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Abstract

We analyze the Abelian gauge fluxes in local F-theory models with GS =
SU(6) and SO(10). For the case of GS = SO(10), there is a no-go theorem

which states that for an exotic-free spectrum, there are no solutions for U(1)2

gauge fluxes. We explicitly construct the U(1)2 gauge fluxes with an exotic-free

bulk spectrum for the case of GS = SU(6). We also analyze the conditions for

the curves supporting the given field content and discuss non-minimal spectra

of the MSSM with doublet-triplet splitting.

http://arxiv.org/abs/0911.0427v2


1 Introduction

String theory is so far the most promising candidate for a unified theory. Building
realistic models of particle physics to answer fundamental questions is one of the
challenges in string theory. One of the main issues to be addressed from particle
physics is the unification of gauge couplings. The natural solution to this question is
the framework of grand unified theory (GUT). One task for string theory is whether it
can accommodate GUT models. String theory makes contact with four-dimensional
physics through various compactifications. There are two procedures to realize GUTs
in string theory compactifications. The first is the top-down procedure in which
the full compactification is consistent with the global geometry of extra dimensions
and then the spectrum is close to GUT after breaking some symmetries [1]. In the
bottom-up procedure, the gauge breaking can be understood in the decoupling limit
of gravity [2, 3], particularly in the framework that D-branes are introduced on the
local regions within the extra dimensions in type IIB compactification [2–4]. In this
case we can neglect the effects from the global geometry for the time being, which
makes the procedure more flexible and efficient. In addition, the construction of the
local models can reveal the requirements for the global geometry. Eventually the local
models need to be embedded into some compact geometry for UV completion.

In SU(5) GUTs, there are two important Yukawa couplings, 10105H and 105̄M5̄H.
It is well-known that 10105H is forbidden in perturbative type IIB theory. However,
it was shown in [5, 6] that the Yukawa coupling 10105H can be achieved by intro-
ducing non-perturbative corrections. From this perspective, the non-perturbative
property is intrinsic for GUT model building in type IIB theory. F-theory is a non-
perturbative 12-d theory built on the type IIB framework with an auxiliary two-torus
( [7], see [8] for review). The ordinary string extra dimensions are regarded as a
base manifold and the two-torus is equivalent to an elliptic curve as a fiber on this
base manifold. The modulus of the elliptic curve is identified as axion-dilaton in type
IIB theory. Due to the SL(2,Z) monodromy of the modulus, F-theory is essentially
non-perturbative in type IIB language. There are elegant correspondences between
physical objects in type IIB and geometry in F-theory. The modular parameter of the
elliptical fiber, identified with the axion-dilaton in type IIB, varies over the base. Sin-
gularities develop when the fibers degenerate. The loci of the singular fibers indicate
the locations of the seven-branes in type IIB and the type of the singularity deter-
mines the gauge group of the world-volume theory of the seven-branes [9]. According
to the classification of the singular fibration, there are singularities of types A, D,
and E. The first two types have perturbative descriptions in Type IIB. More pre-
cisely, A-type and D-type singularities correspond to configurations of the D7-branes
and D7-branes along O-planes, respectively [10]. For the singularity of type E, there
is no perturbative description in type IIB, which means that F-theory captures a
non-perturbative part of the type IIB theory. Under geometric assumptions, the full
F-theory can decouple from gravity [11–13]. In this way, one can focus on the gauge
theory descending from world-volume theory of the seven-branes supported by the
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local geometry of the discriminant loci in the base manifold of a elliptically fibered
Calabi-Yau fourfold. Recently some local supersymmetric GUT models have been
built in this F-theory context [11–27], and some progress has been made in construct-
ing global models [28–33]. Supersymmetry breaking has been discussed in [34–36],
and the application to cosmology has been studied in [37]. It has become more clear
that F-theory provides a very promising framework for model building of supersym-
metric GUTs. To build local SU(5) GUTs in F-theory, one can start with engineering
a Calabi-Yau fold with an A4 singularity. To decouple from gravity, it is required that
the volume of S, which is a component of the discriminant locus and is wrapped by
seven-branes is contractible to zero size.1 We assume that S can contract to a point
and thus possesses an ample canonical bundle K−1

S [11–13]. In particular, we focus
on the case that S is a del Pezzo surface wrapped by seven-branes, which engineers
an eight-dimensional supersymmetric gauge theory with gauge group GS = SU(5)
in R3,1 × S. Other components S ′

i of the discriminant locus intersect S along the
curves Σi. Due to the collision of the singularities, the gauge group GS will be en-
hanced to GΣi

on Σi and the matter in the bi-fundamental representations will be
localized on the curves [38]. It was shown in [11–13] that the spectrum is given by
the bundle-valued cohomology groups. In [11–13], the minimal SU(5) GUT has been
studied. In that case, with non-trivial U(1)Y gauge flux, the GUT group is bro-
ken into Gstd ≡ SU(3)× SU(2)×U(1)Y . Furthermore, one can obtain an exotic-free
spectrum of the minimal supersymmetric Standard Model (MSSM) from those curves
with doublet-triplet splitting but no rapid proton decay. The success of the minimal
SU(5) GUT model motivates us to pursue other local GUT models from higher rank
gauge groups. The next simplest one is gauge group of rank five, namely SO(10)
and SU(6). These two non-minimal SU(5) GUTs have been studied in [24]. For the
latter, one can get an exotic-free spectrum, but due to the lack of an extra U(1) flux,
the GUT group cannot be broken into Gstd. To avoid this difficulty, it is natural to
study local F-theory models of GS = SU(6) and GS = SO(10) with supersymmetric
U(1)2 gauge fluxes, which consist of two supersymmetric U(1) gauge fluxes and are
associated with rank two polystable bundles over S. The aim of the present paper
is to construct explicitly the supersymmetric U(1)2 gauge fluxes in local F-theory
models of GS = SU(6) and SO(10) and study the matter spectrum of the MSSM.

For the case of GS = SO(10), there is a no-go theorem [12] which states that for
an exotic-free spectrum, there are no solutions for U(1)2 gauge fluxes. For the case
of GS = SU(6), we can explicitly construct supersymmetric U(1)2 gauge fluxes. It
turns out that each flux configuration contains two fractional lines bundles. One of
the gauge fluxes is universal and has the same U(1)Y hypercharge flux as the minimal
SU(5) GUT [11–13]. The second one varies along with the configurations of the bulk
zero modes. With suitable supersymmetric U(1)2 gauge fluxes, the bulk spectrum
will be exotic-free and the chiral matter will come from the curves. The restriction
of these U(1)2 fluxes to the curves induce U(1) fluxes over the curves, which breaks

1There are two ways in which we could take VS → 0. The first way is by requiring S to contract
to a point, and the second is by requiring S to contract to a curve of singularities. See [29, 30] for
the details.
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the enhanced gauge group GΣ into Gstd × U(1). In this case, the Higgs fields can be
localized on the curves ΣSU(7) and ΣSO(12). On the ΣSU(7), non-trivial induced fluxes
break SU(7) into Gstd × U(1). With suitable fluxes, doublet-triplet splitting can
be achieved. However, the situations become more complicated on the curves with
GΣ = SO(12). Since the dimension of the adjoint representation of SO(12) is higher
than SU(7), one gets more constraints to solve for given field configurations, which
results in difficulties for doublet-triplet splitting. By explicitly solving the allowed
field configurations, one can find that there are still a few solutions with doublet-
triplet splitting. From the analysis, it is clear that if one engineers the Higgs fields
on the curve ΣSU(7) instead of ΣSO(12), this is the case. To obtain a complete matter
spectrum of the MSSM, we analyze the case of ΣE6 in addition to ΣSU(7) and ΣSO(12).
It is extremely difficult to obtain the minimal spectrum of the MSSM without exotic
fields. However, we found that in some cases, the exotic fields can form trilinear
couplings with the doublets or triplets on the curves with GΣ = SU(7). When
these fields get vacuum expectation values (vevs), the exotic fields will be decoupled
from the low-energy spectrum. A way to do this is that we introduce extra curves
supporting the doublets or triplets, which intersect the curves hosting the exotic fields
to form the couplings. With the help of these doublets or triplets, it turns out that
the non-minimal spectrum of the MSSM without doublet-triplet splitting problem
can be achieved by local F-theory model of GS = SU(6) with supersymmetric U(1)2

gauge fluxes.

The organization of the rest of the paper is as follows: in section 2, we briefly
review the construction of local F-theory model and local geometry, in particular the
geometry of the del Pezzo surfaces. In section 3, we include a brief review of the
SU(5) GUTs with GS = SU(5), SO(10), and SU(6). We also introduce the notion of
stability of the vector bundle, in particular, that of the polystable bundle of rank two
in section 4. In section 5, we review a no-go theorem for the case of GS = SO(10) and
construct explicitly supersymmetric U(1)2 gauge fluxes for the case of GS = SU(6).
We also give examples for non-minimal spectra of the MSSM with doublet-triplet
splitting. We conclude in section 6.

2 F-theory and Local Geometry

In this section we shall review some important ingredients of the local F-theory models
and local geometry, and in particular the geometry of the del Pezzo surfaces.
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2.1 F-theory

Consider F-theory compactified on an elliptically fibred Calabi-Yau fourfold, T 2 →
X → B with sections, which can be realized in the Weierstrass form,

y2 = x3 + fx+ g, (2.1)

where x and y are the complex coordinates on the fiber, f and g are sections of the
suitable line bundles over the base manifold B. The degrees of f and g are determined
by the Calabi-Yau condition, c1(X) = 0. The degenerate locus of fibers is given by
the discriminant ∆ = 4f 3+27g2 = 0, which is in general a codimension one reducible
subvariety in the base B. For local models, we focus on one component S of the
discriminant locus ∆ = 0, which will be wrapped by a stack of the seven-branes and
supports the GUT model. In order to decouple from the gravitational sector, the
anti-canonical bundle K−1

S of the surface S is assumed to be ample. According to
the classification theorem of algebraic surfaces, the surface S is a del Pezzo surface
and birational to the complex projective plane P2 . There are ten del Pezzo surfaces:
P1 × P1, P2, and dPk, k = 1, 2, ..., 8, which are blow-ups of k generic points on P2. In
this paper we shall focus on the case of S = dPk, 2 6 k 6 8 with (−2) 2-cycles2. In
the vicinity of S, the geometry of X may be regarded approximately an ALE fibration
over S. The singularity of the ALE fiberation determines the gauge group GS of 8d
N = 1 super-Yang-Mills theory. After compacifying on S and partially twisting, the
resulting effective theory is 4d N = 1 super-Yang-Mills theory whose gauge group
is the commutant of structure group of the vector bundle over S in GS [11–13]. Let
V be a holomorphic vector bundle over S. The unbroken gauge group in 4d is the
commutant ΓS of HS in GS, where HS is the structure group of the bundle V . In
order to preserve supersymmetry, the bundle V has to admit a hermitian connection
A satisfying the Donaldson-Uhlenbeck-Yau (DUY) equation [1]

Fmn = Fm̄n̄ = 0, gmn̄Fmn̄ = 0, (2.2)

where gmn̄ is a Kähler metric on S, and F is the curvature of the connection A. It
was shown in [39, 40] that a bundle admitting a hermitian connection solving Eq.
(2.2) is equivalent to a (semi) stable bundle, which is guaranteed by the Donaldson-
Uhlebecker-Yau theorem. We shall in the next section define the stability of vector
bundles and briefly review some facts about the equivalence. The spectrum from the
bulk is given by the bundle-valued cohomology groups H i

∂̄
(S,Rk) and their duals,

where Rk = V, ∧kV , or EndV. The spectrum of the bulk transforms in the adjoint
representation of GS. The decomposition of adGS into representations of ΓS ×HS is

adGS =
⊕

k

ρk ⊗Rk, (2.3)

where ρk and Rk are representations of ΓS and HS, respectively. The matter fields are
determined by the zero modes of the Dirac operator on S. It was shown in [12,13] that

2A (−2) 2-cycle is a 2-cycle with self-intersection number −2.
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the chiral and anti-chiral spectrum is determined by the bundle-valued cohomology
groups

H0
∂̄(S,R

∨
k )

∨ ⊕H1
∂̄(S,Rk)⊕H2

∂̄(S,R
∨
k )

∨ (2.4)

and
H0

∂̄(S,Rk)⊕H1
∂̄(S,R

∨
k )

∨ ⊕H2
∂̄(S,Rk) (2.5)

respectively, where ∨ stands for the dual bundle and Rk is the vector bundle on S

whose sections transform in the representation Rk of the structure group HS. By
the vanishing theorem of del Pezzo surfaces [12], the number of chiral fields ρk and
anti-chiral fields ρ∗k can be calculated by

Nρk = −χ(S,Rk) (2.6)

and
Nρ∗

k
= −χ(S,R∨

k ), (2.7)

respectively. In particular, when V = L1 ⊕ L2 with structure group U(1) × U(1),
according to Eq. (2.6), the chiral spectrum of ρr,s is determined by

Nρr,s = −χ(S, L1
r ⊗ Ls

2), (2.8)

where r and s correspond respectively to the U(1)1 and U(1)2 charges of the repre-
sentations in the group theory decomposition. In order to preserve supersymmetry,
the gauge bundle V has to obey the DUY equation (2.2), which is equivalent to the
polystability conditions, namely

JS ∧ c1(L1) = JS ∧ c1(L2) = 0, (2.9)

where JS is the Kähler form on S. We will discuss the polystability conditions in
more detail in section 4.

Another way to obtain chiral matter is from intersecting seven-branes along a
curve, which is a Riemann surface. Let S and S ′ be two components of the discrim-
inant locus ∆ with gauge groups GS and GS′, respectively. The gauge group on the
curve Σ will be enhanced to GΣ, where GΣ ⊃ GS × GS′. Therefore, chiral matter
appears as the bi-fundamental representations in the decomposition of adGΣ

adGΣ = adGS ⊕ adGS′ ⊕k (Uk ⊗ U ′
k). (2.10)

As mentioned above, the presence of HS and HS′ will break GS×GS′ to the commutant
subgroup when non-trivial gauge bundles on S and S ′ with structure groups HS and
HS′ are turned on. Let Γ = ΓS ×ΓS′ and H = HS ×HS′, the decomposition of U ⊗U ′

into irreducible representation is

U ⊗ U ′ =
⊕

k
(vk,Vk), (2.11)

where vk and Vk are representations of Γ and H , respectively. The light chiral fermions
in the representation vk are determined by the zero modes of the Dirac operator on
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Σ. It is shown in [12, 13] that the net number of chiral fields vk and anti-chiral fields
v∗k is given by

Nvk −Nv∗
k
= χ(Σ, K

1/2
Σ ⊗ Vk), (2.12)

where Vk is the vector bundle whose sections transform in the representation Vk of
the structure group H . In particular, if HS and HS′ are U(1) × U(1) and U(1),
respectively, GΣ can be broken into GM × U(1)× U(1)× U(1) ⊂ GS × U(1). In this
case, the bi-fundamental representations in Eq. (2.10) will be decomposed into

⊕

j

(σj)rj ,sj ,r′j , (2.13)

where rj , sj and r′j correspond to the U(1) charges of the representations in the
group theory decomposition and σj are representations in GM . The representations
(σj)rj ,sj ,r′j are localized on Σ [12,13,38] and as shown in [12,13], the generation number

of the representations (σj)rj ,sj,r′j and (σ̄j)−rj ,−sj,−r′j
can be calculated by

N(σj)rj ,sj,r′j
= h0(Σ, K

1/2
Σ ⊗ L

rj
1Σ ⊗ L

sj
2Σ ⊗ L′r

′

j

Σ ) (2.14)

and
N(σ̄j )−rj,−sj ,−r′

j

= h0(Σ, K
1/2
Σ ⊗ L

−rj
1Σ ⊗ L

−sj
2Σ ⊗ L′−r′j

Σ ), (2.15)

where L1Σ ≡ L1|Σ, L2Σ ≡ L2|Σ, and L′
Σ ≡ L′|Σ are the restrictions of the line bundles

L1, L2 and L′ to the curve Σ, respectively. Note that from Eq. (2.20) below, if

c1(L
rj
1Σ⊗L

sj
2Σ⊗L′r

′

j

Σ ) = 0, then N(σj )rj ,sj,r′j
= N(σ̄j )−rj,−sj ,−r′

j

= 0. If c1(L
rj
1Σ⊗L

sj
2Σ⊗L′r

′

j

Σ ) 6=
0, then only one of them is non-vanishing. Using these properties, we can solve the
doublet-triplet splitting problem with suitable line bundles. In addition to the analysis
of the spectrum, the pattern of Yukawa couplings also has been studied [11–13, 32].
By the vanishing theorem of del Pezzo surfaces [12,13], Yukawa couplings can form in
two different ways. In the first way, the coupling comes from the interaction between
two fields on the curves and one field on the bulk S. In the second way, all three
fields are localized on the curves which intersect at a point where the gauge group
Gp is further enhanced by two ranks. Recently, flavor physics in F-theory models has
been studied in [15–20,26, 27, 32, 33]. When one turns on bulk three-form fluxes, the
structure of the Yukawa couplings will be distorted and non-commutative geometry
will emerge [27]. The case of rk(V) = 1 and minimal SU(5) GUT model has been
studied in [11–13]. In this article, we shall focus on the case that V is a polystable
bundle of rank two. We will study non-minimal cases, namely GS = SU(6) and
SO(10) with these rank two polystable bundles and the spectrum of the MSSM.

2.2 Local Geometry

To make the present paper self-contained, in this section we include a brief review
of the geometry of the del Pezzo surfaces, curves on the surfaces and some useful
formulae.
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2.2.1 Del Pezzo Surfaces

As mentioned in the previous section, in local models we require that the anti-
canonical bundle K−1

S of the surface S wrapped by the seven-branes be ample. An
algebraic surface with ample anti-canonical bundle is called a del Pezzo surface. It
was shown that there are ten families of del Pezzo surfaces: P1 × P1, P2 and the
blow-ups of P2 at k generical points, where 1 6 k 6 8. [42, 43]. In what follows, we
shall briefly review the geometry of the del Pezzo surfaces.

The del Pezzo surface S is an algebraic surface with ample anti-canonical bundle,
namely K−1

S > 0. It follows that h1(S,OS) = h2(S,OS) = 03 and that χ(S,OS) =∑2
i=0(−1)ihi(S,OS) = 1. According to the classification theorem of algebraic sur-

faces, these surfaces are birational to the complex projective plane P2. It was shown
in [11–13] that to obtain an exotic-free bulk spectrum, the gauge fluxes have to cor-
respond to the dual of (−2) 2-cycle in S. The Picard group of P2 is generated by
hyperplane divisor H with intersection number H · H = 1. Thus there is no (−2)
2-cycle in P2. Let us turn to the case of dPk. The Picard group of dPk is generated
by the hyperplane divisor H , which is inherited from P2 and the exceptional divisors
Ei, i = 1, 2, .., k from the blow-ups with intersection numbers H ·H = 1, H ·Ei = 0,
and Ei · Ej = −δij , ∀ i, j. It is easy to see that dP1 contains no (−2) 2-cycles. It
follows that the candidates of the del Pezzo surfaces containing (−2) 2-cycles are dPk

with 2 6 k 6 8. In what follows, I shall focus on the del Pezzo surfaces dPk with
2 6 k 6 8. The canonical divisor of dPk is KS = −3H + E1+, ...,+Ek. The first
term comes from KP2 = −3H and the rest comes from the blow-ups, which lead to
the exceptional divisors E1, E2, ..., Ek. For local models in F-theory, the curves sup-
porting matter fields are required to be effective. Next we shall define effective curves
and the Mori cone. Consider a complex surface Y and its homology group H2(Y,Z).
Let C be a holomorphic curve in Y . Then [C] ∈ H2(Y,Z) is called an effective class
if [C] is equivalent to C. The Mori cone NE(Y ) is spanned by a countable number of
generators of the effective classes [44, 45]. The Mori cones NE(dPk) of the del Pezzo
surfaces dPk are all finitely generated [42]. To be concrete, we list the generators of
the Mori cones of dPk, 2 6 k 6 8 in Table 1.

With the Mori cone, one can easily check that the anti canonical divisor −KS

is ample.4 The dual of the Mori cone is the ample cone, denoted by Amp(dPk),
which is defined by Amp(dPk) = {ω ∈ H2(dPk,R)| ω · ζ > 0, ∀ζ ∈ NE(dPk)}.
Each ample divisor ω in the ample cone is associated with a Kähler class JS. In
this article we choose “large volume polarization”, namely ω = AH −∑k

i=1 akEk with
A ≫ ak > 0 [11,12]. It is easy to check that ω is ample. For the del Pezzo surfaces S
and a line bundle L over S, there are two useful theorems. One is the Riemann-Roch

3It can be easily seen by the Kodaira vanishing theorem which states that for any ample line
bundle L, hi(S,KS ⊗ L) = 0, ∀i > 0.

4Here we can apply the Nakai-Moishezon criterion which states that for any divisor D, D is ample
if and only if D ·D > 0 and D · Cα > 0, where Cα are generators of the Mori cone.
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Mori Cone Generators Number

NE(dP2) Ei, H − E1 −E2 3

NE(dP3) Ei, H −∑2
m=1Eim 6

NE(dP4) Ei, H −∑2
m=1Eim 10

NE(dP5) Ei, H −∑2
m=1Eim , 2H −∑5

n=1Ein 16

NE(dP6) Ei, H −∑2
m=1Eim , 2H −∑5

n=1Ein 27

NE(dP7) Ei, H −∑2
m=1Eim , 2H −∑5

n=1Ein , 3H − 2Ei −
∑6

p=1Eip 56

Ei, H −∑2
m=1 Eim , 2H −∑5

n=1Ein , 3H − 2Ei −
∑6

p=1Eip , 240

NE(dP8) 4H − 2
∑3

q=1Eiq −
∑5

r=1Eir , 5H − 2
∑6

l=1Eil −Er −Es,

6H − 3Ei − 2
∑7

m=1Eim

Table 1: The generators of the Mori cone NE(dPk) for k = 2, ...8, where all indices
are distinct.

theorem [44,45], which says that

χ(S,L) = 1 +
1

2
c1(L)2 −

1

2
c1(L) ·KS. (2.16)

Another one is the vanishing theorem ( [11], also see [46]), which states that for a
non-trivial holomorphic vector bundle V over S satisfying the DUY equation (2.2),

H0
∂̄(S,V) = H2

∂̄(S,V) = 0. (2.17)

These two theorems simplify the calculation of the spectrum. Note that the vanishing
theorem (2.17) holds when V is a line bundle. It follows from Eq. (2.16) and Eq.
(2.17) that h1(S,L) = −χ(S,L) = −(1− 1

2
c1(L) ·KS +

1
2
c1(L)2). The number of zero

modes will be determined by the intersection numbers c1(L) ·KS and c1(L)2.

For local models, we require that all curves be effective. That is, the homological
classes of the curves in H2(S,Z) can be written as non-negative integral combinations
of the generators of the Mori cone, namely Σ =

∑
β nβCβ with nβ ∈ Z>0

5. To calculate
the genus of the curve, we can apply the adjunction formula, which says that for a
smooth, irreducible curve of genus g, the following equation holds

Σ · (Σ +KS) = 2g − 2. (2.18)

In the present paper, we shall choose genus zero curves to support the matter in the
GUTs or MSSM, which means that all matter curves satisfy the equation Σ·(Σ+KS) =
−2. To calculate the spectrum from the curves, we also need the Rieman-Roch

5By abuse of notation, we use Σ to denote the homological class of the curve Σ.
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theorem [44, 45] for the algebraic curves. For the case of the algebraic curve Σ, the
Rieman-Roch theorem states that for a line bundle L over Σ,

h0(Σ,L)− h1(Σ,L) = 1− g + c1.(L). (2.19)

In particular, for the case of g = 0, we have

h0(Σ, K
1/2
Σ ⊗L) =

{
c1(L), if c1(L) > 0
0, if c1(L) < 0,

(2.20)

where K
1/2
Σ is the spin bundle of Σ and the Serre duality [44, 45] has been used. Eq.

(2.20) will be useful to calculate the spectrum from the curves.

3 U(1) Gauge Fluxes

In this section we briefly review some ingredients of SU(5) GUT Models with GS =
SU(5), SU(10) and SU(6). In these models, we introduce a non-trivial U(1) gauge
flux to break gauge group GS. We are primarily interested in doublet-triple splitting
and an exotic-free spectrum of the MSSM. From now on, unless otherwise stated, the
del Pezzo surface S is assumed to be dP8.

3.1 GS = SU(5)

Before discussing the case of GS = SO(10), SU(6), let us review the case of GS =
SU(5) [11–13]. On the bulk, we consider the following breaking pattern [41]:

SU(5) → SU(3)× SU(2)× U(1)S
24 → (8, 1)0 + (1, 3)0 + (3, 2)−5 + (3̄, 2)5 + (1, 1)0.

(3.1)

The bulk zero modes are given by

(3, 2)−5 ∈ H0
∂̄(S, L

5)∨ ⊕H1
∂̄(S, L

−5)⊕H2
∂̄(S, L

5)∨ (3.2)

(3̄, 2)5 ∈ H0
∂̄(S, L

−5)∨ ⊕H1
∂̄(S, L

5)⊕H2
∂̄(S, L

−5)∨, (3.3)

where ∨ stands for the dual and L is the supersymmetric line bundle associated with
U(1)S. Let N(A,B)c

be the number of the fields in the representation (A,B)c under
SU(3)×SU(2)×U(1)S, where c is the charge of U(1)S . Note that (3, 2)−5 and (3̄, 2)5
are exotic fields in the MSSM. In order to eliminate the exotic fields (3, 2)−5 and
(3̄, 2)5, it is required that χ(S, L±5) = 0. It follows from the Riemann-Roch theorem
(2.16) that c1(L

±5)2 = −2 and c1(L
±5) correspond to a root of E8, Ei − Ej , i 6= j,

which leads to a fractional line bundle6 L = OS(Ei − Ej)
±1/5 [11–13]. In this case,

6From now on, all indices appearing in the divisors will be assumed to be distinct unless otherwise
stated.
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all matter fields must come from the curves. Now we turn to the spectrum from the
curves. In general, the gauge groups on the curves will be enhanced at least by one
rank. With GS = SU(5), the gauge groups on the curves GΣ can be enhanced to
SU(6) or SO(10) [38]. We first focus on the curves supporting the matter fields in an
SU(5) GUT. To obtain complete matter multiples of SU(5) GUT, it is required that
LΣ = OΣ and L′

Σ 6= OΣ, where L′ is a line bundle associated with U(1)′. Consider
the following breaking patterns:

SU(6) → SU(5)× U(1)′

35 → 240 + 10 + 56 + 5̄−6
(3.4)

SO(10) → SU(5)× U(1)′

45 → 240 + 10 + 104 + 10−4.
(3.5)

From the patterns (3.4) and (3.5), it can be seen by counting the dimension of the
adjoint representations that matter fields 56 and 5̄−6 are localized on the curves with
GΣ = SU(6) while 104 and 10−4 are localized on the curve with GΣ = SO(10). The
Higgs fields localize on the curves with GΣ = SU(6) as well. Since on the matter
curves LΣ is required to be trivial, the only line bundle used to determine the spectrum
is L′

Σ. With non-trivial L′
Σ, it is not difficult to engineer three copies of the matter

fields, 3 × 56, 3 × 5̄−6, and 3 × 104. In order to get doublet-triplet splitting, it is
required that LΣ 6= OΣ and L′

Σ 6= OΣ. With non-trivial LΣ and L′
Σ, GΣ will be broken

into Gstd × U(1)′. Consider the following breaking patterns,

SU(6) → SU(3)× SU(2)× U(1)S × U(1)′

35 → (8, 1)0,0 + (1, 3)0,0 + (3, 2)−5,0 + (3̄, 2)5,0 + (1, 1)0,0
+(1, 1)0,0 + (1, 2)3,6 + (3, 1)−2,6 + (1, 2̄)−3,−6 + (3̄, 1)2,−6

(3.6)

SO(10) → SU(3)× SU(2)× U(1)S × U(1)′

45 → (8, 1)0,0 + (1, 3)0,0 + (3, 2)−5,0 + (3̄, 2)5,0 + (1, 1)0,0
+(1, 1)0,0 + [(3, 2)1,4 + (3̄, 1)−4,4 + (1, 1)6,4 + c.c].

(3.7)

From the patterns (3.6) and (3.7), the field content of the MSSM is identified as
shown in Table 2.

QL uR dR eR LL Hu Hd

(3, 2)1,4 (3̄, 1)−4,4 (3̄, 1)2,−6 (1, 1)6,4 (1, 2̄)−3,−6 (1, 2)3,6 (1, 2̄)−3,−6

Table 2: Field content of the MSSM from GS = SU(5).

The superpotential is as follows:

WMSSM ⊃ QLuRHu +QLdRHd + LLeRHd + · · · . (3.8)

Note that the U(1)S in the patterns is consistent with U(1)Y in the MSSM and that
this is the only way to consistently identify the fields in the patterns (3.6) and (3.7)
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with the MSSM. Now we are going to analyze the conditions for the curves to support
the field content in Table 2. We choose the curve ΣSU(6) to be a genus zero curve and
let (m1, m2) = (N(3̄,1)2,−6

, N(1,2̄)
−3,−6

), where N(A,B)a,b
is the number of the fields in

the representation (A,B)a,b under SU(3)× SU(2)× U(1)S × U(1)′, and a, b are the
charges of U(1)S and U(1)′, respectively. Note that (3, 1)−2,6 is exotic in the MSSM.
To avoid the exotic, we require that m1 ∈ Z>0. Given (m1, m2), the homological class
of the curve ΣSU(6) has to satisfy the following equation:7

(Ei − Ej) · ΣSU(6) = m2 −m1, (3.9)

where L = OS(Ej −Ei)
1/5 has been used. By Eq. (3.9), we can engineer three copies

of dR, three copies of LL, one copy of Hd, and one copy of Hu on the individual curves
as shown in Table 3.

Multiplet (m1, m2) Conditions Σ

3× dR (3, 0) (Ei −Ej) · Σ = −3 5H − 4Ej −Ei

3× LL (0, 3) (Ei −Ej) · Σ = 3 4H + 2Ej − Ei

1×Hd (0, 1) (Ei −Ej) · Σ = 1 H − Ei −El

1×Hu (0,-1) (Ei −Ej) · Σ = −1 H − Ej − Es

Table 3: Field content of the SU(6) Curve from GS = SU(5).

Note that all field configurations in Table 3 obey the conditions, LΣ 6= OΣ and
L′
Σ 6= OΣ. In local models, the curves are required to be effective. With Table 1, it

is not difficult to check that all curves in Table 3 are effective. The results in Table
3 show that the triplet and double states in 56 or 5̄−6 of SU(5) can be separated by
the restrictions of the supersymmetric line bundles to the curves. Next let us turn to
the curve with GΣ = SO(10). Set (l1, l2, l3) = (N(3,2)1,4

, N(3̄,1)
−4,4

, N(1,1)6,4
). To avoid

exotics in the MSSM, it is required that lk ∈ Z>0, k = 1, 2, 3. Given (l1, l2, l3), the
curve ΣSO(10) has to satisfy the following equations:8

{
(Ei − Ej) · ΣSO(10) = l2 − l1
l3 = 2l1 − l2.

(3.10)

To obtain the minimal spectrum of the MSSM, we require that l1, l2 6 3. Taking the
conditions, LΣ 6= OΣ and L′

Σ 6= OΣ into account, we have the following configurations:

(l1, l2, l3) =
{
(1, 2, 0), (1, 0, 2), (2, 1, 3), (2, 3, 1)

}
. (3.11)

From the configurations in (3.11), it is clear that unlike with GΣ = SU(6), it is
impossible to engineer the matter fields 3×QL, 3× uR, and 3× eR on the individual

7LΣSU(6)
= OΣSU(6)

( (m1−m2)
5 ) and L′

ΣSU(6)
= OΣSU(6)

(− (3m1+2m2)
30 )

8LΣSO(10)
= OΣSO(10)

( (l1−l2)
5 ) and L′

ΣSO(10)
= OΣSO(10)

( (4l1+l2)
20 )
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curves with GΣ = SO(10), which correspond to (l1, l2, l3) = (3, 0, 0), (0, 3, 0), and
(0, 0, 3), respectively, without extra matter fields. Fortunately, in this case all Higgs
fields come from ΣSU(6) instead of ΣSO(10). Although the field content on ΣSO(10) is
more complicated than that on ΣSU(6), we can engineer the spectrum of the MSSM
as shown in Table 4.

Multiplet Curve Σ gΣ LΣ L′
Σ

1×QL + 2× uR Σ1
SO(10) 2H − E2 −E3 0 OΣ1

SO(10)
(−1)1/5 OΣ1

SO(10)
(1)3/10

2×QL + 1× uR Σ2
SO(10) 2H − E1 −E4 0 OΣ2

SO(10)
(1)1/5 OΣ2

SO(10)
(1)9/20

+3× eR

3× dR Σ1
SU(6) 5H − 4E1 − E2 0 OΣ1

SU(6)
(1)3/5 OΣ1

SU(6)
(−1)3/10

3× LL Σ2
SU(6) 4H + 2E1 − E2 0 OΣ2

SU(6)
(−1)3/5 OΣ2

SU(6)
(−1)1/5

1×Hd Σd
SU(6) 2H − E2 −E4 0 OΣd

SU(6)
(−1)1/5 OΣd

SU(6)
(−1)1/15

1×Hu Σu
SU(6) H −E1 − E3 0 OΣu

SU(6)
(1)1/5 OΣu

SU(6)
(1)1/15

Table 4: A minimal spectrum of the MSSM from GS = SU(5), where L = OS(E1 −
E2)

1/5.

From Table 4, we find that for the case of GS = SU(5), we can get an exotic-
free, minimal spectrum of the MSSM with doublet-triplet splitting. In addition, by
arranging Hu and Hd on different curves, rapid proton decay can be avoided [11–13].

3.2 GS = SO(10)

For the case of GS = SO(10) [24], we first look at the spectrum from the bulk.
Consider the following breaking pattern,

SO(10) → SU(5)× U(1)S
45 → 240 + 10 + 104 + 10−4.

(3.12)

The bulk zero modes are determined by

104 ∈ H0
∂̄(S, L

−4)∨ ⊕H1
∂̄(S, L

4)⊕H2
∂̄(S, L

−4)∨ (3.13)

10−4 ∈ H0
∂̄(S, L

4)∨ ⊕H1
∂̄(S, L

−4)⊕H2
∂̄(S, L

4)∨. (3.14)

To eliminate 104 and 10−4, it is required that χ(S, L±4) = 0, which give rise to the
fractional line bundles L = OS(Ei −Ej)

±1/4. In this case, all chiral fields must come
from the curves. Let us turn to the spectrum from the curves. With GS = SO(10),
the gauge groups on the curve can be enhanced to GΣ = SO(12) or GΣ = E6. The
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breaking chains and matter content from the enhanced adjoints of the curves are

SO(12) → SO(10)× U(1)′ → SU(5)× U(1)′ × U(1)S
66 → 450 + 10 → 240,0 + 10,0 + 100,4 + 100,−4 + 10,0

+102 + 10−2 +52,2 + 5̄2,−2 + 5̄−2,−2 + 5−2,2

(3.15)

E6 → SO(10)× U(1)′ → SU(5)× U(1)′ × U(1)S
78 → 450 + 10 → 240,0 + 10,0 + 100,4 + 100,−4 + 10,0

+16−3 + 163 +(10−3,−1 + 5̄−3,3 + 1−3,−5 + c.c.).
(3.16)

Note that the U(1)S charges of the fields localized on the curves should be conserved
in each Yukawa coupling. The superpotential is as follows:

W ⊃ 10−3,−110−3,−15−2,2 + 10−3,−15̄−3,35̄2,−2 + · · · . (3.17)

In order to get complete matter multiplets in SU(5) GUT, we require that LΣ and
L′
Σ are both non-trivial. With non-trivial LΣ and L′

Σ, we can engineer field content
with minimal singlets as shown in Table 5 [24].

Multiplet Curve Σ gΣ LΣ L′
Σ

3× 10−3,−1
∗ Σ1

E6
4H + 2E1 − E2 0 OΣ1

E6
(−1)3/4 OΣ1

E6
(−1)3/4

3× 5̄−3,3
† Σ2

E6
5H + 3E2 − E5 0 OΣ2

E6
(1)3/4 OΣ2

E6
(−1)1/4

1× 5−2,2 Σ1
SO(12) 3H + E3 − E1 0 OΣ1

SO(12)
(1)1/4 OΣ1

SO(12)
(−1)1/4

1× 5̄2,−2 Σ2
SO(12) H − E2 − E3 0 OΣ2

SO(12)
(−1)1/4 OΣ2

SO(12)
(1)1/4

Table 5: An SU(5) GUT model from GS = SO(10), where L = OS(E1 − E2)
1/4.

However, because of the lack of extra U(1) gauge fluxes or Wilson lines, the
doublet-triplet splitting is not achievable in the present case. This motivates us to
consider supersymmetric U(1)2 fluxes.

3.3 GS = SU(6)

To look at the spectrum from the bulk , we consider the following breaking pattern,

SU(6) → SU(5)× U(1)S
45 → 240 + 10 + 56 + 5̄−6.

(3.18)

The bulk zero modes are given by

56 ∈ H0
∂̄(S, L

−6)∨ ⊕H1
∂̄(S, L

6)⊕H2
∂̄(S, L

−6)∨ (3.19)

∗With six additional singlets
†With three additional singlets
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5̄−6 ∈ H0
∂̄(S, L

6)∨ ⊕H1
∂̄(S, L

−6)⊕H2
∂̄(S, L

6)∨. (3.20)

To eliminate 56 and 5−6, it is required that χ(S, L±6) = 0, which gives rise to the
fractional line bundles L = OS(Ei − Ej)

±1/6 [24]. In this case, all chiral fields must
come from the curves. Let us turn to the spectrum from the curves. With GS =
SU(6), the gauge groups on the curve can be enhanced to GΣ = SU(7), GΣ = SO(12)
or GΣ = E6. The breaking chains and matter content from the enhanced adjoints of
the curves are

SU(7) → SU(6)× U(1)′ → SU(5)× U(1)′ × U(1)S
48 → 350 + 10 + 6−7 + 6̄7 → 240,0 + 10,0 + 50,6 + 5̄0,−6 + 10,0

+5−7,1 + 1−7,−5 + 5̄7,−1 + 17,5

(3.21)

SO(12) → SU(6)× U(1)′ → SU(5)× U(1)′ × U(1)S
66 → 350 + 10 + 152 + 15−2 → 240,0 + 10,0 + 50,6 + 5̄0,−6 + 10,0

+102,2 + 52,−4 + 10−2,−2 + 5̄−2,4

(3.22)

E6 → SU(6)× U(1)′ → SU(5)× U(1)′ × U(1)S
78 → 350 + 10 + 1±2 → 240,0 + 2× 10,0 + 50,6 + 5̄0,−6 + 1±2,0

+201 + 20−1 +101,−3 + 101,3 + 10−1,−3 + 10−1,3.

(3.23)

In this case, the U(1)S charges of the fields localized on the curves should be conserved
in each Yukawa coupling. The superpotential is:

W ⊃ 102,2102,252,−4 + 102,25̄7,−15̄7,−1 + · · · . (3.24)

With non-trivial LΣ and L′
Σ, we can engineer configurations of the curves with desired

field content but without any exotic fields as shown in Table 6 [24].

Multiplet Curve Σ gΣ LΣ L′
Σ

3× 102,2 Σ1
SO(12) 4H + 2E2 −E1 0 OΣ1

SO(12)
(1)1/2 OΣ1

SO(12)
(1)

3× 5̄7,−1 Σ1
SU(7) 5H + 3E1 −E6 0 OΣ1

SU(7)
(−1)1/2 OΣ1

SU(7)
(1)5/14

1× 52,−4 Σ2
SO(12) 3H + E1 − E3 0 OΣ2

SO(12)
(−1)1/6 OΣ2

SO(12)
(1)1/6

1× 5̄7,−1 Σ2
SU(7) H − E2 −E3 0 OΣ2

SU(7)
(−1)1/6 OΣ2

SU(7)
(1)5/42

Table 6: An SU(5) GUT model from GS = SU(6), where L = OS(E1 −E2)
1/6.

Although in this case one can obtain an exotic-free spectrum in an SU(5) GUT,
the doublet-triplet splitting can not be achieved, similar to the case of GS = SO(10).
Again this motivates us to consider supersymmetric U(1)2 gauge fluxes. On the
other hand, to get the spectrum of the MSSM, we also need some mechanisms to
break SU(5) ⊂ GΣ into SU(3) × SU(2) × U(1)Y . One possible way is to consider
supersymmetric U(1)2 gauge fluxes instead of U(1) fluxes. These supersymmetric
U(1)2 gauge fluxes correspond to polystable bundles of rank two with structure group
U(1)2. In the next section we shall discuss polystable bundles of rank two.
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4 Gauge Bundles

In this section we shall briefly review the notion of stability of the vector bundle and
the relation between (semi) stable bundles and the DUY equation. In addition, we
also discuss the semi-stable bundles of rank two, in particular, polystable bundles
over S.

4.1 Stability

Let E be a holomorphic vector bundle over a projective surface S and JS be a Kähler
form on S. The slope µ(E) is defined by

µ(E) =

∫
S
c1(E) ∧ JS

rk(E)
. (4.1)

The vector bundle E is (semi)stable if for every subbundle or subsheaf E with rk(E) <
rk(E), the following inequality holds

µ(E) < (6)µ(E). (4.2)

Assume that E = ⊕k
i Ei, then E is polystable if each Ei is a stable bundle with

µ(E1) = µ(E2) = ... = µ(Ek) [39, 40]. It is clear that every line bundle is stable
and polystable bundle is a type of semistable bundle. The Donaldson-Uhlenbeck-
Yau theorem [39, 40] states that a (split) irreducible holomorphic bundle E admits
a hermitian connection satisfying Eq. (2.2) if and only if E is (poly)stable. As
mentioned in section 2.1, to preserve supersymmetry, the connection of the bundle
has to obey the DUY equation (2.2), which is equivalent to the (poly) stable bundle.
In particular, when the bundle is split, supersymmetry requires that the bundle is
polystable. In the next section we primarily focus on polystable bundles of rank two
over S.

4.2 Rank Two Polystable Bundle

Here we are interested in the case S = dPk. Consider the case of V = L1 ⊕ L2,
where L1 and L2 are line bundles over S and set Li = OS(Di), i = 1, 2, where Di are
divisors in S. Before writing down a more explicit expression for the bundle V , we
first consider the stability condition of the polystable bundle. Recall that the bundle
V is polystable if µ(L1) = µ(L2) where µ is slope defined by Eq. (4.1). To solve
the DUY equation Eq. (2.2), it is required that µ(L1) = µ(L2) = 0. It follows that
c1(L1) ∧ JS = c1(L2) ∧ JS = 0 or equivalently,

D1 · ω = D2 · ω = 0, (4.3)
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where ω is the dual ample divisor of Kähler form JS in the Kähler cone. In particular,
in this case we choose “large volume polarization”, namely ω = AH−∑k

i=1 aiEi, A ≫
ai > 0 [11,12]. Note that Eq. (4.3) is exactly the BPS equations, c1(Li)∧JS = 0, i =
1, 2 for supersymmetric line bundles. So the polystable bundle V is a direct sum of
the supersymmetric line bundles L1 and L2. In section 5.2 we shall apply physical
constraints to the polystable bundle that satisfies the Eq. (4.3) and derive the explicit
expression of the U(1)2 gauge fluxes L1 and L2.

4.3 Supersymmetric U(1)2 Gauge Fluxes

Each supersymmetric U(1)2 gauge flux configuration contains two fractional line bun-
dles, which may not be well-defined themselves. It is natural to ask whether it makes
sense for these configurations to be polystable vector bundles of rank two. In what
follows, we shall show that supersymmetric U(1)2 gauge fluxes can be associated with
polystable vector bundles of rank two. Let us consider the case of GS = SU(6) and the
breaking pattern through SU(6) → SU(5)×U(1) → SU(3)×SU(2)×U(1)1×U(1)2.
Let L1 and L2 be two supersymmetric line bundles, which associate to U(1)1 and
U(1)2, respectively. Write Li = OS(Di), i = 1, 2, where Di are in general “Q-
divisors” which means that Di are the linear combinations of the divisors in S with
rational coefficients. Now we consider the rotation of the U(1) charges, U(1)1 and
U(1)2, given by

Ũ = MU (4.4)

with U = (U(1)1, U(1)2)
t, Ũ = (Ũ(1)1, Ũ(1)2)

t, and M ∈ GL(2,Q), where t represents

the transpose. We define L̃1 and L̃2 to be two line bundles which associate to Ũ(1)1
and Ũ(1)2, respectively and write L̃i = OS(D̃i), i = 1, 2. Let (A,B)c,d and (A,B)c̃,d̃
be representations in the breaking patten SU(6) → SU(3)× SU(2)× U(1)1 × U(1)2

and SU(6) → SU(3)×SU(2)×Ũ(1)1×Ũ(1)2, respectively. Up to a linear combination
of U(1) charges, we have N(A,B)c,d

= N(A,B)
c̃,d̃

, which requires that the corresponding

divisors be transferred as follows:

D̃ = (M−1)tD, (4.5)

where D = (D1, D2)
t, D̃ = (D̃1, D̃2)

t. In general, D̃i are Q-divisors via the rotation

(4.5). However, it is possible to get integral divisors D̃i by a suitable choice of the

matrix M = M∗. Once this is done, we obtain two corresponding line bundles, L̃1 and
L̃2 since D̃i ∈ H2(S,Z), i = 1, 2. Moreover, if µ(L̃1) = µ(L̃2) = 0, we can construct

the polystable bundle V = L̃1 ⊕ L̃2. Note that when Li are supersymmetric, which
means that they satisfy the BPS condition (4.3), by the transformation (4.5) we have

µ(L̃1) = µ(L̃2) = 0. As a result, each supersymmetric U(1)2 gauge fluxes is associated
with a polystable vector bundle of rank two if the suitable matrix M∗ exists. To be
concrete, let us consider the case of GS = SU(6). The breaking pattern via Gstd×U(1)

16



is as follows:

SU(6) → SU(3)× SU(2)× U(1)1 × U(1)2
35 → (8, 1)0,0 + (1, 3)0,0 + (3, 2)−5,0 + (3̄, 2)5,0 + (1, 1)0,0

+(1, 1)0,0 + (1, 2)3,6 + (3, 1)−2,6 + (1, 2̄)−3,−6 + (3̄, 1)2,−6.

(4.6)

Let L1 and L2 be the supersymmetric line bundles associated to U(1)1 and U(1)2,
respectively. Note that U(1)1 can be identified as U(1)Y in the MSSM. The exotic-
free spectrum from the bulk requires that L1 and L2 are fractional line bundles. The
details could be found in section 5.2. Now consider the rotation

M =

(
−1

5
1
10

0 1
6

)
. (4.7)

Then we obtain

SU(6) → SU(3)× SU(2)× U(1)1 × U(1)2
35 → (8, 1)0,0 + (1, 3)0,0 + (3, 2)1,0 + (3̄, 2)−1,0 + (1, 1)0,0

+(1, 1)0,0 + (1, 2)0,1 + (3, 1)1,1 + (1, 2̄)0,−1 + (3̄, 1)−1,−1

(4.8)

with L̃1 = L−5
1 and L̃2 = L3

1⊗L6
2. It is clear that N(A,B)c,d

= N(A,B)
c̃,d̃

with respect to

(4.6) and (4.8). It turns out that L̃1 and L̃2 are truly line bundles. Furthermore, one
can show that BPS condition (4.3) for (L1, L2) is equivalent to the stability conditions

of the polystable bundle V = L̃1 ⊕ L̃2 by the transformation (4.5). In this case, we
know that supersymmetric U(1)2 gauge fluxes are associated with polystable bundles
of rank two with the same number of zero modes charged under U(1)2. With this
correspondence, we can avoid talking about the gauge bundle defined by the direct
sum of two fractional line bundles. In other words, a supersymmetric U(1)2 gauge
flux (L1, L2) is well-defined in the sense that it can be associated with a well-defined
polystable bundle of rank two. Form now on, we shall simply use the phrase U(1)2

gauge fluxes in stead of polystable bundle in the following sections.

5 U(1)2 Gauge Fluxes

In this section we consider U(1)2 gauge fluxes in local F-theory models, in particular
we focus on the case of GS = SO(10) and SU(6). With the gauge fluxes, GS can
be broken into Gstd × U(1). For the case of GS = SO(10), there is a no-go theorem
which states that there do not exist U(1)2 gauge fluxes such that the spectrum is
exotic-free. This result was first shown in [12]. We review the case in section 5.1 for
completeness. For the case of GS = SU(6), with appropriate physical conditions, we
shall show that there are finitely many supersymmetric U(1)2 gauge fluxes with an
exotic-free bulk spectrum and we obtain the explicit expression of these gauge fluxes
as well. With these explicit flux configurations, we study doublet-triplet splitting and
the spectrum of the MSSM. The details can be found in section 5.2 and 5.3.
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5.1 GS = SO(10)

5.1.1 U(1)2 Gauge Flux Configurations

The maximal subgroups of SO(10) which contain Gstd and the consistent MSSM
spectrum are as follows [12]:

SO(10) ⊃ SU(5)× U(1) ⊃ Gstd × U(1) (5.1)

SO(10) ⊃ SU(2)× SU(2)× SU(4) ⊃ Gstd × U(1) (5.2)

For the latter, one of SU(2) groups needs to be broken into U(1) × U(1) to get
the consistent U(1)Y charge in the MSSM. It follows from the patterns (5.1) and
(5.2) that up to linear combinations of the U(1) charges in the breaking patterns,
it is enough to analyze the case of U(1)2 gauge fluxes which breaks SO(10) via the
sequence SO(10) → SU(5)×U(1) → Gstd×U(1). The breaking pattern is as follows:

SO(10) → SU(3)× SU(2)× U(1)1 × U(1)2
45 → (8, 1)0,0 + (1, 3)0,0 + (3, 2)−5,0 + (3̄, 2)5,0 + (1, 1)0,0

+(1, 1)0,0 + (1, 1)6,4 + (3̄, 1)−4,4 + (3, 2)1,4 + (1, 1)−6,−4

+(3, 1)4,−4 + (3̄, 2)−1,−4.

(5.3)

Note that U(1)1 can be identified with U(1)Y in the MSSM. Let L̃3 and L̃4 be non-
trivial supersymmetric line bundles associated with U(1)1 and U(1)2, respectively, in
the breaking pattern (5.3). The bulk zero modes are given by

(3, 2)−5,0 ∈ H0
∂̄(S, L̃

5
3)

∨ ⊕H1
∂̄(S, L̃

−5
3 )⊕H2

∂̄(S, L̃
5
3)

∨ (5.4)

(3̄, 2)5,0 ∈ H0
∂̄(S, L̃

−5
3 )∨ ⊕H1

∂̄(S, L̃
5
3)⊕H2

∂̄(S, L̃
−5
3 )∨ (5.5)

(3, 2)1,4 ∈ H0
∂̄(S, L̃

−1
3 ⊗ L̃−4

4 )∨ ⊕H1
∂̄(S, L̃

1
3 ⊗ L̃4

4)⊕H2
∂̄(S, L̃

−1
3 ⊗ L̃−4

4 )∨ (5.6)

(3̄, 2)−1,−4 ∈ H0
∂̄(S, L̃

1
3 ⊗ L̃4

4)
∨ ⊕H1

∂̄(S, L̃
−1
3 ⊗ L̃−4

4 )⊕H2
∂̄(S, L̃

1
3 ⊗ L̃4

4)
∨ (5.7)

(3, 1)4,−4 ∈ H0
∂̄(S, L̃

−4
3 ⊗ L̃4

4)
∨ ⊕H1

∂̄(S, L̃
4
3 ⊗ L̃−4

4 )⊕H2
∂̄(S, L̃

−4
3 ⊗ L̃4

4)
∨ (5.8)

(3̄, 1)−4,4 ∈ H0
∂̄(S, L̃

4
3 ⊗ L̃−4

4 )∨ ⊕H1
∂̄(S, L̃

−4
3 ⊗ L̃4

4)⊕H2
∂̄(S, L̃

4
3 ⊗ L̃−4

4 )∨, (5.9)

(1, 1)6,4 ∈ H0
∂̄(S, L̃

−6
3 ⊗ L̃−4

4 )∨ ⊕H1
∂̄(S, L̃

6
3 ⊗ L̃4

4)⊕H2
∂̄(S, L̃

−6
3 ⊗ L̃−4

4 )∨ (5.10)

(1, 1)−6,−4 ∈ H0
∂̄(S, L̃

6
3 ⊗ L̃4

4)
∨ ⊕H1

∂̄(S, L̃
−6
3 ⊗ L̃−4

4 )⊕H2
∂̄(S, L̃

6
3 ⊗ L̃4

4)
∨. (5.11)

To avoid exotics, it is clear that the line bundles L̃5
3, L̃

1
3 ⊗ L̃4

4, L̃
4
3 ⊗ L̃−4

4 , and L̃6
3 ⊗ L̃4

4

cannot be trivial. Let N(A,B)a,b
be the number of the fields in the representation

(A,B)a,b under SU(3) × SU(2) × U(1)1 × U(1)2, where a and b are the charges
of U(1)1 and U(1)2, respectively. By the vanishing theorem (2.17), the exotic-free
spectrum requires that

N(3,2)
−5,0

= −χ(S,E) = 0 (5.12)
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N(3̄,2)5,0
= −χ(S,E−1) = 0 (5.13)

N(3̄,2)
−1,−4

= −χ(S, F−1) = 0 (5.14)

N(3,1)4,−4
= −χ(S,E−1 ⊗ F−1) = 0 (5.15)

N(1,1)
−6,−4

= −χ(S,E ⊗ F−1) = 0. (5.16)

We define
N(3,2)1,4

= −χ(S, F ) ≡ β1, (5.17)

N(3̄,1)
−4,4

= −χ(S,E ⊗ F ) ≡ β2 (5.18)

N(1,1)6,4
= −χ(S,E−1 ⊗ F ) ≡ β3, (5.19)

where E = L̃−5
3 , F = L̃1

3 ⊗ L̃4
4 and βi ∈ Z>0, i = 1, 2, 3. By Eqs. (5.12)-(5.14), and

Eq. (5.17), we obtain the following equations





c1(E)2 = −2
c1(F )2 = −β1 − 2
c1(E) ·KS = 0
c1(F ) ·KS = β1.

(5.20)

Then by Eq. (5.20) and Eq. (5.15), we obtain

c1(E) · c1(F ) = 1. (5.21)

On the other hand, using Eq. (5.20) and Eq. (5.16), we have

c1(E) · c1(F ) = −1, (5.22)

which leads to a contradiction. Therefore, there do not exist solutions for given
βi ∈ Z>0, i = 1, 2, 3 such that Eqs. (5.12)-(5.19) hold. This is a no-go theorem shown
in [12]. Due to this no-go theorem, we are not going to study this case further. In
the next section we turn to the case of GS = SU(6).

5.2 GS = SU(6)

5.2.1 U(1)2 Gauge Flux Configurations

The maximal subgroups of SU(6) which contain Gstd and the consistent MSSM spec-
trum are as follows [12]:

SU(6) ⊃ SU(5)× U(1) ⊃ Gstd × U(1) (5.23)

SU(6) ⊃ SU(2)× SU(4)× U(1) ⊃ Gstd × U(1) (5.24)

SU(6) ⊃ SU(3)× SU(3)× U(1) ⊃ Gstd × U(1). (5.25)
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It follows from Eqs. (5.23)-(5.25) that up to linear combinations of the U(1) charges
in the breaking patterns, it is enough to analyze the case of U(1)2 gauge fluxes which
break SU(6) via the sequence SU(6) → SU(5)× U(1) → Gstd × U(1). The breaking
pattern is as follows:

SU(6) → SU(3)× SU(2)× U(1)1 × U(1)2
35 → (8, 1)0,0 + (1, 3)0,0 + (3, 2)−5,0 + (3̄, 2)5,0 + (1, 1)0,0

+(1, 1)0,0 + (1, 2)3,6 + (3, 1)−2,6 + (1, 2̄)−3,−6 + (3̄, 1)2,−6.

(5.26)

Note that U(1)1 is consistent with U(1)Y in the MSSM. Let L1 and L2 be non-trivial
supersymmetric line bundles associated with U(1)1 and U(1)2, respectively, in the
breaking pattern (5.26). The bulk zero modes are given by

(3, 2)−5,0 ∈ H0
∂̄(S, L

5
1)

∨ ⊕H1
∂̄(S, L

−5
1 )⊕H2

∂̄(S, L
5
1)

∨ (5.27)

(3̄, 2)5,0 ∈ H0
∂̄(S, L

−5
1 )∨ ⊕H1

∂̄(S, L
5
1)⊕H2

∂̄(S, L
−5
1 )∨ (5.28)

(1, 2)3,6 ∈ H0
∂̄(S, L

−3
1 ⊗ L−6

2 )∨ ⊕H1
∂̄(S, L

3
1 ⊗ L6

2)⊕H2
∂̄(S, L

−3
1 ⊗ L−6

2 )∨ (5.29)

(1, 2̄)−3,−6 ∈ H0
∂̄(S, L

3
1 ⊗ L6

2)
∨ ⊕H1

∂̄(S, L
−3
1 ⊗ L−6

2 )⊕H2
∂̄(S, L

3
1 ⊗ L6

2)
∨ (5.30)

(3, 1)−2,6 ∈ H0
∂̄(S, L

2
1 ⊗ L−6

2 )∨ ⊕H1
∂̄(S, L

−2
1 ⊗ L6

2)⊕H2
∂̄(S, L

2
1 ⊗ L−6

2 )∨ (5.31)

(3̄, 1)2,−6 ∈ H0
∂̄(S, L

−2
1 ⊗ L6

2)
∨ ⊕H1

∂̄(S, L
2
1 ⊗ L−6

2 )⊕H2
∂̄(S, L

−2
1 ⊗ L6

2)
∨. (5.32)

Note that (3, 2)−5,0, (3̄, 2)5,0, and (3, 1)−2,6 are exotic fields in the MSSM. To avoid

these exotics, L5
1 and L−2

1 ⊗ L6
2 need to be non-trivial line bundles. If L3

1 ⊗ L6
2 is

trivial, it follows from Eq. (5.29) and Eq. (5.30) that N(1,2)3,6
= N(1,2̄)

−3,−6
= 1. By

the vanishing theorem (2.17), no exotic fields requires that

N(3,2)
−5,0

= −χ(S, L−5
1 ) = 0 (5.33)

N(3̄,2)5,0
= −χ(S, L5

1) = 0 (5.34)

N(3,1)
−2,6

= −χ(S, L−2
1 ⊗ L6

2) = 0. (5.35)

We define
N(3̄,1)2,−6

= −χ(S, L2
1 ⊗ L−6

2 ) ≡ α3, (5.36)

where α3 ∈ Z>0. Note that since L3
1 ⊗ L6

2 is trivial, then L2
1 ⊗ L−6

2
∼= L5

1. It follows
from Eq. (5.34) that α3 = 09. Therefore, the non-trivial conditions are (5.33) and
(5.34), namely χ(S, L±5

1 ) = 0, which imply that c1(L1
±5)2 = −2 and c1(L

±5
1 ) ·KS = 0.

Note that c1(L1
±5) ∈ H2(S,Z) = spanZ{H,Ei, i = 1, 2, 3, ...8}, where H and Ei are

the hyperplane divisor and exceptional divisors in S = dP8. Immediately we get a
fractional line bundle10 L1 = OS(Ej − Ei)

1/5 and then L2 = OS(Ei − Ej)
1/10. It

is clear that L1 and L2 satisfy the BPS condition (4.3). As a result, (L1, L2) is a

9This case will be denoted by (α1, α2, α3) = (1, 1, 0)∗ later.
10Note that with α3 = 0, there is a symmetry (L1, L2) ↔ (L−1

1 , L−1
2 ) in Eq. (5.33)-(5.36). Without

loss of generality, we choose L1 = OS(Ej − Ei)
1/5.
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supersymmetric U(1)2 gauge flux configuration on the bulk. If L3
1 ⊗L6

2 is non-trivial,
by the vanishing theorem (2.17), an exotic-free bulk spectrum requires that

N(3,2)
−5,0

= −χ(S, L−5
1 ) = 0 (5.37)

N(3̄,2)5,0
= −χ(S, L5

1) = 0 (5.38)

N(3,1)
−2,6

= −χ(S, L−2
1 ⊗ L6

2) = 0. (5.39)

We define
N(1,2)3,6

= −χ(S, L3
1 ⊗ L6

2) ≡ α1 (5.40)

N(1,2̄)
−3,−6

= −χ(S, L−3
1 ⊗ L−6

2 ) ≡ α2 (5.41)

N(3̄,1)2,−6
= −χ(S, L2

1 ⊗ L−6
2 ) ≡ α3, (5.42)

where αi ∈ Z>0, i = 1, 2, 3. To simplify the notation, we define C = L−5
1 , and

D = L3
1 ⊗ L6

2. By Eqs. (5.37)-(5.42) and the Riemann-Roch theorem (2.16), we
obtain the following equations:





c1(C)2 = −2
c1(D)2 = −α1 − α2 − 2
c1(C) · c1(D) = 1 + 1

2
(α1 + α2 − α3)

α3 = α2 − α1

c1(C) ·KS = 0
c1(D) ·KS = α1 − α2.

(5.43)

Note that C and D are required to be honest line bundles, in other words, c1(C),
c1(D) ∈ H2(S,Z) = spanZ{H,Ei, i = 1, 2, 3, ...8}. Note that (3̄, 1)2,−6 is a candidate
for a matter field in the MSSM. Therefore, we shall restrict to the case of α3 6 3. In
what follows, we shall demonstrate how to derive explicit expressions for U(1)2 gauge
fluxes from Eq. (5.43). For the case of α3 = 0, by the constraints in Eq. (5.43),
we may assume (α1, α2, α3) = (k, k, 0) with k ∈ Z>0. We shall show that there is no
solution for k > 4. Note that in this case, Eq. (5.43) reduces to

c1(C)2 = −2, c1(D)2 = −2k − 2, c1(C) · c1(D) = 1 + k, (5.44)

with c1(C) ·KS = c1(D) ·KS = 0. From the conditions c1(C)2 = −2, c1(C) ·KS = 0,
and BPS condition (4.3), it follows that C = OS(Ei − Ej), which is the universal
line bundle in the case of GS = SU(6) since these two conditions are independent of
αi, i = 1, 2, 3 and always appear in Eq. (5.43). Actually, the corresponding fractional
line bundle L1 of C is the U(1)Y hypercharge flux in the minimal SU(5) GUT [11–13].
In what follows, we shall focus on the solutions for the line bundle D. By Eq. (5.44),
we can obtain the upper bound of k. Write D = OS(ciEi + cjEj + D̃),11 where D̃

is a integral divisor containing no H , Ei, and Ej . Note that the repeat indices are
not a summation, and ci, cj ∈ Z. By Eq. (5.44), we get −ci + cj = k + 1 and

11Due to the BPS condition (4.3), D contains no component H .
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c21 + c22 − D̃2 = 2k + 2. Note that D̃2 6 0 by the construction. Using the inequality12

c21 + c22 >
1
2
(c1 − c2)

2 and the condition k ∈ Z>0, we obtain 0 6 k 6 3, which implies
that there is no solution D for k > 4. Next we shall explicitly solve the configurations
(L1, L2) satisfying Eq. (5.43) for the case of (α1, α2, α3) = (k, k, 0) with 0 6 k 6 3.

Let us start with the simplification of Eq. (5.43). Note that in Eq. (5.43), there
are two conditions that are independent of αi, namely,

c1(C)2 = −2, c1(C) ·KS = 0, (5.45)

which gives rise to the universal line bundle, C = OS(Ei −Ej), as mentioned earlier.
The remaining conditions are





c1(D)2 = −α1 − α2 − 2
c1(C) · c1(D) = 1 + 1

2
(α1 + α2 − α3)

α3 = α2 − α1

c1(D) ·KS = α1 − α2.

(5.46)

Since C is universal, all we have to do is to solve the line bundles D in Eq. (5.46) for
a given (α1, α2, α3) and C = OS(Ei − Ej). When (α1, α2, α3) = (0, 0, 0), Eq. (5.46)
reduces to

c1(D)2 = −2, c1(C) · c1(D) = 1, (5.47)

with c1(D)·KS = 0. By Eq. (5.47), we have D = OS(±El−Ei) or OS(±El+Ej). The
former gives rise to fractional line bundles L1 = OS(Ej −Ei)

1/5 and L2 = OS(±5El−
2Ei−3Ej)

1/30. For the latter, we have L1 = OS(Ej−Ei)
1/5 and L2 = OS(±5El+3Ei+

2Ej)
1/30. Recall that KS = −3H+

∑8
k=1Ek. To solve the condition c1(D) ·KS = 0, it

is clear that D has to be OS(El−Ei) or OS(−El+Ej). The corresponding fractional
line bundle is OS(5El − 2Ei − 3Ej)

1/30 or OS(−5El + 3Ei + 2Ej)
1/30. In addition

to Eq. (5.47), these fractional line bundles need to satisfy the BPS condition (4.3).
More precisely, for the case of L1 = OS(Ej−Ei)

1/5 and L2 = OS(5El−2Ei−3Ej)
1/30,

BPS equation (4.3) reduces to

(Ei − Ej) · ω = 0, (5El − 2Ei − 3Ej) · ω = 0. (5.48)

It is not difficult to see that13 ω = AH − (Ei + Ej + El + ...) solves Eq. (5.48).
Similarly, for the case of L1 = OS(Ej − Ei)

1/5 and L2 = OS(−5El + 3Ei + 2Ej)
1/30,

L1 and L2 are also supersymmetric with respect to ω = AH − (Ei + Ej + El + ...).
As a result, for the case of (α1, α2, α3) = (0, 0, 0), we find two supersymmetric U(1)2

gauge flux configurations (L1, L2).

When (α1, α2, α3) = (1, 1, 0), Eq. (5.46) reduces to

c1(D)2 = −4, c1(C) · c1(D) = 2, (5.49)

12In general, (c1(C)2)(c1(D)2) > (c1(C) · c1(D))2.
13” ...” in ω always stands for non-relevant terms for checking the BPS condition Eq. (4.3). Of

course, those terms are relevant for the ampleness of ω and note that the choice of the polarizations
is not unique.
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with c1(D) ·KS = 0. By Eq. (5.49), D can be OS(2Ej), OS(−2Ei) or OS([El, Em]−
Ei + Ej), where the bracket is defined by [A1, A2, ..Ak] = {±A1 ± A2... ± Ak}. For
later use, we also define [A1, A2, ..Ak]

′ = {±A1 ±A2...±Ak}r (+A1 +A2 + ...+Ak),
[A1, A2, ..Ak]

′′ = {±A1±A2...±Ak}r{(+A1+A2+ ...+Ak), (−A1−A2− ...−Ak)},
and [A1, A2, ..Ak]

′′′ = {(A1 +A2...+Ak−1 −Ak), (A1 +A2...−Ak−1 +Ak), ..., (−A1 +
A2... + Ak−1 + Ak)}. Note that OS(2Ej), OS(−2Ei), OS(El + Em − Ei + Ej), and
OS(−El − Em − Ei + Ej) cannot solve the equation c1(D) · KS = 0. As a result,
D = OS([El, Em]

′′ − Ei + Ej), which correspond to the fractional bundles L2 =
OS(5[El, Em]

′′ − 2Ei + 2Ej)
1/30. Clearly L1 and L2 satisfy Eq. (4.3) with ω =

AH − (Ei + Ej + El + Em + ...).

For the case of (α1, α2, α3) = (2, 2, 0), Eq. (5.46) becomes

c1(D)2 = −6, c1(C) · c1(D) = 3, (5.50)

with c1(D)·KS = 0. By Eq. (5.50), D can be OS([El]−Ei+2Ej) or OS([El]−2Ei+Ej).
For the former, it is clear that OS(El−Ei+2Ej) does not satisfy the condition c1(D) ·
KS = 0. Similarly, for the latter, OS(−El−2Ei+Ej) is not a solution as well. In this
case, the solutions are L2 = OS(−5El−2Ei+7Ej)

1/30 or L2 = OS(5El−7Ei+2Ej)
1/30.

It is easy to see that the solutions also satisfy the BPS condition (4.3). Note that for
the case of α3 = 0, taking ω = AH − (

∑8
k=1Ek) = (−KS)+ (A− 3)H , the conditions

c1(C) ·KS = c1(D) ·KS = 0 are equivalent to Eq. (4.3). Therefore, the solutions of
Eq. (5.43) are all supersymmetric for the case of α3 = 0.

Next we consider the case of (α1, α2, α3) = (3, 3, 0). In this case, the line bundle
D satisfies the following equations:

c1(D)2 = −8, c1(C) · c1(D) = 4, (5.51)

with c1(D)·KS = 0. By Eq. (5.51), we obtain D = OS(2Ej−2Ei). The corresponding
fractional line bundle is L2 = OS(Ej − Ei)

7/30. Obviously, L2 satisfies the condition
c1(D) ·KS = 0, and Eq. (4.3) for ω = AH − (Ei + Ej + ...).

Next we shall consider the case of α3 = 1. By the constraints of Eq. (5.46),
we may assume that (α1, α2, α3) = (m,m + 1, 1), where m ∈ Z>0. Then Eq. (5.46)
becomes

c1(D)2 = −2m− 3, c1(C) · c1(D) = 1 +m, (5.52)

with c1(D)·KS = −1. Again the first thing we need to do is to get the upper bound of
m. Eq. (5.52) implies that 1−

√
6 6 m 6 1+

√
6. Since m ∈ Z>0, we obtain 0 6 m 6

3. Therefore, the possible configurations are (α1, α2, α3) = (0, 1, 1), (1, 2, 1), (2, 3, 1)
or (3, 4, 1).

Let us look at the case of (α1, α2, α3) = (0, 1, 1). In this case, Eq. (5.52) reduces
to the following equations

c1(D)2 = −3, c1(C) · c1(D) = 1. (5.53)
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It is easy to see that D can be OS([El, Em] − Ei) or OS([El, Em] + Ej). Note that
OS([El, Em]

′′−Ei), OS(−El −Em−Ei), OS(El +Em+Ej), and OS(−El −Em+Ej)
do not satisfy the equation c1(D) ·KS = −1, so we have to eliminate these cases. It
turns out that the resulting fractional line bundles are OS(5(El+Em)−2Ei−3Ej)

1/30

and OS(5[El, Em]
′′+3Ei+2Ej)

1/30. In order to preserve supersymmetry, the solutions
need to solve Eq. (4.3). For the case of L2 = OS(5(El + Em) − 2Ei − 3Ej)

1/30, Eq.
(4.3) reduces to

(Ei −Ej) · ω = 0, [(El + Em)−Ei] · ω = 0. (5.54)

For another fractional line bundle L2 = OS(5[El, Em]
′′ + 3Ei + 2Ej)

1/30, Eq. (4.3)
becomes

(Ei − Ej) · ω = 0, ([El, Em]
′′ + Ei) · ω = 0 (5.55)

It is clear that ω = AH − (El + Em + 2Ei + 2Ej + ...) solves Eq. (5.54) and ω =
AH − (2El + Em +Ei + Ej + ...) solves Eq. (5.55) if [El, Em]

′′ = −El + Em. For the
case of [El, Em]

′′ = El −Em, ω = AH − (El +2Em+Ei +Ej + ...) is a solution of Eq.
(5.55). Therefore, OS(5(El+Em)−2Ei−3Ej)

1/30 and OS(5[El, Em]
′′+3Ei+2Ej)

1/30

are supersymmetric. In this case, the solutions of Eq. (5.53) and the equations,
c1(C) ·KS = 0, c1(D) ·KS = −1 satisfy Eq. (4.3). It seems that for the case α3 = 1,
the condition c1(C) · KS = 0, c1(D) · KS = −1 is stronger than BPS condition
(4.3). For example, D = OS(El −Em −Ei) with corresponding fractional line bundle
L2 = OS(5El − 5Em − 2Ei − 3Ej)

1/30 is supersymmetric but does not satisfy the
condition c1(D) ·KS = −1. Actually, we shall see that this is not the case in the next
examples.

Let us turn to the case of (α1, α2, α3) = (3, 4, 1). In this case, Eq. (5.52) reduces
to

c1(D)2 = −9, c1(C) · c1(D) = 4. (5.56)

It is not difficult to find that the solutions are D = OS([El] − 2Ei + 2Ej) and the
corresponding fractional line bundle are L2 = OS(5[El]−7Ei+7Ej)

1/30. Note that only
D = OS(El − 2Ei +2Ej) satisfies the condition c1(D) ·KS = −1. However, it is clear
that it does not satisfy the BPS condition (4.3), which means that no configuration
(L1, L2) for an exotic-free spectrum exists in this case. From this example, we know
that for the case of α3 = 1, the solutions of Eq. (5.46) are not guaranteed to be
supersymmetric and vice versa. Therefore, in general we need to check these two
conditions for each solution in the case of α3 ∈ Z>0. Following a similar procedure,
one can obtain all configurations (L1, L2) for the cases of α3 = 1. We summarize
the results of α3 = 0, 1 in Table 7 in which all L1 and L2 satisfy the BPS condition
(4.3) for suitable polarizations ω and the conditions L5

1 6= OS, L−2
1 ⊗ L6

2 6= OS and
L3
1 ⊗ L6

1 6= OS.

Next we consider the case of α3 = 2. By the last constraint of Eq. (5.43),
we may assume (α1, α2, α3) = (l, l + 2, 2), where l ∈ Z>0. One can show that the
necessary condition for existence of the solutions of Eq. (5.43) is 0 6 l 6 3. There-
fore, (α1, α2, α3) can be (0, 2, 2), (1, 3, 2), (2, 4, 2) or (3, 5, 2). Following the previous
procedure, one can obtain all configurations (L1, L2) for the case of α3 = 2.
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(α1, α2, α3) L2

1 (1, 1, 0)∗ OS(Ei − Ej)
1/10

2 (0, 0, 0) OS(5El − 2Ei − 3Ej)
1/30

OS(−5El + 3Ei + 2Ej)
1/30

3 (1, 1, 0) OS(5[El, Em]
′′ − 2Ei + 2Ej)

1/30

4 (2, 2, 0) OS(−5El − 2Ei + 7Ej)
1/30

OS(5El − 7Ei + 2Ej)
1/30

5 (3, 3, 0) OS(Ej −Ei)
7/30

6 (0, 1, 1) OS(5[El, Em]
′′ + 3Ei + 2Ej)

1/30

OS(5(El + Em)− 2Ei − 3Ej)
1/30

7 (1, 2, 1) OS(−5El + 3Ei + 7Ej)
1/30

OS(5[El, Em, Ek]
′′′ − 2Ei + 2Ej)

1/30

8 (2, 3, 1) OS(5[El, Em]
′′ − 2Ei + 7Ej)

1/30

OS(5(El + Em)− 7Ei + 2Ej)
1/30

9 (3, 4, 1) No Solution

Table 7: Flux configurations for GS = SU(6) with L1 = OS(Ej−Ei)
1/5 and α3 = 0, 1.

For the case of α3 = 3, we may assume that (α1, α2, α3) = (n, n + 3, 3) with
n ∈ Z>0. The necessary condition for existence of the solutions of Eq. (5.43) is
0 6 n 6 4, which implies that (α1, α2, α3) = (0, 3, 3), (1, 4, 3), (2, 5, 3), (3, 6, 3), or
(4, 7, 3). Following the previous procedure, one can obtain all configurations (L1, L2)
for the case of α3 = 3. Let us look at the case of (α1, α2, α3) = (3, 6, 3). In this case,
Eq. (5.46) reduces to

c1(D)2 = −11, c1(C) · c1(D) = 4, (5.57)

with c1(D) ·KS = −3. It follows from Eq. (5.57) that D can be OS([El]−Ei +3Ej),
OS([El]− 3Ei +Ej), or OS([El, Em, En]− 2Ei +2Ej). When one takes the condition
c1(D) ·KS = −3 into account, there are only two solutions, D = OS(El − Ei + 3Ej)
or OS((El +Em +En)− 2Ei +2Ej), which corresponds to the fractional line bundles
OS(5El − 2Ei + 12Ej)

1/30 and OS(5(El + Em + En) − 7Ei + 7Ej)
1/30, respectively.

However, these two solutions cannot satisfy Eq. (4.3). Therefore, in this case there
do not exist any U(1)2 gauge fluxes for an exotic-free spectrum. A similar situation
occurs in the case of (α1, α2, α3) = (4, 7, 3). In this case, D can be OS(−3Ei + 2Ej)
or OS(−2Ei + 3Ej) by Eq. (5.46). However, they neither solve Eq. (4.3) nor satisfy
the condition c1(D) ·KS = −3. As a result, there are no U(1)2 gauge fluxes without
producing exotics in this case. We summarize the results of α3 = 2, 3 in Table 8 in
which all L1 and L2 satisfy the BPS condition (4.3) for suitable polarizations ω and
the conditions L5

1 6= OS, L−2
1 ⊗ L6

2 6= OS and L3
1 ⊗ L6

1 6= OS.
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(α1, α2, α3) L2

1 (0, 2, 2) OS(5(El + Em + Ek)− 2Ei − 3Ej)
1/30

OS(5[El, Em, Ek]
′′′ + 3Ei + 2Ej)

1/30

2 (1, 3, 2) OS(5[El, Em]
′′ + 3Ei + 7Ej)

1/30

OS(5[El, Em, En, Ek]
′′′ − 2Ei + 2Ej)

1/30

3 (2, 4, 2) OS(5[El, Em, Ek]
′′′ − 2Ei + 7Ej)

1/30

OS(5(El + Em + Ek)− 7Ei + 2Ej)
1/30

4 (3, 5, 2) No Solution

5 (0, 3, 3) OS(5(El + Em + En + Ek)− 2Ei − 3Ej)
1/30

OS(5[El, Em, En, Ek]
′′′ + 3Ei + 2Ej)

1/30

6 (1, 4, 3) OS(5[El, Em, Ek]
′′′ + 3Ei + 7Ej)

1/30

OS(5[El, Em, En, Ek, Ep]
′′′ − 2Ei + 2Ej)

1/30

7 (2, 5, 3) OS(5[El, Em, En, Ek]
′′′ − 2Ei + 7Ej)

1/30

OS(5(El + Em + En + Ek)− 7Ei + 2Ej)
1/30

8 (3, 6, 3) No Solution

9 (4, 7, 3) No Solution

Table 8: Flux configurations for GS = SU(6) with L1 = OS(Ej−Ei)
1/5 and α3 = 2, 3.

5.2.2 Spectrum from the Curves

With GS = SU(6), to obtain matter in SU(5) GUT, it is required that LΣ 6= OΣ

and L′
Σ 6= OΣ. In this case, there are three kinds of intersecting curves, ΣSU(7),

ΣSO(12) and ΣE6 with enhanced gauge groups SU(7), SO(12), and E6, respectively.
The breaking patterns are as shown in Eqs. (3.21)-(3.23). To achieve doublet-triplet
splitting and make contact with the spectrum in the MSSM, we consider U(1)2 flux
configurations (L1, L2) already solved in the previous section. In this section we shall
study the spectrum from the curves and show that the doublet-triplet splitting and
non-minimal spectrum of the MSSM can be achieved. A detailed example can be
found in section 5.2.3.

In local F-theory models, the gauge group on the curve along which S intersects
with S ′ will be enhanced at least by one rank. In the present case of GS = SU(6),
the possible enhanced gauge groups are SU(7), SO(12) and E6. The matter fields
transform as fundamental representation 6, anti-symmetric tensor representation of
rank two 15, and anti-symmetric tensor representation of rank three 20 in SU(6)
can be engineered to localize on the curves with gauge groups SU(7), SO(12), and
E6, respectively. In order to split doublet and triplet states in Higgs and obtain the
spectrum of the MSSM, L1Σ, L2Σ and L′

Σ have to be non-trivial, which breaks GΣ
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into Gstd × U(1)2. The breaking patterns of SU(7), SO(12) and E6 are as follows:

SU(7) → SU(6)× U(1)′ → SU(3)× SU(2)× U(1)′ × U(1)1 × U(1)2
48 → 350 + 10 → (8, 1)0,0,0 + (1, 3)0,0,0 + (3, 2)0,−5,0 + (3̄, 2)0,5,0

+6−7 + 6̄7 +(1, 1)0,0,0 + (1, 1)0,0,0 + (1, 2)0,3,6 + (3, 1)0,−2,6

+(1, 2̄)0,−3,−6 + (3̄, 1)0,2,−6 + (1, 1)0,0,0 + (1, 2)−7,3,1

+(3, 1)−7,−2,1 + (1, 1)−7,0,−5 + (1, 2̄)7,−3,−1 + (3̄, 1)7,2,−1

+(1, 1)7,0,5
(5.58)

SO(12) → SU(6)× U(1)′ → SU(3)× SU(2)× U(1)′ × U(1)1 × U(1)2
66 → 350 + 10 → (8, 1)0,0,0 + (1, 3)0,0,0 + (3, 2)0,−5,0 + (3̄, 2)0,5,0

+152 + 15−2 +(1, 1)0,0,0 + (1, 1)0,0,0 + (1, 2)0,3,6 + (3, 1)0,−2,6

+(1, 2̄)0,−3,−6 + (3̄, 1)0,2,−6 + (1, 1)0,0,0 + (1, 2)2,3,−4

+(3, 1)2,−2,−4 + (1, 1)2,6,2 + (3̄, 1)2,−4,2 + (3, 2)2,1,2
+(1, 2̄)−2,−3,4 + (3̄, 1)−2,2,4 + (1, 1)−2,−6,−2 + (3, 1)−2,4,−2

+(3̄, 2̄)−2,−1,−2

(5.59)
E6 → SU(6)× U(1)′ → SU(3)× SU(2)× U(1)′ × U(1)1 × U(1)2
78 → 350 + 10 + 1±2 → (8, 1)0,0,0 + (1, 3)0,0,0 + (3, 2)0,−5,0 + (3̄, 2)0,5,0

+201 + 20−1 +(1, 1)0,0,0 + (1, 1)0,0,0 + (1, 2)0,3,6 + (3, 1)0,−2,6

+(1, 2̄)0,−3,−6 + (3̄, 1)0,2,−6 + (1, 1)0,0,0 + (1, 1)±2,0,0

+[(1, 1)1,6,−3 + (3̄, 1)1,−4,−3 + (3, 2)1,1,−3 + c.c]

+[(1, 1)−1,6,−3 + (3̄, 1)−1,−4,−3 + (3, 2)−1,1,−3 + c.c].

(5.60)
Due to non-trivial U(1)2 flux configurations on the bulk S, the last two U(1) charges
of the fields on the curves should be conserved in each Yukawa coupling. From the
breaking patterns, we list possible Yukawa couplings of type ΣΣS and ΣΣΣ in Table
9. According to Table 9, the possible field content is shown in Table 10. In what
follows, we shall focus on the case of ΣΣΣ-type couplings and find all possible field
configurations supported by the curves ΣSU(7), ΣSO(12), and ΣE6 with given U(1)2 flux
configuration (L1, L2).

Let us start with the case of ΣSU(7) and consider (α1, α2, α3) = (k, k, 0) with
k = 0, 1, 2, 3. When (α1, α2, α3) = (0, 0, 0), which is the second case in Table 7, it is
clear that we have L2 = OS(5El − 2Ei − 3Ej)

1/30 or L2 = OS(−5El +3Ei + 2Ej)
1/30.

We define (n1, n2, n3) = (N(3̄,1)7,2,−1
, N(1,2̄)7,−3,−1

, N(1,1)7,0,5
). To avoid exotic fields, we

require that n1 ∈ Z>0. Given field configurations (n1, n2, n3) on the curve ΣSU(7), the
necessary conditions14 for the homological class of the curve ΣSU(7) are

{
(Ei − Ej) · ΣSU(7) = n2 − n1

(Ei − El) · ΣSU(7) = n2 − n3.
(5.61)

14L1ΣSU(7)
= OΣSU(7)

(15 (n1 − n2)), L2ΣSU(7)
= OΣSU(7)

( 1
30 (−3n1 − 2n2 + 5n3)), and L′

ΣSU(7)
=

OΣSU(7)
( 1
42 (3n1 + 2n2 + n3)).
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Coupling Representation Configuration

(3, 2)2,1,2(3̄, 1)1,−4,−3(1, 2)−7,3,1 ΣSO(12)ΣE6ΣSU(7)

(3, 2)2,1,2(3̄, 1)2,−4,2(1, 2)2,3,−4 ΣSO(12)ΣSO(12)ΣSO(12)

QLuRHu (3, 2)1,1,−3(3̄, 1)2,−4,2(1, 2)−7,3,1 ΣE6ΣSO(12)ΣSU(7)

(3, 2)−1,1,−3(3̄, 1)2,−4,2(1, 2)−7,3,1 ΣE6ΣSO(12)ΣSU(7)

(3, 2)1,1,−3(3̄, 1)1,−4,−3(1, 2)0,3,6 ΣE6ΣE6S

(3, 2)−1,1,−3(3̄, 1)1,−4,−3(1, 2)0,3,6 ΣE6ΣE6S

(3, 2)2,1,2(3̄, 1)7,2,−1(1, 2̄)7,−3,−1 ΣSO(12)ΣSU(7)ΣSU(7)

(3, 2)2,1,2(3̄, 1)0,2,−6(1, 2̄)−2,−3,4 ΣSO(12)SΣSO(12)

(3, 2)1,1,−3(3̄, 1)−2,2,4(1, 2̄)7,−3,−1 ΣE6ΣSO(12)ΣSU(7)

QLdRHd (3, 2)−1,1,−3(3̄, 1)−2,2,4(1, 2̄)7,−3,−1 ΣE6ΣSO(12)ΣSU(7)

(3, 2)1,1,−3(3̄, 1)7,2,−1(1, 2̄)−2,−3,4 ΣE6ΣSU(7)ΣSO(12)

(3, 2)−1,1,−3(3̄, 1)7,2,−1(1, 2̄)−2,−3,4 ΣE6ΣSU(7)ΣSO(12)

(3, 2)2,1,2(3̄, 1)−2,2,4(1, 2̄)0,−3,−6 ΣSO(12)ΣSO(12)S

(1, 2̄)7,−3,−1(1, 1)2,6,2(1, 2̄)7,−3,−1 ΣSU(7)ΣSO(12)ΣSU(7)

(1, 2̄)−2,−3,4(1, 1)1,6,−3(1, 2̄)7,−3,−1 ΣSO(12)ΣE6ΣSU(7)

LLeRHd (1, 2̄)−2,−3,4(1, 1)−1,6,−3(1, 2̄)7,−3,−1 ΣSO(12)ΣE6ΣSU(7)

(1, 2̄)7,−3,−1(1, 1)1,6,−3(1, 2̄)−2,−3,4 ΣSU(7)ΣE6ΣSO(12)

(1, 2̄)7,−3,−1(1, 1)−1,6,−3(1, 2̄)−2,−3,4 ΣSU(7)ΣE6ΣSO(12)

(1, 2̄)−2,−3,4(1, 1)2,6,2(1, 2̄)0,−3,−6 ΣSO(12)ΣSO(12)S

(1, 2̄)7,−3,−1(1, 1)0,0,0(1, 2)−7,3,1 ΣSU(7)SΣSU(7)

LLNRHu (1, 2̄)−2,−3,4(1, 1)−7,0,−5(1, 2)−7,3,1 ΣSO(12)ΣSU(7)ΣSU(7)

(1, 2̄)7,−3,−1(1, 1)7,0,5(1, 2)2,3,−4 ΣSU(7)ΣSU(7)ΣSO(12)

(1, 2̄)−2,−3,4(1, 1)0,0,0(1, 2)2,3,−4 ΣSU(7)SΣSU(7)

(1, 2̄)7,−3,−1(1, 1)−7,0,−5(1, 2)0,3,6 ΣSU(7)ΣSU(7)S

Table 9: The Yukawa couplings of the MSSM model from GS = SU(6).

if L2 = OS(5El − 2Ei − 3Ej)
1/30. For the case of L2 = OS(−5El +3Ei +2Ej)

1/30, the
conditions are as follows:

{
(Ei − Ej) · ΣSU(7) = n2 − n1

(Ei − El) · ΣSU(7) = n3 − n1.
(5.62)

Note that the first condition of Eq. (5.61) and Eq. (5.62) is universal since it comes
from the restriction of the universal supersymmetric line bundle L1 = OS(Ej −Ei)

1/5

to the curve ΣSU(7). Note that there are no further constraints for ni, i = 1, 2, 3
except n1 ∈ Z>0, n1 6= n2, 3n1 + 2n2 6= 5n3 and 3n1 + 2n2 + n3 6= 0. The last three
constraints follow from the conditions L1Σ 6= OΣ, L2Σ 6= OΣ, and L′

Σ 6= OΣ. Let us
look at an example. Consider the case of (n1, n2, n3) = (0, 1, 0), Eq. (5.61) and Eq.
(5.62) can be easily solved by Σ = H − Ei − Em and Σ = H −Ei − El, respectively.
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QL uR dR eR LL Hu Hd

M0 (3, 2)2,1,2 (3̄, 1)2,−4,2 (3̄, 1)0,2,−6 (1, 1)1,6,−3 (1, 2̄)7,−3,−1 (1, 2)−2,3,−4 (1, 2̄)−2,−3,4

M1 (3, 2)2,1,2 (3̄, 1)1,−4,−3 (3̄, 1)7,2,−1 (1, 1)2,6,2 (1, 2̄)7,−3,−1 (1, 2)−7,3,1 (1, 2̄)7,−3,−1

M2 (3, 2)1,1,−3 (3̄, 1)2,−4,2 (3̄, 1)−2,2,4 (1, 1)2,6,2 (1, 2̄)7,−3,−1 (1, 2)−7,3,1 (1, 2̄)7,−3,−1

M3 (3, 2)−1,1,−3 (3̄, 1)2,−4,2 (3̄, 1)−2,2,4 (1, 1)2,6,2 (1, 2̄)7,−3,−1 (1, 2)−7,3,1 (1, 2̄)7,−3,−1

M4 (3, 2)2,1,2 (3̄, 1)1,−4,−3 (3̄, 1)7,2,−1 (1, 1)−1,6,−3 (1, 2̄)−2,−3,4 (1, 2)−7,3,1 (1, 2̄)7,−3,−1

M5 (3, 2)1,1,−3 (3̄, 1)2,−4,2 (3̄, 1)−2,2,4 (1, 1)−1,6,−3 (1, 2̄)−2,−3,4 (1, 2)−7,3,1 (1, 2̄)7,−3,−1

M6 (3, 2)−1,1,−3 (3̄, 1)2,−4,2 (3̄, 1)−2,2,4 (1, 1)−1,6,−3 (1, 2̄)−2,−3,4 (1, 2)−7,3,1 (1, 2̄)7,−3,−1

Table 10: Field content in the MSSM from GS = SU(6)

In this case, double and triplet states in the Higgs field 5̄7,−1 can be split without
producing exotic fields. Let us look at one more case, (α1, α2, α3) = (3, 3, 0). It
follows from Table 7 that L2 = OS(Ej − Ei)

7/30. The conditions for the homological
class of the curve ΣSU(7) to support the field configurations (n1, n2, n3) are

{
(Ei − Ej) · ΣSU(7) = n2 − n1

2n1 = n2 + n3.
(5.63)

This time we get one more constraint, 2n1 = n2+n3. It follows that when (3̄, 1)7,2,−1

vanishes, the doublets always show up together with singlets. For the cases of
(α1, α2, α3) = (k, k, 0) with k = 1, 2, we summarize the results15in Table 11

(α1, α2, α3) Conditions L2

(0, 0, 0) (Ei −El) · ΣSU(7) = n2 − n3 OS(5El − 2Ei − 3Ej)
1/30

(Ei −El) · ΣSU(7) = n3 − n1 OS(−5El + 3Ei + 2Ej)
1/30

(1, 1, 0)∗ n2 = n3 OS(Ei −Ej)
1/10

(1, 1, 0) ([El, Em]
′′) · ΣSU(7) = n3 − n1 OS(5[El, Em]

′′ − 2Ei + 2Ej)
1/30

(2, 2, 0) (−El + Ej) · ΣSU(7) = n3 − n1 OS(−5El − 2Ei + 7Ej)
1/30

(El −Ei) · ΣSU(7) = n3 − n1 OS(5El − 7Ei + 2Ej)
1/30

(3, 3, 0) 2n1 = n2 + n3 OS(Ej − Ei)
7/30

Table 11: The conditions for ΣSU(7) supporting the field configurations (n1, n2, n3)

with L1 = OS(Ej −Ei)
1/5.

Similarly, we can extend the calculation to the curve ΣSO(12). Let us define
(s1, s2, s3, s4, s5) = (N(3,2)2,1,2

, N(3̄,1)2,−4,2
, N(3,1)2,−2,−4

, N(1,2)2,3,−4
, N(1,1)2,6,2

) and con-

sider the case of (α1, α2, α3) = (1, 1, 0), which is the third case in Table 7. It is

15For simplicity, we are not going to show the universal conditions (Ei − Ej) · Σ = w2 − w1, w ∈
{n, s} for ΣSU(7) and ΣSO(12), respectively and (Ei −Ej) ·Σ = p3 − p1 for ΣE6 in Table 11, 12, and
13.
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clear that we have L2 = OS(5[El, Em]
′′ − 2Ei + 2Ej)

1/30. The necessary conditions16

for the homological class of the curve ΣSO(12) with field configurations (s1, s2, s3, s4, s5)
are {

(Ei −Ej) · ΣSO(12) = s2 − s1
([El, Em]

′′) · ΣSO(12) = s2 − s3,
(5.64)

and {
s4 = s3 + s1 − s2
s5 = 2s1 − s2.

(5.65)

Note that Eq. (5.65) impose severe restrictions on the configurations (s1, s2, s3, s4, s5).
For example, one cannot simply set (s1, s2, s3, s4, s5) = (0, 0, 0, m, 0) to achieve the
doublet-triplet splitting of Higgs 52,−4; it is easy to see that m is forced to be zero by
the constraints in Eq. (5.65). This will cause trouble when we attempt to engineer
the Higgs on the curve ΣSO(12) with doublet-triplet splitting. Consider the case of
s4 > 0 and set s1 = 0. From the constraints in Eq. (5.65), we obtain s2 + (−s3) < 0.
Note that to avoid exotic fields from ΣSO(12), it is required that s1, s2 ∈ Z>0 and
s3 ∈ Z60. It follows that 0 6 s2 + (−s3) < 0, which leads to a contradiction.
As a result, the appearance of (3, 2)2,1,2 cannot be avoided on the curve ΣSO(12) as
N(1,2)2,3,−4

= s4 > 0. If s4 > 0, actually the most general non-trivial configurations are

(s1, s2, s3, s4, s5) = (l, l+n−m,n,m, l+m−n), where m, l ∈ Z>0 and m− l 6 n 6 0.
Note that (3, 2)2,1,2 is treated as matter in the MSSM, which requires that17 l 6 3.
It follows that 1 6 m 6 3 and m 6 l 6 3. It turns out that there are finitely many
non-trivial configurations. More precisely, the field configurations are as follows:

(s1, s2, s3, s4, s5) =





(1, 0, 0, 1, 2), (2, 1, 0, 1, 3), (2, 0,−1, 1, 4),
(3, 2, 0, 1, 4), (3, 1,−1, 1, 5), (3, 0,−2, 1, 6),
(2, 0, 0, 2, 4), (3, 1, 0, 2, 5), (3, 0,−1, 2, 6),
(3, 0, 0, 3, 6)





. (5.66)

If −3 6 s4 6 0, with 0 6 s1, s2 6 3 and −3 6 s3 6 0, we have another branch of the
configurations as follows:

(s1, s2, s3, s4, s5) =





(0, 1,−1,−2,−1), (0, 1,−2,−3,−1), (0, 2,−1,−3,−2),
(1, 0,−1, 0, 2), (1, 0,−3,−2, 2), (1, 2, 0,−1, 0),
(1, 2,−1,−2, 0), (1, 3, 0,−2,−1), (1, 3,−1,−3,−1),
(2, 0,−2, 0, 4), (2, 0,−3,−1, 4), (2, 1,−2,−1, 3),
(2, 3, 0,−1, 1), (2, 1,−3,−2, 3), (2, 3,−1,−2, 1),
(2, 1,−1, 0, 3), (2, 3,−2,−3, 1), (3, 0,−3, 0, 6),
(3, 1,−2, 0, 5), (3, 1,−3,−1, 5), (3, 2,−1, 0, 4),
(3, 2,−2,−1, 4), (3, 2,−3,−2, 4)





,

(5.67)

16L1ΣSO(12)
= OΣSO(12)

(15 (s1 − s2)), L2ΣSO(12)
= OΣSO(12)

( 1
30 (2s1 + 3s2 − 5s3)), and L′

ΣSO(12)
=

OΣSO(12)
(16 (2s1 + s3)).

17We allow the cases in which three copies of matter fields can be distributed over different matter
curves.
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where all configurations18 in (5.66) and (5.67) satisfy the conditions L1Σ 6= OΣ, L2Σ 6=
OΣ, and L′

Σ 6= OΣ. With these configurations, one can solve the conditions for the
intersection numbers, namely, the conditions in Eq. (5.64). Let us consider the case
of (s1, s2, s3, s4, s5) = (1, 0, 0, 1, 2), it is clear that Σ = 2H − El − Em − Ej is a
solution. For a more complicated case, for example (s1, s2, s3, s4, s5) = (3, 1,−1, 1, 5),
the conditions can be solved by Σ = 4H +Ep − 2Ej − 2El if [El, Em]

′′ = El −Em and
by Σ = 4H + Ep − 2Ej − 2Em if [El, Em]

′′ = Em − El.

Let us turn to another case. Consider the first case in Table 7, namely (α1, α2, α3) =
(1, 1, 0)∗. The supersymmetric fractional line bundle L2 is OS(Ei −Ej)

1/10. The nec-
essary conditions are {

(Ei −Ej) · ΣSO(12) = s2 − s1
s1 = s3,

(5.68)

and Eq. (5.65). Note that (3̄, 2)−2,−1,−2 and (3, 1)2,−2,−4 are exotic fields in the
MSSM. The constraint, s1 = s3 in Eq. (5.68) and Eq. (5.65) imply that s1 = s3 = 0.
If s4 > 0, by the constraints in Eq. (5.65), we obtain (s1, s2, s3, s4, s5) = (0, 0, 0, 0, 0).
If s4 < 0, we have general configurations (s1, s2, s3, s4, s5) = (0, n, 0,−n,−n), where
1 6 n 6 3. However, these configurations violate the condition L′

Σ 6= OΣ. As a
check, using the configurations in (5.66), (5.67), and taking the condition s1 = s3 into
account, one can see that there are no solutions in this case.

Next we consider the fifth case in Table 7, namely (α1, α2, α3) = (3, 3, 0). In this
case, L2 is OS(Ej −Ei)

7/30. The necessary conditions are

{
(Ei −Ej) · ΣSO(12) = s2 − s1
2s2 = s1 + s3,

(5.69)

and Eq. (5.65). It is easy to see that s2 = s4. If s2 = 0, we obtain the non-
trivial configurations (s1, s2, s3, s4, s5) = (k, 0,−k, 0, 2k), where 1 6 k 6 3. Note
that these configurations satisfy the conditions, L1Σ 6= OΣ, L2Σ 6= OΣ, and L′

Σ 6=
OΣ. Let us turn to the case of s2 = m ∈ Z>0. The general configurations are
(s1, s2, s3, s4, s5) = (l, m, 2m − l, m, 2l − m) with l > 2m > 0. Note that (3, 2)2,1,2
is treated as matter in the MSSM. As a result, we focus on the case of l 6 3, which
implies that m = 1 and l = 2, 3. It turns out that the allowed configurations are
(s1, s2, s3, s4, s5) = {(2, 1, 0, 1, 3), (3, 1,−1, 1, 5)}, where the configurations satisfy the
conditions L1Σ 6= OΣ, L2Σ 6= OΣ, and L′

Σ 6= OΣ. Putting these two branches together,
we obtain

(s1, s2, s3, s4, s5) =

{
(1, 0,−1, 0, 2), (2, 0− 2, 0, 4), (3, 0,−3, 0, 6),
(2, 1, 0, 1, 3), (3, 1,−1, 1, 5)

}
. (5.70)

As a check, from the field configurations in (5.66), (5.67) and the constraint 2s2 =
s1 + s3, one can find that there are exactly five solutions as shown in (5.70).

18s3 < 0 represents N(3,1)2,−2,−4
= 0 and N(3̄,1)

−2,2,4
= −s3. The same rule can be applied to

other si.
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Let us take a look at some solutions for the curve satisfying Eq. (5.69). For the
the case of (s1, s2, s3, s4, s5) = (2, 1, 0, 1, 3) , it is easy to see that Σ = H−Ej−Es solves
the first equation in Eq. (5.69). For the case of (s1, s2, s3, s4, s5) = (2, 0,−2, 0, 4),
Σ = 3H − 2Ej − Ep can be a solution. From these examples, we expect that if
we choose ΣSO(12) to house Higgs fields, it will be difficult to achieve doublet-triple
splitting without introducing extra chiral fields. For other U(1)2 flux configurations
corresponding to the case of (α1, α2, α3) = (k, k, 0) with k = 0, 2, the analysis is
similar to the case of k = 1. We summarize the results in Table 12.

(α1, α2, α3) Conditions L2

(0, 0, 0) (Ei − El) · ΣSO(12) = s3 − s1 OS(5El − 2Ei − 3Ej)
1/30

(Ei − El) · ΣSO(12) = s2 − s3 OS(−5El + 3Ei + 2Ej)
1/30

(1, 1, 0)∗ s1 = s3 OS(Ei − Ej)
1/10

(1, 1, 0) ([El, Em]
′′) · ΣSO(12) = s2 − s3 OS(5[El, Em]

′′ − 2Ei + 2Ej)
1/30

(2, 2, 0) (−El + Ej) · ΣSO(12) = s2 − s3 OS(−5El − 2Ei + 7Ej)
1/30

(El − Ei) · ΣSO(12) = s2 − s3 OS(5El − 7Ei + 2Ej)
1/30

(3, 3, 0) 2s2 = s1 + s3 OS(Ej −Ei)
7/30

Table 12: The conditions for ΣSO(12) supporting the field configurations

(s1, s2, s3, s4, s5) with L1 = OS(Ej − Ei)
1/5 and constraints 2s1 = s2 + s5, s4 =

s3 + s1 − s2.

In addition to doublet-triplet splitting problem, we also would like to study the
matter spectrum. According to Table 10, the matter fields can come from the curves
ΣSU(7), ΣSO(12), and ΣE6 . The configurations of the fields and the conditions of the
intersection numbers on the curves ΣSU(7) and ΣSO(12) have been studied earlier in
this section. Next we are going to analyze the case of ΣE6 . Note that for the case of
M0 in Table 10, to engineer 3× dR on the bulk, it is required to set α3 = 3. However,
it gives rise to exotic fields (1, 2)3,6 and (1, 2̄)−3,−6 on the bulk. In what follows, we
are going to focus on the case of (α1, α2, α3) = (k, k, 0) on the bulk.

Let us start with the case of (α1, α2, α3) = (0, 0, 0). It is clear that L2 = OS(5El−
2Ei − 3Ej)

1/30 or L2 = OS(−5El + 3Ei + 2Ej)
1/30. We define (p1, p2, p3, p4, p5, p6) =

(N(3,2)1,1,−3
, N(3,2)

−1,1,−3
, N(3̄,1)1,−4,−3

, N(3̄,1)
−1,−4,−3

, N(1,1)1,6,−3
, N(1,1)

−1,6,−3
). The neces-

sary conditions19 for the curve ΣE6 are as follows:
{

(Ei −Ej) · ΣE6 = p3 − p1
(Ei −El) · ΣE6 = p2 + p3,

(5.71)

and 



p4 = p2 + p3 − p1
p5 = 2p1 − p3
p6 = p1 + p2 − p3,

(5.72)

19L1ΣE6
= OΣE6

(15 (p1−p3)), L2ΣE6
= OΣE6

(− 1
30 (3p1+5p2+2p3)), and L′

ΣE6
= OΣE6

(12 (p1−p2)).
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if L2 = OS(5El − 2Ei − 3Ej)
1/30. For the case of L2 = OS(−5El +3Ei +2Ej)

1/30, the
conditions are {

(Ei − Ej) · ΣE6 = p3 − p1
(Ei − El) · ΣE6 = −p1 − p2,

(5.73)

and Eq. (5.72), where L1 = OS(Ej −Ei)
1/5 has been used. Note that the first condi-

tion in Eq. (5.71) and Eq. (5.72) are universal since they come from the restriction
of the universal supersymmetric line bundle L1 = OS(Ej − Ei)

1/5 to the curve ΣE6

and from the consistency of the definition of (p1, p2, p3, p4, p5, p6), respectively and
that Eq. (5.72) impose severe restrictions on the configurations (p1, p2, p3, p4, p5, p6).
For example, one can simply set (p1, p2, p3, p4, p5, p6) = (n, 0, 0, 0, 0, 0) to engineer n

copies of (3, 2)1,1,−3 on the curve ΣE6 . Then by constraints in Eq. (5.72), n is forced
to be vanishing in order to avoid the exotic fields. Let us look at some examples
of the non-trivial configurations. It is easy to see that if p1 = p3 = 0, we obtain
non-trivial configurations (p1, p2, p3, p4, p5, p6) = (0, l, 0, l, 0, l), where l ∈ Z>0. When
p2 = p4 = 0, the non-trivial configurations are (p1, p2, p3, p4, p5, p6) = (m, 0, m, 0, m, 0)
with m ∈ Z>0. If p3 = p4 = 0, it follows that (p1, p2, p3, p4, p5, p6) = (n, n, 0, 0, 2n, 2n),
where n ∈ Z>0. However, these configurations violate the conditions L1Σ 6= OΣ,
L2Σ 6= OΣ and L′

Σ 6= OΣ. Therefore, we need to find more general non-trivial con-
figurations. For the matter fields in the MSSM, we require that the number of the
matter field is equal to or less than three. As a result, we impose the conditions
1 6 pi 6 3, i = 1, 2, 3, 4 in this case. By the constraints in Eq. (5.72), we obtain the
following configurations

(p1, p2, p3, p4, p5, p6) =






(0, r, 1− r, 1, r − 1, 2r − 1), (1, r, 1− r, 0, r + 1, 2r),
(0, q, 2− q, 2, q − 2, 2q − 2), (1, q, 2− q, 1, q, 2q − 1),
(2, q, 2− q, 0, q + 2, 2q), (0, v, 3− v, 3, v − 3, 2v − 3),
(1, v, 3− v, 2, v − 1, 2v − 2), (2, v, 3− v, 1, v + 1, 2v − 1),
(3, v, 3− v, 0, v + 3, 2v), (1, t, 4− t, 3, t− 2, 2t− 3),
(2, t, 4− t, 2, t, 2t− 2), (3, t, 4− t, 1, t+ 2, 2t− 1),
(2, u, 5− u, 3, u− 1, 2u− 3), (3, u, 5− u, 2, u+ 1, 2u− 2),
(3, 3, 3, 3, 3, 3)






,

(5.74)
where r = 0, 1, q = 0, 1, 2, v = 0, 1, 2, 3, t = 1, 2, 3, and u = 2, 3. Taking the conditions
of L1Σ 6= OΣ, L2Σ 6= OΣ and L′

Σ 6= OΣ into account, the resulting configurations are
as follows:

(p1, p2, p3, p4, p5, p6) =





(0, 1, 1, 2,−1, 0), (1, 0, 2, 1, 0,−1), (1, 2, 0, 1, 2, 3),
(2, 1, 1, 0, 3, 2), (0, 1, 2, 3,−2,−1), (0, 2, 1, 3,−1, 1),
(1, 3, 0, 2, 2, 4), (1, 0, 3, 2,−1,−2), (2, 0, 3, 1, 1,−1),
(2, 3, 0, 1, 4, 5), (3, 1, 2, 0, 4, 2), (3, 2, 1, 0, 5, 4),
(1, 2, 2, 3, 0, 1), (2, 1, 3, 2, 1, 0), (2, 3, 1, 2, 3, 4),
(3, 2, 2, 1, 4, 3)





.

(5.75)
Once we get allowed configurations, it is not difficult to calculate the homolog-
ical classes of the curves, which satisfy Eq. (5.71) or Eq. (5.73). For exam-
ple, consider the case of (p1, p2, p3, p4, p5, p6) = (0, 1, 1, 2,−1, 0), one can check that
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Σ = 3H − Ei + El solves Eq. (5.71). Let us look at one more complicated example,
(p1, p2, p3, p4, p5, p6) = (3, 2, 2, 1, 4, 3). In this case, Σ = 6H + 3Ei + 2Ej − 2El is a
solution of Eq. (5.73). Next we consider the case of (α1, α2, α3) = (1, 1, 0). It is clear
that we have L2 = OS(5[El, Em]

′′ − 2Ei + 2Ej)
1/30. The necessary conditions are

{
(Ei −Ej) · ΣE6 = p3 − p1
([El, Em]

′′) · ΣE6 = −p1 − p2,
(5.76)

and Eq. (5.72). Note that the constraints are the same as the previous case,
(α1, α2, α3) = (0, 0, 0). As a result, the allowed configurations are the same as (5.75).
Let us take a look at the classes of the curves, which solve Eq. (5.76). For simplic-
ity, we focus on the case of [El, Em]

′′ = El − Em and consider (p1, p2, p3, p4, p5, p6) =
(1, 0, 2, 1, 0,−1), it is not difficult to see that Σ = H −Ei −Em is a solution. For the
case of (p1, p2, p3, p4, p5, p6) = (2, 1, 1, 0, 3, 2), Σ = 4H + 2El −Ej −Em can solve Eq.
(5.76).

Let us turn to the first case in Table 7, namely (α1, α2, α3) = (1, 1, 0)∗. In this
case, L2 is OS(Ei −Ej)

1/10 and the necessary conditions for the homological class of
ΣE6 with given configurations (p1, p2, p3, p4, p5, p6) are

{
(Ei − Ej) · ΣE6 = p3 − p1
p2 + p3 = 0,

(5.77)

and Eq. (5.72). Note that to avoid exotic fields, we require that p1, p2, p3, p4 ∈ Z>0.
The constraint, p2+p3 = 0 in Eq. (5.77) implies that p2 = p3 = 0. By the constraints
in Eq. (5.72), we obtain (p1, p2, p3, p4, p5, p6) = (0, 0, 0, 0, 0, 0), which means that
there are no non-trivial configurations in this case. As a check, by the configurations
in (5.75) and the constraint p2 + p3 = 0, it is easy to see that there is indeed no
solution, namely all configurations in (5.75) are completely ruled out by the constraint
p2 + p3 = 0.

For the case of (α1, α2, α3) = (3, 3, 0), we have L2 = OS(Ej −Ei)
7/30. Given the

configuration (p1, p2, p3, p4, p5, p6), the necessary conditions are

{
(Ei − Ej) · ΣE6 = p3 − p1
p3 = 2p1 + p2,

(5.78)

and Eq. (5.72). Since (3, 2)1,1,−3, (3, 2)−1,1,−3, (3̄, 1)1,−4,−3, and (3̄, 1)1,−4,−3 are all
matter in the MSSM, we require that pi 6 3, i = 1, 2, 3, 4. By the second condition
in Eq. (5.78), we have (p1, p2) = (1, 0), (0, 1), (0, 2), (0, 3), or (1, 1). Since p4 6 3,
it follows that the allowed configurations are (p1, p2, p3, p4, p5, p6) = (0, 1, 1, 2,−1, 0),
(1, 0, 2, 1, 0,−1), and (1, 1, 3, 3,−1,−1). Recall that in order to obtain matter in the
MSSM, it is required that L1Σ 6= OΣ, L2Σ 6= OΣ and L′

Σ 6= OΣ. As a result, the
resulting configurations are

(p1, p2, p3, p4, p5, p6) =
{

(0, 1, 1, 2,−1, 0), (1, 0, 2, 1, 0,−1)
}
. (5.79)
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As a check, using the configurations in (5.75) and the constraint p3 = 2p1 + p2, one
can see that the resulting configurations are the same as that in (5.79). Now let us
solve the classes of the curves satisfying Eq. (5.78). For these two configurations, the
first condition in Eq. (5.78) can be solved by Σ = H −Ei −El. For other U(1)2 flux
configurations corresponding to the case of (α1, α2, α3) = (k, k, 0) with k = 2, the
analysis is similar to the case of k = 0, 1. We summarize the results in Table 13.

(α1, α2, α3) Conditions L2

(0, 0, 0) (Ei −El) · Σ = p2 + p3 OS(5El − 2Ei − 3Ej)
1/30

(Ei − El) · Σ = −p1 − p2 OS(−5El + 3Ei + 2Ej)
1/30

(1, 1, 0)∗ p2 + p3 = 0 OS(Ei − Ej)
1/10

(1, 1, 0) ([El, Em]
′′) · Σ = −p1 − p2 OS(5[El, Em]

′′ − 2Ei + 2Ej)
1/30

(2, 2, 0) (−El + Ej) · Σ = −p1 − p2 OS(−5El − 2Ei + 7Ej)
1/30

(El − Ei) · Σ = −p1 − p2 OS(5El − 7Ei + 2Ej)
1/30

(3, 3, 0) p3 = 2p1 + p2 OS(Ej − Ei)
7/30

Table 13: The conditions for ΣE6 supporting the field configurations
(p1, p2, p3, p4, p5, p6) with L1 = OS(Ej − Ei)

1/5 and constraints p4 = p2 + p3 − p1,
p5 = 2p1 − p3, and p6 = p1 + p2 − p3.

After analyzing the spectrum from the curves, it is clear that we are unable to
obtain a minimal spectrum of the MSSM, but non-minimal spectra with doublet-
triplet splitting can be obtained. In the next section we will give examples of non-
minimal spectra for the MSSM.

5.3 Non-minimal Spectrum for the MSSM: Examples

In the previous section we already analyzed the spectrum from the curves ΣSU(7),
ΣSO(12), and ΣE6 . With some physical requirements, we obtain all field configurations
supported by the curves. In what follows, we shall give examples of the non-minimal
MSSM spectra using the results shown in section 5.2.2.

In what follows, we shall focus on the case M1 in Table 13. In this case, QL

and eR are localized on the curves with GΣ = SO(12). uR comes from ΣE6 and
dR, LL, Hu and Hd live on ΣSU(7). It is not difficult to see that in the examples con-
sidered, we are unable to get a minimal spectrum of the MSSM without exotic fields.
However, it is possible to construct non-minimal spectra of the MSSM. One possible
way is that we can make the exotic fields form trilinear couplings with conserved U(1)
charges so that they can decouple from the low-energy spectrum. According to the re-
sults in Table 7, let us consider the U(1)2 flux configuration L1 = OS(E1−E2)

1/5 and
L2 = OS(5E3−2E2−3E1)

1/30, which corresponds to the case of (α1, α2, α3) = (0, 0, 0)
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on the bulk. To obtain three copies of QL and eR, we engineer two curves Σ1
SO(12)

and Σ2
SO(12) with field content (2, 0,−2, 0, 4) and (1, 0,−1, 0, 2), respectively. The

exotic fields are 2 × (3̄, 1)−2,2,4 and one singlet on Σ1
SO(12). For the curve Σ2

SO(12),

we get exotic fields 1 × (3̄, 1)−2,2,4 and two singlets. To get three copies of uR, we

arrange two curves, Σ1
E6

and Σ2
E6

with field content (3, 1, 2, 0, 4, 2) and (2, 1, 1, 0, 3, 2),
respectively. We have exotic fields 3× (3, 2)1,1,−3, 1× (3, 2)−1,1,−3 and six singlets on

Σ1
E6

. On Σ2
E6

, the exotic fields are 2 × (3, 2)1,1,−3, 1 × (3, 2)−1,1,−3 and five singlets.
Since the rest of the fields in the case of M1 come from the curves with GΣ = SU(7),
we can easily engineer 3 × dR, 3 × LL, 1 × Hu and 1 × Hd on individual curves,
denoted respectively by Σ1

SU(7), Σ
2
SU(7), Σ

u
SU(7), and Σd

SU(7). Note that (3, 2)±1,1,−3,

(3̄, 1)−2,2,4, and (1, 2̄)7,−3,−1 can form trilinear couplings. To make the exotic fields

form the couplings, we introduce one extra curve ΣΦ
SU(7) with Φ = (1, 2̄)7,−3,−1. Now

we arrange Σ1
SO(12) intersects Σ1

E6
and Σ2

E6
, so does Σ2

SO(12). The curve Σu
SU(7) passes

through the intersection point of Σ1
SO(12) and Σ1

E6
and that of Σ2

SO(12) and Σ2
E6

. The

vertices of the triple intersections (Σ1
SO(12),Σ

1
E6
,Σu

SU(7)) and (Σ2
SO(12),Σ

2
E6
,Σu

SU(7)) rep-
resent the coupling QLuRHu. Another two vertices are formed by triple intersections
(Σ1

SO(12),Σ
2
E6
,ΣΦ

SU(7)) and (Σ2
SO(12),Σ

1
E6
,ΣΦ

SU(7)), which represent the coupling ΘΨΦ

and Θ̃ΨΦ, where Θ = (3, 2)1,1,−3, Θ̃ = (3, 2)−1,1,−3, and Ψ = (3̄, 1)−2,2,4. When Φ
gets a vev, the exotic fields are decoupled through the coupling, which means that
at low energy, those fields will not show up in the spectrum. To obtain the coupling
QLdRHd, one can arrange two curves Σ1

SU(7), and Σd
SU(7) intersect Σ1

SO(12) at one point.

For the coupling LLeRHd, one can let the curve Σ2
SU(7) intersect Σd

SU(7) at another

point on Σ1
SO(12). The intersection point of Σu

SU(7) and Σ2
SU(7) represents the coupling

LLNRHu. To sum up, the superpotential is as follows:

W ⊃ WMSSM +ΘΨΦ + Θ̃ΨΦ+ · · · . (5.80)

As mentioned earlier, through the last two couplings in (5.80), we obtain a non-
minimal MSSM spectrum at low energy. Note that in this case, Hu and Hd come
from the curves Σu

SU(7) and Σd
SU(7), respectively. As shown in section 5.2.2, doublet-

triplet splitting can be achieved by U(1)2 gauge fluxes. Therefore, a non-minimal
spectrum of the MSSM with doublet-triple splitting can be achieved in a local F-
theory model where GS = SU(6) and with U(1)2 gauge fluxes. As shown in section
5.2.2, given the field configurations, one can calculate the homological classes of the
curves supporting the configurations. For the present example, we simply summarize
the field content and the classes of the curves in Table 14. Note that in the previous
example there are some exotic singlets. Following similar procedure, these singlets
can be lifted via trilinear couplings. Let us consider the following example. To obtain
three copies of QL and eR, we engineer two curves Σ̃1

SO(12) and Σ̃2
SO(12) with field

‡With one additional singlet.
§With two additional singlets.
¶With six additional singlets.
‖With five additional singlets.
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Multiplet Curve Σ gΣ L1Σ L2Σ L′
Σ

2×QL Σ1
SO(12)

5H + 2E2 − 2E3
0 OΣ1

SO(12)
(1)2/5 OΣ1

SO(12)
(1)7/15 OΣ1

SO(12)
(1)1/3

+3× eR
‡ −2E4 − 2E5

1×QL
§ Σ2

SO(12)

4H + E2 −E3
0 OΣ2

SO(12)
(1)1/5 OΣ2

SO(12)
(1)7/30 OΣ2

SO(12)
(1)1/6

−2E4 − 2E5

2× uR
¶ Σ1

E6
5H + 3E3 −E1 0 OΣ1

E6
(1)1/5 OΣ1

E6
(−1)3/5 OΣ1

E6
(1)

1× uR
‖ Σ2

E6
4H + 2E3 −E1 0 OΣ2

E6
(1)1/5 OΣ2

E6
(−1)13/30 OΣ2

E6
(1)1/2

3× dR Σ1
SU(7)

4H + E2 + E3
0 OΣ1

SU(7)
(1)3/5 OΣ1

SU(7)
(−1)3/10 OΣ1

SU(7)
(1)3/14

−2E1

3× LL Σ2
SU(7)

4H + E3 + E1
0 OΣ2

SU(7)
(−1)3/5 OΣ2

SU(7)
(−1)1/5 OΣ2

SU(7)
(1)1/7

−2E2

1×Hu Σu
SU(7) H − E1 −E3 0 OΣu

SU(7)
(1)1/5 OΣu

SU(7)
(1)1/15 OΣu

SU(7)
(−1)1/21

1×Hd Σd
SU(7) H − E2 −E4 0 OΣd

SU(7)
(−1)1/5 OΣd

SU(7)
(−1)1/15 OΣd

SU(7)
(1)1/21

1× Φ ΣΦ
SU(7)

3H − E1 − E3
0 OΣΦ

SU(7)
(−1)1/5 OΣΦ

SU(7)
(−1)1/15 OΣΦ

SU(7)
(1)1/21

−2E2

Table 14: An example for a non-minimal MSSM spectrum from GS = SU(6) with the
U(1)2 gauge flux configuration L1 = OS(E1−E2)

1/5 and L2 = OS(5E3−2E2−3E1)
1/30.

content (2, 1,−2,−1, 3) and (1, 2,−1,−2, 0), respectively. Clearly the exotic fields

are 1 × (3̄, 1)2,−4,2, 2 × (3̄, 1)−2,2,4, and 1 × (1, 2̄)−2,−3,4 on Σ̃1
SO(12). For the curve

Σ̃2
SO(12), we get exotic fields 2 × (3̄, 1)2,−4,2, 1 × (3̄, 1)−2,2,4, and 2 × (1, 2̄)−2,−3,4.

To get three copies of uR, we arrange two curves, Σ̃1
E6

and Σ̃2
E6

with field content
(2, 1, 1, 0, 3, 2) and (3, 1, 2, 0, 4, 2), respectively. We have exotic fields 2 × (3, 2)1,1,−3,

1× (3, 2)−1,1,−3, and five singlets on Σ̃1
E6

. On Σ̃2
E6

, the exotic fields are 3× (3, 2)1,1,−3,
1 × (3, 2)−1,1,−3, and six singlets. Since the rest of the fields in the case of M1 come
from the curves with GΣ = SU(7), we can easily engineer 3 × dR, 3 × LL, 1 × Hu

and 1×Hd on individual curves, denoted respectively by Σ̃1
SU(7), Σ̃

2
SU(7), Σ̃

u
SU(7), and

Σ̃d
SU(7). Note that these exotic fields can form trilinear couplings with triplets on

ΣSU(7). To make the exotic fields form the couplings, we introduce three extra curves

ΣΥ1

SU(7), ΣῩ2

SU(7), and Σ
Υ′

3

SU(7) with Υ1 = (3, 1)−7,−2,1, Ῡ2 = (3̄, 1)7,2,−1, and Υ3 + Λ,

respectively, where Υ3 = (3, 1)−7,−2,1 and Λ = (1, 1)−7,0,−5. The superpotential is as
follows:

W ⊃ WMSSM + Ξ∆Υ1 + Ξ∆̃Υ1 +ΘΠῩ2 + Θ̃ΠῩ2 +ΨΛΥ3 + · · · , (5.81)

where Ξ = (3̄, 1)2,−4,2, ∆ = (1, 1)1,6,−3, ∆̃ = (1, 1)−1,6,−3, and Π = (1, 2̄)−2,−3,4.

When Υ1, Ῡ2, and Υ3 get vevs, the exotic fields are decoupled via the couplings,
which means that at low energy, those fields will not show up in the spectrum. For
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the couplings in WMSSM, the arrangement of the curves is similar to the previous
example. We are not going to repeat that. In this example, we obtain a non-minimal
MSSM spectrum at low energy. The field content and the classes of the curves are
summarized in Table 15.∗∗

Multiplet Curve Σ gΣ L1Σ L2Σ L′
Σ

2×QL
Σ̃1

SO(12)

5H − E1 − 4E3
0 OΣ̃1

SO(12)
(1)1/5 OΣ̃1

SO(12)
(1)17/30 OΣ̃1

SO(12)
(1)1/3

+3× eR −E5

1×QL Σ̃2
SO(12) 4H + E1 − 2E3 0 OΣ̃2

SO(12)
(−1)1/5 OΣ̃2

SO(12)
(1)13/30 OΣ̃2

SO(12)
(1)1/6

+E6

1× uR Σ̃1
E6

4H + 2E3 −E1 0 OΣ̃1
E6

(1)1/5 OΣ̃1
E6

(−1)13/30 OΣ̃1
E6

(1)1/2

2× uR Σ̃2
E6

5H + 3E3 −E1 0 OΣ̃2
E6

(1)1/5 OΣ̃2
E6

(−1)3/5 OΣ̃2
E6

(1)

3× dR Σ̃1
SU(7)

4H + E2 + E3
0 OΣ̃1

SU(7)
(1)3/5 OΣ̃1

SU(7)
(−1)3/10 OΣ̃1

SU(7)
(1)3/14

−2E1

3× LL Σ̃2
SU(7)

4H + E3 + E1
0 OΣ̃2

SU(7)
(−1)3/5 OΣ̃2

SU(7)
(−1)1/5 OΣ̃2

SU(7)
(1)1/7

−2E2

1×Hu Σ̃u
SU(7) 3H + E2 − E4 0 OΣ̃u

SU(7)
(1)1/5 OΣ̃u

SU(7)
(1)1/15 OΣ̃u

SU(7)
(−1)1/21

1×Hd Σ̃d
SU(7) H − E2 −E4 0 OΣ̃d

SU(7)
(−1)1/5 OΣ̃d

SU(7)
(−1)1/15 OΣ̃d

SU(7)
(1)1/21

1×Υ1 Σ̃Υ1

SU(7) H − E2 −E3 0 O
Σ̃

Υ1
SU(7)

(−1)1/5 O
Σ̃

Υ1
SU(7)

(1)1/10 O
Σ̃

Υ1
SU(7)

(−1)1/14

1× Ῡ2 Σ̃Ῡ2

SU(7)

2H − E1 − E4
0 O

Σ̃
Ῡ2
SU(7)

(1)1/5 O
Σ̃

Ῡ2
SU(7)

(−1)1/10 O
Σ̃

Ῡ2
SU(7)

(1)1/14

−E5

1×Υ3 Σ̃
Υ′

3

SU(7)
H − E2 −E4 0 O

Σ̃
Υ′

3
SU(7)

(−1)1/5 O
Σ̃

Υ′

3
SU(7)

(−1)1/15 O
Σ̃

Υ′

3
SU(7)

(−1)2/21

+1× Λ

Table 15: An example for a non-minimal MSSM spectrum from GS = SU(6) with the
U(1)2 gauge flux configuration L1 = OS(E1−E2)

1/5 and L2 = OS(5E3−2E2−3E1)
1/30.

6 Conclusions

In this paper we demonstrate how to obtain U(1)2 gauge flux configurations (L1, L2)
with an exotic-free bulk spectrum of the local F-theory model with GS = SU(6). In
this case each configuration is constructed by two fractional line bundles, which are

∗∗In this example QL and uR are localized on different curves. The Yukawa coupling QLuRHu

descended from 10105 can be expressed as [Σ̃1
SO(12)(1, 2) + Σ̃2

SO(12)(3)][Σ̃
1
E6

(1) + Σ̃2
E6

(2, 3)][Σ̃u
SU(7)]

generating nonvanishing diagonal elements in the Yukawa mass matrix, where the indices in the
parenthesis represent the generations.
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well-defined in the sense that up to a linear transformation of the U(1) charges, an
U(1)2 flux configuration can be associated with a polystable bundle of rank two with
structure group U(1)2. Under physical assumptions, we obtain all flux configurations
as shown in Table 7 and Table 8. For the case of GS = SO(10), as shown in [12]
there is a no-go theorem which states that for an exotic-free spectrum, there are no
solutions for U(1)2 gauge fluxes.

To build a model of the MSSM, we study the field configurations localized on the
curves with non-trivial gauge fluxes induced from the restriction of the flux configu-
rations on the bulk S. With the non-trivial induced fluxes, the enhanced gauge group
GΣ will be broken into Gstd × U(1). Under physical assumptions, we obtain all field
configurations localized on the curves with GΣ = SU(7), GΣ = SO(12) and GΣ = E6.
Form the breaking patterns, we know that Higgs fields are localized on the curves
ΣSU(7) and ΣSO(12). On the curve ΣSU(7), we found that doublet-triplet splitting can
be achieved. However, it is impossible to get the splitting on the curve ΣSO(12) with-
out raising exotic fields, which means that when building models, we should engineer
the Higgs fields on the curve ΣSU(7) instead of ΣSO(12). Unlike Higgs fields, matter
fields in the MSSM are distributed over the curves GΣ = SU(7), GΣ = SO(12) and
GΣ = E6. With the solved field configurations, it is clear that it is extremely difficult
to get the minimal spectrum of the MSSM without exotic fields. However, if those
exotic fields can form trilinear couplings with the doublets or triplets on the curves
with GΣ = SU(7), the exotic fields can be lifted from the massless spectrum when
these doublets or triplets get vevs. In order to achieve this, we introduce extra curves
to support these doublets or triplets coupled to exotic fields. With this procedure,
we can construct a non-minimal spectrum of the MSSM with doublet-triple splitting.
It would be interesting to study mechanisms breaking non-minimal gauge group GS

down to Gstd other than U(1)2 gauge fluxes.
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