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A new treatment of kinematical constraints and potential energies arising in the dynamics of systems of rigid
bodies and particles is presented which is suited to Newtonian and Lagrangian formulations. Its novel feature
is the imposing of invariance requirements on the constraint functions and potential energy functions. These
requirements are extensively used in continuum mechanics and, in the present context, one finds certain
generalizations of Newton’s third law of motion and an elucidation of the nature of constraint forces and
moments. One motivation for such a treatment can be found by considering approaches where invariance
requirements are ignored. In contrast to the treatment presented in this paper, it is shown that this may
lead to a difficulty in formulating the equations governing the motion of the system.
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1 INTRODUCTION

There are two classical approaches to the formulation of the equations of motion of a system
of rigid bodies and particles. One approach uses the balances of linear and angular momenta
of each of the rigid bodies and the balance of linear momentum for each individual particle.
These equations are supplemented by constraints, prescriptions of constraint forces and
moments, and specifications of applied forces and moments to form a closed system of
equations from which both the motion of the system and the constraint forces and moments
can be determined. Another approach is to use Lagrange’s equations of motion, which has the
advantages of automatically incorporating several of the constraints and eliminating some of
the equations which are identically satisfied by the constraint forces and moments.
Recently, Casey [1] clarified several issues concerning the equivalence of the two approa-
ches discussed above. There is however an obstacle remaining and that concerns the constraint
and potential forces and moments. In Lagrangian mechanics, these force and moments appear
as generalized forces. In most texts, such as Gantmacher [2] and Rosenberg [3], general
functional forms of the potential energies and constraints are postulated after some motiva-
tional examples. Indeed, although extensively used in Lagrangian mechanics, the issue of
potential moments in the context of a single unconstrained rigid body was only fairly recently
resolved by Antman [4] (cf. also Simmonds [5]). Recent discussions on issues concerning
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constraints and constrained mechanical systems can be found in, for example, Huston [6] and
Udwadia and Kalaba [7].

In the present work, we examine the general functional forms of constraint functions and
potential energy functions for these systems, and establish representations for the forces and
moments associated with them. One of the novel features of our treatment is the extensive use
of invariance requirements for both the constraint and potential energy functions. In con-
tinuum mechanics, these invariance requirements are commonly imposed on both the strain-
energy function and the constraint function (cf., e.g., [8]-[13]). We find that imposition of
these requirements yields generalizations of Newton’s third law of motion to systems
of particles and rigid bodies. Further, it clarifies some issues pertaining to the specification of
forces and moments associated with time-dependent potential energies.

Our work can be viewed as an extension of Antman’s work [4] to the case of a system of
rigid bodies and particles. Furthermore, the generalizations of Newton’s third law we find
were motivated by an earlier work of Noll [14]. He showed, in the context of two particles,
how this law can be arrived at using invariance requirements. We also note that our work can
be used in conjunction with the work of Casey [1, 15] to establish several of the alternative
forms of Lagrange’s equations of motion that have appeared in the literature.'

Primarily because of their computational advantages, there has been an increased interest
in recent years in the use of Euler parameters to parameterize the rotation tensor of a rigid
body (see, for example, [18]-{21]). To encompass all possible parameterizations, we present
our results in a representation-free form. However, we also indicate how the associated
derivatives can be calculated.

The paper is organized as follows. In the forthcoming section, several preliminary results
on the motions of rigid bodies are presented. These results can be trivially interpreted for
systems of particles and rigid bodies. In Section 3, the invariance requirements are introduced
and some of their consequences presented. Then, in Section 4, the general functional forms
of a kinematical constraint and a potential energy function which are compatible with these
requirements are discussed. Subsequently, in Section 5, prescriptions for the constraint and
conservative forces and moments are presented. The next section discusses how Newton’s
third law for constraint and conservative forces and moments naturally arises as a con-
sequence of the invariance requirements. A problem associated with an approach where
invariance requirements are not imposed is discussed in Section 7, and a resolution of this
difficulty is also presented. An appendix presents a Proposition which is used in several
sections of this paper.

2 PRELIMINARIES

In this paper, a system of rigid bodies and particles is considered. For ease of exposition, it
suffices to consider a system of N + 1 rigid bodies Bg, (@ = 00, ..., N + 00). Our notation
follows the works of Beatty [22] and Casey [1, 23] A fixed reference configuration is defined
for each body. This configuration uniquely identifies the position vector X@ of a material
point Xe of the body Be.? The position vector of this material point in the present or current

!For example, the Routh-Voss equations and the Boltzmann-Hamel equations. Details on these equations can be
found in Hamel [16] and Papastavridis [17].

2In this paper, lower-case Greek indices range from 1 to 2 and are not summed when repeated. Upper-case Greek
indices range from either 1 to N or 1 to N+ 1 or, in the appendix, 1 to 6N+ 6 and are not summed when repeated.
Lower-case Latin indices range from 1 to 3 and are summed when repeated. We also employ a tensor notation
discussed in [1,22,23].
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configuration of the body is denoted by xe. All of the aforementioned position vectors are
defined relative to a fixed origin O in Euclidean three-space.
The motion of the rigid body Be has a particular form:

xo = QpXo + qp, 1)

where qg = qg(f) is a vector-valued function of time and Qg = Qg(¢) is a proper-
orthogonal (rotation) tensor.” It is convenient to define the position vectors of the centers of
mass of the rigid bodies in their present and reference configurations. These are, respectively,
Xo and Xg. As the center of mass of a rigid body moves as if it were a material point of the
rigid body, Xo = QgXe + qg, we find from (1) that

xo = Qo(Xo — Xo) + Xo. 2

To consider a system of » rigid bodies and m particles, we would set N = n + m — 1, identify
the position vector of the ith particle by X,4;, and suppress any functional dependency on
Qn+1y LR Qn+m'

The angular velocity tensors g and their associated angular velocity vectors we are
defined in the usual manner:

Q0 = Q6Qh, 6 = ~3¢lQ0], @)

where ¢ is a third-order tensor which is known as the alternator, and the superposed dot
denotes the time derivative.

In several sections of this paper, we will calculate the derivative of a function with respect
to a rotation tensor. To illuminate this matter, consider a function X(R). We define the
operators og and g by

» T
ZR (gi I’(T R(%ii) ), OR = -—E[ZR]. (4)

Suppose that R is parameterized using 3 parameters {}'}, for instance three Euler angles or
the (three components of the) Rodngues vector: R = R(y!, 72, 7). Then one can define the
sets of basis vectors {g/} and {g,}.
1 [oR . ;
gi='“‘ [ayR]» g -g =07, &)
where (5{ is the Kronecker delta. With some manipulations using the chain-rule, one finds the
representations

19 oL

ZR-_—"Eé; eg', 0R=a—y,.g, (6)

where £ = Z(R) = Z(7). Related representations can be obtained if the rotation tensor is
parameterized using a 4-parameter representation, such as Euler parameters, but we do not
pause to discuss them.

3A tensor R is a rotation tensor if RTR = I and det R = 1, where I is the identity tensor and the superscript T
denotes transpose. For an extensive review on the various methods, such as Euler angles and Euler parameters, of
parameterizing the rotation tensor, the reader is referred to Shuster [24].

“If y are Euler angles, then the set {g;} is often known as the Euler basis.
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3 INVARIANCE CONSIDERATIONS AND RESULTS
Here, we discuss a scalar-valued function ¥ of the motion of the N + 1 bodies:

b 4 =‘P(iA’ i[\H—h QA’ QN-H,t)» (A = 1,...,N). (7)

We seek a functional form of W which is invariant under a superposed rigid body motion of
the entire system of rigid bodies. A function which is invariant in this respect is termed
properly invariant in this paper. If, in addition, we were to assume that the function was form-
invariant under a change of Euclidean observer, then it follows from a result of Svendsen and
Bertram [12] that the function will also be material frame — indifferent in the sense defined by
Truesdell and Noll [13].

We recall that a superposed rigid body motion induces the following transformations on
the motion of a rigid body Be:

x5(t) =Sxe() +s, QLY =SQe(r), O =1,...,N+1). ®)
Here, the + denotes the transformed quantity, S = S(f) is a rotation tensor, s = s(¢) is a

vector, and t+ =t +a, where a is a constant. The transformations (8) imply, from (2), that
the velocity vectors Vg = X@ and angular velocity tensors transform as

Vo (1) = SRe(f) + SVo(t) +5, Q") = SST + SQe(1)S". 9)

The corresponding transformation of the angular velocity vectors is easily inferred.
For the function ¥, we find, with the assistance of (8), that

Wt = P(Skp + 5, SXy4+1 +5, SQa, SQu11. ¢t + ). (10)

We require ¥ to be properly invariant for all possible values of a,s, and S: ¥ =9+,
Consequently, ¥ cannot be an explicit function of time. By choosing S = Q}, 41 and

s =-Qy +1Xn+1(2), we can define a functional form which is properly invariant:
¥ = ¥(Ya,ya), (11)
where
Ya=Qup(Ka —Xn41),  Ya =Qy; Qa (12)

We emphasize that yz =y, and YZ = Y,. It should be clear from our present arguments
that one could define alternatives to W using the rotation tensor and position vector of the
center of mass of another rigid body instead of the rigid body By, .. We also remark that the
construction of the properly invariant functional form of W has some similarities to the pivot
point selection used by Casey and Naghdi [25] in their construction of properly invariant
approximate theories of deformable bodies.

We now consider the time derivative of ¥':

v Lov . X [ov.
I=X:_"YA'FX:‘T(-a—\aYT), (13)
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where tr denotes the trace of a tensor. We can rewrite this expression by substituting for
¥Ya, Ya and their time derivatives:

N
Z(QN+1 ova ) (Va — V1) + Z(QN+1l//YA) (0a — @On+1)

- 0¥
+ Z(XA = Xv+1) X | Quir3—) - On41, (14)
A=1 0¥a

where l/IY , 1s defined using (4). It should be noted that, because y, and Y, are properly
invariant, so too are 6‘P/6YA, wY 4> and d‘I’/dt

All of the aforementioned results can be extended to the case of several rigid bodies and
particles. For example, if the system of interest consists of a particle and a rigid body, then
consider a function Q = Q(Xy, X,, Q, f), where X, denotes the position vector of the particle.
Adapting the invariance requirements discussed prev1ous1y, we find that the properly invar-
iant functional form of Q is Q(y) where y = Q[ (X, — X1).

The case of a system of N + 1 particles deserves further comment. Here, starting from a
function @ of the form (7), where the dependency on the rotation tensors is suppressed, it can be
shown that if this function is properly invariant, then it can only depend on the relative position
vectors of the particles. Furthermore, ® = CI)(S(xA —Xy11)) = (I)(xA — Xy41) for all rotation
tensors S. One can then use Cauchy’s representation theorem for hemitropic functions (see [13]) to
show that ® must be a function of the inner products and scalar triple products of X5 — Xy1.

4 POTENTIAL ENERGIES AND KINEMATICAL CONSTRAINTS

In classical dynamics, the most common forms of potential energies are associated with
gravitational forces, constant forces and spring forces and moments. Using the results
established in the previous section, we now postulate the general functional form of a
potential energy U associated with a system of N + 1 rigid bodies which satisfies the
invariance requirement U = U™:

U =U(Ya,yy), (15)

where Y, and y, are defined by (12). We shall shortly address the forces and moments
associated with this potential energy. We also note that our remarks on the function ¥ and ¥
in the previous section clearly pertain to U.

A kinematical constraint is an assumed restriction on the motions of the rigid bodies and
particles. By considering a wide variety of constraints in classical dynamics, it is possible to
postulate the general form of a kinematical constraint. Here, we suppose that there are
K < 6(N + 1) constraints on the motions of the N + | rigid bodies, and postulate their
general forms:

N+l N+l

HJ=Zf«1®,{,®+Zg’®.w®=O, V=1,...,K), (16)
0=1 0=1

where
£y = f5(ya, Ya), €6 =8€6(ya Ya), (A=1,...,N). (17)
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The K constraints are assumed to be independent. A constraint IT; = 0 is said to be integrable
if there exists a function 7y = 0 of the form (11) such that dn,/d¢ = IT,. To establish the
possible existence of such a function, one parameterizes X and Qg using curvilinear coor-
dinates and Euler angles, respectively, and then invokes standard integrability criteria.’

We require the constraints (16) to be invariant under all transformations of the form (8):
I1, = I1}. Imposing this restriction and using (8) and (9), we find that

N+1 N+1 N+1
SR (ST~ 1) %o + 3 (STE)" — gb)] o0 + [Zfz,}
O=1 O=1 O=1

(18)

N+1
+ Z ST(gh)t + %o x sT(fg,)+} . —%s[SST] =0.
O=1

As (18) is required to hold for all motions of the rigid bodies and all transformations (8), we
find that it is necessary for all the terms in the curly brackets to vanish:

N+1 N+1

N+1
)" =5fh, (&) =Sgh, > . fh=0, > gh+) Rexfh=0.  (19)
O=1 0=1 O=1

These conditions are easily shown to be sufficient for I, = IT}.

The constraints (16) that we consider are far less general than those normally considered in
treatments of rigid body dynamics. First, we exclude rheonomic constraints because they are
not properly invariant. Secondly, the restrictions I, = I1} and (19) are not normally
imposed. Our motivation for imposing these requirements arose when considering how
constraints presented themselves: they appear from the interaction of a rigid body or particle
with another rigid body or particle. It is when the motion of this other body is prescribed that
the invariance requirements are violated and the constraints can then become rheonomic.
Related comments apply to the potential energy function.

Finally, we note that the Euler parameter constraint discussed in [18]-[21] is not a con-
straint in the sense defined here. It arises when one uses 4 Euler parameters to parameterize
the rotation tensor. As such, it is a restriction on the parameterization of the rotation tensor,
but not a physical restriction on the motion of the rigid body.

5 PRESCRIPTIONS FOR THE CONSERVATIVE FORCES AND MOMENTS
AND THE CONSTRAINT FORCES AND MOMENTS

In this section, we discuss prescriptions for the constraint forces F.@ and moments Mg and
conservative forces F,o and moments M, associated with a system of N + 1 rigid bodies
which are subject to the constraints (16) where the system has a potential energy U (cf. (15)).

Any prescriptions of F.g and M. must be physically meaningful and also result in a
closed system of equations from which the motions of the various constituents can be
determined. Here, following Casey [1, 15], we prescribe these forces and moments using the
normality prescription:

K K
Fo=)Y Ml Meo=) Agh ©O=1,... N+l (20)
J=1 J=1

SRosenberg [3] and Papastavridis [17] present reviews of these criteria.
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where J; is a Lagrange multiplier,’ Mg is the constraint moment exerted on Bg relative to
Xe, and F_.g is the constraint force exerted on Bg.

It is well-known for constraints of the form (16), that the normality prescription is
identical to a prescription, which is credited to Lagrange, that the combined virtual work
of the constraint forces and moments is zero (cf., e.g., [3, 15, 17]). Furthermore, using
(16), it is easy to see that the combined mechanical power P of F.¢ and M.e is zero,
where

N+1 N+1
P=) Feo-Vo+ Y Mo wo. @
o=t o=l

Indeed, using the Proposition discussed in the Appendix,” one could solve the equation
P = 0 subject to (16) for F.g and M, to find the solution (20). In other words, the normality
prescription in this case is equivalent to a work-less prescription. It should be clear that the
normality prescription is not universal. For instance, for the case of two rigid bodies sliding
on each other, this prescription would not be physically realistic if the contact involved
friction.

Turning to a prescription of F,g¢ and M,e, we first assume that

N+1 N+1

__ P
—ZF@ V@—-ZMPG) Q. (22)

We now seek the solution F,e and M,¢ of (22) for all motions of the rigid bodies which are
compatible with the constraints (16). Invoking the Proposition discussed in the Appendix, we
find that

A

ou &K,
Foan = —Qny1 5y—A+ Zﬂjf ;
J=1

K
Mps = —Qpyiity, + ZﬂJgi’

N
Fyven) = Z QN+1 a Z Z I V¢
A=l Yo Ao 7=
Nk [ ol ,
My = Y ) | Ka = Xns1) x | Quas v, Hfe
A=1J=1 Ya
N K
+) ) (Quiidly, — 18- (23)
A=l J=1

Here, y1, are Lagrange multipliers and éty, is defined using (4) in conjunction with U.In writing
(23), we have also used fact that U is properly invariant and, consequently, restrictions of the
form (19), 4 can be imposed. If the constraint forces and moments are specified using the
normality prescription, then the multipliers in (23) can be subsumed into F.g and M g.

Followmg Casey and Carroll [26], we do not assume that AT = A.
"Implicit in the use of this Proposition is the assumption that F.¢ and Mg are independent of vg and we.
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6 COMMENTS ON NEWTON’S THIRD LAW

In the context of a system of particles, Noll [14] recently showed how Newton’s third law
arose as a consequence of invariance requirements. Motivated by his work, we now show that
a related result holds in the context of the system of interest in this paper.

Considering the representations for the forces and moments (20) and (23) and invoking the
identities (19), 4 which arise because I1; and U are assumed to be properly invariant, we find that

N
Fovin = — Z Fpa,
A=1

N
Myw+ny = — Z((iA = Xn+1) X Fga +Mya), (24)
A=1

where ¢ = p or c. These equations represent the generalization of Newton’s third law to a
system of rigid bodies.
To illuminate (24), consider the case of 2 rigid bodies. Then, N = 1 and these equations
reduce to
FqZ = "Fql, Mq2 = —Mql - (’—(l - iZ) X Fql- (25)

Clearly, the reaction forces are equal and opposite, but the same cannot be said for the
moments.® A simple illustration of this arises when one considers two rigid bodies which are
connected by a ball and socket joint. The joint supports forces which are equal and opposite,
however, because the centers of mass of the bodies are distinct, the constraint moments (relative
to the center of mass of the bodies) due to these forces are not necessarily equal and opposite.

7 RELATED APPROACHES

Partially to motivate our extensive use of invariance requirements, we now discuss a treat-
ment where these requirements are not imposed. As will shortly become apparent, such a
treatment encounters a serious obstacle in one particular case. If a virtual work prescription is
used, then this obstacle will be absent. We also show how it can be removed using the
treatment presented in Sections 5 and 6 of the present paper.

7.1 A Treatment Without Invariance Requirements

The procedure outline in Section 5 depends critically on the constraint functions and
potential energy functions being properly invariant. Hence, special care must be taken when
dealing with time-dependent constraint functions and potential energy functions.

Consider a system of two rigid bodies which are subject to X < 12 constraints:

2 2
Ey=) 8 %t ) bl o+ =0, (J=1,....K), (26)
a=1 a=1
where a) = a)(Xg, Qp, 1), b, = b (Xp, Qp,1) and ¢’ = ¢’ (Xp, Qp, 7). We also assume the
existence of a potential energy function W = W(Xg, Qp, t). We emphasize that neither £, nor
W are presumed to be properly invariant.

8A related result, in the context of the theory of a Cosserat point, can be seen in Eq. (37) of O’Reilly and
Varadi [27].
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To specify the constraint forces F,, and moments M., required to ensure the satisfaction of
(26), we again use the normality prescription:

K K
Foo =Y Aya), My=Y Ab], (27)
J=1 J=1

where 1, are Lagrange multipliers. Paralleling the establishment of (21), it is easy to see,
with the assistance of (26), that this system of constraint forces and moments has a
mechanical power P = —Y5_ A;c’. Furthermore, the combined virtual work of the
system (27) is zero.

To calculate the conservative forces F;, and moments M;, associated with W, we first
equate —dW /dt to the combined mechanical power of Fy, and M,,. After some rearrangmg
the following equation is obtained:

ow ow
Z(a_ + Fm) “Va + Z(WQ,, +Mp) 0y +5-=0, (28)

where wq, are defined with the assistance of (4). We seek a solution of (28) for all motions of
the rigid bodies which are compatible with the constraints (26). Invoking the Proposition
discussed in the Appendix, we find, apart from one case, that

K
Fu=—7+ Zu,ai, My, = —wo, + ) _ /b3, (29)
=1 J=1

where p; are Lagrange multipliers. As mentioned in the Appendix, these multipliers are not
necessarily independent, however, they can be subsumed into the expressions for F., and
M., above. For a single rigid body in the absence of constraints, (29), agrees with Antman [4]
and Simmonds [5].

The situation where (29) does not hold arises when 0 /0t #Oandc' =--- =K =0.In
fact, according to the Proposition it is not possible to determine Fy, and My, in this case. An
alternative viewpoint would be to attribute the lack of a solution in this case to the
assumption that dW/d¢ is the negative of the combined mechanical powers of F,, and M,
(cf. (22) and (26)).

7.2 Prescriptions Based on Virtual Displacements and Work

The difficulty above does not present itself in treatments of constraint and conservative
forces and moments which are based on virtual work prescriptions. As mentioned in
Section 7.1, the prescriptions of the constraint forces and moments are identical to those
recorded by (27). Furthermore, as in Section 8 of Gantmacher [2] and Section 9.9 of
Rosenberg [3], one equates the negative of the first variation of W to the combined virtual
work of F,, and M,,:’

2 ow 2
Z(a- + Fcoz) - 0Xy + ;(WQD‘ +M,) - 60, = 0, (30)

%Strictly speaking, Gantmacher [2] uses an equation of the form (30) to define the function ¥, Furthermore, neither
he nor Rosenberg [3] mentions the role of (31) and the multipliers s they introduce.
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where X, and 68, = —(1/ 2)1-:[5QaQI] are first variations (virtual displacements). One then
seeks a solution (30) for all X, and 6@, which are compatible with, from (26),

2
E/=) a, 0% +b}-60,+0, (J=1,...,K). 31)

a=1

Using the Proposition, it is easy to see that because the problematic term 0/ /0t is absent
from (30) one would then obtain prescriptions identical to (29) in all cases.

7.3 Resolution

The difficulty noted above, when 0W /0t # 0 and ¢! = --- = cX = 0, can also be removed
using the treatment presented in this paper. Specifically, one assumes that the explicit time
dependency of the potential energy function W and constraints are due to the fact that the
motion of a third rigid body is a prescribed function of time:

X3 =p@), Q;=P(). (32)

To proceed, one assumes, prior to (32) being imposed, that the system of 3 rigid bodies is
subject to a set of K properly invariant constraints of the form (16). In addition, the system is
assumed to have a potential energy function U = f](ya, Y,), where, from (12),
¥, = Q1 (X, — X3) and Y, = Q}Q,. In what follows, the constraint and conservative forces
and moments are obtained using the treatment discussed in Section 5. After these pre-
scriptions, (32) are then imposed. One of the consequences of this procedure is an illumi-
nating interpretation of OW /0.

Using the developments of Section 5 and imposing the invariance requirements, we find,
from (20) and (23),

K K
Fo=Y M, Ma=) ig, @(=1,..,3),
J=1 J=1
o &, LN
Fpo = —Q3—+ Z“Jfa* My = —Qstly; + ng;,
aya J=1 J=1

Fp = _}:Fpm M3 = -

a=1 o

((Xx — X3) X Fgu + Mg,). (33)

2 2
=1

To simplify the resulting expressions, we have also used (24).
Evaluating the properly invariant constraints on the subset (32) yields constraints of the
form (26) where

al(Xp, Qp, ) = £2(PT(Xs — p), PTQp),
bl(Xs, Qp. ) = g (P"(Xs — p), PTQp),
(%p, Qp, 1) = £3(PT (X — p), P'Qp) - p + g3(P" (s — ). P'Qp) - 1, (34)

where @, = —(1 /2)e[PPT]. It follows that after (34) have been imposed, (33),, will be
identical to (27).
In addition, we identify

W = W (X, Qp, 1) = UPT(%; — p), PTQp). (35)
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Omitting details, it can be shown, using the chain-rule, that

ow _aU
—=r——, = Puy,. 36
5% oy, wq, = Pily, (36)
It follows that the conservative forces and moments, (33); 4, reduce to
ow & K
Fp = % + ,u,ai, My, = —wq, + Z,u./b'é. 37
Xe T30 J=

Clearly, (37) is equivalent to (29). However, (37) is valid regardless of the value of OW /0t
Finally, by equating W to U, we can also identify

R Y 1A WY AN
—_:—Z P——; -p—; (Xy — X3) X ng’—/; + Pity | - . (38)

Thus, —OW /Ot represents the combined mechanical power of the force F.; and the
moment M.
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APPENDIX

In several sections of this paper, we required the solution of a system of algebraic equations
which are subject to linear constraints. The solutions are obtained from a Proposition that we
record here. The proof is very straightforward and is consequently omitted.

PROPOSITION  The solution (ag,be) of

N+1 N+1

Y ap-Vo+ Y bo-we=f, (39)
O=1 0=1

Jor all (Vo, w@) which satisfy the K independent equations

N1 N4
YcoVot+ ) dh-wo=g, (U=1,....K), (40)
O=1 0=1

can be divided into three classes. First, if f # 0 and g' = --- = g& =0, then (39) does not

have a solution. Otherwise, the solution is of the form

K K
a0 =Y Ach bo=) Ad. (41)
J=1 J=1

Suppose one g”, say g', # 0, then Ay for (J =2, ..., K) are independent and
1 K
h==lr=-Y 4¢) (42)
g =

Finally, if g' = --- =gK =0 and f = 0, then all of the A,’s are independent.
Y g
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