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ABSTRACT 

 

Simulating gas flow from the reservoir to the wellhead is a complicated task often done 

by a commercial software or overlay simplified coupled model based on one inflow equation. 

The commercial software requires specialized training as they are cumbersome and time-

consuming. Besides, they cannot be modified to accommodate any research idea requiring 

additional or different approaches. In this study, a simple, comprehensive reservoir-wellbore 

coupled model is presented to be used by researchers or engineers in the field where the access to 

fully fledged simulation is unavailable. 

The proposed model consists of two systems. The wellbore system depends on a two-

phase mechanistic model to calculate all fluid properties and pressure drop along the wellbore. 

The reservoir system relies on Darcy flow equations and relative permeability correlations to 

estimate the inflow flow rate for each phase. Finally, gas reservoir material balance is used to 

obtain reservoir pressure for every time step. This model is implicit and dynamic.   

After validating the model with field data and commercial software, several case studies 

were created to investigate gas well related issues. The proposed models can investigate the 

liquid loading phenomena where the gas is unable to lift the liquid droplets to the surface. The 

model can predicate the onset of the liquid loading and the time needed for liquid to kill the well 

by examining wellbore fluid changes throughout the wellbore. The transition of flow pattern 

from annular to churn flow is considered the initiation of this phenomena. The model can present 

a visual picture of flow pattern changes through the well's life. 

Using the proposed model as a diagnostic tool, Hasan-Kabir model has been modified by 

introducing smoothing flow pattern transition equations. 



 

iii 

 

ACKNOWLEDGEMENTS 

 

I would like to thank my committee chair, Dr. Hasan, and my committee members, Dr. 

Zhu, Dr. Liang, and Dr. Sun. 

  



 

iv 

 

CONTRIBUTORS AND FUNDING SOURCES 

 

This work was supervised by a dissertation committee consisting of Professor A. Rashid 

Hasan and Professors Ding Zhu and Jenn-Tai-Liang of the Department of Petroleum Engineering 

and Professor Yuefend Sun of the Department of Geology & Geophysics. All work for the 

dissertation was completed independently by the student. 

Graduate study was supported by a sponsorship from Kuwait University. 

 

  



 

v 

 

TABLE OF CONTENTS 

 

Page 

ABSTRACT .............................................................................................................................. ii 

ACKNOWLEDGEMENTS ...................................................................................................... iii 

CONTRIBUTORS AND FUNDING SOURCES .................................................................... iv 

TABLE OF CONTENTS .......................................................................................................... v 

LIST OF FIGURES .................................................................................................................. vii 

LIST OF TABLES .................................................................................................................... ix 

CHAPTER I INTRODUCTION AND LITERATURE REVIEW ........................................... 1 

  Introduction ................................................................................................................... 1 

  Literature Review.......................................................................................................... 5 

CHAPTER II METHODOLOGY............................................................................................. 12 

  Reservoir System Modeling .......................................................................................... 12 

  Wellbore System Modeling .......................................................................................... 17 

  Bottomhole Pressure Reverse Calculation from Wellhead Algorithm ......................... 19 

CHAPTER III MODEL VALIDATION .................................................................................. 29 

  Validation Against Commercial Software .................................................................... 30 

  Validation Against Field Data ...................................................................................... 36 

  Validation Against Numerical Simulation .................................................................... 38 

CHAPTER IV HASAN-KABIR MODEL MODIFICATION ................................................. 40 

  Applying Hasan-Kabir Original Model ........................................................................ 40 

  Hasan-Kabir Model Shortcoming ................................................................................. 44 

  Hasan-Kabir Model Improvements ............................................................................... 47 

Hasan-Kabir Model Improvements Summary .............................................................. 52  

 

                                                                                                                          



 

vi 

 

  Page 

CHAPTER V RESERVOIR PRESSURE AND LIQUID LOADING ..................................... 53 

  Reservoir Initial Pressure Effect on Liquid Loading .................................................... 53 

  Reservoir Pressure and Wellbore Flow Pattern Relationship ....................................... 56 

  Reservoir Pressure and Wellbore Liquid Holdup Relationship .................................... 60 

Bottomhole Pressure and Liquid Build up Relationship as Reservoir Depletes ........... 62  

 

CHAPTER VI RESULTS, DISCUSSION, AND CONCLUSION .......................................... 66 

  Water Production Effect on Liquid Loading ................................................................ 66 

  Depth vs. Liquid Holdup............................................................................................... 70 

  Gas and Liquid Superficial Velocities Profiles with Depth .......................................... 72 

Total, Hydrostatic, and Friction Pressure Drop in Wellbore ........................................ 74  

  Applying Arps Decline Equation to Determine Liquid Loading Onset ....................... 78 

Conclusion .................................................................................................................... 79  

 

REFERENCES ......................................................................................................................... 82 

APPENDIX A NOMENCLATURE ......................................................................................... 85 

APPENDIX B GAS COMPRESSIBILITY CALCULATION PROCEDURES ..................... 88 

APPENDIX C PROPOSED MODEL CODE EXPLAINED ................................................... 90 

  



 

vii 

 

LIST OF FIGURES 

                                                                                                                            Page 

Figure 1 Liquid loading onset criteria based on the most two known theories. ............................. 7 

Figure 2 Typical plot for gas-water relative permeability relationship ........................................ 16 

Figure 3 Wellbore segmented approach ....................................................................................... 20 

Figure 4 Gas and water flow rate based on input data acquired from a published study (W. 

Schiferil et al. 2010) ...................................................................................................... 31 

Figure 5 Olga and reservoir simulation results in SI units ............................................................ 33 

Figure 6 Pressure data from our simulation for the Norwegian case simulated by our model ..... 34 

Figure 7 Liquid holdup profile at the wellbore bottom throughout the well’s life ....................... 35 

Figure 8 Relative permeability curves relationship for the validation case of the field data ........ 37 

Figure 9 Comparison between open source simulation result and the proposed model ............... 39 

Figure 10 Flow pattern changes inside the wellbore for Hasan-Kabir Model modification case . 42 

Figure 11 Illustration of liquid loading occurring tendency in wellbore ...................................... 43 

Figure 12 Liquid holdup inside the wellbore calculated with Hasan-Kabir model for two 

consecutive days ............................................................................................................ 44 

Figure 13 Comparison between annular and churn flow .............................................................. 46 

Figure 14 Modified Hasan-Kabir model Liquid holdup vs. Depth ............................................... 50 

Figure 15 Final modified Hasan-Kabir model result for liquid holdup vs. depth ........................ 51 

Figure 16 Gas production for the same reservoir for different initial reservoir pressure ............. 54 

Figure 17 Liquid holdup for different initial reservoir pressure ................................................... 60 

Figure 18 Reservoir pressure depletion vs. time for different initial reservoir pressure .............. 62 

Figure 19 Bottomhole pressure for the same reservoir assuming different initial reservoir 

pressure .......................................................................................................................... 63 

Figure 20 Bottomhole pressure at higher initial reservoir pressure .............................................. 65 

Figure 21 Water production for different reservoirs having different Corey exponent ................ 66 

file:///D:/Google%20Drive/PhD%20Work/Aldousari_dissertation_Draft%20v.%204.docx%23_Toc535329372
file:///D:/Google%20Drive/PhD%20Work/Aldousari_dissertation_Draft%20v.%204.docx%23_Toc535329382
file:///D:/Google%20Drive/PhD%20Work/Aldousari_dissertation_Draft%20v.%204.docx%23_Toc535329384


 

viii 

 

Figure 22 The effect of water production on the gas flow rate ..................................................... 67 

Figure 23  Decreasing Cory exponent below one increase water production significantly .......... 68 

Figure 24 Liquid loading behavior with depth recorded for different days for the same well. .... 70 

Figure 25 Gas velocity profile versus depth at different days of production ................................ 72 

Figure 26 Liquid velocity profile versus depth for one gas well at different days of production 73 

Figure 27 Pressure profile inside the wellbore versus depth ........................................................ 74 

Figure 28 Hydrostatic pressure drop profile at different days of production ............................... 76 

Figure 29 Friction drop gradient profile versus depth at different production days ..................... 77 

 



 

ix 

 

LIST OF TABLES 

                                                                                                                           Page 

Table 1 Coupled models comparison ............................................................................................ 10 

Table 2 Simulation input data ....................................................................................................... 12 

Table 3 Hasan-Kabir model coefficients ...................................................................................... 25 

Table 4 Validation data set obtained from the literature ............................................................... 30 

Table 5 Comparison between the proposed model and reservoir-wellbore commercial 

software ......................................................................................................................... 31 

Table 6 Field data rearranged and modified from (Li et al. 2002) ............................................... 36 

Table 7 Relative permeability curve parameters for the wells listed in Table 6 ........................... 37 

Table 8 Simulation Data adapted from (Limpasurat, et al., 2015) ............................................... 38 

Table 9 Input data used to study Hasan-Kabir model ................................................................... 41 

Table 10 Hasan-Kabir annular flow smoothing parameter terms at different gas velocities........ 47 

Table 11 Data from day 86 ........................................................................................................... 49 

Table 12 Hasan-Kabir model improvements summary ................................................................ 52 

Table 13 Reservoir and wellbore properties data used in our model for this section ................... 54 

Table 14 Tabulated results for Figure 15 ...................................................................................... 55 

Table 15 Further production data for the same well under different initial reservoir pressures ... 57 

Table 16 Increasing initial reservoir pressure effect ..................................................................... 59 

Table 17 Liquid holdup for different flow patterns ...................................................................... 61 

Table 18 Water effect on the onset of liquid loading .................................................................... 69 

 
 



 

1 

 

CHAPTER I  

INTRODUCTION AND LITERATURE REVIEW 

 

Introduction  

 This work is a comprehensive study on two-phase flow in the wellbore. The flowing of 

different phases simultaneously presents a significant challenge to researchers. Both phases have 

different properties and behave differently under the same pressure and temperature. One phase 

is denser than the other phase. One phase flows faster than the other. These differences demand a 

deep understanding of the two-phase flow inside the tubing. 

The topic of two-phase flow in pipelines has been exhausted with studies over the years. 

This issue is not exclusive only in the petroleum industry. Other branches of engineering, like 

mechanical, chemical, and even nuclear are investigating this topic. In petroleum production 

engineering, the attention went exclusively and for a long time to the wellbore itself and the flow 

inside the wellbore as petroleum engineering is a new field of study relatively, and the founders 

of it, are chemical and mechanical engineers.  

Tulsa University petroleum engineering department has invested in establishing a full 

production loop. They have been studying flow assurance for quite some time. One of the 

leading research area investigated by them is the two-phase flow in pipelines. They studied the 

early concept presented by Turner et al. (1967) extensively by observing fluid flow inside 

wellbores with a high-speed camera capturing the flow to the fraction of the seconds. How gas 

and liquid flow? The shape of their flow? The effect of each phase on the other? All these 

questions were answered. Also, they have developed several correlations mechanistic and 

empirical to predict pressure loss in pipelines. The door to improve these correlation or models 
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welcomed has welcomed many researchers over the years. Researchers are trying to improve a 

little bit over the previous work. The accuracy of predicting pressure drop in pipelines. 

The question might arise, why there is a need to predicate the pressure drop inside the 

wellbore? Predicting pressure drop can aid in understanding the declining flow rate. All the 

petroleum companies wish for more production. Production meets their expectation which is 

based on similar wells in the same area. To know the reason of decline production is to run a 

pressure drop study. Comparing the finding of the study to the actual pressure drop can either 

result in agreement with the actual decline and that this is the normal behavior of the well, or it 

does not agree. In this case, the company knows there is something needs further investigation in 

the wellbore. 

In the past 30 years, a great effort invested in improving the prediction of two-phase flow 

in the wellbore. However, in the recent years, the production engineering researchers became 

more interested in the reservoir as well. The production as a process consisting of two systems, 

wellbore system, and reservoir system.  

The idea of coupled wellbore-reservoir model became the hot topic. In this study, we 

present such a model. Coupled model. In the recent previous years, a few good coupled models 

have been presented in the literature. We have mentioned them in detail in the following section. 

The idea behind this research is to build a coupled model that is: 

1-    Robust. A model built upon scientific and engineering sound principles. 

2-    Realistic. A model gives reliable output represent actual results. 

3-    Simple. A model can be programmed by anyone who has access to any programming 

software.  
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Building this tool/model required extensive research on inflow relationship from the 

reservoir and two-phase flow in the reservoir. Two-phase-flow in the wellbore is an already 

established area of research. We have used Hasan-Kabir two-phase mechanistic model, and heat 

transfer model in the wellbore. In the reservoir system, Darcy flow for both phases is adopted as 

inflow coming from the reservoir. The main problem we faced is the relative permeability for 

each phase. How to determine it? With the aid of power laws of permeability, we were able to 

proceed with Darcy law. However, using relative permeability equation presented another 

challenge, reservoir water saturation as reservoir pressure depletes is needed. We were able to 

overcome these challenges by building an implicit dynamic loop consists of three components 

each component is providing the other one with the data needed to proceed. The three 

components are: 

1-    Wellbore pressure and heat, mechanistic model 

2-    Darcy inflow equation, relative permeability equations 

3-    Material balance equation and the volumetric in place volume of hydrocarbon 

The result is a dynamic model calculating flowrates at the surface, bottomhole pressure, reservoir 

pressure, and reservoir water saturation at the same time for specific time steps given by the user 

of the model. 

    The dissertation, after the introduction and the literature review in this chapter, presents 

the methodology in the second chapter. A flow chart is provided for easy to follow programming 

guidelines. In chapter three, three different validations are presented to show the validity of the 

proposed model, validation against two commercial software, validation against field data, and 

lastly validation against open source reservoir simulation.  
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Our primary goal is to study the liquid loading phenomena. However, in the process of 

doing so, we have created a tool able to study the two-phase flow in the wellbore. After proving 

the validity of this tool in chapter three, chapter four presents a particular case, where we used 

the proposed model to study something else, Hasan-Kabir two-phase flow mechanistic model. 

The proposed model gives a dynamic output. As a result, we can test the implemented models to 

their fullest and find any shortcoming associated with them to prove the versatility of the 

proposed model. It opens the door for future work to examine different models. 

  In chapter five, the focus is on the reservoir pressure as the primary objective of the 

whole coupled wellbore-reservoir models to study the effect of the reservoir on the wellbore. We 

examine the reservoir pressure effect on liquid loading and pressure drop inside the wellbore. 

Finally, the last chapter presents different aspects of the coupled wellbore-reservoir such 

as the behavior of liquid holdup in the wellbore with depth. The effect of water production on 

liquid holding also is examined. In this chapter, the summary of the whole research is given in 

the conclusion section.  
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Literature Review 

The liquid loading phenomena are the inability of the gas well to lift the coproduced 

liquid to the surface. The source of liquid is either from the original liquid in the reservoir or 

condensed liquid as pressure declines. The reservoir pressure depletion is the primary cause of 

the declining gas flow rate. When reservoir pressure is high, gas velocity is very high and able to 

lift all liquid droplets and the liquid film coating the well-tubing upward. The liquid is denser 

than gas, as a result when gas velocity decline to a specific value, gas stream cannot lift the 

largest droplet upward. This conclusion came initially from Turner et al. (1969). He studied the 

onset of liquid loading. He found out that the onset occurs when the gas velocity declines to a 

value below which, the gas flow cannot lift the largest liquid droplet to the surface. This velocity 

is known as the critical gas velocity or simply Turner et al. (1969) equation. 
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This equation is a function of both gas and liquid densities, and interfacial tension. This 

equation has been modified by Belfroid et al. (2008) to account for the well-inclination angle. 

Barnea (1986) challenged Turner et al. (1969) theory. In his work, he found out that the liquid 

loading onset starts earlier than the falling of the largest droplet to the surface. He concluded that 

liquid film coating well tubing breaks first. Following his discovery, he proposed a series of 

equations studying the film thickness.   

The falling liquids cause an increase in the bottomhole pressure. This back pressure 

decreases reservoir drawdown (the difference between reservoir pressure and bottomhole 

pressure) this automatically chocks the gas flow rate coming from the reservoir.  
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In the Inflow Performance Relationship (IPR), the gas flow rate is proportionally related 

to squared drawdown; as a result, the gas flow rate decreases significantly. 
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Liquid loading phenomena reduce the well-life expectancy and ultimately kills gas well 

losing enormous investment. The best remedy for liquid loading in the gas well is the prevention 

of its occurring by having some facility on the ground ready to intervene. Predicting liquid 

loading onset is essential to the petroleum industry. Production engineers invested a lot of time 

and effort trying to determine the onset of liquid loading.  

Initially, Turner et al. (1969) introduced the clerical gas velocity term, as a parameter 

should be checked at the top of the wellhead to determine the onset of liquid loading. However, 

in a recent paper published by Riza et al. (2015), he found that the onset of liquid loading should 

be investigated throughout the entire wellbore. In their approach, they created a reservoir-

wellbore coupled model. Their model is simple. They used single pseudosteady state gas inflow 

equation based on circle reservoir. In the wellbore, they utilized Hasan-Kabir mechanistic two-

phase flow pressure drop model and heat transfer model. Their approach is a forward step in 

studying liquid loading as a big picture by combining the reservoir and the wellbore. However, it 

is oversimplified. They assumed bottomhole pressure and assumed this pressure to be constant 

for a fixed period. Then they manually decreased the bottomhole pressure. In other words, they 

used a constant steady decline factor. As for water flow rate, they used a fixed gas-liquid ratio to 

handle it. For reservoir pressure, they assumed a constant pressure over a period, and manually 

imposed an assumed decline rate. They concluded that liquid onset occurs first at the bottom of 

the gas well. However, their approach has several assumptions that do not represent what occurs 
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in real life. Bottomhole pressure and reservoir pressure change dynamically, and because of this 

change, fluid inflow rates change affecting the onset of liquid loading, as liquid flow rate 

increases with time. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Modeling liquid loading has been for a long time an issue linked to the wellbore only. 

Most of the published studies focused, as a result, on the wellbore to study the phenomena. The 

studies focused on the transition from annular flow to churn or slug flow as the onset of liquid 

loading Figure 1. In other words, flow pattern recognition was considered the key (Pushkina and 

Sorokin 1969; Zapke and Kroeger 2000; Hewitt 2012). 

Critical gas velocity concept is one of the main terminologies developed in this matter. 

This concept is a function of both densities value, developed by Turner et at. (1969). The 

equation has been modified slightly by the industry as more data became available. The critical 

gas velocity developed by Turner is corrected with 16%.  

 

Liquid film 
Gas Bubble 

Before liquid loading onset Liquid loading onset  

according to Barnea 

(1986) 

Liquid loading onset  

according to Turner 

(1969) 

Figure 1 Liquid loading onset criteria based on the most two known theories. 
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The liquid associated with the gas flow has been attributed to the water or hydrocarbon 

condensate or both coming from the formation (Sutton et al. 2010; Wang et al. 2010; Zhou and 

Yuan 2010). Recent studies went further into studying the liquid loading in the wellbore with 

experiments and translucent pipes aided with high-speed cameras capturing the flow pattering 

continuously. The results of these studies suggest that the liquid film coating the tubing breaks 

first and should be studied (Van’t Westende et al. 2007; Veeken and Belfroid et al. 2011; 

Waltrich and Barbosa et al. 2011; Alamu et al. 2012; Luo et al. 2014) 

Liquid loading phenomena are complicated. Studying the wellbore is not enough. It 

involves the reservoir and the wellbore. The multiphase flow is not just inside the wellbore; it is 

a two-phase flow from the reservoir presenting a complexity to any researcher looking into this 

matter. Coupling the wellbore model with a reservoir model can enhance our understanding of 

the liquid loading phenomena.  

Riza et al. (2016) have developed a coupled wellbore-reservoir model studying the onset 

of liquid loading along the entire wellbore. The issue here is again the focus on the wellbore 

only. The flow coming from the reservoir is very simplistic IPR approach. Limpasurate and 

Valko et al. (2015) developed a coupled model as well, using a reservoir model to handle the 

flow coming from the reservoir. An elegant model that detects the crossflow from the wellbore 

into the formation. 

The above mentioned two models are a significant step in understanding the whole 

phenomena. However, both approaches have shortcomings. 

Simplistic reservoir Inflow Performance Relationship equation coupled with mechanistic 

model in the wellbore with the assumption of fixed reservoir pressure and constant drop rate at 

the bottom of wellbore, and using constant gas oil ratio to determine liquid phase flow rate, is 
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inaccurate approach though can give us a glimpse of how flow pattern changes throughout the 

entire wellbore and that is what we have learned from Riza et al. (2016). He noticed that the 

onset of liquid loading begins at the bottom of the wellbore before anywhere.  

Limpasurate and Valko et al. (2015) model, on the other hand, presented a sophisticated 

model to study the liquid loading using a coupled approach. As much as their model provided a 

definite possibility of the cross-flow between the wellbore and the formation, it is a complicated 

approach in every aspect. They utilized a transient reservoir simulation model, which requires 

specialized training to be programmed. Not to mention that they did not provide steps on how to 

recreate their model. 

Finally, we can see the need for a new approach. It should be realistic yet with fewer 

complications so that it can be executed on any computer software. Table 1 provides a 

comparison between the current models and the proposed model. 
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Table 1 Coupled models comparison 

 Riza et al. 

(2016) 

Limpasurate and Valko et 

al. (2015) 

Proposed 

Model 

Simplicity Yes No Yes 

Reservoir simulation No Yes No 

Mechanistic Wellbore Model Yes Yes Yes 

Easy to program Yes No Yes 

Dynamic No Yes Yes 

Can be used to study wellbore 

two-phase flow 
No No Yes 

Varying liquid phase flow rate No Yes Yes 

Reservoir pressure and bottomhole pressures change dynamically depending on reservoir 

properties and the drawdown. In the wellbore-reservoir connected systems, the only constant 

pressure is the wellhead pressure. Controlling wellhead pressure affects the downhole pressure 

directly and ultimately the decline rate of reservoir pressure. Reservoir system is very 

complicated. Production engineers tend to approach the whole wellbore-reservoir coupled model 

in a simplified way by using a single IPR equation and several assumptions. Other researchers 

with reservoir engineering background, they implement reservoir numerical simulation to handle 

the reservoir system and couple it with wellbore pressure drop system. Other researchers 

implement fully fledged commercial reservoir simulator to handle the reservoir aspect and 

another specialized production simulator as the coupled model presented in the validation section 

where they used a commercial simulator called MoRes a property belongs to Shell for the 

reservoir and Olga to handle wellbore pressure drop calculations. Reservoir modeling is not as 

easy as wellbore modeling because it is not a very well-defined medium. In the wellbore, we 

have a specific medium shape with fixed geometry for the fluid to flow. On the other side, the 
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reservoir shape is usually assumed to be circular. Besides, the medium in which the fluid flows is 

nonhomogeneous. Permeability and porosity are significantly different in each reservoir area. 

Reservoir engineers utilize the power of reservoir simulators to discreet reservoir bulk volume 

into smaller grids. For each gird, they assign rock and fluid properties. This task requires deep 

reservoir flow and simulation knowledge. This approach has been adopted by Valko et al. 

(2015). They took advantage of open source code for reservoir simulator developed at Texas 

A&M University to handle the reservoir system. As for the wellbore, they used Turner et. Al. 

(1967) critical flow equation to determine the onset of liquid loading. 
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CHAPTER II  

METHODOLOGY 

 

Building a wellbore-reservoir coupled simulation requires the use of different models and 

correlations from both reservoir and production fields. The simulations consist of two systems 

incorporating together. The reservoir system and the production system. A step by step 

procedures will be given to be able to program the simulation. This large simulation requires the 

use of several loops and implicit equations. It should be implemented with the aid of any 

computer program. The input data required for the simulation is given in Table 2. 

Table 2 Simulation input data 

Reservoir Data Wellbore Data Stream Data 

Reservoir initial pressure Wellhead pressure Gas critical temperature 

Reservoir initial temperature Wellhead temperature Gas critical pressure 

Reservoir area Tubing diameter Gas specific gravity 

Reservoir permeability Pipe roughness Water density 

Reservoir thickness Wellbore deviation angle  

Reservoir porosity Wellbore diameter  

Reservoir saturation Wellbore depth  

Reservoir System Modeling 

The flow of the simulation is carried away in the following order. First, the gas flow rate 

and water flow rate are calculated from the reservoir initial given properties.  
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gq : Gas flow rate, MSCF/d 

wq : Water flow rate, STB/d 

p : Reservoir average pressure, psi 

wfp : Bottomhole flowing pressure, psi  

gk  : Gas effective permeability, md 

h  : Reservoir thickness, ft 

g : Gas viscosity, cp  

T : Reservoir temperature, oF  

er : Reservoir radius, ft  

wr : Wellbore radius, ft 

Gas and liquid effective permeabilities are required to calculate the flow rates from Eq.1 

and Eq.2, both phases effective permeabilities are required. If only one phase exists, the use of 

absolute permeability should be sufficient. However, since two phases are flowing in the pours 

medium, each phase is competing against each other to flow.  As a result, the flow rate for each 

phase is less compared to only one phase. This issue was solved by using the concept of relative 

permeability. It means that each phase is only flowing through a fraction of the absolute 

permeability. This fraction is called the effective permeability. In other words, relative 

permeability is the ratio of the effective permeability to the absolute permeability. Calculating 
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relative permeability is a tricky task as it involves reservoir lithology and rock wettability. Many 

researchers introduced relative permeability curve correlations. However, most of these 

correlations are derived for water flooding reservoir in which initial water saturation is 

considered irreducible. Also, water saturation increases with time as more water is being injected 

into the reservoir. These correlations cannot be utilized in our simulation to calculate both phases 

effective permeabilities. In our model, the only source of water is the initial water in place. In 

other words, the initial water is producible, and water saturation decreases with time as the 

production process continues.  

Relative permeability correlations should be tuned to be able to use them in this situation. 

Modified Brooks and Corey model et al. (1966) is one of the most used models in the oil and gas 

industry. Eq. 5 is used to calculate gas relative permeability and Eq. 6 is used to calculate water 

relative permeability. Since the initial water is producible based on our assumption, initial water 

saturation in Eq. 6 is changed to irreducible water saturation Eq. 7. 
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kkk rgg =  8 

kkk rww =  9 

rgk : Gas relative permeability, md  

rwk : Water relative permeability, md  



 

15 

 

ws : Water saturation 

wrs : Irreducible water saturation 

grs : Residual gas saturation  

Gas residual saturation is needed to calculate gas relative permeability. Gas residual 

saturation is the amount of gas in the reservoir at abandonment pressure. In other words, the 

amount of gas that cannot be produced when reservoir energy represented by reservoir pressure 

is severely depleted and cannot lift the fluids anymore to the surface. Gas residual saturation 

depends on rock lithology and wettability. Agarwal et al. (1967) developed an empirical 

correlation to predicate gas residual saturation for common rock categories based on 

experimental data Eq. 10. 

096071.01813.0 += gigr SS  10 

grs : Residual gas saturation  

gis : Initial gas saturation 

 The previous paragraphs illustrating the process of determining the relative permeabilities 

for both phases. However, it would be impossible to get values for water saturation. As a result, 

in the proposed model, relative permeabilities initial values are provided by the user. 
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Figure 2 Typical plot for gas-water relative permeability relationship 

 

The user is required to input the values of A, B, E, and D as illustrated in figure 2. A is 

the initial gas saturation. B is the initial water saturation. E is the irreducible water saturation. D 

is the residual gas saturation. 

 The proposed model gives the user the option of using the initial values of relative 

permeabilities in the calculation or utilize the built in exponential function to construct a curve 

matching the user core lab relative permeability data. The built-in equation is  

wmS

rwk ne=  

 The default values for n and m are 0.002 and 6.5 respectively. These values can be 

modified as well by the user. As for the gas relative permeability the following equation is 

utilized. 

wmS

rgk ne=  

 The default values for n and m are 8.11 and -8.4. the values can be modified by the user 

as well.   
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Wellbore System Modeling 

One more essential parameter is needed before calculating gas and water flow rate 

coming from the reservoir into the wellbore, bottomhole pressure. For any fluid to flow in any 

medium, there must be a pressure difference. In any reservoir-wellbore coupled model, there are 

two central pressures. One is the reservoir pressure representing reservoir energy. The other 

pressure is the bottomhole pressure. The bottomhole pressure is the common point between the 

reservoir system and the wellbore system. Based on the philosophy of nodal analysis, there must 

be one value of bottomhole pressure that can satisfy both the reservoir system and the wellbore 

system. Ideally, zero bottomhole pressure is favorable as it produces the most hydrocarbon based 

on Eq. 3. If zero bottomhole pressure can be achieved, will the fluid be able to travel all the way 

from the bottom of the wellbore to the surface? Again, the pressure difference must exist for 

fluids to flow. Since the wellhead pressure cannot be lowered less than the atmospheric pressure, 

the maximum hydrocarbon flow rate at zero bottomhole pressure cannot be achieved.  

There are three main issues to be considered for fluids to flow from the bottom of the 

well up to the surface. The hydrostatic pressure loss caused by the column of fluid density inside 

the well. The friction pressure loss and the wellhead pressure which must meet the sale line 

pressure. The wellhead pressure should be high enough for the fluid to flow to the last 

destination. Now the main question remains unanswered, what is the value of bottomhole 

pressure that should be used in Eq. 3 and Eq. 4 and satisfy both, the reservoir and the wellbore 

system? 

The first time the simulation starts to run, it will assume any value less than the reservoir 

pressure to create a fluid flow, have both gas, and water fluids rate. Eq. 11 is applied to have 

arbitrarily assumed bottomhole pressure. 
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200, −= Rassumedwf pp  11 

,wf assumedp : Assumed bottomhole pressure, psi 

Rp : Reservoir average pressure, psi  

Eq. 3 and Eq. 4 can now be run with the aid of given reservoir properties, the calculated 

relative permeabilities, and the assumed bottomhole pressure. Before going into the next step, 

both gas and water flow rates should be converted into velocities as the upcoming equations rely 

on them. 

Now, we can back-calculate bottomhole pressure from wellhead pressure. Wellhead 

pressure is always known as it should meet the sales line pressure. In our case, wellhead pressure 

is set to 300 psi. The idea behind recalculating bottomhole pressure from wellhead pressure is to 

validate our initial bottomhole pressure assumption. In other words, one point cannot have two 

different pressures at the same time.  

Converting the fluid flow rates to velocities will make the next set of calculation much 

more manageable. The velocity is the ratio of fluid flow rate to the area. Since two-phases are 

flowing inside the wellbore, calculating the exact velocity requires knowing the exact area each 

fluid occupies. This task is extremely complicated. Instead, the concept of superficial velocity is 

used. The superficial velocity concept ignores the fact that two-phases are flowing at the same 

time. In other words, to obtain the superficial velocity for any phase, the flow rate is divided by 

the whole pipe area. The following velocity equations are presented in in-situ conditions 

(reservoir conditions), hence the use of formation volume factors.  

wwsl Bqv
86400

615.5
=  12 
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slv : Superficial liquid velocity, ft/sec  

sgv : Superficial gas velocity, ft/sec  

wq : Water flow rate, STB/d  

gq : Gas flow rate, MSCF/d  

wB : Water formation volume factor, bbl/STB  

gB : Gas formation volume factor, cu ft/SCF  

a : wellbore area, ft2  

d : Wellbore diameter. ft  

Bottomhole Pressure Reverse Calculation from Wellhead Algorithm 

Wellbore in the simulation is segmented into 100 segments. Bottomhole pressure can be 

calculated in one long segment, from the wellhead down to the bottomhole. However, 

considering the whole wellbore as one segment yields a significant error in calculating 

bottomhole pressure. The reason behind this is the change of fluid properties with elevation. 

Fluid properties change with temperature and pressure. To minimize the error resulted from the 

properties change, the wellbore is segmented into small segments. We start from the wellhead 

and calculate the pressure at the bottom of the first segment. This pressure is used again to 

calculate the pressure at the bottom of the next segment and so on. Figure 3 illustrates the 

segmenting process. The process starts with calculating the first segment bottom pressure.  
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11 ppp wh +=  15 

1p : Pressure at the bottom of top segment, psi 

1p : Pressure drop the top segment, psi  

whp : Wellhead pressure, psi  

Pressure drop 1p  consists of two main components, friction loss, and hydrostatic 

pressure loss. 
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fp

L


: Pressure gradient due to pressure, psi/ft  

hp

L


: Pressure gradient due to hydrostatic pressure, psi/ft  

1p : Pressure drop across the segment, psi  

 

 
Figure 3 Wellbore segmented approach 
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To calculate both pressure drop due to friction and hydrostatic pressure, fluid properties 

are needed. If only a single phase is flowing inside the wellbore, calculating fluid properties 

would be much more comfortable. In contrary, two-phase flow presents greater difficulty. Which 

fluid properties should be used to calculate the pressure losses? The answer is both phases 

properties should be utilized. To do it, a crucial parameter in the two-phase calculation should be 

introduced, liquid holdup. It answers how much liquid is occupying any segment in the wellbore 

which is very important because we can know which phase is dominating in any segment. The 

liquid holdup is the ratio of the volume of liquid to the volume of the pipe segment. In other 

words, it gives the parentage of both phases occupying the wellbore segment. According to these 

percentages, mixture properties are calculated. Eq. 17 gives mixture density in lb/ft3 and Eq. 18 

gives mixture viscosity.  

llggm ff  +=  17 

m : Mixture density, lb/ft2 

g : Gas density, lb/ft2 

l : Liquid density, lb/ft2 

gf : Void fraction factor  

lf : Liquid holdup factor 

 

( ) lgm xx  −+= 1  18 

m : Mixture density, cp  

g : Gas density, cp 

l : Liquid density, cp 
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Reservoir gas and water viscosity in cp unit is calculated by Lee et al. 
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The parameter x in Eq. 18 is another dimensionless parameter that quantifies the gas 

phase in the fluid mixture. It can be calculated with Eq. 24 
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T: Temperature, oF 

p : Pressure, psi  

As for the liquid holdup needed in Eq. 17, there are several ways to obtain it. A few of 

those ways have discussed in the literature review chapter. In this study, Hasan-Kabir model is 

implemented to calculate the liquid holdup. The reason is, the H-K model considered one of the 

simplest models among the mechanistic models which are known for their complexity. 

Calculating the liquid holdup requires the determination of flow pattern in the wellbore 

segment. The flow pattern is the distribution of the two phases inside the pipe segment. For 

vertical wells, there are four distinct flow patterns, bubbly flow, slug flow, churn flow, and 

annular flow.  
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Some parameters are required to check the flow pattern. These parameters are a function 

of fluid properties. All velocities are in ft/sec.  
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slv : Superficial liquid velocity, ft/sec  

sgv : Superficial gas velocity, ft/sec  

gcv : Critical gas velocity, ft/sec 

d : Pipe diameter, ft  

 : Wellbore inclination angle, degree 

The simulation first calculates annular transition velocity, which is the minimum gas 

velocity, required for the flow to be considered annular flow. 
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gcv : Critical gas velocity, ft/sec 

l : Liquid density, lb/ft3  
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g : Gas density, lb/ft3  

w : Water-gas interfacial tension, dynes/cm  

If the superficial gas velocity in the wellbore segment is above the value obtained in Eq. 

31, the flow is considered annular flow. If the gas velocity is less than Eq. 31, the simulation 

checks for bubbly flow.  
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l : Liquid density, lb/ft3  

g : Gas density, lb/ft3 

w : Water-gas interfacial tension, dynes/cm  

 

If the gas velocity in the streams is less than the value obtained from Eq. 32, the flow 

pattern is bubbly flow. If not, the program proceeds to check churn flow. 
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Water-gas interfacial tension, dynes/cm, does not have a significant effect on two-phase 

calculations. However, their values are needed for the sake of calculation. 

0.349

(74) 75 1.108w p = −  34 

637.0

)280( 1048.053 pw −=  35 

( )( )
206

74 )280()74(

)74()(

ww

wTw

T 


−−
−=  36 

p : Pressure, psi 

(74)w : Water gas interfacial tension at 74 oF  
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(280)w : Water gas interfacial tension at 280 oF  

If the gas velocity in the wellbore segment is less than Eq. 37, the flow pattern is 

considered bubbly flow. 

( ) ( )sin36.043.0 bslgb vvv +=  37 

 If flow pattern has been determined successfully, liquid hold up and gas void fraction can 

be calculated with Eq. 38 and Eq. 39. Model coefficients are shown in Table 3. 
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Table 3 Hasan-Kabir model coefficients 

Flow Pattern Flow Parameter Co Rise Velocity, v  

Bubbly Flow 1.2 bv  

Slug 1.2 v  

Churn 1.15 Tv  

Annular 1 0 

 

After determining liquid hold up, mixture density can be calculated from Eq. 17. 

Hydrostatic pressure drop can now be calculated as well. 
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hp : Hydrostatic pressure loss, psi 

m : Mixture density, lb/ft3  

L : Length, ft 

 : Well inclination angle, degree   
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Friction pressure drop is the main contributor to pressure loss in gas wells as gas density 

is very low yielding a low hydrostatic pressure, but a high gas velocity leads to a high friction 

loss.  
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fp : Friction pressure loss, psi 

d : Pipe diameter, ft  

The friction factor is required to calculate the pressure drop due to friction. Friction factor 

shows how rough the pipe walls are. Reynolds number for field unit is calculated with Eq. 43 
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m : Mixture density, lb/ft3 

mv : Mixture velocity, ft/sec 

d : Pipe diameter, ft  

giB : Gas formation volume factor, ft3/SCF  

Total pressure drop is then calculated with Eq. 16. The calculated pressure drop is for one 

segment only of the wellbore. From Eq. 15, the pressure at the bottom of the first segment are 

obtained. The calculation should be carried to the next segment. Starting from the recently 

obtained pressure, the pressure drop in the next segment is calculated. The same process is 

repeated until bottomhole pressure is calculated. We need to remember that all the previous 
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calculations were based on fluids flow rate obtained from a guessed bottomhole pressure. Since 

this is the first iteration, obviously the calculated value of bottomhole pressure is not equal to the 

guessed value. As a result, a convergence equation is needed to obtain a new guess Eq. 44. 

, ,Re0.5 0.5wf wf wh wfp p p= +  44 

,wf whp  : Bottomhole pressure calculated backward from the wellhead, psi 

,wf whp  : Bottomhole pressure calculated from the reservoir, psi 

This process must be automated as it takes hundreds of run to find the correct bottomhole 

pressure which satisfies both the reservoir and wellbore system with one psi error margin. The 

obtained bottomhole pressure represents the pressure at the end of the first day of production. 

The time step can be specified by the simulation user; however, in our base case run, the time 

step is set to one day. The next step is to figure out the new reservoir pressure for the next day. 

First, gas in place volume is calculated volumetrically.  

( )

gi

wi
i

B

sAh
G

−
=

1560,43   45 

( )460
0.0283

i

gi

T z
B

p

+
=  

46 

iG : Initial gas in place, SCF  

Ah : Area-Thickness, acres-ft 

giB : Initial gas formation volume factor. ft3/SCF  

T : Temperature, oF  

The flow rate obtained from Eq. 3 represents the volume of gas obtained in one day. If 

we subtract the produced gas from the original gas in place, we get the remaining gas in place. 
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Rearranging Eq. 3 and using the remaining gas in place, the new water saturation, or the 

reservoir water saturation for the next day can be calculated 
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pG : Cumulative gas production, SCF  

gq : Gas flow rate, MSCF/d  

Gas formation volume factor is calculated at the new reservoir pressure. Up until this 

point, we are seeking the new reservoir pressure which can be calculated by the dry gas reservoir 

material balance.  
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p : Reservoir pressure, psi  

ip : Initial reservoir pressure, psi  

As can be seen from Eq. 49, gas reservoir compressibility factor at the new reservoir 

pressure is required that is one equation with two unknown parameters. To solve this dilemma, a 

new assumption is made. Since reservoir pressure cannot change that much in one day, it is safe 

to assume that, the gas compressibility factor for the previous day is still applicable. For each 

run, the previous-day gas reservoir compressibility factor will be used to acquire the new 

reservoir pressure. 

 After acquiring the new reservoir pressure, a new guess for the bottomhole pressure will 

be made, and the whole process is repeated all over again until the well dies either due to water 

loading or insufficient reservoir pressure.   
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CHAPTER III  

MODEL VALIDATION 

 

In this chapter, the proposed model is validated with commercial software simulation and 

field data. The model runs a set of data from a study done in Norway utilizing Olga for the 

wellbore calculation, and a reservoir simulation belongs to Shell. They used the same approach 

as in this study by implementing two systems to create a coupled wellbore-reservoir model. 

Then the model will be utilized to study liquid loading phenomena. The study will focus 

on flow pattern changes inside the wellbore. The flow pattern change from the annular flow is 

the trigger of liquid loading onset. The moment the gas velocity drops below the annular 

transitional velocity, gas will not be able to lift liquid droplets to the surface. As a result, 

bottomhole pressure starts to buildup decreasing drawdown pressure, hence decreasing the gas 

flow rate. To investigate the liquid loading phenomena properly, flow pattern throughout the 

entire wellbore should be observed. 

The model can produce a dynamic image for the entire wellbore on a previously set time 

step. This image provides a better look at what takes place inside the wellbore. For a gas well, 

typically the flow pattern on early days of production is annular flow. As reservoir pressure 

depletes, flow pattern changes to slug or churn flow before it ultimately dies due to liquid 

loading. The model can detect the onset of liquid loading anywhere inside the wellbore. Besides, 

the life expectancy for the well is reported. Knowing ahead of time, the time at which liquid 

loading occurs, allow the operating company to intervene to delay the onset of liquid loading and 

as a result, extend the well-life. 
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Validation Against Commercial Software 

 In this section, the proposed model is validated against data set obtained from a study 

published under the title “Simulating liquid loading in gas wells,” W. Schiferil et al. 2010. The 

data is presented in Table 4. 

Table 4 Validation data set obtained from the literature 

Reservoir  Wellbore Stream 

pi 4,351 psia pwh 290 psia Tpc 378 oR 

T 212 oF Twh 129.2 oF ppc 671 psia 

A 218 acres d 3.5 in MW 17.53 lbm/lb mole 

k 5 md Ɛ 6.00E-03 ft γg 0.6   

h 328 ft θ 90  o 

φ 0.12   rw 0.46 ft 

Swi 0.25   Depth 9,842 ft 

  

The noticeable parameter from the provided set of data is reservoir thickness. The 

reservoir under investigation is a massive reservoir with over 300 ft of thickness. Moreover, the 

reservoir is considered deep as well, with over 9000 ft. According to the study, this well is 

expected to die on day 3,191 after production starts. The gas flow rate at abandonment pressure 

was reported to be 0.6 MMSCF/day with a water flow rate of 14 bbl/day.  

The same data was used as an input in our proposed model. The output data is presented 

graphically in Figure 5.  
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Figure 4 Gas and water flow rate based on input data acquired from a published study (W. 

Schiferil et al. 2010) 

 

Figure 4 shows the decline of both fluids flowrate over time as reservoir depletes. The 

last day of production is 3,212 as it can be seen from Figure 4. This value agrees with the one 

obtained from the use of fully-fledged commercial simulation. The gas and water flow rates 

match the simulation reasonably. The results are tabulated in Table 5.   

Table 5 Comparison between the proposed model and reservoir-wellbore commercial software 

 OLGA & Shell Our Model 

Well Life, day 3187 3202 

Last Water Flow Rate, bbl/day 14 14 

Last Gas Flow Rate, MMSCF/day 2.8 2.9 

  

Tables 5 proves the validity of the proposed model. Using commercial software requires 

specialized training as well as owning the license to use it in the first place which gives the 

proposed model a reasonable advantage over the commercial simulations. Also, the use of 

commercial software restricts the user to limited correlations and narrows the usage to what is 
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already installed in the package. The proposed model, which was explained step by step, can be 

modified in any way the researchers want. Any correlation, whether it was used for fluid 

properties of calculating income flow rate or even the mechanistic wellbore pressure drop can be 

changed. The model is designed in a way to give the user the full power to adopt any approaches 

to study wellbore issues. For example, horizontal-well inflow equation can replace the current 

inflow equation for a vertical well. Moreover, using gas well reservoir material balance instead 

of dry gas material balance would allow the study of oil and water holdup in the wellbore 

bearing in mind that, using a complicated approach like gas wet material balance mandates the 

implementation of three fluid inflow equations and their respective relative permeability curve 

equations.  Since the model can be versatile, it would be beneficial in the academia among 

petroleum engineering students. 

The total run time to validate our model with the commercial software data was 5 

minutes. If commercial software is intended to be used for its superior accuracy, the proposed 

model can be used first to get a preliminarily results before running the commercial software. 

This will save the company a tremendous amount of time as it gives the engineers an estimate of 

the course of actions or the consequences of their input data.  
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Figure 5 Olga and reservoir simulation results in SI units 

 

Studying Figure 6 shows the gas flow rate decline suddenly to a little value. Then, within 

one day the well-flow rate becomes zero. Because they were utilizing a commercial reservoir 

software, the simulation is dealing with the reservoir as a unit built with different grid properties. 

Unlike the model presented in this study, which considers the reservoir as a one big grid block, 

they were able to capture the well’s final hours. Nevertheless, having a one-day error in 

exchange for a simulation completing years run within 3 minutes is a reasonable compromise.  
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Figure 6 Pressure data from our simulation for the Norwegian case simulated by our model 

  

Unfortunately, reservoir pressure data is not presented in the Norwegian case. We tried to 

obtain the reservoir and bottomhole pressures with our model. The result is presented in Figure 

7. Both pressures are declining with production. However, the point which deserves our attention 

is the absence of the sudden increase of buttonhole pressure. The sudden increase of the 

buttonhole pressure is a sign of liquid accumulation at the bottom of the well, hence the effect of 

liquid loading. In contrary, the will dies as the reservoir pressure is insufficient to move the fluid 

into the wellbore. In other words, it is a reservoir problem, not a wellbore problem and surely not 

a liquid loading problem. 

In some gas wells, the well dies because of the reservoir pressure depletion but liquid 

loading is reported as the reason for the death. Another set of data is needed to decide for sure. 

Liquid holdup profile at the bottom of the well throughout the life of the well should shed more 

light on this issue.  Figure 8 displays liquid holdup profile.   
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Figure 7 Liquid holdup profile at the wellbore bottom throughout the well’s life 

  

From Figure 8, the liquid holdup increases exponentially with time which means more 

liquid is accumulating at the bottom of the well, but still not enough to be considered a liquid 

loading problem. The well is going in the direction of liquid loading as the gas flow rate 

decreases with time. The maximum value of liquid holdup is less than 0.05 on the last day of 

production. Because of this, the well dies from reservoir pressure depletion, not from liquid 

loading.  
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Validation Against Field Data 

Table 6 Field data rearranged and modified from (Li et al. 2002) 
Well Producing Wellhead Water Prod. Gas Prod. Production z Factor Proposed Model Water Prod. Gas Prod. 

 Depth, ft Pressure, psi bll/d ft3/d Statue   bll/d ft3/d 

1 7,569 2,234 2.20 1,214,614 Unloaded 0.836 Unloaded 1.7 1,119,037 

2 6,578 1,740 2.39 1,197,663 Unloaded 0.848 Unloaded 1.73 1,128,229 

3 7,894 3,162 7.86 1,591,492 Unloaded 0.847 Unloaded 7.5 1,508,291 

4 7,802 2,393 5.03 1,687,336 Unloaded 0.835 Unloaded 5.4 1,737,640 

5 9,875 2,263 4.40 1,655,730 Unloaded 0.836 Unloaded 4.81 1,571,44 

6 8,720 3,350 7.55 1,612,822 Unloaded 0.849 Unloaded 8.2 1,655,530 

7 8,163 2,857 14.47 1,765,735 Unloaded 0.54 Unloaded 8.6 1,734,977 

8 8,743 2,582 7.86 358,091 Unloaded 0.839 Unloaded 6.73 352,205 

9 7,677 2,611 28.30 318,892 Load-up 0.839 Loaded 18.4 305,226 

 

 Tubing inside diameter is 2.44 in. Temperature is 120 F. Gas gravity is 0.6. Table 6 

shows field data rearranged and modified from (Li et al. 2002), for gas wells producing water. 

The data shows the production status for each well whether it is under liquid loading or not.  

 This set of data can be utilized to validate the proposed well-reservoir coupled model. 

Water production is calculated automatically, reservoir compressibility as well. The relative 

permeability correlation used for well 1 is shown in figure 9. The rest of the wells have the same 

curve coefficients as in well 1 except for the initial gas and water relative permeability. 

 Unfortunately, the relative permeability relationship curves for the wells in table 6 are not 

available. The model utilizes default relationship values that can be tuned for each reservoir. 

Table 7 shows the tuned initial relative permeability for both phases. The model, based on the 

provided values of the initial permeabilities, construct the relationship curve as in figure 9. 
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Figure 8 Relative permeability curves relationship for the validation case of the field data 

 

Table 7 Relative permeability curve parameters for the wells listed in Table 6 

Well Initial Gas Relative Permeability Initial Water Relative Permeability 

1 0.668 0.01 

2 0.668 0.01 

3 0.668 0.03 

4 0.668 0.019 

5 0.668 0.019 

6 0.668 0.03 

7 0.668 0.03 

8 0.133 0.03 

9 0.133 0.1 
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Krg = 8.1113e-8.373sw
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Validation Against Numerical Simulation 

 In the literature review section, we have talked about a study done by Limpasurat and 

Valko et al. (2015). They created a coupled wellbore-reservoir model using an open source 

reservoir simulation code and Turner et al. (1969) model to predicate the onset of liquid loading. 

Their reservoir modeling is a sophisticated one where the whole reservoir is gridded into smaller 

grids. Table 8 adapts the reservoir and wellbore description from Limpasurat, et al., 2015. 

Table 8 Simulation Data adapted from (Limpasurat, et al., 2015) 

Reservoir Parameters 

Layer thickness 600 ft 

Reservoir Radius 1,000 ft 

Porosity 0.1 

Permeability 1.5 md 

Initial reservoir pressure 970 psi 

Initial water saturation 0.3 

Reservoir temperature 260 oF 

Well Parameter 

Open hole diameter 7 in 

Tubing diameter 5 in 

Total depth 7,700 ft 

Wellhead pressure 430 psi 

Wellhead temperature 60 oF 
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Figure 9 Comparison between open source simulation result and the proposed model 

  

The result between our proposed model which is based on a single reservoir block is 

compared to the result obtained from the coupled model based on reservoir simulation are 

presented in Figure 10. The onset of liquid loading from our model agrees well with the time 

suggested by the numerical simulation. The decline of the gas flow rate is steeper in the reservoir 

simulation. The reason for this could be different things. Relative permeability curve equations 

implemented in the simulation or the correlations used to estimate fluid properties. The start of 

simulation production represents the ability of the simulation to take care of wellbore storage. 

The lower production rate after the liquid onset in the simulation is the result of water flooding 

job which cannot be replicated with the proposed model.  
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CHAPTER IV  

HASAN-KABIR MODEL MODIFICATION 

 

 Hasan-Kabir pressure drop in the wellbore mechanistic model is widely used in the 

industry because of its simplicity. All other mechanistic models are known for their complexity 

and the tremendous time and efforts needed to implement them. One might argue that the other 

complex models might yield better accurate results, this is partially true. One should consider the 

percentage of improvement and the time needed to reach the final results when comparing 

mechanistic models. At any rate, in the model we are suggesting in this study, any model can be 

used. As we stated earlier, the model is built as a block algorithm where any correlation or model 

used can be removed and replaced by different ones that suit the user goals. 

In this section, we will show that Hasan-Kabir model was developed for oil wells 

originally. We will prove that the transition between flow pattern is different if the gas velocity is 

increasing in oil well, and the gas velocity is decreasing in a gas well. 

The utilization of the model proposed in this study made the investigation of Hasan-Kabir 

clearer. The reason is, the model is simulating a well connecting to a reservoir dynamically until 

the well dies. From the output, we can see snapshots of the daily flow pattern changes inside the 

wellbore. This closer look gives the investigator a more transparent image of what is occurring 

inside the wellbore.  

Applying Hasan-Kabir Original Model 

In this chapter a particular case is run to investigate Hasan-Kabir model, we have noticed 

some discontinues in the liquid holdup curves with times. These gaps occur whenever the flow 
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pattern changes. We found the causing of these gaps is the smoothing parameters used in Hasan-

Kabir model. 

Table 9 Input data used to study Hasan-Kabir model 

Reservoir  Wellbore Stream 

pi 2,000 psia pwh 290 psia Tpc 392.86 R 

T 212 F Twh 129.2 F ppc 676.904 psia 

A 160 acres d 3.5 in MW 17.382 lbm/lb mole 

k 5 md Ɛ 6.E-03 ft γg 0.6   

h 30 ft θ 90      
φ 0.12 fraction rw 0.46 ft    

Swi 0.25 fraction Depth 5,000 ft    
ρw 61 lbm/ cu ft       

  

Table 9 shows the input data to study Hasan-Kabir model. The data presented in the table 

is assumed. We took into consideration a case in which the wellbore will undergo all different 

types of flow pattern before it dies. It is a gas reservoir which produces mainly gas at the 

beginning of production. The gas velocity decline shortly as initial reservoir pressure is not high 

enough.  

To give a better glimpse of inside the wellbore, Figure 9 illustrates the changes in flow 

pattern at the bottom of the wellbore for different days of production. At day 83, the well 

produces under annular flow where the gas is flowing at the center, and the liquid is coating the 

wellbore pipe. As for the liquid loading, the well exhibits liquid-loading-free stage where all the 

liquid droplets are being transported to the surface. 

At day 84, the wellbore has three different types of flow pattern. At the bottom of the 

well and for almost 3,000 ft, the flow is slug flow. Above the slug flow, there is churn flow for 

less than 1,000 ft. At the top of the wellbore, the flow pattern is annular flow.  
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Figure 10 Flow pattern changes inside the wellbore for Hasan-Kabir Model modification 

case 
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 According to Figure 11, the annular flow disappears at day 94 of production. Using 

wellhead conditions to detect the onset of liquid loading would result in underestimation of one 

week. As reservoir pressure depletes more, the wellbore will exhibit one type of flow, which is 

slug flow. The column of liquid under churn flow is shrinking over time. 

The transition from annular into either churn or slug flow occurs first at the bottom of the 

well. At the bottom of the well, the pressure is higher than anywhere inside the well which 

means that the gas molecules are under pressure, hence, cannot move faster compared with the 

molecules under less pressure. In other words, the gas velocity at the bottom of the well is the 

lowest in the entire wellbore. Slower gas velocity is translated to the inability of gas to carry the 

liquid loading, which initiates the onset of liquid loading.  

 

 

 

 

 

 

 

 

 

Figure 11 shows the variation of the liquid holdup in the wellbore against depth. 

Logically, the value of liquid holdup is higher at the bottom of the well because of the lower gas 

Bottomhole, higher pressure 

Wellhead, lower pressure 

Gas molecules highly pressurized 

lower velocity 

Gas molecules less pressurized 

higher velocity 

Liquid loading occurring tendency 

Figure 11 Illustration of liquid loading occurring tendency in wellbore 
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velocity explained earlier and illustrated in Figure 12. If the gas is unable to lift the liquid, liquid 

drags against the pipe surface resulting in a higher liquid holdup. 

Hasan-Kabir Model Shortcoming 

 
Figure 12 Liquid holdup inside the wellbore calculated with Hasan-Kabir model for two 

consecutive days 

  

If we examine the curves closely in Figure 13, we can see that the entire wellbore on day 

82 is under annular flow even if we do not have Figure 11 which expresses this conclusion 

explicitly.  The reason behind the conclusion is, liquid holdup value is too small to form liquid 

slugs of any shape. The curve for day 83 has a gap. The liquid holdup value jumps from 0.13 to a 

value greater than 0.2 within a very short vertical distance which does not occur in real wells.  
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Figure 13 raises two questions. One, why the liquid holdup value stays almost constant at 

the end of annular flow pattern and before the transition into churn flow? Two, why the value of 

liquid holdup jumps when flow pattern changes from annular to churn flow? To be able to 

answer these two questions, we should recall some equations from Hasan-Kabir model. 

+
=

vvc

v
f

mo

sg

g  
38 

Eq. 38 is the general equation used to calculate void fraction and liquid holdup. For 

annular flow, Co = 1 and 
v is 0.  

slsg

sg

g
vv
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+
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 Assume, the liquid velocity is constant, and the gas velocity decreases from a high value 

which is the same situation in any gas wellbore. The liquid velocity does not change that much as 

liquid is slightly incompressible which means, it cannot vary a lot with the pressure changing. 

The following table represents the results for this assumption. Since the liquid velocity is 

minimal compared to gas velocity in annular flow:  
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 At the top of the wellbore, gas velocity changes with depth considerable as gas molecules 

are not under high pressure. However, at the bottom of the, when the pressure is high, gas 

velocity cannot change significantly with depth, resulting in an almost constant liquid holdup 

which explains the constant part of the day 82 curve below 4,000 ft, and the top part of curve day 

83 as gas velocity low enough to change the flow pattern into churn flow Figure 11.  
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 As for the discontinuity observed in day 83 curve, it occurs as flow transitions into churn 

flow from annular which occurs gradually in reality. In Figure 11, the liquid holdup jumps from 

0.13 to 0.23 instantaneously. Let’s recall churn flow void fraction equation. 

+
=

vvc

v
f

mo

sg

g  
38 

The value of liquid holdup before the flow goes into the churn flow is around 0.13. The 

reason behind this is the flow parameter Co in Hasan-Kabir model. For a high gas velocity in the 

churn flow equation as liquid velocity becomes insignificant, the equation turns to: 

87.0
15.1

=
sg

sg

g
v

v
f  
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This results in a liquid holdup value of 

13.087.011 =−=−= gl ff  53 

For churn flow, Co is 1.15, and the rise velocity is a value around 1.1. Comparing this 

equation to the annular flow equation (Figure 14), we notice an addition to the dominator in the 

form of a constant and the rise velocity. In other words, Co suddenly changes from 1 to 1.15 and 

the rise velocity increases from zero to nearly 1.1. This is the main reason for the jump. 

 

 

 

  

Annular Flow 

 

Churn Flow 

 

Figure 13 Comparison between annular and churn flow 
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Hasan-Kabir Model Improvements 

Hasan-Kabir tried to solve this issue by adding a smoothing parameter to the annular flow 

equation to aid in bridging the gap by having a variable Co starts with a value of 1 and goes up to 

a value of 1.15, which is the Co for churn flow. 















−
−+





























−
−−=

gcsg

gc

gcsg

gc

o
vv

v

vv

v
c 1.0exp1.0exp115.1  

 The smoothing parameter consists of two similar terms. To be able to understand this 

equation, Table 10 shows the tabulated results for the smoothing parameter for arbitrary value of 

10 for annular critical velocity. 

Table 10 Hasan-Kabir annular flow smoothing parameter terms at different gas velocities 
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20 0.095 0.90 

19 0.11 0.89 

18 0.12 0.88 

17 0.13 0.87 

16 0.15 0.85 

15 0.18 0.82 

14 0.22 0.79 

13 0.28 0.72 

12 0.39 0.61 

11 0.63 0.37 

 

The smoothing equation is a function of superficial gas velocity and the critical annular 

velocity. The equation consists of two terms adding them equals one for any gas velocity. Also, 

one term goes from small number near zero up to one. The other term decreases from a value 

near one to zero. Multiplying the left-hand side term with a value of 1.15 results a number near 1 
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and goes up to reach the same multiplier value 1.15. It is an exponential equation results values 

from 1 to 1.15  

When Hasan-Kabir modified their original work, they worked only on the constant 

parameter in their general equation to calculate the void fraction. This improvement resulted in 

smoother void fraction and liquid holdup curves. However, the improvements do not affect the 

presented case where we still have a gap or discontinuity in the liquid holdup curve. Looking at 

Figure 11, Hasan-Kabir wanted to have a smooth transition from a flow pattern to other which 

works perfectly for all other flow transitions but not for the transition to the annular flow. It 

seems that Hasan-Kabir has been developed to work for two-phase flow with liquid is the 

dominated phase. As gas velocity increases, flow pattern changes from bubbly to churn or slug 

flow during these transitions, Hasan-Kabir works fine up until it reaches annular flow. Since we 

are investigating liquid holdup, which occurs as flow transits from annular, it is essential to have 

an accurate annular transition equation as possible. As a result, bubble rise velocity in the 

annular flow equation should be modified.  

We need an exponential equation for the bubble rise velocity gives values near zero at 

high gas velocity and values near the bubble rise velocity values for churn flow at lower gas 

velocity. The equation should be a function of superficial gas velocity and the critical gas 

velocity to have an annular flow. We will start with Eq 33 as a base equation. 
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 As can be seen from Table 10, the left-hand side term of the equation results in small 

values (near zero) at high gas velocity and higher values at higher gas velocities. Eliminating the 

right-hand side term results in Eq 54.  
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 To make sure we are heading in the right direction, we will present the original values for 

the rise velocity for a specific day and see how they change with flow pattern. 

Table 11 Data from day 86 

Depth Flow Pattern v∞ Co 

450 Annular 0 1.1500 

500 Churn 1.063 1.1632 

  

Table 11 shows the values of rise velocity with depth. For annular flow, they are all 

zeros, but for churn flow, they start with a value of 1.063 and decreases afterward. As for Co 

values, they have a reasonable transition from annular to churn flow, but it can be enhanced 

further. First, we will use Eq. 54 to produce rise bubble velocity for annular flow. 
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Figure 14 Modified Hasan-Kabir model Liquid holdup vs. Depth 

  

As can be seen from Figure 15, the curve shape has improved a lot. At day 72 when the 

flow pattern is annular throughout the entire wellbore, the liquid holdup values do not stay 

constant at the bottom of the wellbore. They start to shift toward churn flow curve. At day 73, 

flow pattern changes at 1750 ft. The transition is smoother compared to Figure 13. The transition 

from churn to slug needs smoothing. Liquid loading onset occurs ten days earlier than the 

original model which is due to adding bubble rise velocity to the dominator of the void fraction 

equation, which makes void fraction smaller and liquid holdup larger. 
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Figure 15 Final modified Hasan-Kabir model result for liquid holdup vs. depth 

 

 Figure 16 shows the improved results from Hasan-Kabir. The transition from a flow 

pattern into other flow pattern is much smoother. The reason behind the small jumps in liquid 

holdup values is the smoothing equation. The equation has an exponential expression where the 

exponent controls how fast or slow the values increase. In the original work of Hasan Kabir, the 

exponent has a value of -0.1. In the enchanted version, -0.02 seems to give better results. We 

need to bridge the gap between the annular and the churn flow. As a result, the rise velocity 

should increase from zero up to a value near the first value of the rise velocity for the churn flow. 

If we increase the value to one rapidly, this will have a significant impact on the prediction of 

liquid loading onset because increasing the rise velocity will increase the liquid holdup. Ideally, 
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at high gas velocity rise velocity for annular flow should be near zero, and at lower gas velocity, 

it should be near 1.Table 12 summarizes the modification to Hasan-Kabir. 

Hasan-Kabir Model Improvements Summary 

Table 12 Hasan-Kabir model improvements summary 
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CHAPTER V  

RESERVOIR PRESSURE AND LIQUID LOADING 

 

Reservoir Initial Pressure Effect on Liquid Loading 

The reservoir is the main factor affecting liquid loading phenomena. The reservoir is not 

only responsible for liquid loading; it is the primary source of everything in petroleum 

engineering. Going away from the wellbore and the many correlations developed to study the 

phenomena of liquid loading, in this section, the effect of the reservoir will be examined 

thoroughly. We will start with reservoir pressure. Reservoir pressure is the engineering term for 

reservoir energy. When the reservoir energetic, high pressure, flowrate is high, and production is 

high which occurs at the early stages of production. As time progress, the reservoir starts to 

deplete. How depletion affect liquid loading? This is the central question we want to find an 

answer to it. Of course, liquid loading onset occurs at a later stage when initial reservoir pressure 

is high. In other words, the higher reservoir pressure, the better. However, for how long? Does it 

make any difference if the reservoir pressure can be increased 100 psi? For the reservoir and 

wellbore properties shown in Table 13, we plotted different reservoir pressure flow rates against 

time as shown in Figure 15.  
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Table 13 Reservoir and wellbore properties data used in our model for this section 

Reservoir 

pi 3,200 psia Wellbore 

T 212 F pwh 290 psia 

A 160 acres Twh 129.2 F 

k 5 md d 3.5 in 

h 30 ft Ɛ 6.E-03 ft 

φ 0.12 fraction θ 90  

Swi 0.25 fraction rw 0.46 ft 

ρw 61 lbm/ cu ft Depth 5,000 ft 

 

 

 

 
Figure 16 Gas production for the same reservoir for different initial reservoir pressure 
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Figure 15 presents gas flow rate vs. time for different initial reservoir pressures. Initial 

reservoir pressure starts in this plot at 1900 psi and increases to 2700 psi. Each time initial 

reservoir pressure increases, liquid loading onset occurs at a later time. 

Liquid loading onset can be detected from the curves as the shape of the curves shift. The 

shift of the shape is the result of flow pattern shifting as well. However, from the plot itself, we 

cannot know if it shifts to slug or to churn flow. 

The interesting finding from this plot is the gap between liquid loading onset decreases as 

reservoir pressure increases. It is true that the higher the reservoir pressure is, the later the liquid 

loading onset will occur. However, as reservoir pressure increases, the liquid loading onset gap is 

delayed for a shorter and shorter time. Liquid loading onset time is reported in Table 14. 

Table 14 Tabulated results for Figure 15 

Reservoir Pressure, 

psi 

Liquid Loading Onset, 

day 

Δ Time, 

days 

Flow Pattern changes from 

annular to 

1900 73   Churn 

2000 124 51 Churn 

2100 171 47 Churn 

2200 212 41 Churn 

2300 250 38 Churn 

2400 285 35 Churn 

2500 288 3 slug 
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From Table 14, we can see that liquid loading starts at 51 days later as initial reservoir 

pressure increased 100 psi. One might expect that it would occur at later 50 days if reservoir 

pressure is increased another 100 psi. However, it does not. On the contrary, if reservoir pressure 

increased 1000 psi, liquid loading onset occurs after 47 days. The gaps get shorter as the 

reservoir initial pressure increases until it becomes only three days. 

Reservoir Pressure and Wellbore Flow Pattern Relationship 

The reason behind this is a rather complicated matter. It cannot be guessed from Table 

14. The good thing about the proposed model is that it gives pages of outputs detailing daily 

production. Table 15 is an example of the data that can be acquired from the model.  
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Table 15 Further production data for the same well under different initial reservoir 

pressures 

Time pr pwf qg qw FP fL 

days psi psi MSCF/d STB/d     

Pri= 1900 psi     

72 1,779 585 1,860 5 Annular 0.176 

73 1,777 597 1,848 5 Churn 0.212 

74 1,776 622 1,824 5 Slug 0.241 

Pri= 2,000 psi     

123 1,779 584 1,862 5 Annular 0.172 

124 1,778 592 1,852 5 Churn 0.210 

125 1,776 614 1,832 5 Churn 0.223 

126 1,775 662 1,788 5 Slug 0.246 

Pri= 2,100 psi     

170 1,778 590 1,854 5 Annular 0.201 

171 1,776 613 1,833 5 Churn 0.221 

172 1,775 657 1,793 5 Slug 0.246 

Pri= 2,200 psi     

211 1,779 585 1,861 5 Annular 0.174 

212 1,777 594 1,850 5 Churn 0.211 

213 1,776 619 1,828 5 Churn 0.232 

214 1,774 665 1,785 5 Slug 0.247 

Pri= 2,300 psi     

249 1,779 584 1,861 5 Annular 0.172 

250 1,778 593 1,852 5 Churn 0.210 

251 1,776 616 1,830 5 Churn 0.226 

252 1,775 662 1,788 5 Slug 0.246 

Pri= 2,400 psi     

284 1,779 585 1,860 5 Annular 0.176 

285 1,777 596 1,848 5 Churn 0.211 

286 1,776 622 1,824 5 Slug 0.241 

Pri= 2,500 psi     

287 1,826 512 2,014 6 Annular 0.098 

288 1,824 852 2,014 6 Slug 0.284 
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From Table 15, further information about the situation is available. The table shows the 

time in days. This time represents the number of daily production. For example, 72 days means 

the 72nd day after the first day of production. The table displays flowrates for both fluids for that 

specific day. We can see the flow pattern at the bottom of the well on that day. This flow pattern 

represents the bottom only; it does not mean that the entire wellbore is under this flow. The table 

shows the flow pattern at the bottom only because the bottom part of the wellbore is the first 

location where liquid loading onset occurs which is enough to give us an image of what is going 

inside the wellbore. Lastly, the liquid holdup is displayed.  

At initial reservoir pressure of 1900 psi, flow pattern changes from annular to churn flow. 

The next day it changes into slug flow. Churn flow does not disappear entirely from the 

wellbore. It just travels upward. In other words, churn flow seems like the transition between 

annular flow and slug flow.  

At initial reservoir pressure of 2000 psi, flow pattern changes into churn flow and stays at 

churn flow for one more day until it shifts again into slug flow. In other words, the transition 

from annular into slug flow took a longer time. It behaves the same way for initial reservoir 

pressures of 2100, 2200, 2300, and 2400 psi. 

From table 15, we notice that at the initial reservoir pressure of 2500 psi, liquid loading 

onset time is only three days later than if the initial reservoir pressure is less by 100 psi. If the 

management were in the place of thinking to increase reservoir pressure by gas injection or water 

flooding to keep the reservoir pressure higher by 100 psi to avoid liquid loading, unfortunately, it 

would be economically unreasonable if the case as the one discussed here. The question is, why! 
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To look further into this matter, we have increased the initial reservoir pressure and run 

the simulations to see what happens. The results are tabulated in Table 16. 

Table 16 Increasing initial reservoir pressure effect 

Initial Reservoir 

Pressure, psi 

Liquid Loading 

Onset, day 

Δ Time, 

days 

Flow Pattern changes from 

annular to 

1900 73   Churn 

2000 124 51 Churn 

2100 171 47 Churn 

2200 212 41 Churn 

2300 250 38 Churn 

2400 285 35 Churn 

2500 288 3 slug 

2600 348 60 churn 

2700 374 26 churn 

2800 399 25 churn 

2900 422 23 Churn 

3000 444 22 Churn 

3100 464 20 Churn 

3200 483 19 Churn 

 

From table 16, it is evident that liquid loading onset “reset” at a specific value of initial 

reservoir pressure. Our explanation is, the length of the annular flow period is significant to the 

start of liquid loading. The more the flow stays at annular flow, the flow pattern tends to shift to 

slug flow skipping churn flow. If it stays longer, it can die without going through any change of 

flow pattern as the case discussed in the validation section. How long the well remains in annular 

flow depends on the initial reservoir pressure. However, increasing initial reservoir pressure to 

avoid the liquid loading onset can aid in delaying the phenomena, but it should be studied 

carefully. At initial reservoir pressure of 2400 psi, the flow pattern does not change into churn 

flow. As a result, it goes directly into slug flow. The slug flow increases liquid holdup severely 
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which leads to faster liquid loading onset making the increment of initial reservoir pressure 

meaningless. The liquid holdup for the different initial reservoir pressures is plotted against time 

To get a better look at this issue, 

Reservoir Pressure and Wellbore Liquid Holdup Relationship 

 
Figure 17 Liquid holdup for different initial reservoir pressure 

 

 The liquid holdup is the fraction of liquid occupying a section of the wellbore. When 

flow pattern is annular, the liquid holdup is the lowest compared to churn, slug, and bubbly flow. 

To give a general idea about liquid holdup varying with flow pattern changing, Figure 18 

displays liquid holdup at the bottom of the well over time. 
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Table 17 Liquid holdup for different flow patterns 

Liquid Holdup Flow Pattern 

0.01~ 0.15 Annular 

0.15 ~ 0.25 Churn 

0.25 ~ 0.8 Slug 

0.8 ~ 0.99 Bubbly 

 

Calculating the liquid holdup is still one of the most challenging issues in the two-phase 

flow. Typical liquid holdup values for the different flow patterns are shown in Table 17 In gas 

wells, annular two-phase flow dominates the early time of production, and later it changes to 

slug flow. Churn flow is acting as a transition phase between the annular and slug flow. It is 

evident from Figure 18 that the transition phase which is the churn flow pattern period is related 

to annular flow period. The more the well is under annular flow, the less it will be in churn flow. 

To get the complete picture, reservoir pressure and bottomhole pressure for the different 

initial reservoir pressures studied in this section are presented here. 
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Bottomhole Pressure and Liquid Build up Relationship as Reservoir Depletes 

 
Figure 18 Reservoir pressure depletion vs. time for different initial reservoir pressure 

 

Figure 19 shows reservoir pressure depletion over time. We can conclude from this figure 

that reservoir depletion is not affected by liquid loading or the two-phase flow inside the 

wellbore. Reservoir pressure calculated in this model does not depend on any wellbore parameter 

except for the daily gas production. It is determined through gas reservoir material balance which 

of course independent of the liquid holdup in the wellbore. 
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Figure 19 Bottomhole pressure for the same reservoir assuming different initial reservoir 

pressure 

 

Bottomhole pressure can be affected directly by liquid loading. As liquid holdup 

increases inside the entire wellbore, the dense liquid content builds up causing back pressure on 

the bottomhole causing a sudden increase in the bottomhole flowing pressure and can be used as 

a sign of liquid loading onset. 

Figure 20 displays how bottomhole pressure changes because of flow pattern change in 

the wellbore. In gas wells, bottomhole pressure increases with time as liquid condenses 

throughout production. The rate at which bottomhole pressure increases depends on the liquid 
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content in the stream. The sudden increases in bottomhole pressure in Figure 18 is due to the 

change of flow pattern from the annular flow. This sudden surge can be associated with churn or 

slug flow. However, with a closer look at the different curves representing different initial 

reservoir pressure, all the curves behave the same way, except for the curve belongs to the initial 

reservoir pressure of 2500 psi. 

All the curves in Figure 18 start with a curve concave up and then concave down. After 

that, becomes almost a straight-line increasing with time, except for the last curve belongs to 

2500 psi. It starts with a curve concaving, then suddenly shifts to a straight line. From Table 17, 

we can see that at the initial reservoir pressure of 2500 psi, the flow pattern changes after the 

onset of liquid loading from annular flow to slug flow. This behavior signifies our finding that 

churn flow is the transition between annular and slug flow. 

Figure 18 shows the curve for initial reservoir pressure of 2600. This curve does not 

change. In other words, the well does not undergo any change in the flow pattern. Hence, liquid 

loading does not take place before the 300 days of production as the other wells. What we can 

understand from this behavior is, initial reservoir pressure can affect the onset of liquid loading. 

The same figure is plotted again, but this time showing the rest of the 2600 psi curve. 



 

65 

 

 
Figure 20 Bottomhole pressure at higher initial reservoir pressure 

Coupling reservoir model and wellbore model allowed us to understand the effect of the 

reservoir on liquid loading. Figure 21 shows that the bottomhole pressure curve concaves up 

after the onset of liquid loading indicating that the flow patterns shift from annular to churn flow, 

not slug flow. This behavior confirms that the initial reservoir pressure affects the change of flow 

pattern. The longer the annular flow rate stays in the wellbore, the higher the possibility that it 

will change to slug flow directly. However, at higher intimal reservoir pressure, the wellbore can 

stay longer in the annular two-phase flow and changes into churn flow. 
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CHAPTER VI  

RESULTS, DISCUSSION, AND CONCLUSION 

 

Water Production Effect on Liquid Loading 

Having easy to modify model can help with the studying of many vital parameters like 

the production of and its effect on liquid loading. The proposed model in this study utilizes the 

relative permeability concept to compute the two-phase flow in the reservoir. In this section, the 

effect of relative permeability and water production on liquid loading will be tackled. 

Modified Brooks and Corey model (1966) 
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Figure 21 Water production for different reservoirs having different Corey exponent 
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Water flow rate for different reservoirs having different relative permeability values is 

plotted in Figure 22. It seems that water production does not affect the onset of liquid loading 

because at the early stages of production gas flow rate is very high and able to lift all the liquid to 

the surface regardless of the water content. Something else is worth mentioning. Water 

production, when the initial water production is high, decreases a lot after the onset of liquid 

loading. In other words, the higher is the initial water flow rate, the more it decreases after the 

onset of liquid loading. Now how this affects the gas flow rate? 

 

 
Figure 22 The effect of water production on the gas flow rate 
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Gas production if the flow rate is very high, going into liquid loading can be difficult. As 

a result, we can see from Figure 23; increasing water production did not affect the onset time of 

liquid loading. However, one might argue that the increment of water is still low. This might be 

true. In the next figure, we will try to increase water production furthermore. Before we go into 

that step, there is one effect we observed from increasing water production. The life of the well 

has decreased significantly after each increment which cannot be seen clearly in Figure 22. It is 

more explicit in Figure 23. When water production increases, the well-life expectancy decreases 

because the water content in the well increased. It is true that the onset of liquid loading time 

does not change. However, being in the slug flow with more water connate, this increases 

hydrostatic pressure drop. In other words, gas velocity is that main factor for the onset of liquid 

loading, and the water flow rate is the main factor affecting well life expectancy. 

 

 
Figure 23  Decreasing Cory exponent below one increase water production significantly 
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Table 18 Water effect on the onset of liquid loading 

n Gas flow rate at onset Water flow rate at onset Time of liquid loading onset 

2 1,848 5 73 

0.5 1,878 177 59 

0.1 1,937 455 36 

0.05 1,952 513 31 

0.01 1,960 563 27 

0.001 1,963 575 26 

0.0001 1,961 576 26 

 

Corey exponent is the main factor affecting the relative permeability of both phases in the 

reservoir. After observing the effect of water production on wells life expectancy, we have 

increased the water production by lowering the Corey exponent further. The results are 

summarized in Figure 24 and Table 18. We can see from both that this time the water production 

is affecting the time of liquid loading onset. When water production becomes in hundreds of 

barrels, the onset happens faster. However, after decreasing the Corey exponent below a specific 

value, the liquid onset time does not change because the water production is not changing. The 

equation itself can explain the reason behind this. When the Corey exponent approaches zero, the 

value for water relative permeability reaches a constant value. 
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Depth vs. Liquid Holdup 

One of the main conclusion stated in Riza (2016) work is the requirement of studying the 

onset of liquid loading in the entire wellbore. Previous studies concentrated on the conditions at 

the wellhead. In this section, we are going to plot the liquid loading vs. the depth and both gas 

and liquid velocities against depth trying to determine the location at which the liquid loading 

occurs. 

 

Figure 24 Liquid loading behavior with depth recorded for different days for the same 

well.  
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Liquid holdup which is the volume of liquid occupying a segment in the pipe over the 

volume of that segment is changing throughout the entire wellbore. Even if the volume of liquid 

entering the wellbore is constant, liquid holdup still varies which is the result of slippage velocity 

and pressure drop in the wellbore due to friction and hydrostatic pressure. The slippage velocity 

is the difference between the liquid and gas velocity. The liquid is denser than the gas phase. As 

a result, it is slower. In addition to this, gas velocity decreases as gas moving upward because of 

friction loss. The higher the gas velocity, the higher would be the pressure loss. As gas velocity 

decreases flowing from the bottom to the top of the wellbore, the percentages of liquid and gas 

occupying the segments of the wellbore are changing as a result. In Figure 25, we can see that 

the liquid loading is increasing as we go down the wellbore. 

At the bottom of the wellbore, the pressure is higher than anywhere else in the wellbore 

which makes gas molecules compressed the most at the bottom of the well. Because of this 

compression, gas molecules cannot move as fast as the gas flowing in the upper segments of the 

wellbore making gas velocity the lowest at the bottom of the well. If the gas and liquid velocity 

are slower, the amount of the liquid in that segment is higher, making liquid holdup values high 

at the bottom. As pressure is less in the upper segment due to the friction and hydrostatic loss, 

gas can flow faster pushing the liquid downward making the liquid content in the upper segments 

less. Hence, the value of liquid content is less. 

The shapes of the curve in Figure 25 differ from each other. If we observe the first curve 

on day 72, we can see a smooth curve belongs to one mathematical function. However, the 73-

day curve changes its sloe near the end. This behavior becomes clearer the next day where we 

see the distinct slops or three different functions. The shape of the curve depends on the flow 

pattern in that depth. At day 72 the flow pattern is linear from top to bottom. In day 74, it starts 
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with an annular flow, then switches to churn flow at a depth of 4,400 ft, the quickly changes into 

slug flow at 4,470 ft. This behavior continued for the following days. We notice that the annular 

flow curve is becoming shorter with time oppose to churn and slug flow which dominates the 

curve with time. One more thing is worth mentioning is that the churn flow at later days when it 

reaches the top segment of the well it started to decrease again, and the well is dominated only 

with slug flow. 

Gas and Liquid Superficial Velocities Profiles with Depth 

 
Figure 25 Gas velocity profile versus depth at different days of production 
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Figure 26 displays superficial gas velocity versus depth for the same well at different 

well-life stages. In general, gas velocity decreases with time as reservoir pressure is decreased 

which explains the reduction of gas velocity every day in production. If we look at the well only 

for one day, the gas velocity decreases as depth increases which is due to the nature of the gas 

phase as the gas molecules are compressed at the high pressure reducing its velocity. Another 

interesting finding is that the shape of the curve for each day. The slop for each curve increases 

as it gets later in well-production which can be related to the flow pattern inside the wellbore at 

these days. In the beginning, annular flow is the dominated flow pattern. At later stages, slug 

flow is the most dominated flow pattern. In other words, gas velocity decreases more in a slug 

dominated flow pattern. 

 

Figure 26 Liquid velocity profile versus depth for one gas well at different days of 

production 
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The velocity profile in Figure 27 shows that liquid velocity stays the same throughout the 

entire wellbore which is due to the nature of the liquid phase. The liquid is incompressible or 

slightly compressible not like the gas phase. The liquid molecules do no compress under 

different pressure values. As a result, their velocity stays the same. Liquid velocity decreases 

with time as reservoir pressure depletes which is the same as gas velocity. 

Total, Hydrostatic, and Friction Pressure Drop in Wellbore 

 
Figure 27 Pressure profile inside the wellbore versus depth 

 

The pressure inside the wellbore decreases as we go from bottom to surface (Figure 28). 

Pressure loss is due to friction and hydrostatic pressure drop. We observe that at day 300, the 
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flow during which liquid content is less than slug flow. Hence, pressure drop due to hydrostatic 

pressure is less. 

In two phase-flow, pressure drop one of the main issues. There are three components of 

the pressure drop system that cause a pressure drop in the wellbore. 

Pressure drop = hydrostatic pressure + friction pressure + kinetic pressure  

Kinetic pressure drop is usually ignored as it occurs where there is a change in the 

wellbore diameter. The weight of the matter causes the hydrostatic pressure drop. In the 

wellbore, it is a function of density. Since the liquid is the denser phase, this term is mainly 

associated with the liquid phase. The contribution of gas is insignificant. Friction factor, on the 

other hand, is mainly linked to the velocity of both phases. It represents the molecules of the 

matter hitting the tubing wall causing heat, pressure drop. In this section, we will present the 

pressure drop components for one well over different days of production. 
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Figure 28 Hydrostatic pressure drop profile at different days of production 

 

Pressure drop due to the weight of the fluid inside the wellbore shown in Figure 29 is 

almost identical to the liquid holdup profile in Figure 25. The only difference is a constant shift 

that can be explained from the original equations used to calculate hydrostatic pressure drop and 

liquid holdup. Let’s recall Eq.17 and Eq.40 
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Hydrostatic pressure drop is a function of fluid mixture density which depends mainly on 

liquid holdup which is a supporting evidence that hydrostatic pressure drop is linked directly to 

the liquid content in the wellbore. We can draw the following conclusion; hydrostatic pressure 

drop is directly proportional to the liquid holdup. 
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Figure 29 Friction drop gradient profile versus depth at different production days 

 

Friction drop as stated earlier is mainly linked to the velocity of the fluid. Since gas 

velocity is more significant than liquid velocity, gas is the major contributor to pressure drop due 

to friction. We expect that the behavior, the gradient, would be different for each flow pattern. 

Figure 30 shows the different behaviors in each flow pattern. When one flow pattern is the 

dominated pattern as in day 72, annular flow domination, and day 300 dominated by slug flow. 

Both curves have almost one shape curve because the values are generated from one equation. 

For the other curves, each has three shapes representing the three flow patterns. It is evident that 

slug flow has the least friction pressure drop due to the poor gas contented compared to other 

flow patterns. Churn flow has the highest friction pressure drop as the liquid content increases, 

and gas velocity is relatively high, the flow becomes turbulent. Turbulent flow with a mixture of 

gas and liquid increases the friction between the fluid and tubing wall. 
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Applying Arps Decline Equation to Determine Liquid Loading Onset  

Arps equation (1948) were developed empirically, but at later years, the scientific ground 

for them was found and proved. Arps presented three equations, hyperbolic, harmonic, and 

exponential. All these equations are used to forecast well-production. 

Examining the production flow rate over time for a single in Figure 15, we notice that all 

liquid loading onset happened at the same critical flow rate because of the characteristics of the 

reservoir itself. If we fixed wellhead pressure at a specific value, for the same mixture coming 

from the reservoir, the pressure drop in the wellbore would be the same! In other words, at a 

specific pressure value, the properties of the same mixture are the same. It does not matter 

whether the starting pressure is high or low. Based on this finding, we are going to implement 

the Arps exponential equation to predict the onset of liquid loading. The equation for exponential 

decline curve is 

Dt

c iq q e−=  55 

The critical flow rate which is the flow rate at which the gas flow is unable to carry the 

liquid droplet to the surface is a function of initial flow rate, time, and the decline coefficient.  

This equation can be utilized in different ways. One of which is to run the model for one time 

only to get the critical flow rate for a specific well. Then apply the equation for the prediction of 

future onset of liquid loading. Rearranging Eq. 55 to calculate the onset of the liquid loading: 

ln i

at onset

onset
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Conclusion 

 Creating coupled wellbore-reservoir two-phase fluid flow model based on simple implicit 

concepts has proven to be useful. The outcomes of this study will be presented in a bullet points 

format. 

We were able to build a coupled wellbore-reservoir model in a way that has not been 

done before by combing three main components in an implicit approach. mechanistic pressure 

drop and heat transfer in the wellbore is the first component. Reservoir inflow equations for both 

the gas and the liquid phases and the relative permeability equations are the second component. 

The last component is material balance and in place hydrocarbon volumetric equation. 

The model can be run with only a few input data. Reservoir basic properties, basic 

wellbore data, initial reservoir pressure, and the wellhead pressure. 

The model surpassed the oversimplified coupled models presented in the literature by 

calculating bottomhole pressure and the reservoir pressure at the same time. This implicit 

approach allows the calculation for both phases flow rates. 

The ability to calculate the liquid flow rate in a gas reservoir model is due to the utilizing 

of relative permeability curves. The implementation of relative permeability curve in production 

engineering to study the wellbore flow is rarely done.  

The proposed model has been validated against three types of validation, commercial 

software, field data, and open source numerical simulation. 

Reservoir pressure has proved to affect liquid loading phenomena directly. It is the 

biggest impact.  

Reservoir initial pressure plays a vital role in deciding how flow pattern changes in the 

wellbore. The higher the initial reservoir pressure, the longer the wellbore is expected to be in the 
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annular two-phase flow. However, the longer the well stays in annular two-phase flow, the more 

likely the flow pattern would change directly from annular two-phase flow into slug flow. 

Churn flow is considered the transition phase between annular two-phase flow and slug 

flow. The stream loses less pressure due to friction and hydrostatic when it is in churn flow. In 

other words, staying in churn flow for some time after the onset of liquid loading can help in 

extending the well life expectancy.  

The higher the initial reservoir pressure, it would defiantly delay the onset of liquid 

loading but at the same time reducing the time for the transition from annular two-phase to slug 

flow. When in slug flow, the stream loses much more pressure in the wellbore and dies faster 

compared to another well with less initial reservoir pressure. 

The proposed model in this study is designed to be a tool for anyone interested in two-

phase flow in the wellbore. We have proved this by modifying Hasan-Kabir two-phase flow 

pressure drop model. The proposed model records the dynamic changes in the wellbore which 

allowed us to study Hasan-Kabir under various conditions. 

We have concluded that Hasan-Kabir model was designed initially for oil phase flow 

with increasing gas flow. In other word, the gas void fraction starts at a low value and increases 

as flow pattern changes from bubbly flow up to annular flow which has been observed from the 

gaps in the liquid holdup curves against depth. The discontinuity in the curves is the result of the 

smoothing parameters introduced in the original work of Hasan-Kabir model. 

We have introduced modified H-K smoothing petameters to be used in gas wells. 

Another observation came from the annular flow curve based on H-K model. the curve at 

lower gas flow rate, when the flow pattern is near changing into churn flow, the curve becomes 

constant. 
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H-K model annular two-phase flow equation is an exponential function that reaches a 

constant value when it reaches the specified limit. Without the addition of a term representing the 

bubble-rise velocity, the result would be a constant curve before jumping into churn or slug flow 

creating a discontinuity. To solve this issue, a new term is suggested to be added to the original 

H-K model to have smooth transitions between all flow patterns. 

Liquid holdup onset occurs first at the bottom of the wellbore before anywhere else. The 

gas velocity at the bottom of the well is the lowest as bottomhole pressure is the highest pressure 

in the wellbore system. Gas molecules under higher pressure move at a slower pace at which, the 

gas stream cannot lift all the liquid to the surface which explains the higher liquid holdup values 

at the bottomhole.  

The proposed model gives more than 35 outputs data. Among the output data pressure 

loss due to friction and hydrostatic pressure. We have observed that pressure drop due to fiction 

is not the highest in annular two-phase flow as one might expect since gas is the dominated 

phase and the gas is flowing at high velocity. In churn flow, the pressure drop due to friction is 

the highest. At churn flow, the velocity is relatively high, and the liquid content has increased 

which creates turbulent flow. The characteristics of turbulent flow explain the high friction in the 

churn flow pattern. 

The proposed model opens the door to investigate different wellbore pressure drop 

models. Also, the ability to examine different settings such as inclined wells, horizontal wells, 

transient inflow, and so much more. 

From our observation of annular two-phase flow production curve vs. time, we noticed 

the behavior is like the exponential decline curve equation known as Arps decline equations. 

Utilizing this equation can aid in predicting the onset of the liquid loading.  
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APPENDIX A 

NOMENCLATURE 

 

 

whwfp ,   Bottomhole pressure calculated backward from the wellhead, psi 

Re,wfp   Bottomhole pressure calculated from reservoir inflow equation, 

psi 

wfp   Bottomhole pressure, psi 

f   Friction factor 

z   Gas compressibility factor 

g   Gas density, lbm/ cu ft 

gk   Gas effective permeability, md 

gq   Gas flow rate, SCF/d 

gB   Gas formation volume factor, cu ft/SCF 

rgk   Gas relative permeability, md 

giB   Gas reservoir initial formation volume factor, cu ft/SCF 

sgv   Gas superficial velocity, ft/s 

g   Gas viscosity, cp 

)280(w   Gas water interfacial tension at 280 oF, dynes/cm 

)74(w   Gas water interfacial tension at 74 oF, dynes/cm 

)(Tw  Gas water interfacial tension at any temperature, dynes/cm 
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iG   Initial gas in place, SCF 

wis   Initial water saturation 

l   Liquid density, lbm/ cu ft 

lf   Liquid holdup 

slv   Liquid superficial velocity, ft/s 

l   Liquid viscosity, cp 

m   Mixture density, lbm/ cu ft 

mv   Mixture velocity, ft/s 

m   Mixture viscosity, cp 

wM   Molecular weight, lb mole-lbm 

dp   Pressure drop, psi 

fdl

dp
  

Pressure gradient due to friction, psi/ft 

hdl

dp
  

Pressure gradient due to hydrostatic, psi/ft 

P  Pressure, psi 

pG   Produced gas, SCF 

iz   Reservoir initial gas compressibility factor 

ip   Reservoir initial pressure, psi 

   Reservoir porosity, a fraction 

er   Reservoir radius, ft 
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A   Reservoir thickness, ft 

h   Reservoir thickness, ft 

ws   Reservoir water saturation 

grs   Residual gas saturation 

wrs   Residual water saturation 

k  Rock absolute permeability, md 

T  Temperature, oF 

a  Tubing area, ft2 

d   Tubing diameter, in 

gf   Void fraction 

wk   Water effective permeability, md 

wq   Water flow rate, STB/d 

wB   Water formation volume factor, bbl/STB 

rwk   Water relative permeability, md 

w   Water viscosity, cp 

   Wellbore deviation angle, degree 

wr   Wellbore radius, ft 

L   Wellbore segment, ft 
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APPENDIX B 

GAS COMPRESSIBILITY CALCULATION PROCEDURES 
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Reservoir gas compressibility factor is calculated implicitly 
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APPENDIX C 

PROPOSED MODEL CODE EXPLAINED 

Modeling Summary Flow Chart 
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Using mechanistic pressure drop model 

Using heat transfer model   

Back calculate wfp from the known wellhead pressure 
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\\\\\\ Declaring the constants 

    Pi = 4 * Atn(1) 

    g = 32.2 

    gc = 32.2 

    R = 10.732 

 ' Time 

    tt = Sheet2.Cells(2, 5)     \\\\\ Time steps specified by the user 

    Period = Sheet2.Cells(2, 8)  \\\\ Simulation Time 

\\\\\Reservoir Input Data 

   Pri = Sheet2.Cells(4, 3) 

    TR = Sheet2.Cells(5, 3) 

    RA = Sheet2.Cells(6, 3) 

    k = Sheet2.Cells(7, 3) 

    h = Sheet2.Cells(8, 3) 

    porosity = Sheet2.Cells(9, 3) 

    swi = Sheet2.Cells(10, 3) 

    swr = 0.17 

    sgr = (1 - swr) * 0.1813 + 0.096071 

    den_L = Sheet2.Cells(11, 3) 

    re = (RA * 43560 / Pi) ^ 0.5 

\\\\ Stream Input data 

    Tpc = Sheet2.Cells(17, 3)     \\\\\Pseudo Critical T 

    Ppc = Sheet2.Cells(18, 3)     \\\\\Pseudo Critical P 
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    MW = Sheet2.Cells(19, 3)       \\\\\Gas Molecular Weight 

    sg = Sheet2.Cells(20, 3)       \\\\\Gas specific gravity 

   \\\\\\\ Original gas in place 

    zi = z_factor(Pri, TR, Ppc, Tpc) 

     Sheet2.Cells(4, 13) = zi 

    pr = Pri 

    zr = zi 

    sw = swi 

    bgi = 0.0283 * (TR + 460) * zi / Pri 

    Sheet2.Cells(5, 13) = bgi 

    gi = 43560 * RA * h * porosity * (1 - swi) / bgi 

    Sheet2.Cells(6, 13) = gi / 1000000 

pwf1 = pr - 200 

pwf2 = pwf1 + 1 

Dim Time As Integer 

Time = (tt / Period) - 1 

For n = 0 To Time     \\\\\\\ Starting the bigger loop  

        pwb = pwf1 + 1 

        Do Until Abs(pwf1 - pwb) < 1   \\\\\ The loop for the well 100 segments 

  \\\\\\ Wellbore input data 

                Pwh = Sheet2.Cells(4, 9) 

                twh = Sheet2.Cells(5, 9) 

                d = Sheet2.Cells(7, 9) / 12 



 

93 

 

                E = Sheet2.Cells(8, 9)        ' Pipe Roughness ft 

                a = Pi / 4 * d ^ 2 

                Sheet2.Cells(10, 13) = a 

                alpha = Sheet2.Cells(9, 9) * Pi / 180 

                d_o = Sheet2.Cells(10, 9) 

                d_i = Sheet2.Cells(11, 9) 

                rw = Sheet2.Cells(12, 9) 

                Depth = Sheet2.Cells(13, 9)       ' Well depth 

            \\\\\\\ Reservoir In flow calculation 

                den_g = pr * MW / zr / R / (TR + 460) 

                vis_g = Gas_Viscosity(MW, TR, den_g) 

                'krg = (1 - (sw - swr) / (1 - swr - sgr)) ^ 2 * (1 - ((sw - swr) / (1 - swr - sgr)) ^ 2) 

                krg = ((1 - sw - sgr) / (1 - sgr)) ^ 2 

                kg = krg * k 

                qg = (pr ^ 2 - pwf1 ^ 2) * kg * h / 1424 / vis_g / zr / (TR + 460) / 

WorksheetFunction.Ln(0.472 * re / rw) 

              'qg = (1 - 0.2 * pwf1 / pr - 0.8 * (pwf1 / pr) ^ 2) * qg_max 

                     'krw = ((sw - swr) / (1 - swr - sgr)) 

                    krw = ((sw - swr) / (1 - swr)) ^ 2 

                    kw = krw * k  

                    Bw = water_formation(pr, TR) 

                    vis_w = Exp(1.003 - 1.479 * 10 ^ -2 * TR + 1.982 * 10 ^ -5 * TR ^ 2) 

          qw = kw * h * (pr - pwf1) / 141.2 / Bw / vis_w / WorksheetFunction.Ln(0.472 * re / rw) 
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               'Wellbore ------------------------------------------------------------------------ 

                pwb = Pwh 

                dp = 0 

            For i = 0 To 100 

  Count = Count + 1 

                twb = twh + i * (TR - twh) / 100 

                pwb = pwb + dp 

               segma = 75 - 1.108 * pwb ^ 0.349 + ((twb - 74) * (53 - 0.1048 * pwb ^ 0.637) - (twb - 

74) * (75 - 1.108 * pwb ^ 0.349)) / 206 

                z = z_factor(pwb, twb, Ppc, Tpc) 

                den_g = pwb * MW / z / R / (twb + 460) 

                vis_g = Gas_Viscosity(MW, twb, den_g) 

                vis_l = Exp(1.003 - 1.479 * 10 ^ -2 * twb + 1.982 * 10 ^ -5 * twb ^ 2) 

                Bg = 0.0283 * (twb + 460) * z / pwb 

                Bw = water_formation(pwb, twb) 

                vsg = qg * 1000 * Bg / 24 / 60 / 60 / a 

                vsl = qw * Bw * 5.615 / 24 / 60 / 60 / a 

                vm = vsl + vsg 

                vgc = 3.1 * (g * segma * 0.0022048 * (den_L - den_g) / den_g ^ 2) ^ 0.25  

vgb = (0.43 * vsl + 0.36 * 1.53 * (g * (den_L - den_g) * segma * 0.0022048 / den_L ^ 2) ^ 0.25) 

* Sin(alpha) 

                    ' Flow Patern 

                        If vsg > vgc Then 
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                        fp = "Annular" 

                        co = 1.15 * (1 - Exp(-0.2 * vgc / (vsg - vgc))) + Exp(-0.2 * vgc / (vsg - vgc)) 

                        vb = 1 - Exp(-0.01 * vgc / (vsg - vgc)) 

                        ElseIf vsg < vgb Then 

                        fp = "Bubbly" 

                        vb = 1.53 * (g * (den_L - den_g) * segma * 0.0022048 / den_L ^ 2) ^ 0.25 

                        co = 1.2 

                        ElseIf vm > (4.68 * d ^ 0.48 * (segma * 0.0022048 / den_L) ^ 0.6 * ((den_L - 

den_g) * g / segma / 0.0022048) ^ 0.5 * (den_L / vis_l) ^ 0.08) ^ (1 / 1.12) Then 

                        fp = "Churn" 

                        co = 1.15 * Exp(-0.01 * ((4.68 * d ^ 0.48 * (segma * 0.0022048 / den_L) ^ 0.6 * 

((den_L - den_g) * g / segma / 0.0022048) ^ 0.5 * (den_L / vis_l) ^ 0.08) ^ (1 / 1.12)) / (vm - 

((4.68 * d ^ 0.48 * (segma * 0.0022048 / den_L) ^ 0.6 * ((den_L - den_g) * g / segma / 

0.0022048) ^ 0.5 * (den_L / vis_l) ^ 0.08) ^ (1 / 1.12)))) + 1.2 * (1 - Exp(-0.01 * ((4.68 * d ^ 

0.48 * (segma * 0.0022048 / den_L) ^ 0.6 * ((den_L - den_g) * g / segma / 0.0022048) ^ 0.5 * 

(den_L / vis_l) ^ 0.08) ^ (1 / 1.12)) / (vm - ((4.68 * d ^ 0.48 * (segma * 0.0022048 / den_L) ^ 0.6 

* ((den_L - den_g) * g / segma / 0.0022048) ^ 0.5 * (den_L / vis_l) ^ 0.08) ^ (1 / 1.12))))) 

                        vb = 0.35 * (g * d * (den_L - den_g) / den_L) ^ 0.5 * (1 + Cos(alpha)) ^ 1.2 * 

(Sin(alpha)) ^ 0.5 

                        Else 

                        fp = "Slug" 

                        co = 1.2 
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                        vb = 1.53 * (g * (den_L - den_g) * segma * 0.0022048 / den_L ^ 2) ^ 0.25 * (1 - 

Exp(-0.1 * vgb / (vsg - vgb))) + 0.35 * (g * d * (den_L - den_g) / den_L) ^ 0.5 * (1 + 

Cos(alpha)) ^ 1.2 * (Sin(alpha)) ^ 0.5 * Exp(-0.1 * vgb / (vsg - vgb)) 

                        End If 

                    \\\\\\\\\\\\ Pressure Drop Calculation 

                        fg = vsg / (co * vm + vb) 

                        fl = 1 - fg 

                        den_m = fg * den_g + den_L * fl ' den = Density   m= mixture 

                        x = vsg * den_g / vm / den_m 

                        vis_m = x * vis_g + (1 - x) * vis_l 

                        ren = den_m * vm * d / vis_m / 0.000672 

                        f = 0.001375 * (1 + (20000 * E / d + 10 ^ 6 / ren) ^ (1 / 3)) 

                        dph = den_m / 144 * Sin(alpha) 

                        dpf = f * vm ^ 2 * den_m / 2 / d / 144 / gc 

                        dp = (dph + dpf) * Depth / 100 

            pr = Pri / zi * (1 - gp / gi) * zr 

            zr = z_factor(pr, TR, Ppc, Tpc) 

        Bgr = 0.0283 * (TR + 460) * zr / pr 

     sw = 1 - (gi - gp) * Bgr / 43560 / RA / h / porosity 

   ww = ww + 1 

 Next 

            End Sub 
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Function z_factor(P, T, Ppc, Tpc)   \\\\\ Function to calculate z factor 

    TR = (T + 460) / Tpc 

    prr = P / Ppc 

    z = 1 

    xy = 0.27 * prr / TR / z 

        Do Until Abs(Nxy - xy) < 0.0001 

        fxy = 0.06423 * xy ^ 6 + (0.5353 * TR - 0.6123) * xy ^ 3 + (0.3151 * TR - 1.0467 - 0.5783 

/ TR ^ 2) * xy ^ 2 + TR * xy + 0.6816 / TR ^ 2 * xy ^ 3 * (1 + 0.6845 * xy ^ 2) * Exp(-0.6845 * 

xy ^ 2) - 0.27 * prr 

        dfxy = 6 * 0.06423 * xy ^ 5 + 3 * (0.5353 * TR - 0.6123) * xy ^ 2 + 2 * (0.3151 * TR - 

1.0467 - 0.5783 / TR ^ 2) * xy + TR + 0.6816 / TR ^ 2 * xy ^ 2 * (3 + 0.6845 * xy ^ 2 * (3 - 2 * 

0.6845 * xy ^ 2)) * Exp(-0.6845 * xy ^ 2) 

        Nxy = xy - fxy / dfxy 

        Store = xy 

        xy = Nxy 

        Nxy = Store 

        Loop 

    z_factor = 0.27 * prr / TR / xy 

End Function 
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Function Gas_Viscosity(MW, T, den_g) 

 AA = ((9.379 + 0.01607 * MW) * (T + 460) ^ 1.5) / (209.2 + 19.26 * MW + (T + 460)) 

    BB = 3.448 + 986.4 / (T + 460) + 0.01009 * MW 

    CC = 2.447 - 0.2224 * BB 

    Gas_Viscosity = AA * 10 ^ -4 * Exp(BB * (den_g * 0.016018463) ^ CC) 

End Function 

\\\\\\ Function to calculate water formation volume factor 

Function water_formation(P, T) 

                A1 = 0.9947 + 5.8 * 10 ^ -6 * T + 1.02 * 10 ^ -6 * T ^ 2 

                A2 = -4.228 * 10 ^ -6 + 1.8376 * 10 ^ -8 * T - 6.77 * 10 ^ -11 * T ^ 2 

                A3 = 1.3 * 10 ^ -10 - 1.3855 * 10 ^ -12 * T + 4.285 * 10 ^ -15 * T ^ 2 

                water_formation = A1 + A2 * P + A3 * P ^ 2 

End Function 

 


