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Abstract:We use Grassmann even spinor oscillators to construct a bosonic higher

spin extension hs(2, 2) of the five-dimensional anti-de Sitter algebra SU(2, 2), and

show that the gauging of hs(2, 2) gives rise to a spectrum S of physical massless
fields with spin s = 0, 2, 4, . . . that is a UIR of hs(2, 2). In addition to a master gauge

field which contains the massless s = 2, 4, . . . fields, we construct a scalar master

field containing the massless s = 0 field, the generalized Weyl tensors and their

derivatives. We give the appropriate linearized constraint on this master scalar field,

which together with a linearized curvature constraint produces the correct linearized

field equations. A crucial step in the construction of the theory is the identification

of a central generator K which is eliminated by means of a coset construction. Its

charge vanishes in the spectrum S, which is the symmetric product of two spin zero
doubletons. We expect our results to pave the way for constructing an interacting

theory whose curvature expansion is dual to a CFT based on higher spin currents

formed out of free doubletons in the large-N limit. Thus, extending a recent proposal

of Sundborg (hep-th/0103247), we conjecture that the hs(2, 2) gauge theory describes

a truncation of the bosonic massless sector of tensionless type-IIB string theory on

AdS5×S5 for large N . This implies AdS/CFT correspondence in a parameter regime
where both boundary and bulk theories are perturbative.
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1. Introduction

Motivations for studying higher spin fields have varied in time. To begin with,

“they are there”, in the sense that there exist higher spin representations of the

Poincaré group and therefore it is natural to seek field theories which would describe

particles that carry these representations. In fact, already in 1939, Fierz and Pauli [1]

studied the field equations for massive higher spin fields. They studied the free

field equations, and while potential difficulties in constructing their interactions were

recognized, the real difficulties became more transparent much later. The Fierz-Pauli

type equations in flat spacetime were developed further in 1974 [2] and their massless

limits were obtained in 1978 [3, 4].

Difficulties in constructing the interaction of higher spin fields were better under-

stood by the early eighties, both in the S-matrix [5, 6] and field theoretic [7, 8, 9] ap-

proaches. These studies, which led to certain no-go theorems, made certain assump-

tions though, which turn out to be too restrictive as was discovered later. Among

the assumptions made were Lorentz invariance (thus, neglecting the possibility of

anti-de Sitter invariance, for example) and the fact that one higher spin field at a

time was considered (thus, leaving open the consequences of introducing infinitely

many higher spin fields).

Interest in a search for consistent interactions of massless higher spin fields re-

ceived a boost with the discovery of supergravity in mid-seventies. Among the reasons

for the renewed interest in the subject were: a) to better understand the uniqueness

of supergravity theory; b) to search for supergravities with higher (N > 8) extended

supersymmetry which would involve larger Yang-Mills gauge symmetries with better

grand unification chances; c) the possibility of a better quantum behaviour by the
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inclusion of higher spin gauge fields; and d) from a purely theoretical point of view,

to develop a deeper understanding of gauge theories that goes beyond Yang-Mills

and include massless fields of arbitrary spin. Most of the attempts made in these

directions, some of which are mentioned briefly above, essentially led to negative

results. Nonetheless, an interesting development took place in 1978 and the massless

higher spin gauge theory problem was shifted to what appeared to be a more compli-

cated setting, namely anti-de Sitter space. In fact, this shift turned out to be crucial

for the subsequent breakthroughs that took place in the development of higher spin

gauge theory, as we shall explain briefly below.

In 1978, Flato and Fronsdal [10] established that the symmetric product of two

ultra-short representations of the anti-de Sitter group in four dimensions, known as

the singletons, yields an infinite tower of higher spin massless representations. Moti-

vated by this result, the free field equation for massless fields of arbitrary spin in AdS4
were constructed in 1978 [11, 12]. Moreover, it was suggested by Fronsdal [11] that

“a theory of interacting singletons will provide an example of interactions between

massless fields with higher spins”. We will come back to this point later.

Nearly a decade later, in 1987, Fradkin and Vasiliev [13, 14] made an important

dent in the problem of interacting higher spin gauge theory. They showed that the

gravitational interaction of massless higher spin fields does exist after all, provided

that the construction is based on an infinite-dimensional extension of the AdS4 al-

gebra and that the interaction is expanded around an AdS4 background. One may

argue that the key to this development is the recognition of the importance of a

suitable choice of higher spin symmetry algebra. It is intuitively clear that once a

generator with spin higher than two is introduced, insisting on a Lie algebra, its clo-

sure will require the introduction of an infinite set of higher spin generators as well.

To see this, it is sufficient to consider the AdS generators as bilinears of suitably

chosen oscillators with natural commutation rules, and the higher spin generators

as polynomials of higher than quadratic order in these oscillators. What is more

surprising, at least at first sight, is the fact that the flat space limit cannot be taken

in the interactions involving higher spin fields. On the other hand, this is how the

theory manages to circumvent the no-go theorems of [5, 6] which were based on

Minkowskian S-matrix considerations.

Until the late eighties, the massless higher spin gauge theories were mainly being

considered in their own right, though undoubtedly a great deal of motivation must

have been gathered from the by then well-established conviction that higher spin

gauge theories do exist and as such should necessarily have to have a bearing on

unified theories involving gravity. Nevertheless, no particular significance was yet

attached to the remarkable connection between AdS4 singletons and massless higher

spin fields discovered nearly a decade ago [10]. Moreover, no connection with string

theory or any theory of extended objects was made yet despite the fact that the

theory contains an infinite set of fields of ever increasing spin which is, in spirit,
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reminiscent of the spectrum of string theory. This situation changed soon after the

discovery of the supermembrane in 1987 [15]. A great deal of attention was given to

the fact that its local fermionic symmetries require D = 11 supergravity equations

of motion to be satisfied [15]. This led to the suggestion that supergravity in D = 11

could be considered as the low energy limit of a supermembrane theory, though, as

we know, this issue is still not entirely well understood. In any event, the discovery

of the supermembrane-supergravity connection motivated the study of the Kaluza-

Klein vacua of D = 11 supergravity as vacua for the supermembrane, and special

attention was given to the AdS4 × S7 solution.
Soon after the discovery of the eleven-dimensional supermembrane, it was sug-

gested in [16] that the singletons could play a role in its description. Subsequently, it

was conjectured in [17] and [18] that a whole class of singleton/doubleton field theo-

ries constructed on the boundary of certain AdSp+1 spaces described super p-branes

propagating on AdSp+1 × SN which existed for certain p and N as supersymmetric
Kaluza-Klein backgrounds of a class of supergravity theories. Yet, the AdS7 × S4

compactification of D = 11 supergravity and the AdS5×S5 compactification of type-
IIB supergravity in D = 10 were inexplicably overlooked; should they have also been

considered, they would have pointed to the existence of the five-brane in D = 11 and

the type-IIB three-brane in D = 10, several years before their actual discovery.

Once the idea of the eleven-dimensional supermembrane on AdS4×S7 being de-
scribed by the singletons was entertained, it was natural to consider the possibility

of AdS4 higher spin fields arising in the spectrum of the supermembrane. In 1988,

Bergshoeff, Salam, Sezgin and Tanii [19] proposed that the spectrum of the superme-

mbrane in the AdS4 × S7 background (treated as a second quantized singleton field
theory in three dimensions) contains the massless higher spin states contained in the

symmetric product of two N = 8 supersingletons. These states fill irreps of OSp(8|4)
with highest spin smax = 2, 4, 6, . . ., where the smax = 2 multiplet corresponds to the

well-known gauged D = 4, N = 8 supergravity. It was also pointed out in [19] that

the massive multiplets contained in the products of three or more singletons would

appear in the spectrum. Moreover, it was realized in [19] that while the singleton field

theory is free, it will nonetheless yield interactions in the bulk of AdS4, in analogy

with 2D free conformal field theory being capable of describing interactions in 10D

target space. It was also suggested in [19] that the resulting theory in AdS4 could pro-

vide a field theoretic realization of the infinite-dimensional higher spin algebras of the

kind considered by Fradkin and Vasiliev [13]. Using the remarkable relation between

the singletons and spectrum of higher spin states mentioned earlier, the “admissible”

higher spin algebras were, in fact, determined later by Konstein and Vasiliev [20].

It is interesting that the massless higher representations would emerge first in

the context of supermembrane in AdS4×S7 background, as opposed to string theory,
perhaps arising from the Regge trajectory of massive states at high energies. In fact,

in 1991, Fradkin and Linetsky [21], conjectured that “there might be some sort of
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phase transition in string theory at high energies when the cosmological constant of

the Planck order is induced and an infinite-dimensional AdS higher spin gauge sym-

metry is restored”. These authors were motivated by the similarity between the non-

analyticity in string tension of the massive string states and the non-analyticity in

cosmological constant of the higher spin gauge theory. In fact, an attempt was made

in [21] to study string theory in AdS target space, with emphasis on determining the

critical value of the cosmological constant to ensure freedom from worldsheet confor-

mal anomalies. These authors also suggested in [21] the possibility of massless higher

spin fields emerging from the product of two singleton states. In retrospect, one won-

ders why string theory in AdS5×S5 was not considered already then in this context.
Regardless of the considerations of a possible connection with strings or mem-

branes, the theory of a consistent, interacting higher spin gauge theory initiated by

Fradkin and Vasiliev [13, 14] was developed further by Vasiliev in a series of pa-

pers. In particular, spin zero and half fields were introduced to the system within

the framework of free differential algebras [22]. The need to introduce these mat-

ter fields fitted nicely with the fact that they correspond precisely to the spin zero

and half states that arise in the product of two singletons that carry the representa-

tion of the appropriate admissible higher spin algebra. The theory was furthermore

cast into an elegant geometrical form in [23] by extending the higher spin algebra

to include new auxiliary commuting spinorial variables. The resulting formulation

of the theory is a free differential algebra containing a master gauge field and a

master scalar field defined in an extended spacetime which has the usual four (com-

muting) spacetime coordinates as well as a set of non-commutative Grassmann even

spinorial coordinates. The non-commutativity is defined by a star-product involving

non-trivial contractions between the extended spinor coordinates as well as between

these coordinates and the algebra oscillators. Solving the constraints in the extended

directions and evaluating the remaining constraints at a subspace isomorphic to the

ordinary spacetime leads to a deformed free differential algebra in the space time that

includes interactions and that gives the correct free massless higher spin equations

upon linearization. As such, the theory is realized at the level of field equations, but

an action from which these field equations can be derived is not known.

The advances made in 1995 with the emergence of D-branes and M-theory, while

highlighting the importance of branes and the role of eleven dimensions, did not re-

vive interest in higher spin gauge theory. In fact, the eleven-dimensional membrane,

which now was being referred to as the M2-brane, became one of the many possible

branes that existed in a p-brane democracy, that had M5-branes, several D-branes,

and other kinds of branes as well. As for the AdS background, although it was re-

alized that certain brane solutions extrapolated between Minkowski spacetime and

AdS space [24], the surprisingly powerful consequences of AdS background were really

appreciated first in 1997 with Maldacena’s conjecture [25] on the correspondence be-

tween physics in the bulk of AdS and conformal field theory on its boundary. As the
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main argument for the conjecture is that the AdS physics should actually be decou-

pled string theory or M-theory in the near horizon region of a brane (in some suitable

limit), and as the precise formulation of string/M-theory in AdS spacetimes is still

not under control, most attention has been focused, however, on the issue of testing a

weaker form of the correspondence in the context of gauged supergravities, which are

expected to describe the low energy limits of string/M-theory in AdS backgrounds.

This development motivated us to revisit the higher spin gauge theory [26, 27, 28].

The canonical examples of AdS/CFT correspondence are the maximally supersym-

metric cases of type-IIB string theory in AdS5 × S5 background and M-theory in

AdS4×S7 and AdS7×S4 backgrounds. Since the higher spin gauge theory had been
worked out in detail in AdS4 and not yet in AdS5 and AdS7, we naturally studied

further the case of AdS4.

The main focus of our work in [26, 27] was to show how gauged D = 4, N = 8

supergravity is embedded in Vasiliev’s higher spin gauge theory, and to elucidate the

geometrical structure of these equations. While the embedding has been exhibited

at the level of linearized field equations, interesting mysteries remain to be solved,

as far as the non-linear embedding is concerned. Considering the simplest bosonic

higher spin gauge theory, various aspects of a curvature expansion scheme advocated

by Vasiliev [22] was re-visited in [28] but a detailed study of the non linearities in

the theory is still lacking. In [26, 27], aspects of singleton dynamics on the boundary

of AdS4 yielding information on the higher spin gauge theory in the bulk were also

discussed but were not put into a concrete mathematical foundation.

The case of AdS5 appears to be more suitable, however, for examining the details

of the AdS/CFT duality because the N > 1 version of the CFT is in principle known

for this case, unlike the cases of AdS4 and AdS7, and large N is actually required for

the AdS radius to be large compared to the Planck length, which is a basic require-

ment for the higher spin curvature expansion scheme to be reliable [28]. Of course,

if one assumes that the 4D and yet to be constructed 7D higher spin gauge theories

are actually contained in M-theory, one could infer the properties of large-N M2-

and M5-brane dynamics from the corresponding higher spin curvature expansions.

However, awaiting such a development, it is natural to focus our attention on the

construction of a higher spin gauge theory in AdS5.

Indeed, in an interesting recent development, the authors of [29, 30] have gath-

ered evidence for that the physics of tensionless type-IIB strings in AdS5× S5 back-
ground involves massless higher spin fields. They also sketch a computational scheme

for N = 4 supersymmetric Yang-Mills theory at zero coupling ’t Hooft coupling and

for large N , to support their arguments. This is to be contrasted with the original

large-N and large ’t Hooft coupling limit of Maldacena [25], in which case, as is well

known, strongly coupled Yang-Mills theory furnishes a holographic description of

type-IIB strings with finite tension. The latter setup has had only a limited scope,

though, when it comes to actually verifying the AdS/CFT equivalence, due to the
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lack of computational schemes for the boundary and bulk theories. Indeed, mostly

the implications of the gauged supergravity (valid at low energies) for the strongly

coupled gauge theory on the boundary have been studied so far.

In the new limit proposed above we expect that computations can be performed

on the higher spin supergravity side using the above-mentioned curvature expansion

technique as well as on the boundary CFT side using the techniques of [29, 30].

Hence, this limit offers an arena for directly verifying the AdS/CFT conjecture! It

remains, however, to find the interactions of the five-dimensional higher spin gauge

theory, which we believe is an interesting and feasible technical problem. In this paper

we have already taken the first steps in this directions by identifying an appropriate

higher spin algebra in 5D and studying its gauging, thereby providing what we believe

to be an appropriate framework for the construction of the full theory. Indeed, our

results so far indicate that the theory has a form similar to the four-dimensional

higher spin gauge theory. We shall return to the above issues in section 6.

While the higher spin gauge theory is well developed in D = 4, at least at the

level of writing down full equations of motion in a concise and geometrical fashion,

much less is known in D > 4. To a large extent this is due to the fact that the truly

universal principles underlying the known four-dimensional case have not yet been

identified completely. Once these principles are well understood, a natural strategy

would, of course, be to apply them to any higher dimensions. This is the approach

that we will take here. In fact, such a philosophy was also adopted by Vasiliev in

1990 [31] who considered some aspects of the problem in D = 2n, though the results

do not appear to be conclusive. Much more is known, of course, about higher spin

gauge theory in arbitrary dimensional AdS space at the free level [32]–[36]. The

reason is that the linearized theory can be constructed without any knowledge of the

underlying higher spin Lie algebra. One of the main aims of this paper is to remedy

this situation in D = 5 (see below).

Another approach that has been proposed for studying the higher spin gauge

theory problem in arbitrary dimensional AdS space is to consider a point particle in

a higher spin gauge field background and to associate the higher spin gauge symmetry

with the geometry of the point particle phase space [37]. So far, this approach seems

to be rather restrictive and does not seem to make contact with Vasiliev’s higher spin

gauge theory in D = 4. However, recently an interesting connection has been made

with the results of [37] for AdSd, starting from a non-commutative Sp(2, R) gauge

theory with two times in (d, 2) dimensions and then fixing a particular gauge. It is

suggested in [38] that some of the difficulties encountered in [37] may be overcome

in their approach. Moreover, they also make a connection, as in [29, 30], between

the higher spin gauge theory and the zero-tension limit of string theory.

The approach of [38] is certainly an interesting one to pursue. However, it

is by no means clear at present how to reproduce even the existing higher spin

gauge theory of Vasiliev in AdS4 in that approach. Therefore, being armed with the
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knowledge we have gained from Vasiliev’s theory in AdS4, we choose in this paper

the “building up approach” in which we try to carry over the basic principles of

the construction that works in D = 4 to higher dimensions, beginning with AdS5.

In spirit, this is similar to search for a superspace formulation of supergravity field

equations in terms of torsion and curvature constraints. One can then consider a

superbrane action in curved superspace, whose κ symmetry would require that these

constraints are satisfied. Historically, supergravity-brane connections have arisen in

this manner. Here too, after establishing a higher spin gauge theory in terms of

Vasiliev style constraints, one can search for a brane theory which will require those

constraints. It would be rather amusing if one could discover the unknown higher

spin gauge theory constraints by guessing an appropriate brane action to begin with

and then requiring a suitable local symmetry.

The first principle in Vasiliev’s approach to higher spin gauge theory in AdS

background is to identify an appropriate higher spin gauge symmetry algebra. In

doing so, we expect the fundamental representations of the AdS algebras which

are known as singletons or doubletons to play a crucial role, just as they do in

D = 4 [19, 20]. In this paper, we consider the bosonic higher in gauge theory in

D = 5 and we find the suitable higher spin algebra, starting from the doubleton

representations of the AdS5 group SO(4, 2) [39]. As in D = 4, it is obtained by

using Grassmann even spinor variables, that are complex Dirac spinors of the spin

extension SU(2, 2) of SO(4, 2), and we have therefore named it hs(2, 2). The next

step is to introduce suitable master fields which form representations of hs(2, 2) and

to define the associated curvatures and gauge transformations. Then, one has to

find the suitable constraints on the curvatures such that their solution will give rise

to certain auxiliary fields and dynamical fields, and moreover the latter ones should

correspond to the spectrum of massless higher spin representations that arise in the

tensor product of two doubletons. To ensure that the basic setup is right, we then

check the resulting linearized field equations.1

We believe that in this paper we have established a framework for introducing

interactions by deforming the linearized system. For a description of the deformation

story, which is a crucial ingredient of the interacting theory as we understand it

presently, see for example the reviews [27, 40]. We hope to return to the deformation

problem in D = 5 in the future, by making use of the formalism established here.

As for the generalization to the case of higher spin supergravity theory with 32 real

supersymmetries in D = 5, we have carried out essentially the same steps as in this

paper, and those results will appear elsewhere [42].

The organization of this paper is as follows: In section 2, we review the represen-

tation theory of SO(4, 2), and in particular we discuss in great detail the doubleton

1At the algebraic level, the oscillator algebra offers competing options for defining the higher

spin algebra and the master scalar fields, which all lead to the same field content. At the linearized

level, the definitions made here reproduces the correct spectrum.
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representations and derive the decomposition formula for the product that underlies

the spectrum. In section 3, we define the bosonic higher spin algebra in D = 5, which

we call hs(2, 2), and derive its massless unitary representation, which consists states

with spins s = 0, 2, 4, . . .. In section 4, we gauge the algebra hs(2, 2) by introducing

a master gauge field, and show that its SO(4, 2) field content agrees with the previ-

ous suggestions [32, 33] from linearized analysis. In addition we introduce a master

scalar field which forms a representation of hs(2, 2) and it is shown to be necessary

to describe the physical scalar as well as the Weyl tensors, which are the on-shell

non-vanishing components of the master curvature two-form. In section 5, we write

the linearized constraints on the curvature two-form and the covariant derivative

of the scalar master field. These are shown to be integrable and to yield correctly

linearized field equations in AdS5, namely the scalar Klein-Gordon equation and the

curvature constraints on auxiliary and dynamical gauge fields written in the tensorial

basis of [32, 33]. In section 6, we summarize our results and speculate over future

directions; in particular on the prospects of a connection with string/M-theory. A

more detailed discussion of possible connections between higher spin gauge theories

and M-theory will be given elsewhere [42].

2. Elements of SO(4, 2) representation theory

In this section we review some basic elements of the representation theory of SO(4, 2)

[39] that will be needed for the analysis of the higher spin algebra given in the next

section. We also refine the work of [39] in the sense that we compute the multiplicity

of the higher spin massless weight spaces that occur in the decomposition in the

product of two spin zero doubletons. This data is necessary for the application to

the five-dimensional higher spin gauge theory in order to deduce the precise form of

the spectrum in the next section.

The five-dimensional AdS group and the four-dimensional conformal group are

isomorphic to SO(4, 2) (A = 0, . . . , 3, 5, 6):

[MAB,MCD] = −i(ηBCMAD + 3 more) , (2.1)

where ηAB = diag(−1,+1,+1,+1,+1,−1). The maximal compact subgroup of
SO(4, 2), or rather its spin extension SU(2, 2), is L0 = S(U(2) × U(2)) = SU(2)L ×
SU(2)R×U(1)E, which can be taken to be represented by the generators (i = 1, 2, 3):2

SU(2)L : Li =
1

2

(
M5i +

1

2
εijkMjk

)
, SU(2)R : Ri =

1

2

(
−M5i + 1

2
εijkMjk

)
,

U(1)E : E = M60 . (2.2)

2We define Pa = M6a (a = 0, . . . , 3, 5). The generator P0 = E = M60 is the AdS energy in five

dimensions. In four dimensions E is the conformal hamiltonian, while D = M65 is the generator

of dilatations.
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The remaining generators of SO(4, 2) split into a space L+ of energy-raising op-

erators and a space L− of energy-lowering operators, such that [E,L±] = ±L±,
[L+, L+] = 0 = [L−, L−] and [L+, L−] = L0. Thus unitary positive energy represen-

tations of SO(4, 2) (with the reality condition (MAB)
† =MAB implying (L+)† = L−)

consist of weight spaces D(jL, jR;E0) formed by acting with L
+ on a space of ground

states, or lowest weight states, |jL, jR;E0〉 which are annihilated by L− and form a
representation of L0 labeled by (jL, jR;E0). Such representations can be obtained

by taking

MAB =
1

2
ȳ ? ΣABy =

1

2
ȳΣABy , (2.3)

where the four-component SO(4, 1) Dirac spinor yα and its conjugate ȳ
α obey the

oscillator algebra3

[
yα, ȳ

β
]
∗ = 2δ

β
α , yα ? ȳ

β = yαȳ
β + δβα , ȳα ? yβ = ȳ

αyβ − δαβ , (2.4)

where ? denotes the operator product and yαȳ
β the Weyl ordered product, and

Σab = − i
2
Γab , Σa6 = − i

2
Γa . (2.5)

From (ΣAB)
† = −Γ0ΣABΓ0 it follows that (MAB)† =MAB, and E = 1

4
y†y shows that

the energy is positive. The representation content of the oscillator Hilbert space can

be listed by going to the standard representation of the Dirac matrices:

Γ0 = i

(
1 0

0 −1
)
, Γi = i

(
0 σi

−σi 0

)
, Γ5 = iΓ0Γ1Γ2Γ3 =

(
0 1

1 0

)
, (2.6)

which splits yα into the following pair of SU(2)-covariant oscillators (I = 1, 2,

P = 1, 2):

yα =
√
2

(
aI

bP

)
, ȳα =

√
2
(−aI , bP ) , aI = (aI)

† , bP = (bP )
† ,[

aI , a
J
]
∗ = δJI ,

[
bP , b

Q
]
∗ = δ

Q
P . (2.7)

The compact SO(4, 2) generators are then given by:

Li =
1

2

(
σi
)
I
JLJ

I , Ri =
1

2

(
σ̄i
)P
QR

Q
P ,

E =
1

2

(
aIaI + b

P bP
)
=
1

2
(Na +Nb + 2) , (2.8)

3The five-dimensional Dirac matrices Γa (a = 0, . . . , 5) obey {Γa,Γb} = 2ηab. We define the
Dirac conjugate ȳα = (y†iΓ0)α and the Majorana conjugate ȳα = ȳβCβα. The anti-symmetric

conjugation matrix Cαβ obeys CαβC
γβ = δγα and a reality condition such that (ψ̄χ)

† = χ̄ψ, where we
by definition set (ψχ)† = χ†ψ†. The matrix (ΓaC)αβ is anti-symmetric and (ΓabC)αβ is symmetric.
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where σ̄i = −(σi)? and

LIJ = aI ? aJ − 1
2
δIJNa = a

IaJ − 1
2
δJI a

KaK ,

RPQ = bP ? bQ − 1
2
δPQNb = b

P bQ − 1
2
δPQb

RbR ,

Na = aI ? aI = a
IaI − 1 , Nb = b

P ? bP = b
P bP − 1 . (2.9)

The remaining SO(4, 2) generators are the energy-lowering operators LIP and the

raising operators LIP given by:

LIP = aI ? bP = aIbP , LIP = aI ? bP = aIbP , (2.10)

satisfying the algebra[
LIP , L

JQ
]
∗ = δ

J
I R
Q
P + δ

Q
PL
J
I + δ

J
I δ
Q
PE . (2.11)

Upon letting |0〉 be the oscillator vacuum obeying
aI |0〉 = bP |0〉 = 0 , (2.12)

the lowest weight states of the oscillator Hilbert space are given by

|(j, 0; j + 1)〉 = aI1 · · ·aI2j |0〉 , |(0, j; j + 1)〉 = bP1 · · · bP2j |0〉 ,
j = 0,

1

2
, 1, . . . . (2.13)

The resulting weight spaces D(j, 0; j+1) and D(0, j; j+1) are known as the SO(4, 2)

doubleton representations, and correspond to the mode expansions (in a fixed gauge)

of D = 4 conformal tensors with SO(3, 1) spin j. These weight spaces are not

sufficiently large, however, for constructing the mode expansions of AdS5 tensors.

The spectrum of such tensors is contained in the N -fold tensor products (N > 1) of

the doubleton representations. Such a tensor product is formally equivalent to the

following oscillator algebra (r,s =1,. . . ,N):[
aI(r), a

J(s)
]
∗ = δ

J
I δrs ,

[
bP (r), b

P (s)
]
∗ = δ

Q
P δrs . (2.14)

The representation of SO(4, 2) on the tensor product space is then given by

MAB =
∑
r

MAB(r) , MAB(r) =
1

2
ȳ(r)ΣABy(r) . (2.15)

It follows that E = jL+ jR+N . For N = 2, that is the two-fold tensor product, this

yields massless representations of SO(4, 2). As a preparation for the next section, we

compute the tensor product of two spin zero doubletons. The weight space D(0, 0; 1)

is spanned by the states

|0〉 , aIbP |0〉 , aIaJbP bQ|0〉 , . . . . (2.16)
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To find the ground states we start from the following general expansion of a state

|ψ〉 in the tensor product with fixed energy E = n+ 2:

|ψ〉 =
n∑
k=0

ψ
(k)
I(k),P (k);J(n−k),Q(n−k)a

I1(1) · · ·aIk(1)bP1(1) · · · bPk(1)×

× aJ1(2) · · ·aJn−k(2)bQ1(2) · · · bQn−k(2)|0〉 , (2.17)

where we use a condensed notation such that I(k) = I1 · · · Ik denotes k (symmetrized)
indices. Acting on this state with the energy-lowering operators LIP = aI(1)bP (1) +

aI(2)bP (2) should give zero, which amounts to the following set of equations:

n2ψ
(n)
IJ(n−1),PQ(n−1) + ψ

(n−1)
IP ;J(n−1),Q(n−1) = 0 ,

(n− 1)2ψ(n−1)KR;IJ(n−2),PQ(n−2) + 4ψ
(n−2)
IK,PR;J(n−2),Q(n−2) = 0 ,

...

ψ
(1)
K(n−1),R(n−1);IP + n

2ψ
(0)
IK(n−1),PR(n−1) = 0 . (2.18)

From the first equation we can solve for ψ(n−1) in terms of ψ(n), etc. The ground
states with E = n + 2 form an irreducible representation of SU(2)L × SU(2)R with
quantum numbers (jL, jR) = (n/2, n/2). The lowest energy states listed in the order

of increasing energy are

|(0, 0; 2)〉 = |0〉 ,∣∣∣∣
(
1

2
,
1

2
; 3

)〉
=
(
aI(1)bP (1)− aI(2)bP (2)) |0〉 ,

|(1, 1; 4)〉 = (aI(1)aJ(1)bP (1)bQ(1)− 4a(I(1)aJ)(2)b(P (1)bQ)(2)+
+ aI(2)aJ(2)bP (2)bQ(2)

) |0〉 ,
...

|(j, j; 2j + 2)〉 =
2j∑
k=0

(−1)k
(
2j

k

)2
a(I1(1 + θ(k)) · · ·aI2j)(1 + θ(k + 1− 2j))×

× b(P1(1 + θ(k)) · · · bP2j)(1 + θ(k + 1− 2j)) |0〉 ,
... (2.19)

where θ(x) = 0 if x ≤ 0 and θ(x) = 1 if x > 0. The states with even spins

s = jL+ jR = 0, 2, 4, . . . belong to the symmetric tensor product and the states with

odd spins s = 1, 3, 5, . . . to the anti-symmetric product:

[D(0, 0; 1)⊗D(0, 0; 1)]S =
∑
s=0,2,...

D
(s
2
,
s

2
; s+ 2

)
,

[D(0, 0; 1)⊗D(0, 0; 1)]A =
∑
s=1,3,...

D
(s
2
,
s

2
; s+ 2

)
. (2.20)
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3. The higher spin algebra hs(2, 2) and its spectrum

In this section we define a higher spin extension hs(2, 2) of SO(4, 2) by the coset

G/I, where G is a Lie subalgebra of the algebra A of arbitrary polynomials of the
oscillators (2.4) and I is an ideal of G generated by a central element K. The basic
argument for modding out K is that it is responsible for a degeneracy in G such that
G contains infinitely many generators of any given integer spin. The reason for this
is that K has zero spin so that it can be used to build elements in G of arbitrary
monomial degree but with fixed spin. On the other hand, the coset defining hs(2, 2)

has a finite number of generators of any given spin. In this section, we also define

the physical spectrum S of the five-dimensional higher spin gauge theory based on
hs(2, 2). The basic requirement on S is that it must consist of massless SO(4, 2)
weight spaces and carry a unitary (irreducible) representation of hs(2, 2). Armed

with the algebra hs(2, 2) and its massless spectrum S, we will gauge hs(2, 2) in the
next section.

To define the algebra we first define the associative product of elements in A,
that is Weyl-ordered (regular) functions of the oscillators y and ȳ, as follows:

F (y, ȳ) ? G(y, ȳ) =

∫
d8ud8vF (y + u, ȳ + ū)G(y + v, ȳ + v̄)eūv−v̄u , (3.1)

where the integration measure is assumed to be normalized such that 1?F = F ?1 =

F . This algebra can also be defined by the following contraction rule:

(yα1 · · · yαm ȳβ1 · · · ȳβn) ? (yγ1 · · · yγp ȳδ1 · · · ȳδq) =
= yα1 · · · yαm ȳβ1 · · · ȳβnyγ1 · · · yγp ȳδ1 · · · ȳδq +
+ mqδ

(δ1|
(α1
yα2 · · · yαm)ȳβ1 · · · ȳβnyγ1 · · · yγp ȳ|δ2 · · · ȳδq) −

− npδ
(β1
(γ1|yα1 · · · yαm ȳβ2 · · · ȳβn)y|γ2 · · · yγp)ȳδ2 · · · ȳδq +

+
m(m− 1)q(q − 1)

2
δ
(δ1δ2|
(α1α2

yα3 · · · yαm)ȳβ1 · · · ȳβnyγ1 · · ·yγp ȳ|δ3 · · · ȳδq) +
+ · · · . (3.2)

A general term obtained by contracting k yȳ pairs and l ȳy pairs is weighted with

(−1)lk!l!
(
m

k

)(
q

k

)(
n

l

)(
p

l

)
δδ1···δkα1···αkδ

β1···βl
γ1···γl . (3.3)

Here we use unit-strength symmetrized Kronecker-deltas defined by δ
α1···αp
β1···βp =

δ
(α1
(β1
· · · δαp)βp) . Since (ūv)† = v̄u it follows from (3.1) that:

(F ? G)† = G† ? F † . (3.4)

The following set of linear maps:

τη(yα) = ηyα , τη(ȳα) = −η̄ȳα , |η| = 1 , (3.5)
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act as anti-involutions of A:

τη(F ? G) = τη(G) ? τη(F ) . (3.6)

The Lie subalgebra G is defined to be the subspace of A consisting of elements F
obeying (|η| = 1)

τη(F ) = −F , (F )† = −F , (3.7)

and with Lie bracket

[F,G] = [F,G]∗ = F ? G−G ? F . (3.8)

Lie algebras that are similar to G have been defined in even spacetime dimensions by
Vasiliev in a slightly different setup [31]. The algebra G can be expanded in terms of
elements of the form:

1

(n!)2
Xα1···αn,β1···βn ȳ

α1 · · · ȳαnyβ1 · · · yβn , n = 1, 3, 5, . . . , (3.9)

where the multi-spinor coefficient obeys the following reality condition:

X̄α1···αn,β1···βn ≡ X̄γ1···γn,δ1···δnCγ1α1 · · ·Cδnβn = −Xβ1···βn,α1···αn . (3.10)

Note that the Dirac conjugate multi-spinor X̄γ1···γn,δ1···δn is defined by a hermitean
conjugation followed by multiplication with iΓ0 of each spinor index. The elements

in (3.9) with n = 1 form the subalgebra U(2, 2) = SU(2, 2)×U(1)K , where U(1)K is
generated by the central element

K =
1

2
ȳy , [K,F ]∗ = 0 , F ∈ G . (3.11)

From (2.7) and (2.9) it follows that

K =
1

2

(−aIaI + bP bP ) = 1
2
(Nb −Na) . (3.12)

In a unitary irreducible representation of G the generator K is given by a real con-
stant. In particular, the algebra G can be represented unitarily on the oscillator
Fock space. As discussed in the previous section, the oscillator Fock space de-

composes into a direct sum of all the doubletons D(j, 0; j + 1) and D(0, j; j + 1)

(j = 0, 1/2, 1, 3/2, . . .). By construction each doubleton is an irreducible representa-

tions of the U(2, 2) subalgebra, in which

K =

{
j
2
, for D(0, j; j + 1) ,

− j
2
, for D(j, 0; j + 1) .

(3.13)

It follows that each doubleton is also a unitary irreducible representation of G.
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To examine the degeneracy due to the fact that K has spin zero, we decompose

G into levels, such that the `th level is given by all elements of the form:
1

(n!)2
K?k ?

(
X
(k)
α1···αn,β1···βn ȳ

α1 · · · ȳαnyβ1 · · ·yβn
)
,

CγδX
(k)
γα1···αn−1,δβ1···βn−1 = 0 , k + n = 2`+ 1 , k, n ≥ 0 , (3.14)

where we emphasize that X(k) is traceless (recall that Cαβ is the anti-symmetric

charge conjugation matrix in D = 5), and we use the notation

K?k = K ? · · · ? K︸ ︷︷ ︸
k factors

. (3.15)

For finite polynomials the expansions (3.9) and (3.14) are equivalent. By making re-

peated use of (3.1) and (3.14) can be expanded as a leading term 1
(n!)2

KkX
(k)
α1···αn,β1···βn

ȳα1 · · · ȳαnyβ1 · · · yβn plus a finite number of terms of lower polynomial degree; that
is, the basis (3.14) corresponds to separating out the Cαβ traces of the basis elements

in (3.9). Note that an element in the `th level is a sum of elements of the form (3.9)

with n ≤ 2`+ 1. The basis (3.14) yields the following unique decomposition of G:
G = G(0) +K ? G(1) +K?2 ? G(2) + · · · . (3.16)

SinceK is central and τη(K) = −K, it follows from (3.7) that τ(X(k)) = (−1)1+kX(k).
Hence G(k) is isomorphic to G(0) or G(1) for k even or odd, respectively. We also remark
that since K is central and K† = K, the traceless multi-spinors X(k) obey the reality
condition (3.10).

The degeneracy in G discussed above due to K having spin zero suggests that
K should be eliminated from the actual higher spin algebra. The Lie bracket (3.8)

induces a set of brackets with the following structure:

[·, ·] : G(k1) × G(k2) −→ G(k1+k2) + G(k1+k2+1) + · · · . (3.17)

Here the direct sum, which is finite, is due to the fact that the Lie bracket (3.8) does

not preserve the tracelessness condition in (3.14). Thus K cannot be eliminated by

simply restricting G to G(0). In order to factor out K we instead let
I = K ? G(1) +K?2 ? G(2) + · · · . (3.18)

This space forms an ideal in G, i.e. [G, I]∗ = I. We can now define the higher spin
algebra hs(2, 2) as following coset:

hs(2, 2) =
G
G′ . (3.19)

The elements of hs(2, 2) are thus equivalence classes [F ] of elements in G defined by
[F ] = {G ∈ G | F −G ∈ I} . (3.20)
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The Lie bracket of [F ] and [G] is given by

[[F ], [G]] = [[F,G]∗] . (3.21)

The spectrum S of D = 5 higher spin gauge theory based on hs(2, 2) should be a
unitary representation of hs(2, 2) that decomposes into massless weight spaces under

SO(4, 2). This condition is necessary, provided that the theory has an expansion

around a maximally symmetric AdS vacuum (since the vacuum must in fact be

hs(2, 2) invariant). Moreover, in order for hs(2, 2) to have a well-defined action on

S we must demand that K = 0 in S. This shows that S must be made up of
tensor products of two spin j doubletons with opposite eigenvalue of K, that is

[D(j, 0; j + 1)⊗D(0, j; j + 1)]S,A.
In order to determine which values of j contribute to S, we can study the gauging

of hs(2, 2) and examine the resulting curvature constraints (i.e. generalizations of the

spin two Einstein equation) at the linearized level, which would yield information of

the spin s ≥ 2 sector of S. Incorporating the spin s ≤ 1 sector in an hs(2, 2) sym-
metric fashion amounts to introducing a scalar master field in some representation

R of hs(2, 2). The uncertainty in the choice of R implies, however, that there is an

uncertainty also in the spin s ≥ 2 sector, since it is possible that R contains not
just physical spin s ≤ 1 fields but also physical spin s ≥ 2 fields. This is in fact the
case in supersymmetric extensions of this bosonic model, as we shall comment on in

section 6. Thus, a determination of S based on gauging alone may have to involve a
rather elaborate ansatz, unless one is willing to accept some loss of generality or one

invokes some other basic principle.

In order to determine S we assume that the hs(2, 2) gauge theory is some limit
of string theory. Since the gauge theory has an AdS vacuum, we assume that it

describes a bosonic truncation of the residual type-IIB string bulk dynamics in the

near-horizon region of N coincident three-branes in a decoupling limit in which the

4D conformal symmetry group is enhanced to hs(2, 2). The precise definition of

this limit, which was suggested recently by [29, 30], is discussed further in section 6.

We are thus led to imposing the additional requirement that the spectrum-generating

doubleton representations form a unitary irreducible representation of hs(2, 2). From

the above analysis it follows that this uniquely selects the spin j = 0 representation

D(0, 0; 2). In the above limit, the bosonic truncation of the boundary theory is a

4D free scalar in the adjoint representation of the (global) SU(N) symmetry. The

massless higher spin states emerge in the sector of bilinears in the scalar field and

its derivatives which can be written as single traces [29, 30]. For example, the mass-

operator gives rise to a scalar state, while the remaining states corresponds to a set

of higher spin currents [40, 41]. Importantly, the spectrum has no spin one state,

as the corresponding current is a descendant (total derivative) of the mass-operator.

This implies that the massless higher spin spectrum S is given by the symmetric
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tensor product:

S = [D(0, 0; 1)⊗D(0, 0; 1)]S . (3.22)

It follows from (2.20) that S consists of the physical states of five-dimensional mass-
less fields with spins s = 0, 2, . . . and energies E = s+2. The anti-symmetric part of

the tensor product contains states with odd spins, which from the boundary point of

view correspond to states which are descendants, as explained above in the case of

spin one. We remark that from the point of view of reconstructing the bulk theory

from a boundary theory which has vanishing K, it is more natural to mod out the

central U(1) generator K from the bulk theory than setting it equal to zero.4

4. Gauging hs(2, 2)

In order to realize hs(2, 2) as a local symmetry in a field theory with spectrum S we
need to address the following two basic issues. Firstly, gauging of hs(2, 2) introduces

both dynamic gauge fields and auxiliary gauge fields. Fortunately the structure of

a set of gauge fields and curvature constraints that give rise to one massless spin

s degree of freedom are known at the linearized level in an expansion around AdS

spacetime, albeit in SO(4, 1) basis, instead of the spinor basis introduced in the

previous section. Thus in order to give the linearized hs(2, 2) valued constraints it

suffices to find a one-to-one map between these two bases.

Secondly, the spectrum S in (3.22) contains a spin zero state.5 In order to
incorporate this degree of freedom while retaining manifest hs(2, 2) gauge invariance,

it is natural to generalize Vasiliev’s four-dimensional formulation of higher spin theory

and identify the spin zero mode with the leading component of a scalar master field

Φ in a particular representation of hs(2, 2) to be identified below. Its remaining

components should be the components of the curvature that are non-vanishing on-

shell, that in the spin two case is known as the Weyl tensor and that are referred to

as the generalized Weyl tensors in the cases of higher spin, as well as the derivatives

of the scalar field and the generalized Weyl tensors.

In the remainder of this section we are concerned with establishing the equiva-

lence between the spinorial basis (3.14) for hs(2, 2) and the tensorial basis of [32, 33]

and to give the definition of the scalar master field. The linearized analysis is given

in the next section.

4It is also possible to eliminate K from G by going to the Lie algebra of elements obeying
K ? F = 0, F ∈ G. This equation can be solved by an infinite expansion in K2 using elements of
the form (3.9); see (4.19) and below. This Lie algebra gives rise to the same field content as hs(2, 2)

upon gauging, but it seems unnatural from the boundary point of view and leads to undesirable

complications of the algebra as well. We expect that it can be ruled out at the linearized level; see

also footnote 6.
5In the N = 4 supersymmetric case this state becomes the lowest spin state of a spin four

multiplet, as explained in section 6.
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We begin by introducing the G valued one-form (|η| = 1)

A = dxµAµ(y, ȳ) , τη(A) = −A , (A)† = −A , (4.1)

and a zero-form B in the following representation R of G (|η| = 1):

τη(B) = π(B) , (B)† = π(B) . (4.2)

Here π is the linear map

π(yα) = ȳα , π(ȳα) = yα , (4.3)

which acts as an involution of the algebra A:

π(F ? G) = π(F ) ? π(G) . (4.4)

The G gauge transformations are given by:

δεA = dε+ [A, ε]∗ , δεB = B ? π(ε)− ε ? B , (4.5)

where ε is a G valued local parameter, such that the following curvature and covariant
derivative obey (4.1) and (4.2) and are G covariant:

FA = dA+ A ∧ ?A , δεFA = [FA, ε]? , (4.6)

DAB = dB − B ? π(A) + A ? B , δεDAB = DAB ? π(ε)− ε ? DAB . (4.7)

To show that δεB and DAB obey (4.2) one needs to use (3.4), (3.6) and (4.4), π
2 = 1

and that τη(π(F )) = −π(F ), (π(F ))† = −π(F ) for F ∈ G. For example, to show
that δε(B) obey τη(δε(B)) = π(δε(B)) we compute:

τη(δεB) = τη(B ? π(ε)− ε ? B) = τη(π(ε)) ? τη(B)− τη(B) ? τη(ε)
= −π(ε) ? π(B) + π(B) ? ε = π(B ? π(ε)− ε ? B) = π(δεB) . (4.8)

We also remark that a similar calculation shows that B indeed belongs to a repre-

sentation of G, that is
[δε1 , δε2]B = δ[ε1,ε2]∗B . (4.9)

Next we define the hs(2, 2)-valued gauge field, curvature and gauge parameter by

[A] , F[A] = [FA] , [ε] , (4.10)

where we use the notation of (3.20). The gauge transformations read:

δ[ε][A] = [δεA] , δ[ε]F[A] = [δεFA] . (4.11)

By construction the above expressions are independent of the choice of representative

in G of the various hs(2, 2)-valued quantities. We note that the curvature and the
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gauge transformations are computed by first evaluating the ordinary ? product (3.1)

between the representatives and then expanding the result with respect to the par-

ticular ordering of oscillators defined by (3.14) and finally discarding any terms in

I. In case one would have to perform several repeated multiplications of objects in
hs(2, 2) the last step may of course be carried out at the end, as the operation of

modding out K commutes with taking the ? product.

The hs(2, 2)-valued gauge field [A] can be represented by a G(0)-valued gauge
field A, which has an expansion in terms of component fields with tangent indices

corresponding to the traceless multispinors X(0) defined in (3.14), obeying the reality

condition (3.10). The level ` generators of G(0) thus gives rise to component gauge
field with spin s = 2` + 2, where s is defined to be 1 plus the internal spin, which

equals 2`+ 1 in the `th level.

A real and Cαβ traceless multi-spinor Tα1···αn,β1···βn, (n = 2` + 1 = s − 1 at the
`th level of G(0)), can be decomposed into irreducible multi-spinors T (p;0)α1···αn,β1···βn with
index structures corresponding to the SU(2, 2) Young tableaux:

T
(p;0)
α1···αn,β1···βn = · · ·

· · · · · ·• • • •

︸ ︷︷ ︸
p boxes

2m boxes︷ ︸︸ ︷
, p+m = n ,

(4.12)

where the “undotted” and “dotted” boxes refer to spinor indices contracted with y

spinors and ȳ spinors, respectively. These spinors belong to equivalent representa-

tions of SU(2, 2), and hence their indices can be put in the same Young tableaux.

Since the spinors are Grassmann even two dotted or undotted boxes cannot be placed

on top of each other. To count the (real) dimension dp,m of the Young tableaux (4.12)

we thus first compute the complex dimension Dp,m by performing a “SU(4)-count”

in which the dotted and undottedness is neglected. These correspond to imposing

the reality condition (it is not important whether T is real or purely imaginary),

which implies dp,m = Dp,m. We remark that the reality condition of course requires

SU(2, 2) spinors. Taking also the tracelessness condition in (3.14) into account one

finds that the dimension of (4.12) is given by

dp,m =
4 · 5 · · · (3 + 2m+ p) · 3 · 4 · · · (2 + p)

(2m+ p+ 1) · (2m+ p) · · · (2m+ 1) · (2m) · (2m− 1) · · ·1 · p · (p− 1) · · ·1
− same with p→ p− 1

=
1

12
(p+ 2)(p+ 1)(2m+ 1)(2m+ p+ 2)(2m+ p+ 3)− same with p→ p− 1

=
2

3

(
m+ p+

3

2

)(
m+

1

2

)
(2m+ p+ 2)(p+ 1) . (4.13)
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It has been shown [32, 33] that linearized curvature constraints (see section 5) leading

to the on-shell massless spin s weight space D(s/2, s/2; s + 2) of SO(4, 2) can be

written using a space of five-dimensional gauge fields with tangent space indices

given by irreducible SO(4, 1) tensors T
(p,m)
a1b1,...,ambm;c1···cp, m+ p = s− 1, corresponding

to the following Young tableaux:

T
(p,m)
a1b1,...,ambm;c1···cp = · · ·

· · · · · ·

︸ ︷︷ ︸
n2 = m boxes

n1 = m+ p = s− 1 boxes︷ ︸︸ ︷
, 0 ≤ n1 ≤ n2 ,

(4.14)

Here the notation is such that the pair of indices aibi (i = 1, . . . , m) goes into the ith

pair of anti-symmetrized boxes and c1 · · · cp into the remaining p symmetrized boxes.
The irreducible Young tableaux (4.14) has dimension

d′p,m =
2

3

(
n1 +

3

2

)(
n2 +

1

2

)
(n1 + n2 + 2)(n1 − n2 + 1) . (4.15)

The dimensions (4.13) and (4.15) agree for n = s − 1, so that (4.14) can be con-
verted into (4.12) by making use of Dirac matrices. Thus the spin s gauge fields

in the spinorial basis are in one-to-one correspondence with the spin s gauge fields

in the lorentzian basis of [32, 33]. We emphasize, however, that whereas the latter

formulation is only defined in a linearization around AdS, and thus does not contain

any information about the full higher spin gauge algebra, this data are naturally

incorporated in the spinorial formalism used here.

The master field B can be expanded in terms of elements of the form

B(r;t)(n) =
1

(n!)2
B
(r;t)
α1···αn,β1···βn ȳ

α1 · · · ȳαnyβ1 · · · yβn = KtB(r−t;0)t (n− t) , (4.16)

r, t, n ≥ 0 , n− r = 0, 2, 4, . . . , (4.17)

where the superscript r denotes the number of anti-symmetric pairs of spinor indices

and t (0 ≤ t ≤ r) the number of these that are traced. From (4.2) it follows that the

multi-spinors in (4.16) obey the following reality condition:

B̄
(r;t)
α1···αn,β1···βn = B

(r;t)
α1···αn,β1···βn . (4.18)

Modulo the degeneracy due to K, the field content of the master scalar field therefore

falls into “trajectories” B(p;0)(m+ p), p = 0, 1, 2, . . ., for each m = 0, 2, . . .. The one-

to-one map between (4.12) and (4.14) shows that the leading component B(0;0)(m)

defines a traceless spin s = m tensor carrying s pairs of anti-symmetric SO(4, 1)

indices. For s = 2, 4, . . . this is exactly the index structure of the spin s Weyl
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tensor that was introduced in the linearized analysis of [32, 33], while B(0;0)(0) is the

desired (real) scalar field. For p > 0 the index structure B(p;0)(m+ p) is exactly that

of p derivatives of the leading component of the trajectory. Thus, apart from the

degeneracy, the desired field content of the master scalar field emerges in B.

Next, we proceed by defining the master scalar field Φ in the representation R

of hs(2, 2), where R is the subspace of the representation space R of G defined by6

K ? Φ = 0 , Φ ∈ R . (4.19)

This condition serves two purposes. Firstly, it assures that the hs(2, 2)-covariant

derivative and hs(2, 2)-gauge transformations of Φ, which are given by

D[A]Φ = dΦ + Φ ? π(A)− A ? Φ , δ[ε]Φ = Φ ? π(ε)− ε ? Φ , (4.20)

are well defined, i.e. independent of the choice of representative for [A] and [ε] and

obeying K ? D[A]Φ = K ? δ[ε]Φ = 0. To see this we use (4.4) and π(K) = −K and
the fact that K is central. Secondly, (4.19) removes the degeneracy due to K. To

see this we first solve (4.19) by using the following lemma:

K ∗ (KkT (r;0)(n)) = (Kk+1 − 1
4
k(k + 2n+ 3)Kk−1

)
T (r;0)(n) , (4.21)

where T (r;0)(n) is a traceless multi-spinor given in the notation of (4.17). We note

that in computing (4.21) the single-contractions cancel while the double-contractions

are of three types: those involving Kk, which give a factor of −1
4
k(k+3); the mixed

ones, which give 2(−1
4
kn); and those involving T , which are proportional to the

(vanishing) trace. Using (4.21) the condition (4.19) can solved recursively, leading

to the following general solution:

Φ
(p;0)
2t (n) =

1

t!
[
t+ n+ 3

2

]
k

Φ
(p;0)
0 (n) ,

Φ
(p;0)
2t+1(n) = 0 , (4.22)

where we use the notation of (4.16) and the Pochhammer symbol [a]b ≡ a(a −
1) · · · (a− b+ 1), for b positive integer. Thus the degeneracy is completely removed.
6It is also possible to eliminate K from the master scalar field by considering an expansion of

B in terms of elements of the form (K∗)t ∗ B(p;0)(n) instead of (4.16). This is analogous to the
definition of the basis (3.14) for G. This leads to a unique decomposition of R = R(0) +R′, where
R′ = R(1) +R(2) + · · ·. The space R′ is an G invariant subspace. Thus R/R′ is a representation
space for hs(2, 2) and we can define the hs(2, 2) transformations and the covariant derivative by

δ[ε][B] = [δεB] and D[A][B] = [DAB]. However, using these results, a careful analysis of the scalar

field equation shows that while (5.21) still holds, the trace term on the right-hand side of (5.22) is

now absent. This in turn givesm2 = −5, which leads to a scalar field in a non-unitary representation
(complex E). This algebraic construction is therefore pathological.
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Each independent (traceless) structure Φ(p;0)(n) gives rise to an infinite expansion

in terms of even powers of K, such that Φ can be written in terms of elements of

the form

f
(
n;K2

)
Φ(p;0)(n) , n = p+m, m = 0, 2, . . . , (4.23)

where the analytic function f(n; z) is defined by

f(n; z) =
∞∑
k=0

zk

k!
(
k + n+ 3

2

)
k

. (4.24)

For example, the scalar field is represented by the expansion:(
1 +
2

5
K2 +

2

35
K4 +

4

945
K3 + · · ·

)
φ , (4.25)

where φ is the y and ȳ independent component of Φ.

5. Linearized constraints

The first step towards finding the full field equations for the higher spin gauge theory

based on the hs(2, 2) algebra is to identify the appropriate linearized field equations.

The requisite for writing these are the hs(2, 2) covariant curvature and scalar mas-

ter fields defined in the previous section. The basic assumption is that the higher

spin gauge theory should make sense as an expansion around the AdS vacuum de-

scribed by

Φ = 0 , [A] = [Ω] , (5.1)

where Ω is the “flat” AdS connection:7

Ωµ = i

(
eµ
aPa +

1

2
ωµ
abMab

)
,

FΩ = dΩ+ Ω ? Ω = i

(
T aPa +

1

2

(
Rab + ea ∧ eb)Mab) = 0 . (5.2)

Here eµ
a and ωµ

ab are the fünfbein and Lorentz connection and T a and Rab the

torsion and Riemann curvature two-forms defined by:

T a = dea + ωab ∧ eb , Rab = dωab + ωac ∧ ωcb . (5.3)

The resulting five-dimensional Einstein equation with cosmological constant Λ reads:

Rµν − 1
2
(R + Λ)gµν = 0 , Λ = − 12

R2
, (5.4)

7We have chosen units such that the AdS radius RAdS = 1. It can be introduced by replacing

Pa → RAdSPa. The insertions of powers of RAdS in the component formulae are then determined

by dimensional analysis.
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where the metric and the Ricci tensor have been defined by

gµν = eµ
aeνa , Rνa = eb

µRµν,a
b . (5.5)

In the AdS vacuum we find

Rµν
ab = −2e[µaeν]b , Rµν = 4gµν . (5.6)

The normalization is such that the AdS metric is given by

ds2 =
1

r2

(
dr2 + dx2

)
, (5.7)

in five-dimensional Poincaré coordinates.

Assuming that the full equations have a curvature expansion in powers of Φ,

a linearization of these curvatures around the AdS background should give rise to

free equations describing the massless degrees of freedom in the spectrum S defined
in (3.22), that is, the free equations for massless fields of spin s = 0, 2, 4, . . . and

AdS energy E = s + 2. In the case of s = 0 this corresponds to the Klein-Gordon

equation:8

(∇µ∂µ + 4)φ = 0 , (5.8)

where φ is an independent scalar (which will turn out to be the leading component

of the master scalar field). The linearized spin two equation can of course be ob-

tained by linearizing (5.4). However, the formalism that appears to be the most

convenient in the context of higher spin gauge theory is a generalization of the first

order constraint formulation of (5.4). In the spin two case this amounts to solving

for the auxiliary Lorentz connection in terms of the dynamical fünfbein from the

torsion constraint T a = 0, and writing the Einstein equation as a constraint on the

AdS covariantization F ab = Rab + ea ∧ eb of the Riemann curvature. This tensor
contains 50 components in five dimensions, of which 15 are set equal to zero by the

Einstein equation. The remaining 35 non-vanishing components define the spin two

Weyl tensor. It corresponds to the Young tableaux (4.14) with m = 2 and p = 0

(the “window” diagram), or equivalently a multi-spinor with Young tableaux (4.12)

defining a totally symmetric multi-spinor Φ
(0;0)
αβγδ. This choice of m and p does not

correspond to an algebra element; the Weyl tensor is obtained by converting both

the algebra-valued tangent space indices ab and the curved indices µν on the spin

two curvature Fµν,ab into spinor indices by using the fünfbein and Dirac matrices.

8Using (5.7) and making the ansatz φ ∼ rE we find that the Klein-Gordon equation (∇µ∇µ −
m2)φ = 0, which follows from the usual free action 1

2

∫
d5x
√−g(∂µφ∂µφ − m2φ2) with “posi-

tive” m2, leads to the characteristic equation E(E − 4) = m2, where E and m2 is given in

units of RAdS. For E = 2 we find m
2 = −4, which saturates the lower bound for m2 (see, for

example, [41]).
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Thus, in this language the (full) Einstein equation with cosmological constant (5.4)

can be written as the following constraint:

Fµν,ab = (Γab)
αβ(Γcd)

γδeµ
ceν
dΦ
(0;0)
αβγδ , Tµν,a = 0 . (5.9)

The higher spin generalization of these curvature constraints has been given in

the free case in a linearization around the AdS vacuum in [32, 33] using a tensorial

basis with lorentzian indices. These constraints are straightforward to cast into the

spinorial basis. The higher spin dynamics also requires a constraint on the scalar

master field Φ. Since it is already linear in fluctuations, the only possible constraint

linearized constraint on Φ is the vanishing of DΩΦ. Using the notation of (4.12) the

linearized constraints therefore read (n = 2`+ 1)

Fα1···αn,β1···βn = e
a ∧ eb(Γab)γδΦ(0;0)γα1···αn,δβ1···βn , (5.10)

dΦ+ Ω ? Φ− Φ ? π(Ω) = 0 , (5.11)

where F is the linearized curvature

F = dA+ Ω ? A+ A ? Ω . (5.12)

The left-hand side of (5.10) contains all possible spinorial index structures compatible

with the fact that F is an element of the `th level of G(0), while the right-hand side
only contains the symmetric spin s = 2`+2 tensor Φ(0;0)(2s) (withoutK2-expansion),

which is the higher spin generalization of the spin two Weyl tensor Φ
(0;0)
αβγδ. Thus (5.10)

contains generalized torsion constraints, field equations as well as the identification

of the generalized Weyl tensors.

We remark that whereas the constraint (5.11) on the master scalar field is written

in terms of functions of y and ȳ, the constraint (5.10) on the curvature has been

written in component form. The reason for this is that whereas the full constraint

on the master scalar field has to be of the form DAΦ = V1(A,Φ), where V1 is linear9
in A and quadratic in Φ, so that its linearization is given uniquely by (5.11), the full

form of the curvature constraint (5.10) is FA = V2(A; Φ) for some function V2 which
is quadratic in A and linear in Φ. Thus the implication of (5.10) is that whatever

form V2 has, its linearization around the AdS vacuum must be given by the right-
hand side of (5.10). Some further remarks on the curvature expansion of the full

theory are given in the conclusions.

The constraints (5.10) and (5.11) are integrable. The integrability of (5.11)

follows from the flatness of Ω, as given in (5.2). The integrability of (5.10) requires

the Bianchi identity

dF + Ω ? F − F ? Ω = 0 (5.13)

9It is not obvious that V1 cannot depend on dΦ; in fact, in four dimensions this fact was shown
only recently in [28]. We expect that the same holds in five dimensions.
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to be satisfied when F is substituted using (5.10). To examine this equation we write

the constraints (5.10) and (5.11) in component form:

Fµν,α1···αn,β1···βn ≡ 2∇[µAν],α1···αn,β1···βn +
+n
((
Γ[µ
)
(α1|

γAν],γ|α2···αn),β1···βn −
(
Γ[µ
)
(β1|

γAν],α1···αn,γ|β2···βn)
)

=
1

8
(Γµν)

γδΦ
(0;0)
γα1···αn,δβ1···βn , (5.14)

∇µΦα1···αn,β1···βn −
1

2
(Γµ)

γδΦγα1···αn,δ
β1···βn +

n2

2
(Γµ)(α1

(β1Φα2···αn),
β2···βn) = 0 . (5.15)

Here ∇µ is the Lorentz covariant derivative. We note that the multi-spinors in
the last equation are the coefficients of the y and ȳ expansion of the master scalar

field including the K2-expansions (4.23). The component form of the Bianchi iden-

tity (5.13) reads:

∇[µFνρ],α1···αn,β1···βn +
n

2

((
Γ[µ
)
(α1|

γFνρ],γ|α2···αn),β1···βn−

− (Γ[µ)(β1| γFνρ],α1···αn,γ|β2···βn)) = 0 . (5.16)

By inserting (5.14) in (5.13) and making use of (5.15) to substitute for ∇µΦ(0;0) by

∇µΦ(0;0)α1···αm,β1···βm =
1

2
(Γµ)

γδΦ
(1;0)
γα1···αm,δβ1···βm , (5.17)

(the K-expansion of Φ does not affect this sector), it follows that (5.13) holds due

to the following Fierz identities:10(
Γa[b
)αβ (

Γcd]
)γδ
Φ
(0;0)
αβγδ··· = 0 , (5.19)(

Γ[b
)αβ (

Γcd]
)γδ
Φ
(1;0)
αβγδ··· = 0 , (5.20)

The symmetries and the tracelessness of the multi-spinors contracting the Dirac

matrices are important for these identities to be satisfied.

Using the equivalence between the spinorial and tensorial bases established in

section 4 it is straightforward to see that the constraint (5.10) is equivalent to the

curvature constraints which were shown in [32, 33] to give rise to a massless spin

s degree of freedom. Thus (5.10) sets all components of the curvature except the

generalized Weyl tensors equal to zero. The vanishing curvatures are the generalized

torsion equations and the spin s ≥ 2 field equations (s = 2` + 2 = 2, 4, . . .). The
torsion equations are algebraic equations for the auxiliary gauge fields A

(p;0)
µ (2s− 2),

0 ≤ p ≤ s−2, which can be solved in terms of the generalized fünfbeins A(s−1;0)µ (2s−
2). The remaining vanishing curvatures then become second-order field equations,
10The spinor conventions given in section 2 are such that the following Fierz identity holds:

MαβNγδ = −1
8

(
MΓabN

)αδ
(Γab)

βγ − 1
4
(MΓaN)αδ(Γa)

βγ − 1
4
(MN)αδCβγ . (5.18)
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which after gauge fixing give rise to mode expansions based on the massless SO(4, 2)

weight spaces D(s, s; s+ 2). Thus the gauge fields give rise to the spin s ≥ 2 sector
of the spectrum (3.22).

The non-vanishing curvature components in (5.10) are those corresponding to

the SU(2, 2) Young tableaux (4.12) with m = 2` + 2, p = 0, that is the SO(4, 1)

Young tableaux (4.14) with n1 = n2 = m. These are the generalized Weyl tensors

Φ(0;0)(m), which are totally symmetric multi-spinors. From the constraint (5.11),

which is written in components in (5.15), it follows that the trajectory Φ(p;0)(m+ p)

(p = 0, 1, 2, . . .) with fixed m = 0, 2, . . . corresponds to the derivatives of the leading

tensor Φ(0;0)(m). Hence the only independent component of the scalar master field

is the single real scalar field φ ≡ Φ(0;0)(0). From (5.15) it follows that

∂µφ =
1

2
(Γµ)

αβΦ
(1;0)
α,β , (5.21)

∇µΦ(1;0)α,β =
1

2
(Γµ)

γδ

[
Φ
(2;0)
αβ,γδ +

2

5
C(α|βC|γ)δφ

]
− 1
2
(Γµ)αβφ , (5.22)

where we use the notation of (4.16). The trace part in the first term on the right-hand

side of (5.22) comes from the K2-expansion of the scalar field according to (4.25).

This term is necessary for obtaining the scalar field equation with the critical mass

term that is appropriate for its being AdS-massless, and hence the importance of the

condition (4.19). Indeed, combining the two equations given above and making use

of the Fierz identity

(Γa)αβ(Γa)
γδΦ

(2;0)
αβγδ = 0 , (5.23)

we find that the scalar field satisfies the scalar field eq. (5.8), which gives rise to a

mode expansion based on the spin zero weight space D(0, 0; 2) in the spectrum (3.22).

6. Summary and remarks

We have used Grassmann even spinor oscillators to construct a bosonic higher spin

extension hs(2, 2) of the five-dimensional AdS algebra SU(2, 2) containing generators

giving rise to dynamical as well as auxiliary gauge fields with spins s = 2, 4, 6, . . .

upon gauging. The higher spin algebra is naturally embedded into a larger algebra

G as the coset G/I where I is an ideal of G generated by arbitrary ?-polynomials
of the central element K multiplied by traceless polynomials of y and ȳ (see (3.14)

and (3.16)). The large algebra G can be represented unitarily and irreducibly on
a spin j doubleton with |K| = j/2, while the higher spin algebra hs(2, 2) has a

well-defined representation only on the spin zero doubleton with K = 0. The sym-

metric tensor product of two spin zero doubletons gives rise to a unitary irreducible

representation S of hs(2, 2) that decomposes into spin s = 0, 2, 4, . . . weight spaces
of SO(4, 2).
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We expect S to be the spectrum of a five-dimensional gauge theory with local
hs(2, 2) symmetry and an AdS vacuum with unbroken global hs(2, 2) symmetry. As

a first step towards constructing this theory, we have shown that the spin s gauge

fields which arises upon gauging hs(2, 2) are in one-to-one correspondence with the

set of spin s gauge fields which were used in [32, 33] to construct linearized cur-

vature constraints describing a massless spin s field in five dimensions. We have

converted these constraints, which were originally given in the lorentzian basis, into

the spinor basis, where they can be written as (5.10). Furthermore have identified

a representation for the scalar master field which contains the physical spin zero

field, the generalized higher spin Weyl tensors and their derivatives. The scalar

master constraint is simply given by the vanishing its AdS covariant derivative.

We remark that while the expression (5.12) of the linearized curvature is equiva-

lent to the one used in the formulation of [32, 33], their formulation neither incor-

porates the oscillator algebra (3.1) and (3.8) required for constructing the expres-

sions (4.6) and (4.7) for the non-linear curvature and covariant derivative, nor the

master scalar field φ constructed in section 4, which plays a crucial role in higher

spin gauge theory.

In terms of the oscillator yα and its Majorana conjugate ȳα the U(2, 2) subal-

gebra is spanned by the bilinears yαȳβ. The remaining generators of G form levels
labeled by an integer `, such that U(2, 2) is the zeroth level and the `th level is

spanned by monomials that contain 2` + 1 yα-oscillators and the same number of

ȳα-oscillators. The algebra elements may be written either using the Weyl-ordered

(fully symmetrized) oscillator product as in (3.9), or by extracting explicitly positive

powers ofK? as in (3.14). These correspond to traces taken using the anti-symmetric

charge conjugation matrix Cαβ. In the latter basis, the ideal I is given by the space
of arbitrary polynomials containing a strictly positive number of K? factors. Thus

hs(2, 2) is isomorphic to a space of traceless and real multispinors that is arranged

into levels such that the elements in the `th level carry two sets of 2` + 1 sym-

metrized spinor indices (one set contracted with y’s and the other set contracted

with ȳ’s). The `th level can be decomposed further by anti-symmetrizing p pairs

of spinor indices taken from the two sets (0 ≤ p ≤ 2` + 1) and symmetrizing the
remaining indices, as represented by the Young tableaux (4.12). For given p these

are in one-to-one correspondence with the Lorentz-tensor represented by a two-row

Young tableaux with 2` + 1 boxes in the first row and 2` + 1 − p in the second, as
given in (4.14).

Upon gauging, we thus find the gauge field content required for writing the above-

mentioned curvature constraints. The gauge fields corresponding to the generators

with p = 0, . . . , 2` are auxiliary, while p = 2` + 1 corresponds to the dynamical

gauge field Aµ,a1,...,a2`+1 . Of particular importance is also the curvature corresponding

to p = 0, that is Rµν,a1b1,...,a2`+1b2`+1 where each pair aibi is anti-symmetric. This

curvature contains the only spin 2`+2 curvature components that are non-vanishing
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on-shell. These define the generalized spin 2` + 1 Weyl tensor, which is a fully

symmetric, real and traceless multispinor with 2(2`+ 2) spinor indices occurring on

the right-hand side of the curvature constraint (5.10).

Whereas the gauge fields fit naturally into the adjoint representation of hs(2, 2),

perhaps a less obvious issue in the construction is to determine which hs(2, 2) repre-

sentation contains the Weyl tensors. To this end, we first observe that although the

Weyl tensors have spins 2, 4, . . . it is natural to fit them into a scalar master field.

This is because the constraint algebra is written as a free differential algebra, or a

Cartan integrable system, which means that for each p-form with p > 0 there will be

a corresponding (p−1)-form gauge parameter (the spacetime diffeomorphism group is
automatically incorporated into the gauge group such that a vector field corresponds

to field dependent (p−1)-form gauge parameters given by the inner derivatives of the
corresponding p-form potentials). Moreover, since the spectrum S contains a spin
zero degree of freedom, it is natural to attempt to unify the corresponding scalar

field with the Weyl tensors in a scalar master field.

This stage of the construction reveals an intimate interplay between the group

theoretical constraints and the dynamics. The hs(2, 2) transformation property (4.5)

of the scalar master field is determined by the requirement that it should contain the

Weyl tensors and the scalar field, which amounts to the constraint (4.2) involving the

involution π. This in turn determines the form of its gauge covariant derivative (4.7),

where we in particular note the twisting of the connection in the last term by the

insertion of π. At the linearized level the only natural, gauge invariant constraint

on the scalar master field, which we treat as a linear fluctuation around a zero back-

ground value, is to set its background covariant derivative to zero. This turns out to

yield the correct scalar equation as well as constraints on the remaining components

of the scalar master field which are consistent with identifying the fully symmetric

higher spin multispinors with the Weyl tensors (the latter amounts to verifying the

Fierz identities (5.19) and (5.20)). The twisting, which flips the sign of the fünfbein

contribution while it keeps the sign of the contribution from the Lorentz connection,

that is π(Pa) = −Pa and π(Mab) =Mab, plays a crucial role in all this. In fact, if one
takes a scalar master field in the adjoint representation and set its adjoint covariant

derivative to zero, then it will be constant.

It is interesting to note that the definition of π in five dimensions relies on the

fact that the Dirac matrices with one and two vector indices have different symmetry

properties. On the other hand, these Dirac matrices have the same symmetry seven

dimensions. Thus the five-dimensional π cannot be generalized to seven dimensions.

The problem of finding appropriate twist-operations in higher dimensions has been

studied further in [36].

Clearly, the analysis in this paper only contains the first step towards building a

full higher spin gauge theory in five dimensions, and it still remains to construct the

interactions. To this end, we believe that the results of this paper provide the correct
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framework for building the interactions. Moreover, experience with the higher spin

gauge theory in D = 4 suggests an efficient method for gauging based on the spinorial

formulation presented here, consisting of embedding of the full, non-linear constraint

algebra into an enlarged constraint algebra based on an extension of the ordinary

spacetime by an auxiliary non-commutative spinorial Z-space a lá Vasiliev [23]. In-

deed suggestions for how this might be done in the case of even spacetime dimension

has already been given quite some time ago [31]. We are currently investigating con-

structions of similar type in the case of five dimensions, though our results are not

conclusive at this point mainly due to problems with identifying the proper constraint

on the master curvature in the extended space.

The spinorial oscillators are also useful in constructing supersymmetric exten-

sions. The higher spin extension hs(2, 2|n) of the finite-dimensional supergroup
SU(2, 2|n) containing the bosonic subgroup SO(4, 2)× SU(n) and odd supercharges
Qiα, i = 1, . . . , n, can then be constructed by introducing an additional set of Grass-

mann odd complex oscillators θi forming a Clifford algebra, and setting Qiα = yαθ
i.

The oscillator realization of SU(2, 2|n) contains the generator Z = K + 1
2
θiθi which

becomes central in the higher spin superalgebra [42]. Similar constructions inD = 2n

involving Kleinian operators have been suggested in [31]). We expect the spectrum

to be generated by the CPT self-conjugate superdoubleton, which has vanishing Z.

Indeed, a preliminary analysis indicates that the results of this paper will generalize

in a rather straightforward fashion to the maximal case hs(2, 2|4). The main subtlety
resides in the fact that the scalar master field contains not just the gauge matter

sector, but also the spin one three-form field strength and a tower of higher spin

generalizations thereof.

As pointed out recently by [29, 30] the five-dimensional sphere compactification

of type-IIB string theory with N ≥ 1 units of RR five-form flux and zero string
coupling should have a description in terms of a five-dimensional theory governed by

massless higher spin gauge invariance, which is dual to free U(N) Yang-Mills theory

at the boundary, that is, the theory of N2 spin one conformal superdoubletons. Zero

string/gauge coupling implies infinite string length (the ratio of the string length

to the radius diverges when the string coupling becomes small at fixed N), which

means tensionless strings. The theory is thus parameterized by the five-dimensional

Planck scale `p and the AdS radius R = N
1/3`p. The boundary correlation functions

can be constructed from the basic single-trace operators. In particular the bilinear

single-trace operators give rise to currents that couple to massless AdS modes. The

spectrum of such currents is isomorphic to the product of two superdoubletons, i.e.

the massless spectrum of the above-mentioned hs(2, 2|4) gauge theory.
In the field theory limit `p � R, that is the large-N limit, the hs(2, 2|4) higher

spin gauge theory has a well-defined curvature expansion [22, 28] at energies corre-

sponding to length scales ` in the interval `p � `� R. The above-mentioned duality

therefore implies that this expansion is dual to the interactions of the bilinear cur-
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rents. Hence this setup offers a parameter regime in which the strong version of

the Maldacena conjecture can actually be tested directly! Importantly, even though

the ’t Hooft coupling vanishes, so that correlation functions where all operators

are single (linear) doubleton fields are free, the correlation functions involving the

current-bilinears have a non-trivial generating functional, which should be equal to

the effective action of the hs(2, 2|4) gauge theory. Since these interactions persist at
zero string coupling they may be considered to be the basic “M-interactions” defining

M-theory in an unbroken phase.

The boundary theory also contains operators in the form of normal-ordered prod-

ucts of three or more doubletons. These correspond to massive bulk modes, which

form massive higher spin multiplets. It would be interesting to investigate whether

the full bulk spectrum originates from a massless higher spin gauge theory in ten

dimensions. Indeed each higher spin multiplet (the massive ones as well as the mass-

less one) contain a CPT self-conjugate spin two multiplet. These give rise to a tower

of spin two multiplets describing the Kaluza-Klein modes of the ten-dimensional

supergravity multiplet.

The addition of Yang-Mills interactions break the higher spin currents in four

dimensions [43]. This implies to that the bulk theory has a finite string coupling,

that is, a finite string mass. In this massive phase we expect some of the higher spin

gauge symmetries to be realized as Stückelberg-like shift symmetries, with a smooth

limit (in the sense that there is no jump in degrees of freedom) to higher spin gauge

symmetry as the mass-parameter is sent to zero. A better understanding of this may

cast light on the nature of perturbative string theory in AdS backgrounds as well

as on the issue of how to incorporate the massive multiplets, as some of these may

have to be included in the perturbative spectrum in order for the Higgs mechanism

to work consistently.

We expect the bosonic theory considered in this paper to be a consistent trunca-

tion of the N = 4 supersymmetric case as follows. In the boundary we set all fields

in a given superdoubleton multiplet equal to zero except one of the scalars. In the

bulk, the spectrum of the supersymmetric theory consists of a tower of supermulti-

plets arranged into levels ` = 0, 1, 2, . . .. In the truncation to our model, we keep

the graviton of the supergravity multiplet at ` = 0, the spin zero and spin four fields

at ` = 1 and the field with maximal spin smax = 2` + 2 at level `. Effectively this

amounts to setting θi = 0 in the notation introduced above. The bosonic model may

therefore serve as a simplified setup for addressing some of the above issues, such

as the couplings to massive multiplets and the ten-dimensional origin. The bulk

dilaton is thrown away in this truncation, however, which leaves in doubt whether it

may facilitate the massive string deformation. Further evidence against this is that

the deformation of the boundary scalar theory by adding a φ4 coupling, which is

analogous to the introduction of finite g2YM in the super case, breaks the conformal

invariance at the quantum level.
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In [26] it was conjectured that the seven-sphere compactification of M-theory

with N units of four-form flux leads to a duality in four spacetime dimensions,

which is similar to the one discussed above in five dimensions. Here the free three-

dimensional singleton is dual to the strong coupling limit, that is `p ∼ R, of the

four-dimensional higher spin theory with gauge group shs(8|4). At weak coupling,
that is `p � R, it has a curvature expansion for energies corresponding to length

scales `p � `� R, which is expected to be dual to the mysterious theory of N � 1
coinciding membranes (and analogously coinciding five-branes are expected to be

dual to weakly coupled higher spin theory in seven dimensions).

In fact, from the higher spin point of view there appears to be a parity between

the IIB and the IIA/11D corners of M-theory, in the sense that both give rise to sim-

ilar higher spin gauge theories. The differences due the presence of string coupling

in IIB and the absence thereof in D = 11 instead seems to reside with the patterns

of symmetry breaking, which appears to be a property of the gauged supergravities

rather than the full higher spin theory. Thus, it is tempting to think of an unbro-

ken M-gauge theory embracing both IIB and 11D in a unified framework. We will

elaborate further on this theme in a separate publication [42].

To conclude, we believe that higher spin gauge theories do fit naturally into the

M-theory jig-saw and that they will eventually provide new and fascinating insights

to hitherto uncharted limits of M-theory.
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