require the vehicle V

𝑘
to carry at most 𝐿𝑘 − 𝐹

𝑥
units of

fuel at target 𝑥, satisfy all the fuel constraints, and reach target
𝑦 with at least 𝐹

𝑦
units of fuel left. Also, we let the cost of

traveling any edge (𝑖, 𝑗) ∈ 𝐸
󸀠 to be equal to 𝑓

𝑖𝑗
(as defined

in Section 2). Now, we use Dijkstra’s algorithm [27] to find
a shortest path to travel from 𝑥 to 𝑦. This shortest path (also
referred to as the indirect path using intermediate depots) can
be represented as PATH𝑘(𝑥, 𝑦) := (𝑥, 𝑑

1
, 𝑑
2
, . . . , 𝑦). Let the

length of this path be represented by 𝑙𝑘(𝑥, 𝑦). This new cost
function is computed for every vehicle between every pair of
targets and is denoted by 𝑙𝑘 where 𝑘 = 1, . . . , 𝑛.
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