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ABSTRACT

My dissertation is inspired by challenging yet encouraging payment policies and operational

issues in the U.S. healthcare system. Two of the three essays delivers policy implications for

bundled payment reform models that aim to improve the predictability of care outcomes and as-

sociated costs by reducing variation in care-delivery practices. To investigate how variation in

practice relates to hospital operational performance, my first essay proposes a novel measure of

clinical practice variation based on a high-volume inpatient discharge dataset. I find that hospitals

may be improperly rewarded for quality improvements if practice variation is ignored, implying

that incentives and penalties for hospital operations should be designed to account for such effects.

Also, I identify potential drawbacks inherent in the government’s status quo policy for se-

lecting participating providers in the bundled payment reform models. To address this issue, my

second essay incorporates insights from the first essay and suggests a systematic framework for

healthcare provider evaluation and selection. Using a combinatorial auction model equipped with

data envelopment analysis as a pre-selection tool, the proposed framework alleviates the inherent

decision-making bias of the current system and deploys adequate healthcare providers for target

regions, thereby creating an optimized bundled payment program.

Lastly, my third essay applies a process improvement perspective to study adaptive capacity

planning in ambulatory surgery centers. Timely capacity adjustment is essential for the surgery

center planners as each facility is concerned with the cost and capacity implications of adding/re-

moving specific surgical procedures under the transition toward payment reform models. But, the

related research is limited. In contrast to the traditional top-down approach to capacity planning,

my approach proposes a bottom-up strategy based on optimization methods combined with analyt-

ics that are informed by operational-level archival patient flow data. I develop several mathematical

formulations and heuristics based on scheduling theory to derive the most cost-efficient capacity

solution for the multi-stage structure of surgery centers. In the computational study, I further show

how uncertain business parameters may affect capacity planning decisions.
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1. INTRODUCTION

High costs and inconsistent care-quality are long-lasting issues in the U.S. healthcare sys-

tem (OECD, 2016). Most experts indicate the current dominant payment system called fee-for-

service is one of the critical sources of the problems (Hussey et al., 2011), because it incentivizes

volume rather than a quality of care. As a remedy, several payment reform policies have been

initiated to fix the incentive structure and ultimately to improve the suboptimal healthcare sys-

tem (Green, 2012).

In particular, my dissertation is inspired by the bundled payment reform policy that aims to

improve the predictability of care outcomes and associated costs by reducing variation in care-

delivery practices. Specifically, the bundled payment policy combines a number of care-delivery

services needed for an episode of patient care and develops a contractual agreement between a

payer and a care provider, such that the reimbursement is fixed a priori regardless of eventual cost.

As such, the bundled payment schemes are meant to reduce healthcare costs and cost variations by

establishing transparent and standardized clinical pathways (Abecassis, 2015). However, because

the healthcare industry must provide services to individual patients having unique characteristics

and symptoms, whether such a bundled payment standardization strategy can be effective in re-

ducing the cost of care episode while improving the care quality is not clear.

In this regard, my first essay delivers policy implications for the bundled payment models by

devising a novel measure of clinical practice variation and further examining how variation in

practice relates to hospital operational performance. Also, I identify potential drawbacks inher-

ent in the government’s status quo policy for selecting participating providers in the nationwide

bundled payment models. To support a smooth transition toward the reform models, my second

essay incorporates insights from the first essay and suggests a systematic policy implementation

framework designed for healthcare provider evaluation and selection. Meanwhile, such a transition

is worthwhile if healthcare processes also promote efficient performance. For example, timely ca-

pacity adjustment is essential for ambulatory surgery centers as each facility is concerned with the
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cost and capacity implications of adding/removing specific surgical procedures under the transition

toward payment reform models. Hence, my third essay applies a process improvement perspective

to study adaptive capacity planning in the surgery centers, where the problem presents challenges,

yet the related research is few. In what follows, I briefly describe each essay in sequence.

1.1 Policy Implications: Impacts of Clinical Practice Variation on Operational Performance

The first essay explores whether and how smaller variations in clinical practice improve hos-

pital operational performance. The extant literature discusses geographical variations in health-

care (Ham, 1988; Clancy and Cronin, 2005) but often ignores clinical variations that may be

prevalent in a hospital. To fill this research gap, I propose a stepwise approach to measure prac-

tice variation defined as all variation not resulting from the patient-mix, and I indeed observe a

broad practice variation spectrum across hospitals. Using statistical process control as a theoret-

ical lens (Oakland, 2007), I hypothesize that such practice variation adversely affects operational

performance. I analyze six years of a high-volume inpatient discharge dataset from New York

and Florida, and after accounting for the dynamic endogeneity of practice variation and opera-

tional performance (Arellano and Bover, 1995; Blundell and Bond, 1998), I find supporting evi-

dence that greater practice variation is associated with longer patient stays and higher total cost per

capita. Interestingly, this phenomenon is even stronger when a hospital provides a higher-quality

patient experience because such a hospital tends to provide more responsive care, which is often

resource-intensive. Therefore, hospitals may be improperly rewarded for quality improvements if

practice variation is ignored, implying that incentives and penalties for hospital operations should

be designed to account for such effects.

To suggest actionable improvement plans, I also delve into the granular level of practice vari-

ation, including the risk associated with under-ordering laboratory/radiology tests. Such test-

ordering practices are generally conducted in an early stage of the entire care episode (Alexander,

2012; Zhi et al., 2013). Hence, the underuse of test-ordering practices may lead to extra efforts in

care-delivery stages to alleviate potential negative effects of the test underuse. I find that higher un-

deruse variation in the test-ordering may lead to higher care-delivery cost, again affected by quality
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evaluations. Hence, too restrictive reimbursement rules on test-ordering practice are undesirous,

as they may result in even higher eventual total care-delivery spending. Regarding the causes

of practice variation, I further find that organizational environments (Westert and Groenewegen,

1999), rather than physicians’ personal behaviors (Wennberg and Gittelsohn, 1973), possibly drive

the level of practice variation, implying the opportunity of hospital performance improvements via

well-designed bundled payment policies. This study contributes by highlighting the importance

of measuring and understanding practice variation and suggests how managers and policy-makers

can use the findings to design better bundled payment reform models.

1.2 Policy Implementation: Healthcare Provider Evaluation and Selection Framework

Given the heterogeneity of clinical practice and performance across hospitals, as I study in the

first essay, it is critical that bundled payment reform identifies competent healthcare providers. To

address this issue, my second essay proposes a practical and systematic provider selection frame-

work from the perspective of a payer that operates a bundled payment program. Currently, the

government creates a weighted average composite score from a multitude of dimensions related to

a hospital’s characteristics and performance, and it uses this score to select participating providers

for the bundled payment program (CMS, 2014c). Despite the popularity of the weighted score ap-

proach in practice, however, biases and additive assumptions introduced in the development of the

weights and the evaluation can cause the inherent problems in the decision-making process (Mc-

Cabe et al., 2005).

My proposed selection framework mitigates the potential drawbacks of the existing approach

by using a combinatorial auction model equipped with data envelopment analysis as a pre-selection

tool. Specifically, the framework contributes by proposing an approach to sequentially compare

separate dimensions of participating providers rather than merely comparing a composite score

while allowing flexibility for each provider in selecting the bundle of services. A numerical

study supports that, beyond alleviating the potential drawbacks of the current system, the proposed

framework deploys adequate healthcare providers for target regions, thereby creating an optimized

bundled payment program. Hence, I carefully point out that the lack of systematic provider se-
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lection is possibly one reason why the ongoing nationwide bundled payment initiative does not

reveal apparent simultaneous achievements in cost reduction and care quality improvement (CMS,

2015a, 2016a). To address practical issues in this framework, I have communicated with the Center

for Medicare & Medicaid Innovation to collect application data on the ongoing nationwide bun-

dled payment initiative for future extension of this study. The data collection is approved via the

Freedom of Information Act.

1.3 Process Improvement: Adaptive Capacity Planning for Ambulatory Surgery Centers

The explosion of patient data is changing the way and the extent to which healthcare organiza-

tions capture data, analyze information, and make decisions. In my third essay, I use patient flow

data to develop novel models that drive capacity decisions. Specifically, I propose an adaptive ca-

pacity planning model for ambulatory surgery centers (ASCs) that have transformed the outpatient

experience for millions of people by offering a convenient, personalized, lower-priced alternative

to hospitals.

Planning ASC capacity is challenging especially due to the multi-stage nature of surgical

services and significant uncertainty in the patient-mix and service durations of patients at each

stage (Tiwari and Sandberg, 2016). Furthermore, the ASC planners face with the dynamic envi-

ronment of operations, e.g., Medicare frequently updates the list of surgical procedures allowable

in ASCs because of several reasons such as reimbursement policy adjustments and technology

advancements. Extant literature suggests efficient patient scheduling decision for established fa-

cilities (Ruiz and Vázquez-Rodríguez, 2010; Ribas et al., 2010), but there is limited research that

provides capacity planning/renovation tools under such dynamic environments. The third essay

contributes by filling this research gap in the scheduling and healthcare resource allocation litera-

ture. A notable trade-off in this process is between the need to be responsive to patients’ demand

by having enough capacity and the need to efficiently schedule surgeries to increase the capacity

utilization by minimizing the costs related to overtime of the ASC resources.

In contrast to the traditional top-down approach to capacity planning (Hans et al., 2012), my

approach proposes a bottom-up strategy based on optimization methods combined with analytics
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benefiting from the detailed operational-level patient flow data. To be more specific, I use analytics

tools to classify patients into a few groups, which reduces the complexity of the capacity planning

problem and improves the model’s practicality. Later, I develop several mathematical formulations

and heuristics based on scheduling theory to derive the most cost-efficient capacity solution for

the multi-stage structure of surgery centers. I explicitly consider three sequential stages that are

typical patient flows in ASCs: the pre-operative stage at the holding room, the intra-operative stage

at the operating room, and the post-operative stage at the post-anesthesia care unit. In the com-

putational study, I further show how uncertain business parameters may affect capacity planning

decisions to provide managerial implications for the practitioners. This study highlights the bene-

fit of considering multiple stages together in capacity planning, rather than focusing on the largest

cost center (e.g., the operating rooms as in Mancilla and Storer (2012); Mak et al. (2014)) exclu-

sively. This research will be impactful in guiding more than 5,000 ASCs in the U.S., performing

23 million surgeries annually (MedPAC, 2017), to make appropriate investments that will improve

ASC operations on capacity adjustment and patient scheduling.

In summary, my dissertation develops managerial and theoretical contributions in healthcare

operations supported by grounded theory from practitioners’ insights and literature in statistical

process control theory, economic theory, and scheduling theory. Based on the three essays in the

domain of healthcare operations management, I provide a research portfolio that contributes to

each area of policy implications, policy implementation, and process improvement by using both

empirical analyses and analytical modeling. The following chapters demonstrate timely and rele-

vant issues for both practitioners and academic researchers in the healthcare industry.

The remainder of this dissertation is structured as follows. Chapter 2 examines the impacts of

clinical practice variation on operational performance to provide implications for bundled payment

reform models. Chapter 3 develops a healthcare provider evaluation and selection framework de-

signed for the bundled payment models. Chapter 4 devises an adaptive capacity planning approach

for healthcare providers with a multi-stage structure in the context of ambulatory surgery centers.

Chapter 5 summarizes contributions and concludes this dissertation.
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2. EXAMINING IMPACTS OF CLINICAL PRACTICE VARIATION ON OPERATIONAL

PERFORMANCE: IMPLICATIONS FOR BUNDLED PAYMENT REFORM MODELS

“The intensifying pressure from employers and insurers for transparent pricing is already be-

ginning to force providers to explain – or eliminate – hard-to-justify price variations” -Porter and

Lee (p. 59, 2013)

2.1 Introduction

Due to excessive national expenditures, lack of transparent pricing, and a history of often poor

health outcomes in the U.S. healthcare system (Mossialos et al., 2016; OECD, 2016), policy-

makers are experimenting with various payment reform models (Green, 2012; Vanberkel et al.,

2012). These payment reform models attempt to improve quality of care and to reduce healthcare

spending (Hussey et al., 2011). For example, bundled payment models combine a number of

care-delivery services needed for an episode of patient care, and develop a contractual agreement

between a payer and a care provider, to fix reimbursement a priori regardless of eventual cost. As

such, bundled payment models are meant to deliver appropriate care yet reduce healthcare costs

and cost uncertainty for patients, employers who pay for their insurance, and third-party payers.

The envisioned payment reform models often aim concomitantly to decrease variation in care-

delivery practices, resulting in more predictable care outcomes and costs (Abecassis, 2015). For

example, providers operating under bundled payment programs are forced to move toward lower

practice variation via standardized care bundles. Yet, because the healthcare industry must provide

customized services to individual patients having unique characteristics and symptoms, whether

such a standardization strategy can be effective in achieving its main goals (i.e., improving care

quality while reducing episode treatment cost) is not clear.

Motivated by such objectives, this study aims to empirically examine links between the level of

practice variation inside a hospital and its operational performance (measured as patient length-of-

stay and care-delivery cost). A distinct challenge with understanding potential impacts of payment
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reform models concerns a total lack of publicly available historical data about most such programs,

including contractual bundled payments. We circumvent this challenge by recasting available fee-

for-service (FFS) data into relevant metrics to address how reducing practice variation, such as via

bundled payment contracts, might impact hospital performance. Considering the high costs and

inconsistent care quality of the U.S. healthcare system in an environment of limited resources (Shi

and Singh, 2012), it is societally meaningful to investigate whether and how lessening variations

in clinical practice might relate to reform model goals.

2.1.1 Research Questions

A major research opportunity exists in precisely measuring practice variation observed during

the process of delivering healthcare, and identifying its impacts on operational performance. Ex-

isting literature classifies practice variations into warranted and unwarranted (Clancy and Cronin,

2005; Appleby et al., 2011). Case-mix-index (CMI)1 is often used to reflect variation due to a

hospital’s patient mix, which we will call warranted variation. CMI controls for diversity, clinical

complexity, and resource needs of the patient population in a hospital, enabling fair hospital-to-

hospital comparisons of medical operations. However, certain care delivery variations exist even

after considering a hospital-level patient mix, thus CMI cannot capture all aspects of variation.

Wennberg (2002) called all variation not resulting from patient mix by the term unwarranted vari-

ation. Unwarranted variation can result from variation in care providers’ decisions, variation to

customize care, or variation in medical procedure supplies. Because prior work focuses on CMI,

the impact of these unwarranted variations on hospital performance is not clear. Surprisingly, how-

ever, no CMI-like nationally standardized metric for unwarranted variations exists. We thus iden-

tify a major research opportunity for measuring unwarranted-type variations in medical practice for

patient cohorts having the identical condition (hereafter, we will use the term practice variation

to refer to the overall contribution of these three unwarranted variation facets). Subsequently, to

bridge this research gap, our first research question is: (1) How can researchers measure practice

variation for a patient cohort with reasonable precision?

1A list of acronyms in this study is provided in Appendix A.1.
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Another objective is to study the potential impacts on hospital performance of payment reform

models that implicitly pursue, yet do not explicitly mandate, low practice variation. To the best of

our knowledge, however, only a few hospitals have fully adopted new initiatives such as bundled

payment models (Tsai et al., 2015) and The Centers for Medicare & Medicaid Services (CMS) is

not making data publicly available on experiences under those models. An experiment might be an

alternative option to compare such performance, by randomly assigning hospitals to adopt specific

payment reform models, but this approach is ethically problematic. Instead, we envision an op-

portunity to measure the existing practice variation and compare hospitals using readily available

FFS data. We assume hospitals that have low practice variation will resemble hospitals operat-

ing under a payment reform model. Thus, we close the research gap by asking: (2) Does lower

practice variation of a hospital (or within patient cohort care episode groups) necessarily relate

to better operational performance? Relying on statistical process control (SPC) theory (Wheeler

et al., 1992; Oakland, 2007), we posit that high practice variation may harm hospital operational

performance.

Besides reducing practice variation, payment reform models often incorporate several quality

initiatives to encourage better care quality. We believe these quality initiatives may change partici-

pating healthcare providers’ behaviors. Thus, we also consider possible effects of these quality ini-

tiatives on the link between practice variation and hospital performance. Process quality and expe-

riential quality are two key measures of care quality that are publicly reported, span salient aspects

of operations, and are used by CMS to evaluate healthcare providers (Sadeghi et al., 2012). Process

Quality concerns how well a hospital adheres to evidence-based medical guidelines to diagnose and

treat patients (Theokary and Ren, 2011; Chandrasekaran et al., 2012; Nair et al., 2013; Andritsos

and Tang, 2014b). Experiential Quality aggregates the reports of patients about their observations

of and participation in healthcare (Sadeghi et al., 2012), and thus relates to external perceptions of

care quality from a patient’s perspective (Donabedian, 1980; Li and Benton, 1996). Both process

quality and experiential quality are relevant exogenously mandated measures that may influence

effectiveness of payment reform models. Yet, whether these two quality metrics play effective
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roles in the relationship between practice variation and operational performance is unexplored.

Analysis of the roles of these two quality metrics on the link between practice variation and

performance is important since a tension may occur when hospitals aim to improve both process

quality and experiential quality simultaneously. Chandrasekaran et al. (2012) conceptually connect

process quality and experiential quality with exploitation (that reduces variation) and exploration

(that induces variation), respectively, two types of organizational learning activities in tension with

each other (March, 1991; Benner and Tushman, 2003). We also surmise that hospitals’ efforts

to improve the two quality measures can affect a hospital’s operational actions. We thus con-

sider practice variation together with the two quality metrics. Following literature in Total Quality

Management (Evans and Lindsay, 1999; Douglas and Judge, 2001), process quality may alleviate

negative effects of practice variation on operational performance. In contrast, experiential quality,

which is designed to fulfill specific subjective requirements of patients (Nair et al., 2013), may

lead to responsive patient treatments that perhaps deviate from guidelines, leading to an amplified

negative relationship between practice variation and operational performance.2

With the growing impetus for well-designed payment reform models and the potentially con-

founding influence of mandated quality measurement initiatives, we investigate our next research

question: (3) Does the level of quality measures affect the relationship between practice variation

and operational performance? Our study contributes by addressing how empirical evidence about

the effect of process quality and experiential quality on operational performance can change if we

explicitly consider practice variation inside a hospital. This issue merits investigation since the

joint consideration of practice variation and mandated quality measures may offer directions for

quality improvement initiatives and payment reform models.

Next, we delve into granular levels of practice variation to investigate whether practice variation

in hospital test-ordering can differently affect performance within subsequent care-delivery stages.

We focus on underuse practice variation in the test-ordering stage because (a) most patients (i.e.,

2This line of reasoning does not intend to ignore the value of experiential quality that is examined in the operations
management (OM) literature (e.g., Nair et al., 2013; Senot et al., 2015), but to shed light on potential detrimental
effects of experiential quality on operational performance when considered jointly with practice variation.
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about 98%) go through at least one laboratory or radiology test, (b) on average the test-ordering

accounts for a large proportion (about 27%) of total charges per patient,3 and more importantly

(c) test-ordering practices are generally conducted in an early stage of the entire care episode (Zhi

et al., 2013; Alexander, 2012).

We posit that higher underuse practice variation in test-ordering can lead to higher subsequent

care-delivery costs resulting from extra efforts to alleviate negative effects of the test underuse. In

healthcare, the growing realization about the importance of preventive care can be understood in a

similar vein because many experts believe preventive care is indeed more cost-effective than reac-

tive care (Nutting, 1994; Fox and Shaw, 2015). Accordingly, we look at our next research question:

(4) Does underuse practice variation in test-ordering differently relate to operational performance

in the care-delivery stage? Answering this question will help shed light on the impact of serial

practice variations, which is understudied in the healthcare industry, and will provide insights for

designing policy incentives.

2.1.2 Key Findings and Contributions

We analyze six years of a comprehensive dataset from 387 hospitals in NY and FL states,

focusing on Medicare patients with three conditions: acute myocardial infarction (AMI), heart

failure (HF), and pneumonia (PN). To examine hypotheses, we use a dynamic panel model with

System Generalized Method of Moments (GMM) estimation (Arellano and Bover, 1995; Blun-

dell and Bond, 1998) to account for the dynamic endogeneity of practice variation and opera-

tional performance. Using several new metrics to measure practice variation, we observe that the

level of practice variation varies across hospitals even when they have the same level of CMI.

We first find that higher overall hospital practice variation relates to significantly longer average

patient length-of-stay (LOS), but rather weakly higher average total cost per patient. We delve

into variation in test-ordering practice, to shed light on a possible trade-off between test-ordering

and care-delivery practices that compromise total treatment cost. Interestingly, we find that hospi-

tals with a higher risk of underusing tests may face unexpected higher expenditures in subsequent

3See Appendix A.8 for details.
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care-delivery stages. These findings are even stronger if the hospital provides service having high

experiential quality, because such a hospital pays attention to patient experience and thus tries to

mitigate potential negative consequences by devoting more time and resources to these custom

experiences.

Overall, our findings deliver important implications for payment reform programs that are fun-

damentally designed to promote reduced practice variation. For example, under bundled payments,

a patient may stay a shorter period in a hospital during her entire episode of care. However, the

cost savings from the program might be uncertain. Bundling all services for an episode of care

(i.e., providing a standard set of care as much as possible) may not be the best approach. Instead,

we suggest policy-makers should allow some flexible practice or lenient reimbursement standards,

perhaps similar to the experimental bundled payment schemes that rely on retrospective fee-for-

service based reimbursement. According to our study findings, this approach may be particularly

effective for the laboratory/radiology test-ordering practice. By establishing flexible reimburse-

ment standards for test-ordering practices, possibly with an upper-limit cap, health providers may

not only reduce failures or underuse of meaningful tests but also may alleviate the risk of higher

care-delivery spending, as our findings imply. By doing so, the healthcare system may ultimately

find an opportunity to reduce total cost per patient. Our measure of practice variation also con-

tributes since it enables researchers and managers to rigorously measure and visualize the status of

hospitals’ practice variation.

The remainder of the paper is organized as follows. Section 2 provides background and devel-

ops hypotheses. Section 3 presents data, variables of interest, research methods, and econometric

models, followed by estimation results in section 4. Section 5 provides a broader discussion of our

findings and implications. Finally, section 6 concludes and provides directions for future research.

2.2 Background and Hypotheses Development

In this section, we first contrast fee-for-service healthcare delivery against bundled payment

reform model characteristics. We then review literature on clinical practice variation as well as

process and experiential quality. Finally, we develop hypotheses pertaining to practice variation in
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hospitals.

2.2.1 Bundled Payment Program

Traditionally, the U.S. federal government Medicare insurance program makes separate pay-

ments to healthcare providers for each of the individual services they furnish to beneficiaries for a

single course of treatments. This approach, called fee-for-service (FFS), mis-incentivizes providers

to perform more treatments and to use more equipment regardless of their necessity for a care

episode (Arrow et al., 2009). Such outcomes reflect practice variation. FFS thus is believed to be

one of the main causes of high healthcare spending (Hussey et al., 2011).

As an alternative, policy-makers suggest the use of payment reform models such as bundled

payment (BP) contracts, in which an a priori fixed reimbursement between payers and providers

applies for an entire episode of patient care (Miller, 2009). CMS claims bundled payment models

may spur hospitals, physicians, and other providers to better coordinate care, improve quality of

care, and consider the financial implications of their decisions, leading to lower spending (CMS,

2015a). The U.S. Department of Health and Human Services (HHS) aims to tie 50% of traditional

FFS Medicare payments to care quality through Accountable Care Organizations (ACOs) or bun-

dled payment arrangements by the end of 2018 (HHS, 2015). This aim leads top management of

healthcare providers to consider whether to participate in these programs.

To illustrate potential implications of the move from FFS toward payment reform models,

Figure 2.1 compares the distribution of patient illness severity and total charges between FFS and

BP. Under FFS, total charges that reflect clinical practice (Line 2) tend to be escalated compared

to the actual illness severity of patients (Line 1). BP proposes an a priori fixed reimbursement

(Line 3), which is set up as lower than the average historical total charge under FFS, incentivizing

providers to eliminate unnecessary spending (Tsai et al., 2015). Under BP, if a hospital’s spending

for a patient is more than the fixed BP reimbursement, the hospital is responsible for the portion of

over-charge. Meanwhile, due to care quality requirements in BP, hospitals cannot merely provide

minimum care to ensure a patient’s profitability. Thus, under BP the variance of the total charge

distribution also should become smaller than that of FFS, reflecting lower practice variation (Line
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4). The challenging part is that the exogenous patient population distribution perhaps remains the

same as with FFS (Line 5).

Figure 2.1: Illustration: FFS vs. Bundled Payment

In the OM literature, limited analytical work compares BP schemes to FFS along outcomes

such as extent of patient selection, treatment intensity, financial risk (Adida et al., 2016), patient

welfare, waiting time (Guo et al., 2016), and readmission rate (Andritsos and Tang, 2018). Gupta

and Mehrotra (2015) discuss provider selection and information sharing under a stylized BP sys-

tem. Most of these papers however solely examine patient variation, assuming that treatment is

given to patients proportionally to their level of illness, while ignoring providers’ levels of practice

variation, which is our contribution.

Does reducing practice variation help to achieve care quality and cost reduction objectives, or

improve operational performance? We find an opportunity to examine this question by compar-

ing magnitudes of practice variation across hospitals under FFS, to examine how reduced practice

variation tends to relate to operational performance. In effect, most of the bundled reform program

initiatives that have been widely applied in practice are “retrospective” payment models still op-

erating on a FFS payment scheme (CMS, 2015a), meaning that hospitals file claims with a payer
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(either a commercial payer or CMS) based on the agreed upon FFS schedule; afterwards, the payer

performs an adjudication of the expenses related to the condition at the basis of the care-episode

bundle.4 Hence, our analysis using FFS inpatient data is a valid approach to evaluate/monitor the

practice variation of healthcare providers under such schemes.

2.2.2 Clinical Practice Variation

Due to persistent healthcare variation (Ham, 1988; Clancy and Cronin, 2005), practitioners

and researchers have tried to identify where the variation originates (Miller et al., 2011), to disen-

tangle warranted variation from unwarranted variation (Wennberg, 2002), and to investigate how

unwarranted variation can be addressed (Appleby et al., 2011). Wennberg et al. (2002) divide

unwarranted variation into three categories: effective care, preference-sensitive care, and supply-

sensitive care. Effective care refers to care delivery services of proven effectiveness, thus variation

will reflect failure to deliver needed care. Preference-sensitive care involves care decisions based

on patient preferences and values. Supply-sensitive care refers to the frequency of resource us-

age (e.g., equipment for laboratory and radiology tests) that is governed by the decisions of a care

provider. These three care categories reflect the varying decision-making processes under differing

clinical theory, medical evidence, patient preferences, and supply of resources (Sipkoff, 2003).

Measuring variation for the three separate care categories, as they are defined above, is chal-

lenging. For example, since every patient has different types and levels of conditions, the proper

amount and frequency of needed care becomes a subjective decision made by a physician in co-

ordination with the patient and other stakeholders. As such, without differentiating those three

categories, we aim to capture the level of practice variation within a patient care episode cohort.

Because every hospital has its own “chargemaster” and captures charges for all services and items

provided (Melnick and Fonkych, 2008; Ferenc, 2013), we use detailed medical charge informa-

tion to construct a measure of practice variation. Our study contributes by constructing a precise

measure of practice variation applicable to both hospital and condition (i.e., care episode) level. In

4If the sum of the claims is below the agreed-upon price, hospitals share savings. Otherwise, any overage is
incurred by the payer under upside-only BP design.
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contrast to prior work that examines hospital-level geographic variations, our work tracking the ex-

tent of practice variation inside a hospital may facilitate development of incentives that encourage

actions to deal with practice variation.

2.2.3 Process Quality and Experiential Quality

Due to preventable errors in U.S. hospitals, many patients die or are injured in a year (Kohn

et al., 2000). To avoid such errors and to evaluate healthcare quality, the Hospital Inpatient Quality

Reporting program, launched in 2003, mandates the collection and disclosure of process quality

measures, for example, the percentage of patients who receive treatments known to lead to the best

results (CMS, 2014b). Hospitals are motivated to report their process quality to receive financial

incentives (CMS, 2010). Prior operations management literature sheds light on the impacts of

higher process quality under various research settings. On one hand, Nair et al. (2013) find that

higher process quality and clinical flexibility reduce patient LOS in a cardiology unit. Andritsos

and Tang (2014b) subdivide process quality into clinical and administrative dimensions, and find

that higher clinical process quality is associated with lower patient LOS. On the other hand, med-

ical experts point out that documentation and monitoring of process quality are resource-intensive

tasks (Fonarow and Peterson, 2009). Improving process quality can incur substantial costs for hos-

pitals (Senot et al., 2015). Collectively, prior literature identifies inconsistent associations between

process quality and resource usage, for which LOS and cost are often used as proxy measures.

While standardized clinical processes may improve operational performance, they may not

address the specific requirements of patients (Nair et al., 2013). Indeed, patients also can evalu-

ate perceived quality attributes, such as experiential quality. The Hospital Consumer Assessment

of Healthcare Providers and Systems (HCHAPS) survey measures include communication with

caregivers and their responsiveness to patients’ requests. Consideration of experiential quality is

important because caregivers (e.g., physicians and nurses) can use communication to learn more

about patients, come up with an accurate diagnosis, and select the most appropriate care method

depending on the individual patient’s characteristics (Elwyn et al., 2000). Increased attention to

each patient’s characteristics has been shown to associate with patient satisfaction (Rubin et al.,

15



2001), lower readmission rates (Senot et al., 2015), and decreased patient LOS (Nair et al., 2013).

On the other hand, being responsive to patients or communicating more frequently with them

can require substantial resources such as advanced information systems (Khunlertkit and Carayon,

2013), rapid response teams (Kapu et al., 2014), and responsive registered nurses (Smolowitz et al.,

2015), leading to higher cost per patient discharge (Senot et al., 2015).

Taken together, previous studies view process quality and experiential quality as either com-

plementary assets (Toussaint, 2009; Nair et al., 2013) or trade-offs (Chandrasekaran et al., 2012)

in achieving various operating outcomes or performance metrics. As far as we know, however, our

work is the first study that examines how the relationship between the two quality dimensions and

operational performance changes once a hospital’s practice variation is considered.

2.2.4 Hypotheses Development

We hypothesize a relationship between practice variation and resource usage (Hypothesis 1).

We delve into practice variation, focusing on underuse risk of test-ordering, to see its impact on

subsequent care-delivery cost (Hypothesis 2). We also motivate how process quality (Hypothesis

3a) and experiential quality (Hypothesis 3b) differently influence these relationships. Our concep-

tual framework is shown in Figure 2.2.

2.2.4.1 Impact of Practice Variation on Patient LOS and Total Cost per Capita

For reimbursement purposes, hospitals record all expenditures for services and equipment ad-

ministered to each patient. Hence, patient-level detailed medical charge information captures the

clinical pathway that the patient went through. As such, variations in medical charges provide

an opportunity to measure variability in the underlying treatment process (Melnick and Fonkych,

2008; Ferenc, 2013). If considerable practice variation exists in the claim charges within a hospi-

tal for patients having the same medical condition, managers need to examine where the variation

originates and how it can be addressed to meet payment reform model goals (Appleby et al., 2011).

Quality management literature distinguishes between two types of variation that can cause

quality problems (Garvin, 1988; Cachon and Terwiesch, 2008). One type is common variation,

16



Figure 2.2: Conceptual Framework

purely random variations in an output of a process. The other type is assignable variation, whose

source can be identified and possibly managed. Key objectives of quality management are to ensure

that the outputs of a process are consistent (i.e., the process is in control) and meet the customer’s

expectations (i.e., the process is capable). If the process is out of control or not capable, quality

management teams must identify assignable variation and reduce it. We conceptually link the

assignable variation concept to practice variation.

Considering the potential adverse effect of assignable variation on output, we posit that high

practice variation may harm hospital-level care delivery efficiency. Using statistical process control

(SPC) to monitor and control a process enables it to reach its full potential (Wheeler et al., 1992;

Oakland, 2007), in that process managers can minimize waste and produce as much conform-

ing output as possible. Similarly, in the healthcare context, assembling all the necessary medical

services for a common care episode (e.g., AMI, HF, or PN) is a recurring managerial decision

process. After a patient is admitted to a hospital, the sequence of recurring decisions made by the
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administrative group, physicians, and nurses will be reflected in the charges for each patient.

Thus, unstable charges for patients with the same disease and similar illness severity indicate

unstable care processes. This process instability possibly increases variability in service time dur-

ing a care episode, which is known to cause waiting times (Cachon and Terwiesch, 2008; Gupta

et al., 2016). Using a queueing framework, for example, Dai et al. (2016) claim that physicians’

decisions about ordering tests influence patients’ waiting times, which may drive overall service

time, or patient length-of-stay. Unstable hospital care processes might also increase the uncertainty

of patient outcomes, possibly leading hospitals to devote additional efforts/resources to alleviate

negative outcomes that may critically harm the hospital’s reputation.

Collectively, variable service times may lead to longer patient LOS, whether due to value-added

time when providers are delivering appropriate care, or non-value added time when a patient is

staying without receiving care. Similarly, any chance of uncertain outcomes may lead hospitals

to incur a greater amount of expenditure for patient treatment, whether due to meaningful efforts

when providers are delivering appropriate care, or due to wasteful practice when a patient is given

excessive care. Lower practice variation may reduce resource usage for patient care by eliminat-

ing non-value added waiting, lessening over-treatment, limiting excessive patient customization,

and lowering material supply uncertainty. Hence, we hypothesize a positive relationship between

practice variation and resource usage, proxied as patient LOS and average total cost per patient.

Hypothesis 1. Higher clinical practice variation is associated with greater resource usage, for

which per patient LOS and total cost per capita are used as proxy measures.

2.2.4.2 Impact of Variation in Test-Ordering Practice on Care-Delivery Cost

While we first focus on practice variation impacts on LOS and total cost during the entire

process of a patient’s care episode, we recognize that each care episode comprises several serial

stages, potentially including admission, diagnosis, treatment, recovery, and discharge. By splitting

the entire care episode into test-ordering stages and care-delivery stages (although they are not

perfectly sequential and often go back and forth), we recognize potential impacts of practice vari-

ation during the test-ordering stages on the average cost for the care-delivery stages. From SPC
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theory, detecting problems at an early stage and preventing them from occurring is ideal for any

organization (Wheeler et al., 1992). In this sense, we focus on variation in test-ordering practice

and provide our theoretical reasoning for its possible impact on cost.

Many existing explanations imply that variations in medical practice are caused by different

physicians’ preferences about appropriate treatment for patients (i.e., practice style), often called

the practice style hypothesis (Wennberg and Gittelsohn, 1973; Stano, 1993). From this perspective,

physicians differ in the kind of procedures they provide because they learned to value them dif-

ferently, and thus adhere to a different practice style. The difference in practice style may emerge

because of uncertainty about the value of a certain medical procedure (Wennberg and Gittelsohn,

1982). Uncertainty also is often viewed as a personal attribute, for example, physicians have dif-

ferent tolerance toward uncertainty. Thus, if physicians are uncertain about how to proceed in a

given case, they may try to reduce uncertainty by conforming to an accepted practice style (Gerrity

et al., 1990).

In a FFS test-ordering paradigm, reducing a physician’s uncertainty would mean ordering more

laboratory and radiology tests. Many medical malpractice lawsuits (about 35.2% of payouts) relate

to diagnostic errors (NASEM, 2016). A leading cause of such errors is failure by a medical profes-

sional to order a proper set of medical tests. If needed medical tests are not performed, a patient’s

health condition can be overlooked, which possibly leads to serious patient harm (Gandhi et al.,

2006; Berlin, 2002). Thus, physicians tend to take proactive defensive attitudes and make efforts to

avoid such errors by ordering a permissive, rather than restrictive, body of medical tests (Zhi et al.,

2013). The more physicians in a hospital conform to this practice style, the higher overuse vari-

ation, or equivalently the lower underuse variation, in test-ordering practice will be. In payment

reform model paradigms such as bundled payments, the care bundling contract will similarly stan-

dardize the recommended test panel. Physicians will follow evidence-based approaches to come

to a diagnosis. Physician agreement about sufficient panels in medical tests should lead to less un-

deruse/overuse variation in test-ordering practice and thus a proper amount of test-ordering cost.

While many experts highlight the tendency to overuse tests, underuse of test-ordering is also

19



pervasive. Zhi et al. (2013) find not only a 30 percent overall rate of test overuse but also a similar

rate of test underuse from a large-scale 15-year meta-analysis of laboratory testing practices. In

this sense, high underuse variation in test-ordering practice implies that a hospital is more likely to

fail to order proper tests for some patients. In a contract where standard evidence-based diagnosis

processes are not followed, some physicians can more frequently underuse tests, while others still

follow the tendency toward overuse, exhibiting practice variations. We conjecture that higher un-

deruse variation in test-ordering practice can result in lower average test-ordering cost, yet worse

system-wide operational performance (i.e., higher care-delivery cost), which we discuss next.

After a set of medical tests are given to a patient, no common strategy is known to reduce

uncertainty like doing more. Instead, only a situational strategy exists: Do as your direct colleagues

do (Eddy, 1984). We thus focus on underuse variation in test-ordering practice and its possible

effect on subsequent care-delivery stages. Prior literature provides evidence that a small change

in one process can cause enormous changes elsewhere. The bullwhip effect in supply chain (Lee

et al., 1997), the snowball effect in communication networks (Krackhardt and Porter, 1986), and

the butterfly effect in a complex system (Lorenz, 2000) are some examples. Hospital services also

comprise a sequence of interrelated events (e.g., medical test, surgical procedure, recovery, etc.).

When medical malpractice such as diagnosis error leads to incorrect treatment, delayed treatment,

or no treatment, a patient’s condition can be made even worse. For example, a patient with a

heart attack that is misdiagnosed as psychiatric anxiety might only receive appropriate treatments

after the symptoms aggravate overtime, and thus will require extra resources compared to a patient

correctly diagnosed immediately. In this sense, we posit that higher underuse variation in test-

ordering practice can lead to higher care-delivery cost:5

Hypothesis 2. For a specific care episode, higher underuse variation in test-ordering practice (i.e.,

laboratory and radiology tests) relates to higher average care-delivery cost.
5care-delivery cost = total cost - test-ordering cost
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2.2.4.3 Moderating Effects of Process Quality and Experiential Quality

The practice style hypothesis (Wennberg and Gittelsohn, 1973) and the enthusiasm hypothesis

(Chassin, 1993) are complementary theoretical foundations suggested to explain medical practice

variation. Both theories argue that physicians follow their own preference for certain procedures,

and thus they are known as a preference-based approach. The variations are suggested to stem

from physicians’ practical experience and educational history (Westert and Groenewegen, 1999).

The constraint-driven approach, also known as depend-on-conditions approach, is an alterna-

tive to the preference-based approach (Lindenberg, 1990). In this alternative theory, the differ-

ences in social context define opportunities and constraints, dominantly determining preferences

or practice styles, rather than the differences in tastes or pure preferences. The social context in-

cludes incentives for certain options or restriction on behavioral choices. Assuming physicians are

goal-oriented individuals who optimally decide their practice style to realize personal goals (e.g.,

financial benefit), Westert and Groenewegen (1999) relate social conditions, such as institutional

influences and incentives, to the options that physicians choose. Preferences can be understood as

instrumental goals pursued to achieve more general goals, within a certain combination of oppor-

tunities and constraints. As such, behavior can be predicted from the social conditions that affect

the realization of instrumental goals.

Similar to the reasoning under the constraint-driven approach above, the process quality and ex-

periential quality measures, which hospitals are required by CMS to self-report, can be seen as ex-

ogenous institutional influences. Hence, the levels of these two quality measures capture the eager-

ness of physicians and other stakeholders in a hospital to achieve their financial benefit while also

complying with the government goal. Accordingly, each of the two quality measures may influence

the options physician choose when providing services to patients under given social conditions, af-

fecting the relationships described in Hypothesis 1 and Hypothesis 2. Hence, pursuing process

quality and experiential quality may affect a hospital’s operational performance (CMS, 2014b).

From Total Quality Management (TQM) literature, firms must coordinate behavioral, tacit, and

intangible resources to improve processes (Powell, 1995). Decision makers may share tacit as well
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as explicit knowledge to maintain or improve their process performance (Benner and Tushman,

2003). The CMS process quality measure, which comprises broadly recognized clinical standards

of care, entails using repetitive explicit and tacit practices to achieve process improvements. Such

procedure standardization can reinforce the pattern recognition that humans do well, leading to

lower errors (Leape, 1994). Thus, a hospital that has high scores on process quality is equipped

with a more coordinated course of action (Chandrasekaran et al., 2012), which may weaken the

relationship between practice variation and resource usage described in Hypothesis 1. We can

similarly apply this argument to the relationship described in Hypothesis 2. That is, hospitals with

both higher underuse variation in test-ordering practice and process quality would have reduced

cases of unnecessary excessive care, leading to relatively lower care-delivery cost, compared to the

hospitals with lower process quality.

Hypothesis 3a. For hospitals with higher process quality (PQ), the positive relationships between

overall practice variation and resource usage (i.e., H1) and between underuse variation in test-

ordering practice and care-delivery cost (i.e., H2) become weaker.

Meanwhile, we identify distinct performance aspects of experiential quality. Unlike process

quality, which deals with attributes controllable by stakeholders inside a hospital, experiential

quality is less controllable due to the patient engagement. Relying on organizational learning the-

ory (Benner and Tushman, 2003; March, 1991), process quality is referred to as exploitation that

reduces variation, whereas experiential quality is compared to patient-specific exploration that in-

duces variation (Chandrasekaran et al., 2012). Higher experiential quality reflects managerial and

caregiver efforts within a hospital to provide more responsive treatment for every patient. Hence,

hospital managers that pay attention to provide better patient experience may be even more likely to

devote time/effort/resources in their patient treatment services. Thus, we posit that the higher level

of responsive care may amplify the positive link between practice variation and resource usage

described in Hypothesis 1. We again similarly apply this argument to the relationship described in

Hypothesis 2. Hospitals with both higher levels of underuse variation in test-ordering practice and

experiential quality will have more cases of resource-intensive care, reflecting high responsiveness

22



and a tendency to accommodate patient requests, leading to higher subsequent care-delivery costs.

Hypothesis 3b. For hospitals with higher experiential quality (EQ), the positive relationships

between overall practice variation and resource usage (i.e., H1) and between underuse risk in

test-ordering practice and care-delivery cost (i.e., H2) become stronger.

2.3 Data, Variables, and Model Development

We next describe data sources and discuss how we construct variables. We then develop econo-

metric models to examine our hypotheses.

2.3.1 Description of Data Set

We use a comprehensive data set built by merging four databases. First, we use State Inpatient

Discharges data from the Healthcare Cost and Utilization Project (HCUP) from New York (NY)

and Florida (FL) states to identify patient-level information. NY and FL states are the second-

and fourth-largest healthcare markets in the U.S., respectively, in terms of healthcare expenditures

by state of residence (CMS, 2011).6 Both states provide information to track readmitted patients.

We use six years of data, from 2008 to 2013, the period for which the two quality metrics are

fully available. Each yearly HCUP data file contains the domain of the inpatient discharge record,

such as patient demographics, comorbidities, diagnoses, procedures, LOS, physician identifiers,

payer, and claim charge information. We extract data records that relate to Medicare patients with

conditions AMI, HF, and PN, since the data for the two quality measures are Medicare claims.

Using the HCUP data, we construct measures of practice variation (i.e., our main independent

variable), LOS, and cost components (i.e., dependent variables).

Second, we use CMS Timely and Effective Care data maintained by CMS to obtain process

quality metrics. The measures apply to Medicare patients. From among the small list of conditions

having process quality measures, we focus on AMI, HF, and PN. We construct a hospital-level

composite score of process quality that we discuss later. To incentivize hospitals to participate in

61st: California $230,090; 2nd: New York $162,845; 3rd: Texas $146,735; 4th: Florida $132,463; 5th: Pennsyl-
vania $97,414; · · · ; Overall in the U.S.: $2,089,862 (in 2009, in millions). Thus, New York and Florida states account
for about 14.13% of total health spending in the U.S.
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data collection processes, HHS withholds 0.4% of Medicare fees from the hospitals that choose not

to participate in the program (Jha, 2006). Thus, we expect these data to be reasonably comprehen-

sive. Third, we use CMS HCAHPS survey data to construct experiential quality measures. Fourth,

we merge these databases with the Historical Inpatient Impact File for Acute Inpatient Prospec-

tive Payment System, which is maintained by CMS on an annual basis. We obtain the hospitals’

structural characteristics including bed size, CMI, ownership type, corporate goals, location, and

teaching intensity, each of which are used as control variables.

In our analysis, we use the merged dataset for 387 healthcare providers from NY and FL.

Hospital structural characteristics are summarized in Table 2.1.7 Figure 2.3 shows the process of

reducing patient-level HCUP SID data to the dataset pertaining to the 387 hospitals. Our final

1,094,111 patient-level records include patients with three medical conditions (i.e., AMI, HF, and

PN) who are Medicare beneficiaries and are not within the top or bottom 1% outliers for each state,

year, and MS-DRG code, in terms of total medical charges.8 Since process quality and experiential

quality measures are not reported for medical conditions having less than 10 patients in a year

within a hospital, the actual number of providers in our analyses is slightly less than 387 per year.

Table 2.1: Hospital Structural Characteristics

Frequency Percentage Frequency Percentage
Teaching Status State
Non-teaching 217 56.07 FL 188 48.58
Teaching 170 43.93 NY 199 51.42
Ownership and Corporate Goals Geographic Location
Governmental 56 14.47 Rural 52 13.44
For-profit 83 21.45 Urban 307 79.33
Non-profit 248 64.08 Missing 28 7.24

7Note: A hospital identifier called DSHOSPID in the HCUP SID data is used to match hospitals in Florida state (us-
ing CMS Provider Number) and New York state (using NY SPARCS PFI (New York Statewide Planning and Research
Cooperative System Permanent Facility Identifier)).

8As a robustness check, we also considered top and bottom 3% outliers for each state, year, and MS-DRG code,
resulting in consistent results.
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Figure 2.3: Process of the Patient Sample Selection

2.3.2 Variables

The variables used in this study are summarized in Appendix A.2.

2.3.2.1 Dependent Variable: Hospital Operational Performance

We operationalize the dependent variables (i.e., Total LOS and Total Cost) by tracking patients’

initial visits and revisits to hospitals within 30 days. Total LOS and Total Cost measures are

often used to represent the level of resource usage. The total LOS (total cost) comprises (i) initial

LOS (initial cost) during a patient’s initial admission and treatment period and (ii) readmission

LOS (readmission cost) of any unplanned readmissions within a 30-day post-discharge period.9

Via this approach, we obtain more accurate estimates of resource usage during an entire care

episode instead of for only an individual discharge (Andritsos and Tang, 2014a). The 30-day

post-discharge window is commonly used in practice since hospitals consider the 30-day window

as clinically meaningful and a long enough period for collaborations with care communities to

reduce readmissions (Drye et al., 2012).

Cost measures are estimated from patient-level charge data in HCUP SID by following the ap-

proach suggested in Chen et al. (2010) and also promoted by the Agency for Healthcare Research

and Quality. We first apply a national consumer price index for hospital services to the charge

data to convert them into 2013 U.S. dollars. We then multiply the inflation-adjusted charges by the

CMS annually announced cost-to-charge ratio to estimate each hospital’s inpatient operating costs.

Further, we construct a risk-adjusted hospital-level mean value of each dependent variable. In

other words, we adjust for the warranted variation, to compare hospitals in a fair manner (Andrit-

9See Appendix A.3 for different cases of patient revisit from HCUP SID Data.
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sos and Tang, 2014b; CMS, 2015b). This process removes the influence of patient characteristics

that possibly affect LOS and care-delivery cost for reasons not related to practice variation or care

quality of a focal hospital. Specifically, we control for patient demographics (i.e., age, gender, and

race), admission-type indicators (i.e., emergency, urgent, and elective), and 29 comorbidity indi-

cators, consistent with recommendations from CMS, National Quality Forum, and the American

Heart Association (Horwitz et al., 2011). This process requires estimation of the following model:

yijkt = α + βPk + γAk + δCk + εijkt, (2.1)

where yijkt is either ln(TotalLOS)ijkt or ln(TotalCost)ijkt for a patient k with condition j

who visited hospital i in year t. Pk, Ak, and Ck are vectors of patient k’s demographic factors,

admission-type indicators, and comorbidity indicators, respectively.10 Then, we calculate the pre-

dicted dependent variable, ŷikt, for each i, k, and t using the estimated model of Equation (2.1). We

then obtain hospital i’s mean predicted dependent variable, i.e., ŷit, by taking the average across

patients in a focal hospital. Similarly, we also calculate hospital i’s mean observed dependent

variable, i.e., yoit, by averaging the actual dependent variables of patients in a hospital. Lastly, we

obtain the hospital-level risk-adjusted dependent variable as yit =
yoit
ŷit
· ȳ where ȳ is the mean of the

actual dependent variable across all patients and years used to estimate Equation (2.1).

2.3.2.2 Independent Variable: Practice Variation

To measure the degree of practice variation in a hospital, we construct a metric called weighted

average coefficient of variation (WACV) for each year and care episode (e.g., AMI, HF, and PN)

treatment within a hospital.11 Our main purpose of this measure is to track practice variation for a

clinically coherent set of patients that enables us to relate a hospital’s observed outcomes for each

condition to the resource demands and associated costs experienced by the hospital.

10As previous literature pointed out significant geographic variation in cost and charges (e.g., Fisher et al., 2003;
Miller et al., 2011), we estimate a separate model of Equation (2.1) for each condition and for each state.

11We can also derive this measure for each year, hospital, and condition (i.e., AMI, HF, and PN), and their histograms
are shown in Figure A.4. We use this condition-level practice variation measure in the analysis by condition discussed
in Appendix A.10.
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When any Medicare beneficiary discharges from a hospital, a single MS-DRG12 code is as-

signed to that patient, which is determined based on multi-dimensional information including prin-

cipal diagnosis, secondary diagnoses, surgical procedures, age, gender, and discharge status of the

patient. For each medical condition, in general, there are three MS-DRG codes to differentiate pa-

tients in terms of illness severity, prognosis, and treatment difficulty (CMS, 2016b). For example,

an AMI patient can be assigned to MS-DRG 280 (i.e., with Major Comorbidities, wMCC), 281

(i.e., with Comorbidities, wCC), or 282 (i.e., without Comorbidities, woCC). As such, the patients

assigned to the same MS-DRG code are expected to receive similar therapeutic and bed services

used in the management of a particular disease, and hence become a homogeneous group in terms

of payments. Therefore, if the amounts of total charges vary substantially for the patients within

such a group, then we conclude that the degree of practice variation of the group is high.

To generate WACV, we calculate the coefficient of variation (CV) for patients within a same

MS-DRG code, and then obtain a weighted-average value at the hospital-level, with the weight

as the number of patients in each code (see Figure A.1 in Appendix A.4). Let t denote year

(i.e., t ∈ T = {2008, · · · , 2013}), i a hospital in the integrated dataset, j an element of the

set of conditions (i.e., j ∈ J = {AMI,HF, PN}), and s a MS-DRG code that reflects illness

severity (i.e., s ∈ Sj = {wMCC,wCC,woCC}). The CV is the ratio of the sample standard

deviation sdijst to the sample mean x̄ijst of total medical charges for each i, j, s, and t (i.e.,

CVijst = sdijst/x̄ijst where sdijst = 1
nijst−1

∑nijst

k (xkijst − x̄ijst)2 where k indicates patient.).13

The CV is useful since it is independent of the unit in which the measurement is taken, whereas

the usual standard deviation measure must always be understood in the context of the mean of the

data. For this reason, to compare multiple data sets (e.g., hospitals) having far different means

or different units, CV is recommended. In the context of healthcare spending, various adjustment

factors, such as wage index and CMI, are typically included in empirical models to rule out possible

differences across regions and locations. When we derive practice variation via CV, which is a

12MS-DRG: Medicare Severity-Diagnosis Related Group.
13Depending on the “target value” that we discuss in Appendix A.9, x̄ijst can be defined at either hospital-, county-,

or state/CBSA-level.
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dimensionless number, the value itself is robust for comparisons between and within hospitals,

even if we do not perform the wage index or CMI adjustments. WACV for hospital i in year t is

computed as:

WACVit =

∑
j∈J
∑

s∈Sj
Nijst · CVijst∑

j∈J
∑

s∈Sj
Nijst

, (2.2)

where Nijst is the number of patients and CVtijs is defined as sdtijs/x̄tijs for each i, j, s, and t.

The concept of a weighted average of CV across illness severities is adopted to capture varia-

tions after controlling for the medical condition, illness severity, and treatment complexity as much

as possible.14 Table A.4 in Appendix A.5 contains the number of patient cases, summary statistics

for age, gender, comorbidities, diagnoses, procedures, LOS, and total charges across MS-DRG

codes for each condition. From this table, we observe that the total charges might depend on the

level of illness severity and treatment complexity. That is, the higher the severity level and com-

plexity, the higher the total charges, because hospitals provide more care services to those patients.

Hence, if we derive CV for each entire health condition (e.g., one group made up of all patients

with heart failure, regardless of illness severity), then the magnitude of CV can be highly affected

by the distribution of patient cases. In essence, both warranted and unwarranted variation in claim

charges would be captured by such a metric, which makes it difficult to interpret the magnitude of

CV. Hence, we use WACV instead, based on MS-DRG codes as the boundary of patient groups.

We claim that higher WACV values indicate higher practice variation. To further rule out other

sources of warranted variation (e.g., age, gender, and comorbidities as listed in Table A.4, and

admission type and race as listed in Table A.5 in Appendix A.5) that are not directly related to the

“level of practice,” we go through a risk-adjustment process for the charge measures, as previously

discussed in Section 2.3.2.1.

Compared to CMI, the WACV metric contributes by enabling appropriate analysis of within-

hospital procedural variability after risk-adjusting for patient diversity. Indeed, as Figure 2.4

14Constructing a weighted-average CV across conditions enables us to flexibly change the level of analysis. For
example, WACV for hospital i and condition j in year t can be similarly computed as WACVijt = (

∑
s∈Sj

Nijst ·
CVijst)/(

∑
s∈Sj

Nijst), of which the estimation results are included in Appendix A.10.
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shows, the level of practice variation can vary significantly (e.g., [0.36, 1.00]) even when hospitals

have the same level of CMI (e.g., 1.25). The histogram of practice variation in Figure 2.4 is roughly

bell-shaped. We note that the hospitals located toward the left side of the histogram (e.g., less than

0.5) have relatively lower practice variation compared to those located toward the right side.

Figure 2.4: Practice Variation vs. Case Mix Index

We also carefully rule out possible limitations of a measure based on CV. If the sample size

for each MS-DRG code is too small, then the reliability of WACV may be problematic (Kelley,

2007). Therefore, we include hospital-level observations only if the number of patient discharges

per condition per fiscal year is greater than or equal to 25. This approach is in line with CMS

recommendations (Nair et al., 2013). For robustness purposes, we also test the same regression

models by including all of the observations, which consistently shows the same results. We also

calculated WACV using an alternative boundary of patient group (i.e., principal diagnosis within

each medical condition, instead of MS-DRG code), and again obtain consistent results. We discuss

in detail these robustness checks in Section 2.4.4.

Thus far, we have discussed the construction of the overall practice variation variable used to

29



examine Hypothesis 1. For Hypothesis 2, we need separate measures for underuse and overuse

variation in test-ordering practice. We adopt a concept from Finance called target semi-deviation

(TSD) that is computed in a similar way to a standard deviation, but only on a single side of a tar-

get mean (Estrada, 2007; Rohatgi, 2011). Specifically, we take the sum of squares of differences

from the target a (e.g., mean), divide by the number of observations, and take a square-root. In

computing the lower TSD (for underuse variation in test-ordering practice), we use 0 in place of

deviations above the target; and in computing the upper TSD (for overuse variation in test-ordering

practice), we use 0 in place of deviations below the mean. Equations make this more clear:

TSDlower(X, a) = (E[(X − a)2 · 1{X≤a}])1/2, (2.3)

where a is a target (e.g., E[X]) and 1{X≤a} is an indicator function, i.e., 1{X≤a} =


1 if X ≤ a;

0 else.
Notice that values on the “opposite” side of the target are not simply omitted; rather, they are re-

placed by zeros, so the denominator of the TSD is the same as the denominator of the standard devi-

ation. Hence, V ar(X, t) = TSD2
lower(X, t) + TSD2

upper(X, t) is satisfied. We replace TSDlower

(TSDlower, respectively) with the sample standard deviation in the formula of WACVoverall in

Equation (2.2) to calculate WACVunderuse (WACVoveruse, respectively). Figure 2.5 clarifies the

boundary of practice variation measures in our study. Using data from patients with pneumonia

in year 2011, Figure 2.6 illustrates how we classify patients into either the underuse case or the

overuse case. If a patient exhibits a test-ordering charge below (above, resp.) the within-hospital

average (i.e., the lines in Figure 2.6), the patient falls into the underuse case (the overuse case,

resp.). As robustness checks, we also use county-average and state/CBSA-average as different

targets, which show largely consistent results (see Appendix A.9).

2.3.2.3 Moderators: Process Quality and Experiential Quality

We follow an approach suggested by CMS to derive the composite process quality (PQ) score

from individual measures via a weighted average approach. The size of the eligible patient pop-
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Figure 2.5: Boundary of Practice Variation Measures

Figure 2.6: Variation in Test-Ordering Practice, Target: Hospital-Average
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ulation becomes a weight for each measure. Prior literature also uses this approach (e.g., Chan-

drasekaran et al., 2012). Specifically, we use 12 quality measure items for AMI, 4 items for HF,

and 7 items for PN to generate composite PQ for each hospital or for each condition, where the

list of items slightly varies from year to year. The descriptions and summary statistics for the mea-

sure items are provided in Appendix A.6. We interpret the resulting value as a compliance score

that reflects the extent to which medical guidelines are followed. Let m denote a process quality

measure item and Mj denote the set of measures for condition j. The number of patients differs

across measures since there may be some reasons that some patients do not need to receive a cer-

tain treatment. We derive the weighted average process quality score per hospital for each year as

follows:15

PQo
it =

∑
j∈J
∑

m∈Mj
Nijmt · qijmt∑

j∈J
∑

m∈Mj
Nijmt

, (2.4)

where qijmt is the associated process quality score and Nijmt is the number of patients for each

i, j,m, and t.16 The distribution of each qijmt in the CMS database and the resulting PQo
it measures

are left-skewed. Hence, we perform a logit transformation of the odds ratio of PQo
it to make this

highly skewed distribution less skewed (Cohen et al., 2003):

PQit = ln

( PQo
it

1− PQo
it

)
. (2.5)

In a similar vein, we derive the composite experiential quality (EQ) score (e.g., Nair et al.,

2013). The experiential quality score is based on six items in the HCAHPS survey (see Appendix

A.6). Within the survey, the responses for the first five items (i.e., Comp1-Comp5) are presented

as “Never/Sometimes,” “Usually,” or “Always,” and for the sixth item (i.e., Comp6) the response

is reported as “Yes” or “No.” To handle this difference in the data structure for the first five items,

15In calculation of a composite process quality measure, we drop AMI-4, HF-1, HF-4, and PN-4, which are more
related to advice/counseling or instructions rather than clinical process (Andritsos and Tang, 2014b). However, our
estimation results remain consistent even when including these measures.

16We can also construct a condition-level measure, which is used in robustness checks, for each hospital and year:

PQo
ijt =

∑
m∈Mj

Nijmt · qijmt∑
m∈Mj

Nijmt
.
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we use the percentage of patients who answered “Always” as the measure of each individual item

(Senot et al., 2015). For the sixth item, we designate the percentage of patients who answered the

question with “Yes” as a final score. Lastly, we compute the hospital-level overall score as the

average of the percentage scores for the six items (i.e., EQo
it). Similar to the process quality score,

the experiential quality score for each hospital is then calculated by taking the logit transformation

of the percentage. Thus, EQit for a hospital i and year t is given by:

EQit = ln

( EQo
it

1− EQo
it

)
. (2.6)

To obtain easy-to-interpret results, we mean-center the practice variation measure and quality mea-

sures before computing their interaction terms (Hamilton, 2012).

2.3.2.4 Controls

We control for several hospital factors that are related to potential sources of heterogeneity in

performance across hospitals. Hospital size is measured according to its total number of beds.

We take the logarithm to account for heavy tails in this distribution (BedSize). CMI captures

the average DRG weight for different DRGs per hospital (Ding, 2014). CMS derives CMI by

calculating the ratio between the total DRG weights associated with Medicare discharges and the

total discharges. The TeachingIntensity of a hospital is defined as the residents-to-bed ratio

(Theokary and Ren, 2011). WageIndex reflects the relative hospital wage level in the geographic

area of the hospital compared to the national average hospital wage level (Shwartz et al., 2011).

We also control for the CMS operating outlier adjustment factor (OutlierAdjustment), which

reflects the extent of uncommonly costly patients treated by the focal hospital, and the CMS op-

erating disproportionate share hospital payment adjustment factor (OPDSHAdjustment), where

the disproportionate share hospitals serve a notably disproportionate number of low-income pa-

tients and receive payments from CMS to cover the costs of providing care to uninsured patients

(Senot et al., 2015).

The control variables so far are all time-varying, which is appropriate for the dynamic panel
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model that we discuss later. We also use time-invariant controls for patient-level analysis in ro-

bustness checks and static OLS estimates in post-hoc analyses (see Appendices A.13 and A.14).

Each hospital is classified into three types: government-sponsored, private non-profit, and private

for-profit. Setting for-profit hospitals as the base group, we use two binary variables, one for private

non-profit hospitals (Nonprofit) and another for government-sponsored hospitals (Governmental).

Hospital location is classified as either urban (1) or rural (0) in variable Urban. We also include

year dummies to control for unobservable factors that cause population change in hospital opera-

tional performance.

2.3.3 Methodologies and Econometric Models

We discuss the dynamic relationship between practice variation, quality, and operational per-

formance, and develop econometric models to examine our hypotheses.

2.3.3.1 A Dynamic Model of Operational Performance

Endogeneity is pervasive across many aspects of healthcare operations. The specific effect

of endogeneity may arise from the dynamic relationship between current hospital operations and

a hospital’s history. We examine how practice variation as well as quality measures relate to

operational performance. The level of the two quality measures is dynamically endogenous with

respect to operational performance because manager talent can affect quality measures that are

closely linked with financial incentives. We believe the relationship between practice variation and

operational performance is similar.

As Section 2.2 implies, practice variation and the two quality measures are choice-type vari-

ables in a broad sense, arising through a process of bargaining between the decision makers inside

a hospital (e.g., board members, physicians, administrative staffs). Although governmental poli-

cies might be the most critical driver, this process is also influenced by past performance, manager

talent, and decision makers’ beliefs about the benefits and cost of choosing reasonable clinical

pathways for patients, leading to various levels of practice variation and quality across hospitals.

Therefore, if practice variation and quality measures are dynamic, and hospital i (given its perfor-
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mance at time t− 1 or earlier) chooses certain levels of practice variation and quality score Xit to

achieve a particular level of expected operational performance at time t, then the dynamic model

for practice variation and quality is:

Xit = f(yit−1, · · · , yit−p,Zit, ηi), (2.7)

where Xit is a vector of endogenous predictors (i.e., practice variation, quality measures, and

their interaction terms) that we call practice-quality status, Zit is a vector of exogenous predictors

(i.e., controls and time dummies), yi∗ represents operational performance, and ηi is an unobserved

hospital effect.

Equation (2.7) suggests that estimating the effect of practice-quality status on operational per-

formance, conditional on hospital heterogeneity, requires estimating the following model:

yit = α +
∑
p

λp · yit−p + β ·Xit + γ · Zit + ηi + εit (2.8)

where εit is an idiosyncratic error term and β is the coefficients of interest. To estimate Equa-

tion (2.8), we assume that current shocks are independent of historical realizations of performance

and practice-quality status. In other words, past and current realizations of practice variation and

quality scores are allowed to influence current performance. This assumption is not too strong and

leaves open the possibility that hospitals may strategically choose their level of practice variation

and target quality to affect current or future performance. If the level of practice-quality status

that we observe today is the one that trades off the anticipated benefits and costs of doing so, then

the unanticipated component of performance, many years in the future, will not be related to the

practice-quality status that is realized today. Intuitively, we can write this in orthogonality form

as E(εit|yit−s,Xit−s) = 0, ∀s > p. If Equation (2.7) represents the true model for performance,

that is, if we correctly identified every endogenous time-varying variable that affects performance,

then εit is an expectational error and the orthogonality assumption is valid (Hansen and Singleton,

1982). Equation (2.8) is simply a reduced-form model and thus the reduced-form error, εit, is at

35



best a proxy for the pure expectational error (Wintoki et al., 2012).

However, there are several challenges in empirically estimating the fixed-effect model (Pang

et al., 2016). As the hospital operational performance is likely to be affected by hospital-specific

unobserved heterogeneity (ηi) that may be correlated with explanatory variables, hospital time-

invariant fixed-effects need to be accounted for. However, fixed-effects estimation does not com-

pletely control for the correlation between ηi and the lagged dependent variable17 (Roodman,

2006). Hence, we estimate a dynamic panel data model via System GMM estimation.

2.3.3.2 Estimation Strategy: Dynamic Panel System GMM

Under the assumption that unobserved heterogeneity is time-invariant, we obtain consistent

and unbiased estimates of the relationship between practice-quality status and operational per-

formance via a dynamic panel System GMM estimator (Arellano and Bover, 1995; Blundell and

Bond, 1998). This estimator exploits the dynamic relationships inherent in our independent vari-

ables. The dynamic modeling approach has been widely used in areas such as economics and

finance, where the structure of the problem contains a dynamic relationship between independent

and dependent variables (e.g., Bond and Meghir, 1994; Blundell and Bond, 1998). Recently, op-

erations management, information systems, and marketing fields also began examining relevant

problems using the dynamic panel GMM approach (e.g., Narayan and Kadiyali, 2015; Senot et al.,

2015; Bhargava and Mishra, 2014; Rego et al., 2013).

The estimation comprises two steps. First, we write the first-differenced form of Equation (2.8):

∆yit = α + λp ·
∑
p

∆yi,t−p + β ·∆Xit + γ ·∆Zit + ∆εit, where p > 0. (2.9)

The first-difference effectively removes any bias that may arise from unobserved time-invariant

heterogeneity. After first-differencing, we estimate Equation (2.9) via GMM using lagged values of

performance, practice variation, quality scores, and other hospital-specific variables as instruments

17No matter how we try to get close to the “true" model (e.g., by adding controls that determine practice-quality
status), we cannot completely rule out the possibility that we have omitted an endogenous time-varying variable that
has an empirically significant effect on both operational performance and practice-quality status.
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for current changes in these variables. An essential aspect of the dynamic panel estimator is its use

of hospital-level history as instrument variables for our explanatory variables. Thus, in estimating

Equation (2.8) or the first-difference as in Equation (2.9), our instruments will be drawn from the

set of lagged dependent or independent variables (i.e., yit−k, Xit−k, Zit−k, where k > p.). For

these instruments to be valid, they should satisfy two criteria. First, they must provide a source of

variation for current practice-quality status (i.e., Xt = f(yt−k,Xt−k,Zt−k)). We show later that

practice variation and quality scores are correlated to lagged operational performance and lagged

values of other control variables (see Table A.7 in Appendix A.7).

Second, the historical values of practice variation and quality scores must explain an exogenous

source of variation for current practice-quality status. As such, the lagged variables should not be

correlated with the error term in Equation (2.8). Any information from the prior p periods is

reflected in the current expected performance. Thus, p lags of performance are enough to address

the impact of the hospital’s past on the present. The hospital’s history beyond period t−p should be

exogenous with respect to any shocks to performance in the current and future periods. Under the

exogeneity assumption, then the following orthogonality condition is valid (Wintoki et al., 2012):

E(Xit−sεit) = E(Zit−sεit) = E(yit−sεit) = 0, ∀s > p. (2.10)

The number of lags included for each dependent variable in our analysis is revealed to be one

according to how many lags are statistically significant in the corresponding regression.18

We then estimate the level and difference equations simultaneously, as Arellano and Bover

(1995) and Blundell and Bond (1998) show that the GMM estimator can be improved compared

to solely estimating a first-difference model. We use the first-differenced variables as instruments

18We tested the same model with different number of lags for each dependent variable to determine the number of
lags to be included in our analysis.
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for the level equations in a system of equations as below (Roodman, 2006):

 yit

∆yit

 = α + λ

 ∑p yit−p∑
p ∆yit−p

+ β

 Xit

∆Xit

+ γ

 Zit

∆Zit

+ εit, (2.11)

where yit = ln(Average Total LOS) or ln(Average Total Cost) for a hospital i in year t, Xit =

[WACV, PQ, EQ, WACV ∗ PQ, WACV ∗ EQ], and Zit = a set of time-varying controls. Vari-

able yit and ∆yit denote the level and year-to-year change (from t − 1 to t) in operational perfor-

mance in hospital i. The level and change in practice variation, quality scores, and their interactions

are captured by Xit and ∆Xit.

Note, however, that the level equations still have unobserved heterogeneity, ηi. As in Wintoki

et al. (2012) and Kuhnen and Niessen (2012), we assume that the correlation between practice-

quality status and control variables is constant over time. Relying on this assumption, we have

another set of orthogonality conditions:

E[∆Xit−s(ηi + εit)] = E[∆Zit−s(ηi + εit)] = E[∆yit−s(ηi + εit)] = 0, ∀s > p. (2.12)

We check the validity of instruments Zit with serial correlation tests and the Hansen test of

over-identification (Arellano and Bond, 1991) and show the test statistics in the results tables (i.e.,

Table 2.3 and 2.4). According to the serial correlation tests, the assumptions of our specifications

are valid, that is, the residuals in first-difference (AR(1)) are significantly correlated, but there is

no serial correlation in second-differences (AR(2)). In addition, the Hansen test with insignificant

p-values in all specifications indicates that the null hypothesis that our instruments are valid is not

rejected. Lastly, the difference-in-Hansen test tells us that the subset of instruments used in the

level equations is exogenous for all model specifications.

2.4 Model Estimation Results

Table 2.2 reports summary statistics and correlations of key variables.
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2.4.1 Model-Free Evidence

Before we present the results of our proposed model estimated using dynamic panel system

GMM, we provide model-free evidence of the practice variation effect on hospital operational

performance. As part of our model-free analyses, we present plots of practice variation and patient

total LOS/total cost. For brevity, we compare the average per patient total LOS and total cost

across two scenarios: hospitals with (1) practice variation less than the median in a year, and (2)

practice variation more than the median in a year. As seen in Figure 2.7, we find that hospitals with

a relatively higher level of practice variation exhibit longer patient LOS and higher total cost. We

further shed light on the practice variation effect on test-ordering cost and care-delivery cost. As

in Figure 2.8, hospitals with relatively higher practice variation tend to spend less on test-ordering

activities while spending more in care-delivery activities.

Figure 2.7: Model-Free Evidence of H1: Main Effect of Practice Variation on Risk-Adjusted
Average Length-of-Stay (Left) and Total Cost (Right)

2.4.2 Impact of Practice Variation on Length-of-Stay and Total Cost per Capita

Table 2.3 summarizes the hospital-level estimates obtained for H1 together with H3a and H3b.

With total LOS as a dependent variable, we first run a model with Process Quality and Experiential

Quality (M1), and then include Practice Variation (M2). Lastly, we include the interaction terms

(M3). We similarly examine the model with the same explanatory variables but with Total Cost
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Figure 2.8: Model-Free Evidence of H2: Main Effect of Practice Variation on Risk-Adjusted
Average Cost of Test-Ordering (Left) and Cost of Care-Delivery (Right)

per capita as a dependent variable (M4 to M6). All the instrument validity and identification tests

reported in Table 2.3 support the use of dynamic panel system GMM to estimate the models.

In the relationship of interest in H1, the main-effect results (M3) in Table 2.3 show a significant

positive association between practice variation (i.e., WACVG) and total LOS (β = 0.635, p <

0.01). This result indicates that patients staying at hospitals with greater practice variation tend to

stay longer during their entire episode of care.

Consistent with previous literature (e.g., Nair et al., 2013), patients at hospitals with higher

experiential quality tend to stay a shorter period (β = −0.549, p < 0.01). However, we do not ob-

serve any significant relationship between process quality and patient total LOS (β = −0.073, p >

0.10) although the direction is aligned with prior findings (e.g., Andritsos and Tang, 2014b).

H3a posits that the relationship between practice variation and total LOS/cost is weaker when

process quality is high. Similarly, H3b suggests the relationship between practice variation and

total LOS/cost is stronger when experiential quality is high. M3 in Table 2.3 shows the results

on total LOS. The interaction between practice variation and process quality is not significant

(β = 0.130, p > 0.10) with patient total LOS, indicating H3a is not supported. In contrast, the

interaction between practice variation and experiential quality shows a significant positive asso-

ciation (β = 0.920, p < 0.05) with total LOS, providing support to H3b. Thus, the benefit of

higher experiential quality in reducing patient total LOS can diminish once we explicitly consider
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Table 2.3: Hospital-Level Results of System GMM (WACVG, Dep: Total LOS, Total Cost)

Dep Var Total LOS Total Cost
(M1) (M2) (M3) (M4) (M5) (M6)

ProcQuality (PQ) −0.001 −0.001 −0.073 0.004 0.004 −0.015

(0.005) (0.003) (0.047) (0.010) (0.008) (0.080)

ExpQuality (EQ) −0.019 −0.050∗ −0.549∗∗∗ 0.052 0.020 −0.134

(0.050) (0.028) (0.205) (0.134) (0.071) (0.171)

WACVG 0.553∗∗∗ 0.635∗∗∗ 0.318∗∗ 0.233∗

(0.060) (0.070) (0.127) (0.122)

PQ*WACVG 0.130 0.027

(0.084) (0.141)

EQ*WACVG 0.920∗∗ 0.291

(0.369) (0.338)

Teaching Intensity 0.014 −0.056∗∗ −0.054 0.021 −0.031 −0.010

(0.023) (0.025) (0.038) (0.063) (0.048) (0.055)

Bed Size 0.010 −0.002 −0.001 0.006 −0.002 −0.007

(0.007) (0.006) (0.008) (0.022) (0.016) (0.015)

Case Mix Index 0.010 −0.002 −0.017 −0.029 −0.028 −0.012

(0.021) (0.020) (0.027) (0.057) (0.042) (0.039)

Wage Index 0.064∗∗ 0.046∗ 0.113∗∗∗ 0.450∗ 0.352∗∗∗ 0.327∗∗

(0.031) (0.027) (0.034) (0.232) (0.120) (0.139)

OPDSH Adj Factor −0.011 −0.022 0.023 −0.248∗∗ −0.208∗∗∗ −0.175∗∗

(0.028) (0.028) (0.035) (0.106) (0.074) (0.076)

Outlier Adj Factor −0.060 −0.154∗ −0.114 0.388 0.230 0.209

(0.089) (0.086) (0.105) (0.349) (0.224) (0.216)

Dep Var(t−1) 0.779∗∗∗ 0.705∗∗∗ 0.551∗∗∗ 0.673∗∗∗ 0.721∗∗∗ 0.739∗∗∗

(0.065) (0.049) (0.064) (0.152) (0.080) (0.094)

Year Dummies Yes Yes Yes Yes Yes Yes
Observations 1527 1527 1527 1527 1527 1527
Hospitals 324 324 324 324 324 324
Instruments 41 49 65 41 49 65
AR(1) (p-value) (0.000) (0.000) (0.000) (0.027) (0.004) (0.005)

AR(2) (p-value) (0.039) (0.094) (0.205) (0.453) (0.459) (0.461)

Hansen test of (0.443) (0.083) (0.238) (0.090) (0.060) (0.053)

overid. (p-value)
Diff.-in-Hansen test of (0.524) (0.125) (0.286) (0.640) (0.304) (0.229)

exogeneity (p-value)

Standard errors in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Notes: The results are based on a system GMM model (Arellano and Bond, 1991; Blundell and Bond, 1998) estimated as in Equation (2.11). Standard
errors are corrected for heteroskedasticity. AR(1) and AR(2) are tests for first-order and second-order serial correlation in the first-differenced residuals,
under the null of no serial correlation. The Hansen test of overidentification is under the null that all instruments are valid. The difference-in-Hansen test
of exogeneity is under the null that instruments used for the equations in levels are exogenous.
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the level of practice variation for a focal hospital.

Similar to the mixed (or insignificant) results of previous research on the relationship between

hospital quality measures and total cost (e.g., Nair et al., 2013), none of the quality measures are

significant as shown in M4, M5, and M6 of Table 2.3. This result is perhaps due to confounding

data aggregation factors, inherent in the construction of the explanatory measures and total cost,

which possibly cancel out existing effects. We only find a weak association between the level of

practice variation and total cost (β = 0.233, p < 0.10). However, by delving deeper into practice

variation at a lower level, particularly for the test-ordering practice, we find an interesting impact

on care-delivery cost that we discuss in the next section.

2.4.3 Impact of Variation in Test-Ordering Practice on Care-Delivery Cost

Laboratory/Radiology test-ordering practice is important to assign correct patient diagnoses in

a timely manner and to monitor a patient’s disease during a care-episode. For each inpatient in

our data, we have a detailed list of charges pertaining to a hospital revenue center. A few hundred

revenue codes can be categorized as listed in Table A.9 (in Appendix A.9). Almost all patients for

the three medical conditions receive laboratory and radiology tests. The amount of charges related

to the tests accounts for a considerable portion of a patient’s total charges. For example, 98.63%

and 97.56% of patients with heart failure received at least one laboratory test and one radiology test,

respectively, and on average they account for 27.96% of total charges. Following Equations (2.2)

and (2.3), we operationalize measures for underuse- and overuse-variation in test-ordering practice.

To construct dependent variables for examining H2, H3a, and H3b, we obtain test-ordering

charges by summing charges related to laboratory and radiology tests. Similarly, we sum charges

related to medical & surgical supply, cardiology, respiratory, intensive care, coronary care, phar-

macy care services, and room charge to obtain care-delivery charges. Then, we obtain cost accord-

ingly by multiplying the cost-to-charge ratio of each hospital to the charges.19

The results are listed in Table 2.4. M1 to M6 are also included, without a formal hypothesis,
19Here we exclude emergency room charge in calculation of either test-ordering cost or care-delivery cost. That is

because emergency room charge occurs, in general, simultaneously or prior to (not after) the test-ordering practice.
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to provide insights on how the underuse- and overuse-variations in test-ordering practice relate to

total cost (M1 to M3) or test-ordering cost (M4 to M6). For each dependent variable, we first esti-

mate a model with quality measures with controls (as in M1, M4, and M7), add underuse/overuse

practice variation measures (as in M2, M5, and M8), and then add interaction terms (as in M3, M6,

and M9). Note that, in these models, we include overuse variation in test-ordering practice (i.e.,

WACVG_Overuse) after controlling for that of underuse practice variation to orthogonalize the

two variables, because they are correlated with each other. M3 shows weak evidence that underuse

variation in test-ordering practice is positively associated with total cost (β = 0.560, p < 0.10).

H2 posits that higher underuse variation in test-ordering practice relates to higher subsequent

care-delivery cost. Before discussing the results on this hypothesis, we observe from M6 that

higher underuse variation in test-ordering practice is associated with lower test-ordering cost (β =

−0.288, p < 0.05). In contrast, overuse variation is positively associated with the test-ordering cost

(β = 0.258, p < 0.05), which make sense from the construction process of the practice variation

measures. For the care-delivery cost, which is our main interest, M9 shows underuse variation in

test-ordering practice is positively and significantly associated (β = 0.640, p < 0.01). Thus, H2 is

supported. Hospitals that tend to underuse test-ordering practice may spend even more during the

care-delivery stages, as we hypothesized.

As shown in M9, the interaction between underuse practice variation and process quality is in-

significant with care-delivery cost (β = 0.107, p > 0.10), indicating no support for H3a. However,

the interaction between underuse practice variation and experiential quality has a positive associa-

tion (β = 1.588, p < 0.05) with care-delivery cost, supporting H3b. Taken together, our findings

suggest that high underuse variation in test-ordering practice may lead to higher care-delivery cost,

and this relationship is even stronger if a hospital has achieved a high experiential quality measure.

As argued earlier, hospitals with both higher underuse variation in test-ordering practice and high

experiential quality may have more cases of resource-intensive care reflecting high responsiveness

and a tendency to accommodate patient requests, leading to higher subsequent care-delivery costs.

We summarize the results of hypotheses tests in Table 2.5.
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The left plot in Figure 2.9 represents the interaction between overall practice variation and ex-

periential quality with regard to total LOS. The importance of considering the practice variation in

reducing patient LOS is reflected in this plot. Consider the hospitals with high experiential quality

(i.e., top 10th percentile). In this case, a 0.1 decrease in overall practice variation would correspond

on average to 0.86 days decrease in patient LOS. In contrast, for hospitals with relatively low lev-

els of experiential quality (i.e., 90th percentile), a 0.1 decrease in overall practice variation would

result on average in 0.24 days decrease in patient LOS. Similarly, the right plot in Figure 2.9 shows

the interaction between underuse variation in test-ordering practice and experiential quality with

regard to care-delivery cost. Again, consider the hospitals with high experiential quality. A 0.1

decrease in underuse practice variation in test-ordering would correspond on average to $2150 de-

crease in care-delivery cost. In contrast, for hospitals with low experiential quality, a 0.1 decrease

in underuse practice variation in test-ordering would result on average in only $293 decreases in

care-delivery cost. In sum, we highlight the importance of addressing the relationship between

practice variation and operational performance, together with hospitals’ experiential quality.

Table 2.5: Summary of Hypotheses Testing Results

Hypotheses Empirical
Support

H1: Higher overall clinical practice variation is associated with higher LOS and total cost. Supported
H2: Higher underuse variation in test-ordering practice (e.g., laboratory/radiology tests)

relates to higher subsequent care-delivery cost.
Supported

H3a: For hospitals with higher process quality (PQ), the positive relationships in H1 and
H2 are weaker.

Not Sup-
ported

H3b: For hospitals with higher experiential quality (EQ), the positive relationships in H1
and H2 are stronger.

Supported

46



Figure 2.9: Effect of Practice Variation on Patient Length-of-Stay (Left) and Effect of Lab/Radiol-
ogy Test Underuse Risk on Subsequent Care-Delivery Cost (Right)

Note: The 10th-90th percentile ranges are displayed for Experiential Quality.

2.4.4 Robustness Checks

Our results remain robust to several checks. First, we construct the measure of practice vari-

ation in a different way. In our main analysis, we relied on MS-DRG codes to define groups

of patients who require relatively homogeneous care. The MS-DRGs are generally assigned to

patients based on multi-dimensional information such as their principal diagnosis and additional

diagnoses, the principal procedure and additional procedures, sex, and discharge status. Since

the DRG code is assigned around the time of discharge, the MS-DRG based practice variation is

an ex-post type of practice variation (we named this variable WACVG, where G stands for gen-

eral). Alternatively, we consider an ex-ante type of practice variation. That is, we can rely on the

principal diagnosis code, which is usually determined at an early stage of the diagnostic phase,

to define a group of patients in calculating practice variation (we named this variable WACVD,

where D stands for diagnosis). WACVD, therefore, measures the practice variation for patients

who initially got the same main diagnosis but possibly ended up with different clinical pathways.

As shown in Appendix A.9, our findings are consistent and robust to alternative practice variation

in terms of the point of time for defining of the patient cohort.

Second, in calculating the underuse/overuse variation of test-ordering practice, we use differ-
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ent target standards. Specifically, “County-average” and “State/CBSA20-average” could also be

worthwhile standards. Indeed, a recent mandatory bundled payment program operated by CMS,

namely the Comprehensive Care for Joint Replacement (CJP) Model, adopts a similar approach. In

the CJP program, the target price for a care-episode bundle is set prospectively and reflects a blend

of hospital-specific and regional data, 21 implying possibilities of using a target standard obtained

from a broader regional boundary than a single hospital. Again, as shown in Appendix A.9, our

findings are consistent to different target standards.

Third, we test our hypotheses condition-by-condition and consistently find supporting evidence

(see Appendix A.10). Fourth, to capture the burden of measuring and reporting process quality that

is being updated every year, as listed in Table A.6, we measure the process quality burden (namely,

PQB) to address any association between the burden of quality measurement and its impact on

operational performance. We find consistent results even after replacing the original PQ measure

with the PQB measure, as shown in Appendix A.11.

In sum, our results provide significant evidence to support Hypothesis 1, Hypothesis 2, Hy-

pothesis 3b, but not Hypothesis 3a. Aligned with Salzarulo et al.’s (2011) finding that laborato-

ry/radiology services have the largest impact on the physician’s idle time, overall practice variation

inside a hospital is associated with longer patient LOS (H1), and this relationship is even stronger

when experiential quality is high (H3b). By delving into a more granular level of hospital data,

we find that higher underuse variation in test-ordering practice relates to higher care-delivery cost

(H2), especially if the experiential quality is high (H3b). Thus, when designing payment reform

programs, it is worthwhile to carefully consider the trade-offs between allowing flexible physician

practice and providing a standard set of care to improve hospital operational performance.

2.5 Discussion and Implications

Motivated by the move toward payment reform models, in particular bundled payment pro-

grams, this study highlights practice variation, an important but understudied metric for research

20Core-Based Statistical Area refers collectively to both metropolitan statistical areas and micropolitan areas.
21http://www.singletrackanalytics.com/blog/15-11-23/top-ten-things-you-need-know-now-medicare-cjr-program-

final
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on healthcare operations and healthcare strategic planning. Using a high-frequency inpatient dis-

charge data set from 387 hospitals in NY and FL states with 1,094,111 observations, our findings

corroborate the impacts of practice variation on operational performance: practice variation di-

rectly affects patients’ average LOS during their care episode, and the CMS quality measurement

initiative regarding patient experience intensifies this relationship. Also, hospitals with higher un-

deruse variation in test-ordering practice tend to spend significantly greater amounts on subsequent

care-delivery cost per capita, especially when the experiential quality is high.

These findings are robust to alternative approaches in measuring practice variation. The strength

of our empirical evidence provides assurance to researchers and healthcare managers that the level

of practice variation in a hospital should be as salient a concern as the mean level of process and

experiential quality measures, which is thus far the major focus of previous literature.

2.5.1 Theoretical Contributions

We suggest several implications for theory. First, our study exposes the role of practice varia-

tion in healthcare strategic planning, particularly the explanations of operational performance. Our

findings are crucial because previous healthcare operations management research has neglected

practice variation, even though it can have a direct bearing on the financial stability of hospitals,

payers, and even governments.

Our study of practice variation’s role on operational performance advances the healthcare op-

erations literature, because scholars have paid inadequate attention to how practice variation and

quality initiatives can have competing direct effects on performance. We find more noticeable

effects of quality measures on performance when the level of practice variation is considered to-

gether. This result provides a more complex perspective on the translation of quality improvement

efforts into better performance and indicates the potential for opposing relationships among the

performance drivers.

Furthermore, the interaction effects between practice variation and quality metrics render more

nuanced evidence on the role of practice variation in generating better performance. The oper-

ational performance metrics (e.g., LOS and care-delivery cost) in our study are more likely to
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improve for hospitals that reduce practice variation. Hence, there appear to be more dynamic and

intricate relationships between quality initiatives (in their mean values) and hospital performance

than those identified in previous research. Indeed, for research on the effect of healthcare quality

attributes, our findings highlight the importance of including practice variation and its interplay

with mandated quality metrics. Taken together, our study supports efforts to move beyond vol-

ume or mean and incorporate second-moment information like the variation (we briefly discuss in

Appendix A.15 the value of using a dispersion measure in research).

As an interesting aside, CMI, which researchers often use to measure hospital demand uncer-

tainty, ends up insignificant in most of our analyses, unlike in previous studies that do not control

for within-hospital practice variation (e.g., Ding, 2014; Senot et al., 2015). This finding possi-

bly indicates that once within-hospital practice variation is taken into account, external demand

uncertainty as reflected by CMI may not be such a salient driver of hospital performance.

Practice variation can indicate either a cross-physician inconsistency in preference that pro-

duces different practice styles (Wennberg and Gittelsohn, 1973) or differences in characteristics

of the social context that provide incentives for certain options (Westert and Groenewegen, 1999).

While both perspectives are prominent, our findings on the determinants of practice variation from

a post-hoc analysis (see Appendix A.13) find evidence supporting Westert and Groenewegen’s

(1999) point that emphasizes institution context rather than personal preference.

2.5.2 Managerial Relevance and Implications to Payment Reform Models

We suggest hospital managers and policy-makers should pay attention to practice variation and

adopt it as an evaluation metric. Prudent policy-makers may take advantage of practice variation

information. For example, they should not only study hospitals with lower practice variation but

should also pay attention to hospitals with higher practice variation to understand harmful practice

styles and to promote improvement from a wider spectrum of healthcare providers contained within

a hospital. In this regard, our findings indicate the relative importance of hospitals with higher

practice variation. Thus, policy-makers should pay close attention to hospitals with high practice

variation for more productive performance management. Tracking of practice variation, especially
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high underuse variation in test-ordering practice, may enhance the predictive validity of models

linking quality scores to detailed cost components for patient care.

Indeed, a singular empirical research focusing on mean-level quality scores possibly derives

inaccurate and biased assessments of hospitals or other types of healthcare providers. With low

practice variation, experiential quality improvement leads to shorter LOS and lower care-delivery

cost by providing timely and effective services, thus underestimating the power of quality evalua-

tions if practice variation is ignored. Conversely, with high practice variation, experiential quality’s

impact on the operational performance can be lower, thus overestimating the power of quality eval-

uations if practice variation is ignored. In this regard, without considering practice variation, hos-

pitals may be over- (under-) rewarded for quality improvements if there is an increase (decrease)

in practice variation. Thus, the design of incentives and penalties for better hospital operations

should be adjusted to take such effects into account.

For the patient community, we highlight practice variation as a metric that reflects hospital

operations. CMS releases several quality measures regularly to help consumers make informed

healthcare decisions (CMS, 2014b). Similarly, better-informed patients with earlier or accurate

practice variation information might take advantage of WACV-type measures because hospitals

with higher practice variation tend to have longer LOS and higher care-delivery cost, which are

not preferred by the patient community. Thus, policy-makers should consider practice variation to

be a vital healthcare operations metric and add it to the hospital performance dashboard.

From the viewpoint of a policy-maker, our analysis of practice variation provides insights into

the operations of bundled payment programs that aim to provide standardized care delivery services

for a predefined fixed cost for each specific episode of care. Considering the many unforeseeable

situations in healthcare, using a fixed reimbursement approach that imposes less variability, as

in the bundled payment scheme, can be a risky strategy for both hospitals and payers. Indeed,

managers need a better understanding of the ways to control practice variation and to successfully

operate bundled payment programs. Our findings suggest that in a hospital with a lower level of

practice variation, patients may stay a shorter period in the hospital during an episode of care. But,
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the potential savings are not so simple to achieve.

Instead of bundling all services for an episode of care, i.e., providing a standard set of care as

much as possible, we suggest BP policy-makers allow some flexible practice or lenient reimburse-

ment standards (perhaps, similarly as in experimental bundled payment schemes, e.g., CMS BPCI

initiative, which rely on retrospective fee-for-service based reimbursement). Our findings imply

that this approach may be particularly effective for the laboratory/radiology test-ordering practice.

By doing so, hospitals operating under a bundled payment system may not simply try providing

fewer tests for diagnosis and monitoring of disease (to meet the fixed-reimbursement goal), which

can lead to incorrect clinical pathways resulting in even higher spending during later care-delivery

stages. Tactically, the suggested approach with lenient reimbursement for test-ordering (possibly

also with a reasonable upper limit) may be more effective ultimately to reduce average total cost

per patient in hospitals across the nation. Most literature calls for efforts to reduce wasteful overuse

of tests, which is clearly important. Meanwhile, our study highlights the risk of underusing tests,

which is also pervasive in practice (Zhi et al., 2013). Our practice variation measure also adds

value to bundled payment programs since it enables managers to visualize the status of practice

variation for each hospital, or even for each medical condition.

One shortcoming of the present uses of quality measures is that CMS provides process quality

measures for only a few medical conditions. Reporting quality metrics for a limited range of care

may lead to biased decision-making for patients who are not afflicted by one of the conditions

on the limited condition list. To balance quality reporting burdens of healthcare providers, CMS

annually updates the list of care quality measures that must be reported by healthcare providers.

Process quality measures with overall high performance are removed from the list when CMS con-

siders the majority of healthcare providers across the U.S. to have met the quality goal (Mitchell,

2014). CMS then adds new measures that have more opportunity to be improved. However, this

topped-out measurement approach seems like a haphazard process of improvement. Also, it risks

the existing processes going out of control again. We carefully point to this approach as a cause,

among the others, of insignificant estimates of process quality on performance in our analysis.
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While our study focuses on medical conditions for which process quality measures are currently

available, our metric of practice variation contributes in that it can be applied to any medical condi-

tion, enabling future extension of the quality analysis to other conditions as relevant data become

available. Compared to CMI, our practice variation metric also enables appropriate analysis of

within-hospital variation. Having such a metric is important to accurately evaluate the performance

of payment reform models.

In addition, one should not overlook two important points. First, process standards used in per-

formance management should be valid, in that they must either be self-evident measures of quality

or be evidence-based (Lilford et al., 2007). Second, in addition to the validity of the measures, the

process standards must also be beneficial to healthcare, since the opportunity cost of improving

some processes may exceed the contingent gains (Hayward, 2007; Demirezen et al., 2016).

Overall, our study suggests that healthcare policy should be mindful of the potential negative

effects of practice variation and introduce provisions that might help to harness such variation.

Meanwhile, because such practice variation also might be linked to innovation and continuous

improvement in clinical practices, a careful understanding on any adjustments applied to clinical

practices should be addressed together.

2.6 Conclusions and Future Research Directions

Motivated by payment reform models and bundled payment policies that aim to reduce practice

variation, we contribute to the literature by precisely measuring practice variation within a hospital

and by examining the relationship between practice variation and hospital operational performance.

From a theoretical lens of statistical process control, we empirically observe a positive association

of practice variation on patient LOS and total cost per capita. In addition, we find differential

impacts of underuse variation in laboratory/radiology test-ordering practice on the test-ordering

cost itself and the care-delivery cost, especially when the process quality and experiential quality

measures are taken into account together. Doing so enables managers and policy-makers to under-

stand conditions on which better performance is achieved. We believe that better understanding

of such practice variation can lead to successful operations of payment reform models, the target

53



opportunity of which is to reduce waste by decreasing variabilities in care-delivery processes.

Potential limitations of our study motivate several directions for future research. First, a lim-

ited number of conditions are examined from a subset of hospitals in New York and Florida states

focusing on Medicare populations. These results require confirmation on larger data sets for other

regions and for broader spectrums of patient populations. Second, practice variation in a hospi-

tal may occur for reasons personal (e.g., physician’s preference) or organizational (e.g., hospital

characteristics) to the hospital. Behavioral investigation of the causes of such practice variation is

warranted.22 Third, this study finds a relationship between practice variation and hospital opera-

tional performance. Meaningful extensions might involve testing on outcome performance to see

whether mitigating practice variation can lower readmission and mortality rates (e.g., Senot et al.,

2015), as “The Triple Aim: Care, Health, and Cost” is widely pursued and encouraged by the U.S.

government,23 and also on social efficiency to check the impact of unnecessary variation on social

values interrelated with other hospitals (e.g., Greenberg and Campion, 2006).

In conclusion, this study documents novel evidence for the role of practice variation in health-

care operations. Practice variation may lead to poor operational performance, and if not managed

well, the practice variation can severely diminish the benefits of quality measurement initiatives.

We hope this study promotes research to further explicate this important practice variation metric.

22In Appendix A.13, we show descriptive evidence of organizational factors as determinants of practice variation.
23In Appendix A.12, we test the impact of practice variation on hospital’s readmission rate and mortality rate, but

more delicate examination on these relationships are warranted.
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3. SELECTING HEALTHCARE PROVIDERS FOR BUNDLED PAYMENTS IN

HEALTHCARE SERVICES

3.1 Introduction

The U.S. healthcare system suffers from high costs and inconsistent quality. Most experts agree

that fee-for-service (FFS), which is currently the dominant physician payment system in U.S., is

one of the main reasons for increased healthcare cost (Hussey et al., 2011). FFS is a payment

model in which each specific service, procedure, or equipment provided is billed and paid for.

Under this model, physicians tend to provide more treatments, as payment is directly related to the

quantity, not the quality, of treatment. Arrow et al. (2009) also pointed out that the cost and quality

problems of the U.S. healthcare system are evident, and recommended to replace the current FFS

payment system with a payment system that encourages and rewards innovation in the efficient

delivery of quality care. To overcome this problem and to encourage the efficiencies of integrated

care, a variety of payment reform efforts such as bundled payments and pay-for-performance have

been initiated. A successful changeover requires the development and rigorous evaluation of pilot

and demonstration projects that use modified payment mechanisms. The way to select healthcare

providers (HPs, e.g., physicians, hospitals, and medical groups) for such experimental projects and

even for the nationwide projects in the future is an important issue; however, few studies have

explored this issue. This study focuses on how HPs should be selected by policy-makers for a

bundled payment program, balancing cost, quality, and efficiency measures. See Figure 3.1 for a

schematic of flows of healthcare service delivery.

In what follows, we review two representative payment-reform models: bundled payment

model and pay-for-performance payment model, study how they have been applied, and enumerate

the challenges associated with these models.
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Figure 3.1: Healthcare Service Delivery Flows

3.1.1 Bundled Payment Model (BPM)

Also known as episode-of-care payment or global payment, BPM is the payment of a single

price for all of the services needed by a patient for an “episode of care" (Miller, 2009). Such a

model is different from FFS where separate payments to HPs are given for each of the individual

services they furnish to beneficiaries. Such a system can be used to provide incentives to manage

a particular episode of care efficiently with clear accountability. This payment reform model has

been tested for several settings. An early evaluation in U.S. was for the Coronary Artery Bypass

Draft (CAGB) surgery, which ran from 1991 to 1996 (Cromwell et al., 1997) by the Centers for

Medicare and Medicaid Services (CMS). ProvenCare model was developed by Geisinger Health

System in Pennsylvania as a bundled payment model for CAGB (Casale et al., 2007). Robert

Wood Johnson Foundation experimented with the Prometheus model in which evidence-based

case rates were used to decide the total resources to deliver appropriate services for acute and

chronic illnesses (Hussey et al., 2011). Currently, CMS has operated Bundled Payments for Care

Improvement (BPCI) initiative from 2013 (CMS, 2013a).

3.1.2 Pay-for-Performance (P4P) Model

P4P, also known as value-based purchasing, can be defined as a financial incentive or a payment

to the HPs for achieving measurable goals associated with care processes, outcomes, and resources

for efficiency and quality (Lindenauer et al., 2007). P4P offers the potential to improve the quality
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of service delivered, encourages improvement by emphasizing outcomes of care, and also promotes

accountability among HPs. In April 2005, CMS implemented its first value-based purchasing pilot

named the Medicare Physician Group Practice demonstration (Leavitt, 2006).

3.1.3 Challenges of Payment Reform Models

Payment-reform-models above could effectively motivate HPs to consider the quality of treat-

ment. Gainsharing is one of the financial rewards often discussed, which allows physicians and

HPs to receive a share of the savings that result from implementing and coordinating improvements

in efficiency and quality. In the case of bundled payments, it increases the transparency and the ac-

countability of treatment cost by grouping related Diagnosis Related Group (DRG) codes for each

episode of care. Since the cost is reasonably fixed in advance, bundled payment program is help-

ful in preventing needless price increases. P4P, on the other hand, rewards physicians, HPs, and

medical groups for meeting certain performance measures for quality and efficiency. Therefore,

this mechanism prevents physicians from focusing only on the quantity of treatments, in contrast

to the FFS system.

The use of bundled payment model for healthcare systems has gained support among health-

care stakeholders as a means to reduce healthcare spending (Hussey et al., 2009) and to encourage

coordination across HPs. In addition, quality improvement is expected while discouraging unnec-

essary care delivery (Miller, 2009).

However, in the early stages of implementing these payment-reform-models, some additional

efforts are required. Hussey et al. (2011) discuss conceptual challenges to implement bundled

payment models. Participants see value in the bundled payment model, yet the desired benefits

take time and considerable effort to materialize. Substantial implementation challenges persist

including defining the bundles, defining the payment methods, implementing quality measurement,

determining accountability, engaging providers and redesigning episodes of care. Our objective in

this paper is to suggest a provider selection model which encourages participation of providers

while considering quality measures for the bundled payment model.
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3.2 Motivation

This study analyzes opportunities for improvement in the provider selection process used in the

previous and ongoing bundled payment programs. Historically, three different selection methods

have been used by CMS to select providers: i) Negotiation, ii) Weighted Average Score, and iii)

Expert Panel Evaluation based on Relative Weights.

i) Negotiation

CMS used negotiation to select providers in their two bundled payment demonstrations: (a) the

Medicare Participating Heart Bypass Center demonstration and (b) the Medicare Cataract Surgery

Alternate Payment demonstration. These demonstrations were designed to test the feasibility of

a bundled payment for surgical procedures (CMS, 2014c). All the seven participating HPs in the

program had significant reductions in total costs (Cromwell et al., 1997, 1998). The method used

determines global price for each bundle after several negotiations among all the stakeholders (e.g.,

physicians, hospital managers, payers, and healthcare consultants).

ii) Weighted Average Score

Evaluation of each HP based on a weighted average score is an alternate selection procedure.

Under this system, HPs are scored according to weighted criteria that are used to derive a single

metric. For example, in the Medicare ACE demonstration, CMS formed a demonstration review

panel and scored applications based on responses to four evaluation criteria, which are: demon-

stration design (10 %), organizational structure and capabilities (20 %), performance results (35

%), and payment methodology and budget neutrality (35 %). After calculating scores for the crite-

ria, CMS selected higher ranked participants based on the weighted average score (CMS, 2014c).

Although this method is easy to understand and utilizes a lot of information in order to make a

final decision, it has some limitations. According to McCabe et al. (2005), biases and additive

assumptions introduced in the development of the weights and the evaluation can cause problems

in the decision-making process. This can be understood as follows. Say, there are two HPs. If one

HP suggests an attractive target price of care episode even beyond the mandatory discount rate,
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then the HP can be a final winner even if its performance is poor compared to the other HP. This

decision might not align with the ultimate goal of bundled payment that pursues improved quality

with cost reduction. Moreover, it is difficult to conclude that a single weighted average score can

consider the flexibility of HPs or their efficiency. Since there are multiple episodes of care included

in the demonstration, each provider may prefer to participate in only a subset of the program in

isolation from their capability. Also, the HPs may prefer to suggest different target price for a

specific episode of care considering the combination of episodes they want to participate in. The

overall efficiency of the system can be improved if the provider selection process considers these

possibilities.

iii) Expert Panel Evaluation based on Relative Weights

The ongoing BPCI initiative adopts a similar strategy as above and emphasizes evaluation pro-

cess conducted by an expert panel. Specifically, the CMS screen all applications for eligibility.

Each complete and eligible application is reviewed by a panel of experts from the Department of

Health and Human Services as well as other governmental and nongovernmental organizations,

with expertise in the areas of care improvement, care coordination, and provider payment pol-

icy. Reviewed applications will be scored based on the criteria as follows: service model design

(20%); financial model (40%); quality of care and patient centeredness (25%); organizational ca-

pabilities, prior experience, and readiness (15%). CMS establish guidelines for review panels, and

prioritize applications based on both scores and other considerations to select participating HPs

(CMS, 2013b). In what follows, we outline the selection method that seeks to overcome potential

limitations from the existing selection process.

The focus of this paper is to study the HP selection problem in the context of new and evolv-

ing bundled payment proposals for healthcare services. We develop a framework for selecting

competitive HPs via a combinatorial auction (CA) with a data envelopment analysis (DEA) as a

pre-selection method to evaluate the performance of HPs before the auction process begins.

CA allows bidding of combinations of bundled payment packages. If an auction does not allow

a combinatorial bid, then it becomes difficult to exploit synergies of HPs in the various episodes of
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care. A well designed CA mitigates the exposure problem by allowing enough flexility to HPs to

express their synergies in the bids. The exposure problem occurs in situations where biddersâĂŹ

values are superadditive. In order to win a package that the bidder values more than the sum of

the individual items in the package, the bidder might need to bid above her value on the individual

items. If the bidder does not end up winning the package, this can expose the bidder to losses.

Bidders who are aware of this problem might stop bidding in order to avoid the risk of losses

causing low efficiencies and seller revenue (Kwasnica et al., 2005).

However CAs can introduce the threshold problem by allowing flexibility in forming the com-

binations of bundle payment packages. It may favour the bidders who offer attractive discounts

even in the absence of synergies within the packages. This in turn affects the efficiency and opti-

mality of the auction. The threshold problem occurs when a number of bidders for small packages

must coordinate their efforts to unseat a bidder for a big package. In this case, each bidder has the

incentive to allow the other bidders to be the ones who increase their bid in order to displace the

big bidder. In principle, all bidders may fail to raise their bids, allowing a particular bid package to

win even if it should not have (Kwasnica et al., 2005). To mitigate the threshold problem, we may

pre-screen the HPs based on the DEA efficiency score and quality measure before allowing them

to participate in the auction process. Figure 3.2 shows the proposed framework of HPs selection

procedure for a bundled payment model.

Figure 3.2: The Framework of HPs Selection for a Bundled Payment Model
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In sum, our objective is to provide a tool based on DEA and CA to allow a auctioneer (e.g.,

CMS or private third party payers (TPPs)) to select HPs who will be the participants of bundled

payment program. In the pre-selection phase, we evaluate the performance of each HP in terms

of efficiency and quality score and narrow down the number of candidates. In the CA phase,

we finally determine winners after taking into account various constraints and accommodating

the preferences of bidders who have survived from the pre-selection phase. Compared to the

existing method that selects high ranked participants based on a weighted average score, the main

contribution of our paper is in providing a more structured procedure while considering all the

given information, and allowing flexibility for each HP to bid any combination of episodes of care

they desire.

3.3 Literature Review

There are three domains of research that are relevant to our work: data envelopment analysis,

combinatorial auctions, and evaluation of payment-reform-models. We briefly review them and

outline our contributions.

3.3.1 Data Envelopment Analysis (DEA)

DEA is a non-parametric method for the estimation of production frontier and the resulting

relative efficiency score. DEA is widely used in healthcare area because it is applicable to the

multiple inputs and outputs setting that resembles the nature of the system (Hollingsworth et al.,

1999). Compared to the efficiency of manufacturing industries, the measure of service industries

such as healthcare or hotel is difficult to define because there is no material output. However, a

specification of service efficiency can be realized through the measurement of service outputs.

In addition to the efficiency score, it is critical to adequately deal with effectiveness (i.e., qual-

ity) measures. The efficiency and quality measures are the two main components of the perfor-

mance of HPs (Ozcan, 2008). As shown in Figure 3.3, effectiveness measures how much the

provider’s targets were reached. They relate to the difference between the actual and the expected

values. Typical examples in healthcare sector are 30-day mortality rate, 30-day readmission rate,
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patient satisfaction score, and so on. On the other hand, efficiency measures how well the resources

(such as people, machines, and money) were used to produced output (such as products, services

and profit).

Figure 3.3: Performance Indicators: Efficiency and Effectiveness

Recall that the ultimate goal of the bundled payment program is to achieve higher quality

and more coordinated care for beneficiaries at a lower cost to the third party payer. Thus, we

consider the overall quality level of each HP included in the bundled payment program. Many

studies exist that suggest methods to deal with quality measures and DEA models together, and

provide insights for the selection framework. Sherman and Zhu (2006) demonstrate that simply

adding quality variables as an additional output into the standard DEA model does not help in

discriminating the performance and may exhibit a quality and efficiency trade off. In healthcare,

managers would not welcome a trade off that sacrifices quality for efficiency. The second approach,

which avoids such trade offs, is an evaluation of quality and efficiency independently. Sherman

and Zhu (2006) introduce quality-adjusted DEA (QA-DEA) which motivates several extensions

(such as in Shimshak et al. (2009), Zervopoulos and Palaskas (2011), Brissimis and Zervopoulos

(2012), Choi et al. (2013)).

These studies that provide the way to overcome the inherent problems with using quality mea-

sures in DEA, guide the development of our framework, wherein, we adopt the independent eval-

uation of efficiency and quality. We first evaluate each of the HPs on two dimensions, quality and

efficiency, which helps us in setting a minimum threshold level for efficiency and quality, and then

we use this an input to the CA.
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3.3.2 Combinatorial Auctions (CAs)

CA is an auction in which multiple items are handled simultaneously, and preferences for

subsets of the items can be expressed by bidders. Narahari and Dayama (2005) introduce the basic

terminologies of CA, the important issues concerning the design of CA, and theoretical issues

associated with it.

Epstein et al. (2002) construct a single round sealed-bid CA to assign catering contracts for

the school system of Chile. They analyze scenarios based on different food structures, demand

levels, performance of firms, and limit on number of firms per region. Their model incorporates

the performance of the firm into the objective function by linearly reducing the prices the firms bid

by the performance indicator of the firm. In case of our selection problem, however, determining

linear weights that balance the levels of price and quality is challenging as it can lead to results

depending on the weights. Therefore, we decide to build a model that deals with performance

measure and biding price separately. We pre-select HPs based on efficiency and quality scores in

order to guarantee minimum performance level before proceeding to the CA stage.

Olivares et al. (2012) conduct an empirical investigation of a large-scale CA for the Chilean

school meal auction which is motivated from Epstein et al. (2002). Examining the question of

which combinations of bidding should be allowed in the auction process, they find that it is effective

to consider the combinations that allow firms’ cost synergies originating from economies of scale

(i.e., when the volume of service provided increase) and economies of density (i.e., when the bid

regions are located nearby one another). Goossens et al. (2014) design a CA to allocate space

based on the preferences of many potential users and maximize the total rent while complying

with municipal and building regulations.

CA can be powerful in selection process because it can reflect preference and capability of each

HP. When we review the previous or ongoing bundled payment programs, they contain multiple

number of bundles. However, not all the available HPs are eager to or have capabilities to partici-

pate in every episode of care covered under the bundled payment program. Some of the HPs might

desire to take part in only a subset of the program considering their preferences or specialty. If

63



all-or-nothing policy exists for the program, it is hard to increase participation rate of HPs. Also,

a bundled payment organizer (e.g., CMS) might want to choose competitive HPs in terms of both

cost and performance while providing maximum flexibility to the providers. In our framework, we

allow bidders to express valuations on bundles of services. Therefore, the resulting bids improve

economic efficiency (Cramton et al., 2006) by allocating the bundles to those who value them most

at a lower auction cost.

3.3.3 Evaluation of Payment-Reform Models

We briefly review other trials for the evaluation of healthcare payment-reform-models. Even

though there are a number of observational or descriptive studies related to the bundled payment

programs (Casale et al., 2007; Lindenauer et al., 2007; Paulus et al., 2008; Satin and Miles, 2009;

de Brantes et al., 2009, etc.), an operational approach to evaluate or develop payment reform model

is still a less researched area.

Denoyel et al. (2014) provide a facility selection model oriented towards HPs under reference

pricing. In this work, a payer determines a maximum amount paid for a procedure, and patients

who select a provider charging more than the amount fixed by the payer pay the difference. They

argue that their model leads to cost reduction for payers, increase in quality of care delivery for

patients and enhanced visibility for high-value HPs. Compared to this study, our work focuses

more on selection procedures in payer’s perspective. Gupta and Mehrotra (2015) examine the pro-

poser selection problem with information sharing under the principal-agent framework for BPCI

initiative. They focus on analyzing the ongoing BPCI selection mechanism based on a game the-

oretical model under various conditions. Our goal, in contrast, is to suggest a new and practically

applicable selection framework that considers preference of HPs including other constraints such

as geographical constraints (i.e., the minimum number of selected HPs in a single region). Also,

extant research does not consider HP selection model equipped with threshold level for both the

efficiency and quality measure. We utilize CA in our model to determine the final winners in order

to encourage high participation rate of HPs and increase flexibility by allowing them to bid any

combination of episodes they prefer.
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3.4 A Framework for Healthcare Provider Selection

In this section, we describe the details of the selection framework. First, we use DEA to

derive the relative efficiency score for each HP. We then run a CA repetitively while modifying

the efficiency and quality cutoff value in order to identify feasible and effective solutions. The

two methodologies enable us to determine the winners by considering both bidding price for each

episode of care (or combinations of them) and relative performance achieved by HPs. To reduce the

risk of project failure, screening process such as pre-qualification is usually applied to contractors

before tendering. The first and second steps in our framework align with this practice. In the second

step, the efficiency scores are calculated based on representative inputs and outputs of each HP via

DEA. In what follows, We discuss the general inputs and outputs that can be used to run DEA

model. In the third step, we evaluate the overall quality score for each HP which can be derived

based on more lower level quality measures. The HPs with efficiency and/or quality scores below

the pre-defined threshold level drop out from the model since they are considered as unqualified

compared to others even though they might suggest more attractive price with the intention of

joining the bundled payment program. In the last step, a CA determines the winners based on the

bidding price suggested by the HPs for each episode of care (or combinations of them).

We represent the overview of our framework in Table 3.1.

3.4.1 First Step: Design of the bundled payment and collection of applications

Design of the bundled payment program precedes selection of participants. It includes all

the activities from selecting target episode of cares and defining coverage range of each bundle

to establishing operational guidelines. In this section, we provide an activity directly linked to

the HP selection process: defining the parameters required for CA. Since a payer might want to

focus on some target regions (e.g., statewide, nationwide), preliminary information such as the

minimum/maximum number of participants for each region and demand for each episode of care

is needed. Also, the payer can define minimum capacity for each episode of care, in order to avoid

selecting HPs with limited ability. After these parameters are defined, the payer announces the
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Table 3.1: Overview of the Selection Framework

Step 1. Design the bundled payment and collect the applications.
1.1. Define the variety and the boundary of the bundles that will be included in the program.
1.2. Define the parameters for Step 3 (such as W k

r,min, S
k
r,min, S

k
r,max, D

k
r,min. See Table 3.3 for

the definitions).
1.3. Collect the bids from the healthcare providers.

Step 2. Evaluate relative efficiency via DEA.
2.1. Define the scope of efficiency measurement (e.g., facility level, department level, or bundled care

procedure level).
2.2. Select input and output variables.
2.3. Determine the proper DEA model (e.g., orientation (input or output) envelopment surface (CCR

or BCC), and other extensions).
2.4. Run the DEA model.
2.5. Assign percent rank for each relative efficiency score.

Step 3. Evaluate quality of care.
3.1. Define the scope of quality (e.g., facility level, department level, or bundled care procedure level).
3.2. Select quality measures based on the defined scope.
3.3. Derive each value for the quality measures.
3.4. Assign percent rank for the quality score.

Step 4. Run the combinatorial auction (CA).
4.1. Define the refinement level of cutoff interval for the percent rank of efficiency (σg) and quality

(εg) (The smaller intervals, the more detailed results).
4.2. Determine the cutoff direction (for example, Figure 3.7).
4.3. Analyze the CA results.
4.4. Finally, select the preferred cutoff level and the resulting winners.
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bundled payment program and collects applications from HPs.

3.4.2 Second Step: Evaluation of Efficiency via Data Envelopment Analysis

Thus, we use a input oriented, constant returns to scale (CRS) DEA model. (We provide more

details regarding DEA models with output orientation or variable returns to scale in Appendix

B.1). Table 3.2 shows the notations used in the CRS DEA model. The objective of the model is to

maximize the ratio of weighted multiple outputs to weighted multiple inputs. Any HP compared

to others should have an efficiency score of 1 or less, with either 0 or positive weights assigned to

the inputs and outputs (Ozcan, 2008).

Table 3.2: Notations used in CRS DEA model (Hospital Level)

Sets, Indices, and Parameters:
N Set of healthcare providers.
i ∈ N Index for a HP.
P Set of inputs.
p ∈ P Index for inputs.
Q Set of outputs.
q ∈ Q Index for outputs.
Ipi Value of input p parameter for HP i.
Oqi Value of output q parameter for HP i.

Decision Variables:
vp Weights for the inputs.
uq Weights for the outputs.

Maximize
v,u

∑
q∈Q uqOqo∑
p∈P vpIpo

Subject to∑
q∈Q uqOqi∑
p∈P vpIpi

≤ 1,∀i ∈ N, (3.1)

uq∑
p∈P vpIpi

≥ ε,∀q ∈ Q, (3.2)

vp∑
p∈P vpIpi

≥ ε,∀p ∈ p (3.3)

vp, uq ≥ 0
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The subscript o ∈ N in the objective function denotes a focal decision making unit (DMU).

Each HP, in turn, becomes a focal HP when its efficiency score is being computed. Constraint

(3.1) ensure that no HP is more than 100 percent efficient. Constraints (3.2) and (3.3) ensure that

each weight for the inputs and outputs is strictly positive. After we derive the efficiency scores, we

assign the percent rank for each HP. For example, if the efficiency score of HPA is the 10th highest

value among 200 HPs, then the percent rank of HP A becomes 0.05. Based on these percent rank

values, we remove HPs with efficiency below the pre-defined threshold percent rank level. (We

explain why we use percent rank instead of raw score in Section 3.7.2).

3.4.3 Third Step: Evaluation of Effectiveness (Quality)

In the next step, we evaluate the quality score of each HP. An example for the HP level qual-

ity measure is readily available from CMS database as Total Performance Score (TPS). TPS is a

composite measure capturing hospital quality performance related to clinical process performance

(45%), patient experience (30%), and outcome performance (25%) based on the Hospital Value-

Based Purchasing (HVBP) Program, which is a part of CMS’s to link quality into Medicare’s

payment system (CMS, 2014a). The measure incorporates both quality attainment and quality

improvement. Higher scores indicate higher quality performance.

Alternatively, instead of hospital-level overall quality score such as TPS, quality measures for

each episode of care can be considered. The quality measures might vary across the episodes of

care. For example, in case of surgical type Medicare Severity (MS)-DRG, readmission rate and

mortality rate is frequently considered, while readmission rate and complication score is considered

for medical type of MS-DRG. Thus, in this approach, quality scores (Qi) should be measured

separately for each episode of care.

After we derive the quality score, similar to the efficiency score, we assign the percent rank

for each HP. Based on these percent rank values, we remove HPs with low quality below the pre-

defined threshold percent rank level.
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Table 3.3: Notations used in Combinatorial Auction

Sets, Indices, and Parameters:
K Set of episodes of care to be provided.
k ∈ K Index for an episode of care.
R Set of Regions (for example, Public Health Region (PHR)).
r ∈ R Index for a Region.
lir Binary parameter which takes value 1 iff HP i is located in region r.
cki Volume capacity for episode k of HP i (per year).
M Set of bids allowed for a HP.
j ∈M Index for a bid.
Bij Zero-one vector composed of akij , k = 1, ...,K.
akij Binary parameter which takes value 1 iff bid j of HP i will provide the entire

service corresponding to episode k.
pij Bundled price associated with the bid Bij .
p̄ij Historical average total payment associated with the bid Bij .
Sk
r,min Minimum number of winners required for episode k in region r.
Sk
r,max Maximum number of winners required for episode k in region r.
W k

r,min Required minimum volume threshold of episode k in region r for each HP to be selected.
Dk

r,min Required minimum volume episode k in region r (i.e., demand).
Ei Efficiency score percent rank for each HP i.
Qi Quality score percent rank for each HP i.
G Set of subset ID.
g ∈ G Index for an subset ID.
σg Threshold value for efficiency score percent rank of subset ID g.
εg Threshold value for quality score percent rank of subset ID g.

Decision Variables:
xij If xij = 1, then the bid Bij is selected, Otherwise, xij = 0.
yi If yi = 1, then the HP i is selected, Otherwise, yi = 0.
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3.4.4 Fourth Step: Determination of Winners via Combinatorial Auction

Finally, we run a CA to determine winner HPs based on discounted price for each bundle

suggested by the HPs. Additional sets, indices, parameters, and decision variables used in the CA

model are listed in Table 3.3.

Maximize
∑
i∈N

∑
j∈M

(p̄ij − pij)xij

Subject to∑
i∈N

∑
j∈M

akijxij ≥ 1, ∀ k ∈ K, (3.4)∑
j∈M

xij ≤ yi, ∀ i ∈ N, (3.5)

W k
r,minyilir ≤ cki , ∀r ∈ R, ∀k ∈ K, ∀i ∈ N, (3.6)

Skr,min ≤
∑
i∈N

∑
j∈M

lira
k
ijxij, ∀r ∈ R, ∀k ∈ K, (3.7)

Skr,max ≥
∑
i∈N

∑
j∈M

lira
k
ijxij, ∀r ∈ R, ∀k ∈ K, (3.8)

Dk
r,min ≤

∑
i∈N

∑
j∈M

lira
k
ijc

k
i xij, ∀r ∈ R, ∀k ∈ K, (3.9)

Eiyi ≤ σg, ∀i ∈ N, ∀g ∈ G (3.10)

Qiyi ≤ εg, ∀i ∈ N, ∀g ∈ G (3.11)

xij ∈ {0, 1}, ∀i ∈ N, ∀j ∈M, (3.12)

yi ∈ {0, 1}, ∀i ∈ N (3.13)

The above formulation denotes a mixed-integer-programming for the CA. This step maximizes

the discounted amount between the past average total cost under FFS and the bidding price while

satisfying requirements such as the minimum volume threshold for each bundle, the minimum and

maximum number of HPs for each region, and the demand for each region. Constraint (3.4) states

that each episode k should be covered by at least one bid combination. Constraint (3.5) ensures

that if no bid from HP i is chosen, then yi = 0, where yi is the indicator showing whether the
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HP i is selected or not. yi is 1 only if one of xij becomes 1 among possible bid combinations.

Constraint (3.6) states that the capacity of episode k by HP i should be beyond the minimum

volume threshold of it. Constraints (3.7) and (3.8) ensure the required minimum and maximum

number of HPs should be selected for each episode of care k and for each region r. Constraint

(3.9) means at least minimum volume of episode k in region r should be covered by selected HPs.

Decision variables should only have binary value by constraints (3.12) and (3.13).

Constraints (3.10) and (3.11) ensure that HPs who have the percent rank value below the thresh-

old values are eliminated. Even though this process is included to guarantee a minimal level of

efficiency and quality level and to motivate HPs to manage them well, it is not easy to determine

what fraction of HPs can drop out based on efficiency and quality percent rank criteria. This is be-

cause the given information (specifications, claim data of HPs, and their bidding price) and other

constraints (e.g., minimum and maximum number of HPs for each region, demand) make the prob-

lem complex and it is non-trivial to assure the feasibility of the problem. If the cutoff levels are

high, the problem becomes infeasible, whereas if the levels are too low, the opportunity to select

more competitive HPs may be lost.

We iteratively modify the threshold percent rank values σg and εg where g ∈ G step-by-step.

The intervals of threshold value can be flexibly determined based on the payer’s decision. Note

that as intervals are more precisely defined, more detailed results for each case can be obtained,

but the computation time is longer. The iteration runs as follows. If the payer desires to check the

selection tendency with threshold percent rank interval with 0.1, then we first run the CA model

with σ = 1 and ε = 1. The results of this first trial becomes first best solution because the model

selects the winners while never considering the efficiency or quality factors. Subsequently, we run

the model again with σ = 0.9 and ε = 0.9 which means we don’t allow the HP whose efficiency

percent rank or quality percent rank is included in lower 10%. The steps are repeated until we reach

an infeasible status. In Section 3.7, we formulate and provide an simple example of direction for

shrinking feasible region. However, the direction and preferentially considered threshold values

can be defined based on the payer’s decision.
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3.5 Problem Settings

The hypothetical bundled payment program assumed in this study is based on practical settings

from previous (e.g., ACE Demonstration) or ongoing (e.g., BPCI Initiatives) programs operated

by CMS. Payers want to increase the opportunity for the largest number of qualified applicants

by concentrating on target regions and to ease the administrative burden of implementation and

evaluation (CMS, 2014c). While imitating this principle, we slightly redefine the boundary of

region. We assume that the payer aims to cover each region by allowing at least a predefined

minimum number of HPs in order to provide easy access to healthcare services for patients. States

are usually too large to be considered as a single region when we look at the distance between the

two farthest points. If the selected providers are densely located in a small spot of each state, some

patients will inevitably spend significant amount of time on the road: this is undesirable. On the

other hand, cities or towns are usually too small to be considered as a single region because some

smaller cities may not have enough number of providers to compete with each other. Thus, we

decided to define region as a sub-area of each state. If we select providers based on this concept

of regions, it is possible for almost all patients to reach their nearest provider within a reasonable

time. In our selection process performed based on real data, we assume that applicants exist in each

of the public health regions (PHR) defined by the Departement of Health and Human Services.

Hospitals with higher volumes of certain surgical procedures are known to have better results,

and surgeons who perform more of certain operations have fewer patient deaths (CMS, 2014c).

Therefore, applicants for bundled payments are often required to show that they meet specific

volume thresholds (as in ACE demonstrations). Table 3.4 shows an example. In addition, every

participant in the selction practice can bid on any combination of bundles considering their capa-

bility, but not for any portion of a single bundle. We consider these constraints in our CA model.

In the previous demonstration of bundled payment, applications were scored, in part, on the

percentage discount across all selected bundles. Discount on current Medicare rates was given

a significant weight as part of the evaluation of the overall application. The applicant’s overall

global bid relative to other proposals received was also considered. Applicants need to provide
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Table 3.4: Required Minimum Volume Thresholds for each Episode of Care in ACE Demonstration

Procedures Medicare Total
Coronary Artery Bypass Graft (CABG) 100 200
Percutaneous Coronary Intervention (PCI) 200 400
Hip or Knee Replacement (HKR) 90 125

sufficiently competitive discounts to Medicare to yield meaningful savings to both the beneficiary

and the Medicare program (CMS, 2014c). We utilize the concept of discounted payment amount

suggested by each HP in our selection process. Specifically, this information becomes the bidding

price (pij).

3.6 Input and Output Measures of DEA

Healthcare industry usually provides services rather than physical products. Thus, researchers

in healthcare sector have used such measures to derive efficiency scores that reflect their topics and

data availability. The measures also align with whether the target scope is a hospital, a physician,

or each episode of care. Efficiency can also be measured and assessed for different aspects or

segments of care (i.e., episodes of care ranging from management of a condition over time to

specific procedures) and across different levels of organizational accountability (e.g. individual

physicians, physician organizations, hospitals, insurance plans, or accountable care organizations).

Decisions on the appropriate level of measurement and accountability will depend on the purpose

of measures. Since bundled payment program comprises various episode of cares to be provided

by HPs, either facility-level efficiency or medical condition-level efficiency can be considered. If

the scope of efficiency is HP, each provider becomes a decision making unit (DMU) and if the

scope of efficiency is medical condition, then each claim data can be considered as DMU. It is

notable that the discriminatory power of DEA can be reduced if the number of inputs and outputs

are relatively highter than the number of available DMUs. In this study, we focus on the hospital-

level1 DEA model. Banker et al. (1989) suggest a rough rule of thumb: If p is the number of inputs

1For the medical condition-level DEA model, refer Appendix B.1. The idea is to calculate relative efficency score
for each medical condition. In such a scenario, measures that properly represent inputs and outputs used for the
medical condition can be utilized.

73



and q is the number of outputs used in the analysis, then the sample size n should be greater than

equal to max{pq, 3(p+ q)}.

Selecting different input and output variables could influence the results of the DEA model.

Indeed, DEA estimates relative efficiencies (i.e., relative to the best practice frontier) and allows

for specialization in one or another input or output variable. In what follows, we provide examples

of measures in Table 3.5 for the hospital-level DEA model provided by Ozcan (2008), Cooper et al.

(2011), and Ozcan and Lynch (1991). The purpose here is to capture the managerial performance

that can be attributed to hospital management.

Table 3.5: Hospital-level DEA Input and Output Measures

Input Measures:
Number of Operational Beds This is a proxy variable for capital investments.

Service Complexity The number of diagnostic and special services provided exclusively by the hos-
pital can be used as another capital proxy variable.

Full Time Equivalents (FTEs) Labor is the second major category for hospital inputs. In evaluating the perfor-
mance, Ozcan (2008) insists that it is prudent to attribute the labor as non-MD
labor or FTEs. The number of non-MD FTEs employed by a hospital would
cover all nursing, diagnostic, therapy, clerks and technical personnel.

Other Operational Expenses This variable provides the account for medical supplies, utilities, etc. to provide
the services to patients except capital investments and labor expenses.

Output Measures:
Case-mix Adjusted Discharges The number of discharges accounts for inpatient services. Since not all patients

arriving at the hospital require same level of attention and service, we account
for this diversity in health service demand or its provision by CMS case-mix
index2 for hospitals. The case-mix index is calculated based on DRG codes
providing relative weight for acuity of the services provided by a hospital.

Outpatient Visits One can differentiate the visits based on whether these are day surgery, emer-
gency or routine visits if available.

3.7 Numerical Analysis

In this section, we perform numerical analysis based on real data for HPs located in Texas,

USA to illustrate the selection process.
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3.7.1 Simulation Settings

To develop mechanism for CA and examine the effects of its parameter values, we pre-define

four bundles, as per MS-DRG code 194, 280, 291, and 470: Pneumonia, Acute Myocardial In-

farction, Heart Failure, and Major Joint Replacement. The discharged volumes for these MS-DRG

codes are large and there are previous and ongoing bundled payment programs that consider these

as bundles. We assume that if the HPs have capabilities of care for at least one of these four bun-

dles, then they apply for the bundled payment program and reflect their preference and capabilities

in their bidding price.

As mentioned earlier, PHR is used as the size and boundary of the region denoted by r. Texas,

the target state in this experiment, has 305 HPs and is divided into 11 PHRs (Figure 3.4). Among

the 305 HPs, 285 have the capability of treating at least one of the four target bundles, and are

categorized into each PHR as in the Table 3.6. The numbers of HPs for each PHR and each bundle

are listed in Table 3.7. For each r, the values for CA parameters such as W k
r,min, S

k
r,min, S

k
r,max,

and Dk
r,min in Table 3.3 can be determined.

The payer may desire to restrict the number of selected HPs for each region in CA step, in either

(or both) minimum or (and) maximum way. We deploy this restriction by multiplying parameters

called MinWin and MinMax to the number of available HPs. For example, if MinWin = 0.1 and

MinMax = 0.3, then the number of available HPs multiplied by these two parameters provide the

minimum and maximum required numbers (i.e., Skr,min, S
k
r,max) of HPs for each region and each

bundle. In a similar way, we set up the other parameter values since we can check the volume for

each HP and for each bundle based on the historical FFS records. By multiplying predefined ratio

to the historical volume data, we derive W k
r,min and Dk

r,min.

Table 3.6: The Number of HPs for each Public Health Region

PHR 1 2 3 4 5 6 7 8 9 10 11 Total
Num of ProviderID 16 15 77 21 14 53 31 22 9 7 20 285
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Figure 3.4: Healthcare Providers in Texas (a), Public Health Regions in Texas (b)

(a) (b)

Table 3.7: Available Healthcare Providers in each Public Health Region for each Episode of Care
Bundle

PHR1 PHR2 PHR3 PHR4 PHR5 PHR6 PHR7 PHR8 PHR9 PHR10 PHR11
DRG194 13 14 59 20 14 43 29 19 9 6 18
DRG280 5 2 34 10 4 30 15 8 5 3 13
DRG291 6 6 55 16 10 41 25 15 7 4 18
DRG470 8 6 70 14 8 43 24 17 6 6 15

3.7.2 Results and Interpretations

Following the framework, we first derive the efficiency score for each HP by using the measures

in Section 3.6 for the HP level efficiency. Among the measures, Case-mix Adjusted Discharges and

Outpatients Visits are obtained from CMS Hospital Compare3 database. The data was collated from

Healthcare Information and Management Systems Society (HIMSS) Analytics Database4 and/or

American Hospital Association (AHA) Database. The correlation between the inputs and outputs

for DEA are listed in Table 3.8. Histogram of DEA efficiency scores is shown in Figure 3.5. For
3https://data.medicare.gov/
4http://apps.himss.org/foundation/histdata.asp
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example, there are 8 HPs whose efficiency score is greater than equal to 0.8 and less than 0.9.

Table 3.8: Correlation Table of Variables used in DEA

(1) (2) (3) (4) (5) (6)
(1) Number of Beds 1
(2) ServiceMix 0.0222 1
(3) FTEs 0.0664 -0.0192 1
(4) OtherOpExpense 0.6204 -0.0539 0.1819 1
(5) CaseMixAdjDischarge 0.4523 0.0011 0.3403 0.4021 1
(6) OutpatientVisits 0.5604 -0.0468 0.1145 0.7873 0.3854 1

Figure 3.5: Histogram of DEA Score

In case of quality measures, we utilize the TPS score that is available from CMS Hospital

Compare database. Figure 3.6(a) shows the plot of the raw efficiency score and the raw quality

score in two-dimensional space. We observe that the HPs are distributed densely in some spots

(e.g., DEA ∈ [0.25, 0.5] and TPS ∈ [35, 53]). Since we will repetitively run the CA model while

updating cutoff value of DEA score and TPS with fixed interval, it is more reasonable to start from

evenly distributed space. This is because, the number of HPs dropped for each iteration highly

depends on their distribution on the two-dimensional space. Hence, from a payer’s viewpoint,
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it becomes difficult to define the cutoff intervals to drop a “reasonable" number of HPs in each

iteration. To mitigate this problem, we re-plot the data in terms of percent rank rather than raw

score as in Figure 3.6(b). In this plot, the HPs in the bottom-left region are high performers for both

efficiency and quality, whereas the HPs in the top-right are the possible candidates to be dropped

first. The concept of percent rank is also aligned with the overall selection process. In order to

cover regional demands, it is customary to consider the required number of HPs based on their

rank instead of their absolute DEA or quality score.

After obtaining the two-dimensional percent rank plot, we define the direction and interval of

the cutoff values (Note that both direction and cutoff interval can be flexibly defined reflecting the

payer’s preference.). One possible direction is shown in Figure 3.7(a). Figure 3.7(b) shows an

alternative way that we focus on in this numerical analysis. We take 25% as the cutoff interval of

percent ranks; thus there exist four intervals for both efficiency and quality percent rank resulting

in 16 subsets of HPs in Figure 3.6(b), namely subset ID k; k = 1, 2, ..., 16. In each iteration of CA,

the setup in Figure 3.7(b) keeps on rejecting a larger balanced number of HPs corresponding to

each subset ID compared to Figure 3.7(a). Also, the direction in Figure 3.7(b) is quality-prioritized

in the sense that it tries to drop HPs with poor quality first. For example, after the 4th iteration of

CA (i.e., when we drop subset ID 1, 2, 3, and 4), the lower 25% of HPs with bad quality are

completely dropped. Thus, we can execute finite rounds of CA for winner determination with the

remaining upper 75% HPs in terms of quality.

Now, we discuss the settings of CA and how it works. Since we assume four different bundles,

there exists a total of fifteen (= 24 − 1) possible combinations of bundles (i.e., packages) (Table

B.2 in Appendix B.2). Each HP can bid on a single or multiple numbers of packages considering

their preferences. However, each HP can be selected as a winner with at most a single package

among the packages they bid.

We determine the bidding prices of each package as follows. Average total cost under FFS

for each MS-DRG (i.e., bundle in this setting) and for each HP are obtained from CMS database.

Descriptive statistics are listed in Table 3.9. Based on the existing data, we calculate the bidding
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Figure 3.6: Efficiency vs. Quality Plot for Raw Score (a) and Percent Rank (b)

Figure 3.7: Shrinking Feasible Region on a Percent Rank Plot - (a) Basic, (b) Alternative
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price as the sum of average total cost of the bundles included in the package multiplied by a

random number generated from interval [0.90, 1.05]. As, bundled payments pursue cost reduction,

the lower limit of 0.9 is used for the interval. However, it is also possible that some HPs might

strategically act by bidding some bundles even higher than their historical average value. This

is possible if either they really do not want to take care of that package, or rely on the small

possibility of getting more reimbursement for the bundles under the decision that they are still

competitive compared to others. Table 3.10 provides descriptive statistics regarding care volume

data for the four bundles under FFS.

Table 3.9: Descriptive Statistics of Average Total Cost for each Bundle in 2013

Average Total Payment DRG194 DRG280 DRG291 DRG470
Mean 6,712.42 11,940.20 9,973.86 14,129.19

Standard Deviation 1,352.66 2,448.35 2,081.38 2,360.31
Standard Error 86.6 215.57 146.08 160.23

Median 6,301.34 11,429.72 9,377.21 13,590.55
Minimum 5,125.84 8,071.13 7,530.65 10,355.88
Maximum 16,481.00 21,682.22 21,249.79 25,201.04

# of HP 244 129 203 217

Table 3.10: Descriptive Statistics of Volume for each Bundle in 2013

Volume DRG194 DRG280 DRG291 DRG470
Mean 53.79 32.20 63.84 126.26

Standard Deviation 40.50 26.52 58.57 136.84
Standard Error 2.59 2.33 4.11 9.29

Median 42 23 44 85
Minimum 11 11 11 11
Maximum 258 152 401 823

Sum 13124 4154 12960 27399
# of HP 244 129 203 217

We run the CA with a wide range of parameter values. For brevity, we include the results with

respect to the scenario with MinWin = 0.1 and MaxWin = 0.3. Figure 3.8 shows the results of
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objective value, total number of selected HPs, and the selected HPs ratios. The top-right dotted

bar in Figure 3.8 shows the first best result, that is, when no HP is dropped before the CA step.

In other words, quality and efficiency level of HPs are not considered. When HPs in subset ID

1 (i.e., percent rank of DEA in [0.75, 1] and percent rank of TPS in [0.75, 1]) are dropped, the

objective value decreases ($127, 336.67 → $126, 397.10). Note that subset ID is linked to that in

Figure 3.7(b). Other results can be understood in similar way. Also, when the HPs in subset 12

are dropped, the CA cannot derive any feasible solution, thus the process terminates. We provide

another set of results with MinWin = 0.4 and MaxWin = 0.7 in Figure 3.9. Obviously, this scenario

requires more number of HPs to be selected in each region compared to the previous scenario, and

therefore terminates quickly compared to the case in Figure 3.8.

Let us explore the scenario with MinWin = 0.1 and MaxWin = 0.3 a little further. As shown

in Figure 3.10, the optimal objective value of CA model is non-increasing as HPs are dropped.

Meanwhile, the ratio of selected HPs to available HPs increases as more HPs are dropped. Note

from Figure 3.11 that the number of available HPs decreases linearly as we reduce the feasible

region, whereas the number of selected HPs fluctuates around a mean.

Finally, we examine the relationship between maximum discounted amount (i.e., maximum

cost reduction) and quality/efficiency level. Since it is possible that HPs with poor quality level

may suggest better bid prices, we need to control for the same. A clear trade-off between quality

and cost reduction is visible in Figure 3.12. Specifically, the average TPS score and the minimim

TPS score among selected HPs are increasing while the maximum cost reduction is decreasing as

more HPs are dropped. In the case of cost reduction versus efficiency level, we see a weak trade-off

as shown in Figure 3.13. The reason why the minimum DEA score remains constant is due to the

direction of cutoff values we adopted (as shown in Figure 3.7). Since the HPs with lower DEA

score survive in the dataset even until the selection process terminates, if some of HPs with lower

DEA score are selected, then there is little room for improvement of minimum DEA score. This is

due to the constraint (i.e., Equation (3.10)) in CA.

This selection process lets the CMS (who will operate the bundled payments) have flexible
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options to choose from. For example, if they emphasize the importance of quality level, then

they may choose the selected HPs from the iteration of subset ID 8, 9, 10, or 11 in Figure 3.12

while having some cost reductions. On the other hand, if budget constraints matter, then they

may consider the options of subset ID 4, 5, 6, or 7 as alternatives. In sum, the payer can selectively

decide winner groups while balancing bid prices of HPs and their performance. Lastly, we visualize

a possible winner determination result as shown in Figure 3.14.

Figure 3.8: Selection Results with
MinWin = 0.1 and MaxWin = 0.3

Figure 3.9: Selection Results with
MinWin = 0.4 and MaxWin = 0.7
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Figure 3.10: Objective Function Value vs.
Selected HP Ratio

Figure 3.11: Available HPs vs. Selected HP
Ratio

Figure 3.12: Objective Function Value vs. 
TPS Score

Figure 3.13: Objective Function Value vs. 
DEA Score

3.8 Comparison with the Existing Weighted Average Method

In this section, we compare the performance of our HP selection framework with the existing

weighted average method5. To do this, we derive weighted average score for each HP based on

three evaluation criteria, which are efficiency score (30%), quality score (35%), and discounted

5We mimic the evaluation criteria of ACE Demonstration which is mentioned in Section 3.2. However, it is not
exactly same due to the limited accessibility of some data.
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Figure 3.14: Selected Healthcare Providers in Texas (after the dropping out process until subset ID
11 in the example with MinWin = 0.1, MaxWin = 0.3)

amount (35%). Since the units for the three measures are different, we normalize them first be-

fore we derive the overall score. Finally, we derive the weighted average score for each HP by

multiplying the weights to the normalized scores and summing the resulting values.

To compare with the main results elaborated in Section 3.7 (i.e., when MinWin = 0.1, MaxWin =

0.3), we determine the winners based on weighted average score under similar constraints. We de-

fine three different selected ratios (i.e., 0.1, 0.2, and 0.3) which are applied to the available HPs

for each DRG code and for each PHR. We expect that as the value of selected ratio is smaller, the

number of selected HP will be smaller while their average performance will be higher. The results

are listed in Table 3.11. The first three columns show the results of weighted average score for

each value of selected ratios, whereas the next three columns show some of the results of our HP

selection framework. For example, the sub-column indicating “4” under HP Selection Framework

is the result after dropping HPs assigned in subset ID 1, 2, 3, and 4 shown in Figure 3.7(b).

From Table 3.11, we can see that the minimum quality scores (i.e., Min of TPS Score) of

selected HPs for our HP selection framework outperform the weighted average method. The min-

imum score after dropping subset ID 4 is always higher than 38.8, whereas the best minimum
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quality score for weighted average method is only 34.05 even when the selected ratio is 0.1. Thus,

our selection framework effectively rules out the possibility of selecting HPs with poor quality

level, while showing similar or better average of quality score compared to the weighted average

method. The boxplots of TPS score and DEA score for each case in Table 3.11 is shown in Figure

3.15. The total discounted amounts of our selection framework outperform the results of weighted

average method in general. For example, the total discounted amount after dropping HPs until

subset ID 11 in our selection framwork is $85079.13 while selecting 88 HPs, whereas the total dis-

counted amount of weighted average method is only $82420.96 even when the number of selected

HPs is higher (i.e., 112) when selected ratio is 0.3. Overall, the HP selection framework shows

stable and better results compared to the weighted average method.

Table 3.11: Weighted Average Method vs. HP Selection Framework

Weighted Average Method HP Selection Framework
0.3* 0.2* 0.1* 4** 8** 11**

# of Selected HPs 112 87 52 109 105 88
Sum of Discounted Amount 82420.96 62124.82 35878.43 120663.52 99297.58 85079.13
Average of TPS Score 53.53 54.05 55.44 52.10 55.80 58.70
Min of TPS Score 27.13 27.13 34.05 38.80 47.60 48.10
Average of DEA Score 0.57 0.62 0.70 0.49 0.46 0.50
Min of DEA Score 0.09 0.09 0.12 0.09 0.07 0.09
*: Selected ratio among available HPs per each DRG code and per each PHR
**: Subset ID Dropped (MinWin = 0.1, MaxWin = 0.3)

3.9 Implications and Future Research Directions

In this section, we discuss implications and suggest future directions that can help enhance

the proposed selection framework. First, the performance of auctions depends on several design

factors. As such, examining the impacts of the auction design issues is worthwhile future research

venue that may enhance our framework. For example, we may consider the following design is-

sues: Which combination should be allowed in the biding process? The auctioneer (e.g., CMS)

should provide enough flexibility to form combinations of bundle payment packages in order to
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Figure 3.15: Boxplots of TPS Score and DEA Score

allow the HPs (e.g., clinics, labs, and hospitals) to exploit their synergies in the bids. How to diver-

sify the HP base and promote competition? The performance of a CA is influenced by the above

design issues in the context of efficiency and optimality. The efficiency relates to social welfare

maximization by assigning capacity to the set of HPs to achieve the most cost efficient allocation.

Whereas, the optimality implies minimizing the total payments to HPs (Olivares et al., 2012).

Increasing the participation rate of the HPs is also imperative for the successful operations of

bundled payments. Although the concept of bundled payment model is appealing, if only a small

fraction of HPs desires to participate in the program perhaps due to misaligned incentives, the

selection framework will face inefficiency. Unless the government pushes HPs by any regulations,

they may decide not to join the program contrast to our assumption in this study that HPs eagerly

participate in the application process. Therefore, providing analytical insights is a worthwhile

future direction for incentive mechanisms that help to guarantee the high participation rate of HPs.

Bundled payment programs transfer a portion of financial responsibilities from a payer to the

providers. According to the BPCI initiative evaluation report released by CMS, the change in pay-

ments is insignificant for the most of bundled episodes and the change in qualities (e.g., mortality

rate and readmission rate) is also indifferent compared to FFS (CMS, 2015a, 2016a). The initia-
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tive is in its early stage so that it is hasty to make a conclusion, but certainly there is a room for

improvement in provider selection and coordination methods, not only to encourage HPs to join

the program but also to achieve simultaneous cost reduction and quality improvement.

To perform post hoc analysis with more convincing comparison between existing selection pro-

cess and our framework, we are on the process of obtaining CMS BPCI application data. This data

includes the BPCI participant list with detailed information (e.g., bundled payment care episodes,

episode length, discount rate, historical average payment, risk track, episode status) and original

application documents of healthcare providers that are not allowed to participate in the BPCI ini-

tiative. The original application documents includes several interesting descriptions such as care

improvement plan, cost saving plan, quality measures for each care episode, and design for gain-

sharing. These detailed descriptions will enable us to refine our selection framework to evaluate

each applicant’s improvement opportunity under BPCI along with historical performance.

3.10 Conclusion

Bundled payment models have been attempted to mitigate the deficiencies of the current fee-

for-service system, and to create incentives for coordination of services needed to manage partic-

ular episodes of care. In order to achieve efficiency in delivering high quality care, determining

competitive HPs becomes an important issue for government agencies such as CMS.

In this paper, we suggest a HP selection framework for bundled payment models. Our goal

is to cover the demand of healthcare services in target regions by selecting required number of

HPs who will participate in a bundled payment program. Since it is undesirable for applicants to

focus on either cost reduction or quality of care, we develop a model which integrates both. As a

result, our selection framework determines winners taking into account service quality, efficiency

and cost reduction of the cares. The results of numerical analysis support the effectiveness of our

selection framework compared to the existing weighted average method.
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4. ADAPTIVE CAPACITY PLANNING FOR AMBULATORY SURGERY CENTERS

4.1 Introduction

Ambulatory Surgery Centers (ASCs), the healthcare facilities that provide surgical procedures

exclusively on an outpatient basis, are growing trend in the U.S. These “same-day surgery” services

have been made possible by technology advancement that allows a broad range of procedures to

be performed safely in an outpatient setting and at a much lower cost than a hospital. For example,

the Centers for Medicare and Medicaid Services (CMS) pays ASCs approximately 49% of what

it would pay a hospital outpatient department (ASCA, 2011). A recent statistic shows that 5,519

ASCs in 2016 (which is a significant jump from the 1000 ASCs in 1988) in the U.S. (MedPAC,

2017) perform 23 million surgeries annually, which is equivalent to $90 billion1. Today, approx-

imately 30% of Medicare beneficiaries receive care provided in the ASCs, collectively implying

the importance of ASCs in the U.S. healthcare delivery system.

However, the growth of the number of ASCs has slowed in recent years2 (MedPAC, 2017). This

trend may continue because of economic conditions that are likely to discourage the establishment

of new ASCs, for example, consolidation of management companies, physician employment by

hospitals, and the increasing prevalence of high-deductible health plans (VMG-Health, 2017). If

the supply of ASCs does not keep pace with the demand for outpatient surgery, then this care will

be provided in a less convenient and more costly hospital outpatient department3. One possible

solution is to improve the efficiency of current ASC operations by properly planning or adjusting

capacity in light of the changing environment, which is the main focus of this study.

Researchers have put considerable efforts into scheduling inpatient surgeries by using mathe-

matical programming and queueing methods in the setting of single stage and single server (Berg

and Denton, 2012). However, multi-stage (i.e., pre-, intra-, and post-operative) and multi-server

1Oxford Outcomes ASC Impact Analysis 2010.
2The number of ASCs increased only 1.2% compounded annually from 5,135 in 2010 to 5,519 in 2016.
3Indeed, the Ambulatory Surgery Center Association analyzed that if half of the eligible surgical procedures moved

from hospital outpatient departments to ASCs, Medicare would save $2.5 billion per year. Available at http://www.
ascassociation.org/AdvancingSurgicalCare/whatisanasc/historyofascs.
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(i.e., multiple rooms in each stage) are typical characteristics of ASCs, which make the capacity

planning in ASCs more complex. Consequently, the insights from previous studies that focus on

simpler problem settings may not directly carry over to ASC environments. Because of the struc-

tural complexity involved in planning ASCs, discrete event simulation has frequently been used

in the literature (e.g., Tiwari and Sandberg, 2016). The simulation models are helpful to diagnose

bottlenecks and to evaluate alternative scenarios, but validating the results is often challenging be-

cause simulations do not the optimal solution. Thus, a major research opportunity exists to plan

capacity by using more advanced optimization approaches.

In this study, we propose a capacity planning approach for ASCs that coordinates the stages:

preparation, surgical processes, and patient recovery. Hereafter, capacity refers to the physical

space in each stage (e.g., the number of operating rooms) In general, all activities are connected

closely. Furthermore, the duration of each activity is stochastic. Both dependencies and uncer-

tainties make delivering a smooth patient flow a challenging task for which surgical centers need

to manage the capacity of each activity and to schedule patients. Hence, a systematic capacity

planning framework can play an influential role to improve efficiency and utilization of ASC oper-

ations. As such, we answer our main research question: (a) Given uncertainties in patient-mix and

service durations, how do we allocate capacity (the number of rooms) for an ASC that comprises

three stages of patient flow, i.e., the pre-operative in a holding room (HR), the intra-operative in a

operating room (OR), and the post-operative in a post-anesthesia care unit (PACU)? To optimally

design patient schedules and to plan capacity for an ASC, we analyze actual patient flow data,

beginning with deterministic scenarios in both patient-mix and activity duration. This enables us

to formulate exact models and to develop and evaluate heuristics designed to solve this problem.

Subsequently, we extend our study to stochastic scenarios. In contrast to the extensive research

that focuses on capacity allocation solely for operating rooms (e.g., Batun et al., 2011; Denton

et al., 2010) or for the last two stages (e.g., Bowers, 2013; Liu et al., 2019), our study explicitly

considers capacity for all three stages.

Further, we address issues related to the changing environment in ASC practice. The proce-
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dures performed in ASCs are broad in scope. Medicare currently allows for ASCs to perform more

than 3,500 types of procedures, which require varying levels of time and resources in each stage,

and Medicare approves new procedures for ASCs every year. Naturally, the capacity implications

of adjusting the list of procedures become a relevant but challenging question for ASC practition-

ers. Hence, we have our second research question: (b) What is the impact of adding/removing

certain service types (or procedures) in the ASC capacity planning? Overall, this study tackles

resource capacity planning at the strategic level in the healthcare planning and control framework

described by Hans et al. (2012).

In this study, we assume that the weekly patient demand is already planned by the ASC plan-

ner. The problem then is how to determine the proper balance of capacity among the stages and

how to allocate such weekly demand to each weekday. Using real patient flow data, we classify

patients into a fewer groups based on the duration required in each stage for their procedures. Be-

cause the OR is the most expensive resource in ASCs, we next formulate a problem that provides

patients’ daily schedule for given fixed OR and PACU capacities. Afterwards, we develop an al-

gorithm that finds the optimal number of ORs and PACUs to minimize the sum of overtime cost

and capacity construction cost. Lastly, we derive the minimum number of HRs that preserves the

patient schedule determined in ORs and PACUs. Uncertainty in either patient-mix or durations

requires additional capacity. We develop a heuristic procedure that is straightforward and easy to

implement to evaluate room capacity under such uncertainties. Considering the sequential stages

with multiple rooms in each stage, ASC is modeled as a hybrid flow shop (HFS) with blocking,

i.e., a flow shop with parallel machines at each stage and with blocking constraints between any

two consecutive stages (Pinedo, 2016). The blocking indicates the absence of storage capacity

between stages, and thus, a patient must stay in an OR if all PACUs are occupied. We later show

(in Theorem 2) that blocking in our problem setting is equivalent to a no-wait constraint, which

is a special case of blocking. The no-wait constraint forces any two consecutive operations for

a patient to be processed without any interruptions (Mascis and Pacciarelli, 2002) and describes

the ideal patient flows in ASC settings better than blocking. For example, patients with anesthesia
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in HR should be transferred to OR right away rather than staying at HR because of lack of ORs.

Similarly, patients after surgery should be moved to PACU without being delayed at OR. Unlike

the majority of literature that assumes given fixed capacity, our framework is the first three-stage

hybrid flow shop in the context of capacity planning.

The remainder of this paper is organized as follows. In Section 4.2, a literature review on ASC

planning and scheduling is presented. In Section 4.3, we describe our problem, and Section 4.4 de-

fines patient groups and patient sample paths (i.e., patient-mix for each weekday) using real patient

flow data from an ASC. Next, in Section 4.5, we propose our ASC capacity planning approach.

We formulate a mixed integer program (MIP) for the problem covering intra- and post-operative

stages. Because the hybrid no-wait flow shop having only two stages is known to be strongly NP-

hard (Sriskandarajah and Ladet, 1986), we develop an efficient heuristic procedure and compare its

performance with solutions by MIP. In Section 4.6, we conduct computational experiments to test

the performance of our heuristics and to provide managerial implications. Section 4.7 concludes

our study and provide future research directions.

4.2 Literature Review

Extant literature examines operating room allocation, sequencing, and scheduling problems

in various settings, but most papers pursue efficiency improvements under given fixed capacity.

Hence, we have identified a research gap in capacity planning decisions equipped with scheduling

guidelines.

In this section, we review previous work pertinent to the surgery scheduling problem with

downstream PACU constraints. As there is limited research on capacity planning in this context,

our review focuses more on scheduling literature. ASCs are a special case of HFS as they have

multiple stages and parallel rooms in each stage. More general reviews on operating room manage-

ment can be found in Cayirli and Veral (2003); Gupta (2007); Gupta and Denton (2008); Cardoen

et al. (2010), and (May et al., 2011).
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4.2.1 Surgery Scheduling with Downstream PACU Capacity

Compared to the considerable amount of research focusing solely on operating rooms (e.g.,

Denton et al., 2007; Mancilla and Storer, 2012; Mak et al., 2014), few studies consider PACU

capacity in their surgery scheduling problems. The multiple-OR scheduling problem with shared

downstream PACUs is significantly more challenging than scheduling patients only to multiple

independent ORs. To overcome the theoretical and computational challenges, several studies use

simulation. For example, Dexter et al. (2001); Marcon and Dexter (2006), and Iser et al. (2008)

investigate sequencing heuristics and their impacts on the performance of ORs and PACUs.

To alleviate the computational complexities arising from the downstream PACUs, several re-

searchers assume deterministic service times. For example, Hsu et al. (2003) formulate a multiple-

OR sequencing and scheduling problem as a two-stage no-wait flow shop with deterministic ser-

vice times. They propose a tabu search-based greedy heuristic to minimize the number of PACU

nurses and PACU makespan. OR blocking is not allowed in their study; instead, patients are sent to

the PACU immediately after surgery. Pham and Klinkert (2008) adopt the idea of flow shop plan-

ning to schedule patients having deterministic surgical durations into multiple ORs. They assign

surgeries to the ORs and schedule start time for each surgery to minimize the makespan in their

optimization problem. OR blocking is allowed with an assumption that recovery is not started until

a patient enters the PACU. Augusto et al. (2010) also consider the problem of scheduling patients

with deterministic surgical durations into multiple ORs. In their study, recovery starts in ORs if

patients are blocked caused by the unavailability of PACUs. Unlike the works discussed above,

the main objective of our study is to determine the capacity in each stage that minimizes the sum

of overtime cost and capacity construction cost, rather than the makespan. In capacity planning

perspectives, having enough PACUs can simply resolve the OR blocking problem. In other words,

considering OR blocking that allows patients to recover in ORs is important only when PACU

capacity is fixed and thus cannot be adjusted. Hence, in our study, we rely on no-wait assumption

between ASC stages and consider expanding PACU capacity if OR blocking is expected.

More recently, researchers consider the randomnesses of medical service times and the down-
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stream PACU capacity together, which are closely related to our research. Lee and Yih (2012)

investigate the problem of scheduling a pool of surgeries with lognormally distributed durations

into multiple ORs with a limited and fixed number of downstream PACUs. The surgery-to-OR

assignment and the scheduled start times of the surgeries in each OR are obtained using a genetic

algorithm (GA) to minimize the total cost associated with patient waiting, OR blocking, OR idle

time, and OR overtime. Lee and Yih (2014) determine scheduled start times for surgeries in multi-

ple ORs constrained by limited PACU capacity when the sequence of surgeries in each OR is given.

Surgical service times are assumed to be fuzzy triangular numbers. Bai (2017) proposes both se-

quencing and scheduling of surgeries in multiple ORs with limited PACU capacity. They propose

a two-stage solution method to minimize the expected cost of patient waiting time, surgeon idle

time, OR blocking time, OR overtime, and PACU overtime. A mixed integer linear programming

sample average approximation model is formulated and solved by Lagrangian relaxation in the

first stage to obtain the sequence of surgeries in each OR; then a sample-gradient-based algorithm

developed in Bai et al. (2017) is used in the second stage to schedule the start times of surgeries. In

contrast to the previous works cited above that focus on efficient patient sequencing and scheduling

under given capacity, our study focuses on capacity planning for the multi-stage nature of ASCs.

In Table 4.1, we compare our problem settings with closely related previous studies. Rather than

making scheduling decisions based on available capacity, our study proposes how ASC planners

make investments to construct/renovate/adjust the system capacity and thereby improve the ASC

operations.

4.2.2 Planning Capacity and Scheduling Patients in ASCs

Unlike scheduling papers that provide mathematical models, previous studies on capacity plan-

ning mostly rely on simulations or heuristics. For example, Tiwari and Sandberg (2016) examine

whether the current capacity in the pre- and post-operative stages of an ASC is enough to cover

a given surgical demand with the assumption that ORs are always occupied during regular daily

hours. Motivated from this study that investigates the appropriate level of ASC capacity, we use

mathematical programming to incorporate patient scheduling, which provides a stepping stone to
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Table 4.1: Related Literature in Different Settings

Problem Settings Our Paper Bai (2017) Bai et al. (2017) Lee and Yih (2014)

Considered Resources
Upstream HR Yes No No No
OR Yes Yes Yes Yes
Downstream PACU Yes Yes Yes Yes
Focus
Surgery-to-OR Assignment Yes No No No
Sequencing Yes Yes No (Given Sequence) No (Given Sequence)
Scheduling Yes Yes Yes Yes
Capacity Planning Yes Fixed Fixed Fixed
Patient-Mix
Patient Grouping Yes No No No
Cost Structure
Capacity Construction Cost Yes No No No
Patient Waiting Time No Yes Yes Yes (2nd Stage)
OR Blocking Time No Yes Yes Yes (1st Stage)
OR Idle Time Potentially Yes Yes Yes Yes (2nd Stage)
OR Overtime Yes Yes Yes No
PACU Overtime Yes Yes Yes No
Notable Constraint No-wait between

Stages
OR Blocking Allowed OR Blocking Allowed OR Blocking Allowed

Structural Properties Yes No Yes No
Solution Approach Heuristics and Iterative

Algorithm
Subgradient method SAA-gradient descent

algorithm
Genetic Algorithm,
Heuristics
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make the capacity decision.

Metaheuristics are also often used to evaluate capacity decision. For example, Gul et al. (2011)

study a multiple-OR planning problem with pre-operative and post-operative resource constraints.

Surgeries are first assigned to ORs and then sequenced and scheduled in ORs. Their bi-criteria

genetic algorithm method is effective in surgery re-assignment but does not show significant im-

provements over the shortest-case-first heuristic if surgery-to-OR assignments are fixed.

Cayirli et al. (2006) demonstrated that the performance of an appointment schedule is very

sensitive to patient characteristics and behavior such as walk-ins (add-ons or patients that need to

be scheduled the same day), no-shows, and punctuality. Although the authorsâĂŹ analysis was

specific to a clinical office setting (primary care), the role of patient characteristics and behavior in

scheduling decisions is also informative to ASCs settings.

There are several other studies that shed light on one aspect of the capacity allocation problem

but ignore one or more important features. For example, using stochastic programming, Min and

Yih (2010) generate an optimal surgery schedule for elective patients assuming uncertainty in

surgery durations and thereby the availability of downstream surgical intensive care units (ICUs).

To reduce problem complexity, the authors assume that surgery and downstream resources can

be scheduled independently. In our ASC problem, however, we assume no-wait between stages.

In other words, the scheduling of OR directly impacts the PACUs’ schedules. Price et al. (2011)

apply integer programming and simulation to develop improved surgical scheduling assignments

to ultimately reduce the boarding of patients overnight in the PACU resulting from the lack of ICU

resources. The patient flow in their study, however, begins at OR, not upstream at HR, which is

one of our contributions.

4.2.3 Hybrid Flow Shop with No-Wait Constraints

As discussed earlier, the ASC patient flow structure that comprises three sequential stages

with multiple rooms in each stage can be modeled as HFS. Given its importance and complexity,

the HFS problem has been extensively studied, mainly in the manufacturing context. Ruiz and

Vázquez-Rodríguez (2010) and Ribas et al. (2010) present comprehensive literature reviews on
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exact and heuristic methods that have been proposed to solve HFS problems under various problem

settings. For example, two- and three-stage problems are approached by Koulamas and Kyparisis

(2000) with the aid of simple methods with known performance bounds. Interestingly, however,

none of the previous studies proposes an approach to decide the number of servers/machines in

each stage, which is our focus.

In the literature, HSF with no-wait constraint is closely related to our study. No-wait implies

that the operations of a job have to be processed from the beginning to the end without any interrup-

tion on machines and without any waiting in between the machines. For example, Guirchoun et al.

(2005) model a computer system composed of a single server and two identical parallel machines

as a two-stage HFS with the no-wait constraint between the two stages.

The standard form of HFS relies on the following assumptions: all jobs and machines are

available at time zero, the machines at a given stage are identical, any machine can process only

one operation at a time, and any job can be processed by only one machine at a time; setup times are

included in the processing time, preemption is not allowed, the capacity of buffers between stages is

unlimited, and problem data is deterministic and known in advance (Ruiz and Vázquez-Rodríguez,

2010). Reflecting ASC practices, our study relaxes the last two of the common assumptions. We do

not allow patient waits between any two stages (i.e., there is no buffer). Although we initially build

our model for deterministic cases, we also address the capacity implications when the patient-mix

information is stochastic following a normal distribution and the patient duration at each stage is

stochastic following a log-normal distribution.

4.3 Problem Description

The main objective of this study is to provide a framework to plan capacity for ASCs in which

the patient demand over weekdays is set up by top management and thus given. As all patients

visiting ASCs are elective, ASC planners generally have control over the planned patient demand

and hence such assumption on exogenous patient demand is acceptable. The problem is then to

determine the capacity, i.e., the number of rooms, in each stage that efficiently covers possible daily

patient demand and to coordinate the three stages of patient visits: (i) pre-operative (preparation),
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Table 4.2: Classification of papers related to our study

ASC or Outpatient Clinical Center Hybrid Flow Shop, No-wait
Long-term Planning Short-term Scheduling 2-stage 3-stage and more

Liu et al. (2010),
Patrick et al. (2008),
Dexter and Traub (2002),
Price et al. (2011),
Adan et al. (2009),
Gerchak et al. (1996), Muthuraman
and Lawley (2008),
Lee et al. (2018),
Berg et al. (2011),
Hsu et al. (2003)

Berg et al. (2010),
Robinson and Chen (2003),
Gul et al. (2011),
Denton et al. (2007),
Cayirli et al. (2006),
Min and Yih (2010)

Guirchoun et al. (2005) (Exact),
Wang et al. (2015),
Yang (2010),
Wang and Liu (2013),
Chang et al. (2004),
Wang et al. (2005),
García and Lozano (2005),
Xie et al. (2004) (Heuristics)

Gicquel et al. (2012),
Liu and Karimi (2008) (MIP),
Thornton and Hunsucker (2004)
(Heuristics)

Our Paper Our Paper Our Paper

(ii) intra-operative (surgical procedures), and (iii) post-operative (recovery) stages. We use the

term room for ease of reading, and it includes all the equipment and the bed needed for the room.

The objective is to minimize the total cost incurred in satisfying the daily patient demand, where

the total cost is defined as the sum of overtime cost and amortized construction cost for the three

stages. The overtime cost can occur in any stage when patients are served after regular hours and

the construction cost is essentially the fixed setup cost of a room. Clearly, trade-offs exist between

the two cost measures. Note that the daily patient-mix and the activity duration in each stage have

inherent variation. Such uncertainty in patient-mix and activity duration makes achieving smooth

and efficient patient flow a challenging task. Analyses must consider all of these factors in devising

capacity plan for ASCs (Green, 2002). ASCs may improve cost efficiency by properly allocating

capacity for each stage and by efficiently scheduling patients.

In the pre-operative stage, a patient requires approximately 2 hours for preparation (e.g., pro-

viding anesthesia to a patient, etc.) at a Holding Room (HR). The intra-operative stage is per-

formed in an Operating Room (OR) with an average surgery duration of 1.5 hours. To attenuate

the complexity involved in each patient type (i.e., service type), we adopt a patient categorization

strategy based on the surgery duration, similar to Price et al. (2011) and Adan et al. (2009), af-

ter analyzing the distribution of the durations across patient types. After surgery, the patients are

transferred to a recovery room, i.e., a PACU. In this post-operative stage, on average, a patient
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takes 2 to 3 hours for recovery, while some patients stay in PACU and recover over night.

In HR, unless a nurse works more than 10 hours in a day, which rarely occurs, there is no

overtime. Patients are assigned to HR starting at 5 am. In OR, regular hours span from 7 am to 5

pm (i.e., 10 hours). Thus, we consider any operating procedures after 5 pm as overtime. Similarly,

we follow regular hours from 7 am to 5 pm for PACUs. If overnight-stay patients exist, we consider

the extra cost per patient occupying PACUs (e.g., wage of PACU nurses) as an overtime cost.

Figure 4.1 summarizes patient flows at the ASC. Figure 4.2 provides example major time

stamps at the ASC, e.g., HR enter, OR enter, and OR exit times (see Appendix C.2 for the de-

tailed list of events). Based on these time stamps, we calculate overtime in each stage.

Figure 4.1: Patient Flow at the Ambulatory Surgery Center

By analyzing real-world patient flow data from an ASC, we propose a generic capacity planning

framework built upon scheduling theory and applicable to any ASCs once planned patient demand

is determined. Beginning with deterministic data on patient groups and their durations at each

stage, we gradually relax these assumptions to provide insights on ASC capacity planning if the

composition of patient groups changes over time with uncertain durations, which are common

challenges for the ASC planners.
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Figure 4.2: Major Time Stamps at the Ambulatory Surgery Center

Figure 4.3 summarizes the sequence of our adaptive capacity planning framework. First, us-

ing historical patient flow data, we classify the patients into a small number of groups and obtain

scenarios of daily patient demand (namely, patient sample paths) (Section 4.4). This process is

designed to alleviate complexity in patient-mix to assist planners in defining their patient demand.

Second, assuming deterministic patient sample paths and their durations at each stage, we develop

an exact model, Problem P1, and an algorithm, AdaptiveASC, that derive the most efficient capac-

ity in each stage of an ASC (Section 4.5). The key trade-off in our decision making is between the

capacity construction cost and the overtime cost that may occur if capacity is not enough. Third,

to overcome the computational challenges of the exact approach, we develop heuristics designed

to achieve the same objective. In brief, our adaptive capacity planning approach evaluates perfor-

mance of an ASC with given capacity, and iteratively adjusts capacity in each of the ASC stages as

long as it is cost-efficient to do so. Lastly, we conduct computational experiments to address sce-

narios with stochastic patient sample paths and stochastic durations to provide managerial insights

for ASC planners.
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Figure 4.3: Sequence of the ASC Capacity Planning Framework

4.4 Defining Patient Groups and Patient Sample Paths

The composition of daily patient-mix affects the capacity planning of ASCs because patients

with varying conditions require different amount of resources and time for treatment. We thus

begin with analyzing the detailed time stamp data4, enabling us to calculate the duration for each

stage and for each patient. The ASC operates weekdays (a week consisting of 5 days) and the

average number of outpatients per day is approximately 30 to 35 patients. In general, ASCs are

segmented into either single-specialty ASCs or multi-specialty ASCs. In this study, we focus

on multi-specialty ASCs as the multi-specialty ASCs are a more lucrative segment (FMI, 2017)

and the findings from multi-specialty ASCs can carry over to the relatively less complex single-

specialty ASCs. The ASC that provides patient flow data to us has 23 HRs, 11 ORs, and 12

4We obtained the data from an ASC located in the southeast of the U.S.
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PACUs5, and provides services for a broad spectrum of patients. Our data, spanning from De-

cember 2016 to February 2017, contains 1961 patients who fall into 13 service types including

otolaryngology, ophthalmology, general oncology surgery, orthopedic, and plastic surgery. Specif-

ically, our data contains patients with 523 different Current Procedural Terminology (CPT) codes

(See Appendix C.3).

We first define patient groups based on the duration of patient stay in each stage. Subsequently,

we analyze the daily patient demand, defined as a combination of patients each of which falls into

one of the patient groups, namely patient sample path, to derive optimal capacity. In our data,

we observe varying daily patient sample paths (i.e., scenarios) representing uncertain daily patient

demand and its associated durations.

Specifically, we first analyze the distributions of patient duration at HR (pre-op), OR (intra-

op), and PACU (post-op) stages. We assume that the transportation time from HR to OR (from

OR to PACU, respectively) are included in HR duration (PACU duration, respectively). Previous

studies (e.g., Gul et al., 2011; Akcali et al., 2006) collectively provide evidence that the surgery

time depends on the surgical procedure, i.e., the complicated surgery may require longer operating

time. In contrast, the relationship between the durations between surgical procedure and pre-

op/post-op varies depending on problem settings. For example, Akcali et al. (2006), examining

resource allocation at the operating room and the subsequent ICU for cardiohepatic surgeries,

categorized patients into eight groups based on the duration of patient stay at those two stages.

The pre-op stage is not discussed in this study. In a later work, Gul et al. (2011) observe that

pre-op and post-op durations are similar regardless of surgical procedures and thus they assume

the same triangular distributions for both pre- and post-op durations in the simulation study. In

our ASC patient flow data, we observe a low correlation between durations at HR and OR (i.e.,

r = 0.08), but a moderate correlation between the duration of OR and PACU (i.e., r = 0.40).

Besides, the total duration is highly correlated with the durations at OR (i.e., r = 0.58) and PACU

(i.e., r = 0.96), but not with the duration at HR (i.e., r = 0.25) (See Table 4.3). The HR durations
5As mentioned in Tiwari and Sandberg (2016), however, up to 14 out of 23 HRs can be flexibly used as PACUs for

overnight-stay patients.
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Table 4.3: Correlation Table for Duration in Each Stage

(1) (2) (3) (4) (5) (6) (7)
(1) HR Duration 1 0.08 0.05 -0.01 0.04 0.04 0.25
(2) OR Duration 1 0.36 -0.10 0.38 0.40 0.58
(3) Phase 1 Recovery Duration 1 -0.20 0.24 0.34 0.38
(4) Phase 2 Recovery Duration 1 -0.28 -0.17 -0.17
(5) Phase 3 Recovery Duration 1 0.99 0.94
(6) PACU Duration 1 0.96
(7) Total Duration 1

Notes: p < 0.05 if |r| > 0.04. PACU duration is sum of phase 1, 2, and 3 durations. Phase 3 durations may
contain overnight-stay but not necessarily.

of our patient data seem to be independently distributed from OR durations (e.g., Gul et al., 2011)

but the PACU durations are closely related to the OR durations (e.g., Akcali et al., 2006). We thus

use the OR and PACU durations together to classify patients into a small number of groups, while

estimating a single distribution for HR durations of all patients in our data.

Classifying patients into a reasonably small number of groups not only reduces the complexity

of the capacity planning problem but also improves its practicality. For example, ASC managers

may form a patient sample path (e.g., reflecting surgeons’ availability/preference over weekdays)

from a pool of patients waiting for surgery operations. In our study, we classify patients into

short/moderate/long OR duration and short/moderate/overnight PACU duration. By assigning the

diagnoses of patients to the duration-based groups, ASC managers can easily classify any new

patients into one of the patient groups. We use the patient groups as a basic building block forming

a patient sample path, i.e., the composition of patients, and ultimately to plan capacity of an ASC.

To classify patients, we first conduct k-means clustering for each service type. To properly

allocate resources, we further consider whether each patient stays overnight or not. We thus con-

duct a cluster analysis based on average OR duration and average PACU duration for each surgical

procedure (i.e., CPT code) that falls within a focal service type. We further divide each CPT code

into two subgroups: with and without overnight-stay because overnight-stays require much longer
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durations at PACUs6. As a result, we obtain seven patient groups as listed in Table 4.4. For exam-

ple, the patient group ShortOR-ShortPACU comprises patients with relatively shorter OR durations

(with on average 68.4 minutes) and PACU durations (with on average 66.3 minutes) than other pa-

tient groups. Similar to previous studies, either lognormal, gamma or Weibull distribution fits well

for the duration at any stages. The fitted duration distributions for each patient group are provided

in Appendix C.3.

Table 4.4: Defined Patient Groups (in min)

Patient
Group

Duration at # Serv
-Clusa Obs. Avg

OR
Medb
OR

Avg
Phc1&2

Avg
Ph3

Avg
PACU

Med
PACU

Avg
TotalOR PACU

1 Short Short 5 727 68.4 63.0 63.6 2.6 66.3 58.0 265.3
2 Short Moderate 4 333 77.9 71.0 87.4 11.7 99.1 82.0 301.8
3 Moderate Short 3 154 137.7 134.0 88.0 11.7 99.7 85.0 365.9
4 Moderate Moderate 4 512 145.3 136.0 113.5 11.4 124.9 110.0 419.1
5 Moderate Overnight 3 33 166.3 164.0 91.8 1063.8 1155.6 1175.0 1461.7
6 Long Moderate 5 74 298.6 278.5 104.9 52.6 157.5 142.0 589.3
7 Long Overnight 4 127 225.3 214.0 76.4 1124.9 1201.3 1209.0 1579.7

Notes. a: # Service Type Clusters. See Table C.3; b: Median; c: Phase;

Based on the patient groups that we defined above, we next summarize the patient sample

paths across weekdays as listed in Table 4.5. The patient sample path represents the composi-

tion of daily patients from the seven patient groups. On Monday, for example, on average 11.45

ShortOR-ShortPACU patients and 8 ShortOR-ModeratePACU patients have visited the ASC. Note

that, however, these patient sample paths are obtained mainly based on ongoing daily scheduling

approach at the ASC. At the moment, we use the patient sample paths obtained from our patient

flow data (as listed in Table 4.5) to feed our capacity planning model. In our computational study,

we also test our model on various patient sample paths. As such, we suggest guidelines that ASC

6We follow this patient clustering approach based on the “average" duration of each CPT code rather than individual
patient-level duration to avoid possibility that patients with the same CPT code being classified into different clusters.
To decide reasonable k, which is a tricky part of using k-means clustering, we test several options recommended by
the literature, and then choose the final k after analyzing plots and characteristics of each cluster (See Appendix C.3
for details).
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Table 4.5: ASC Patient Sample Path by Weekday (# of patients)

Patient Group Monday Tuesday Wedesday Thursday Friday
1 ShortOR-ShortPACU 11.45 (3.33) 15.08 (3.52) 12.17 (4.06) 7.92 (2.75) 12.58 (4.78)
2 ShortOR-ModeratePACU 8.00 (2.83) 3.62 (2.33) 5.50 (2.47) 6.15 (2.70) 4.33 (2.74)
3 ModerateOR-ShortPACU 4.00 (2.05) 3.08 (2.10) 1.92 (1.08) 1.69 (1.84) 1.42 (1.08)
4 ModerateOR-ModeratePACU 3.64 (2.46) 8.23 (4.04) 10.75 (3.49) 10.15 (2.70) 8.67 (1.78)
5 ModerateOR-OvernightPACU 0.73 (0.65) 0.23 (0.44) 0.33 (0.65) 0.77 (0.73) 0.67 (0.78)
6 LongOR-ModeratePACU 2.09 (0.70) 1.00 (0.82) 0.42 (0.51) 1.77 (1.17) 0.83 (1.03)
7 LongOR-OvernightPACU 3.18 (1.40) 1.85 (1.77) 2.08 (1.38) 2.23 (1.24) 1.17 (1.03)

# Complete Weeks in Our Data 11 13 12 13 12

Notes: For example, on Monday, there are on average 11.45 patients classified into Patient Group 1 with standard devia-
tion of 3.33, where as on Thursday, there are 7.92 Group 1 patients on average with standard deviation of 2.75.

Table 4.6: Duration at each Stage including Turnover Time (in hours) and Patient Sample Path on
Monday

Duration + Turnover Time Patient Group
(in hour) 1 2 3 4 5 6 7
OR 1.5 2.0 3.0 3.0 3.5 5.5 4.5
PACU 1.5 2.0 2.0 2.5 19.5 1.0 19.0
Non-overnight PACU 1.5 2.0 2.0 2.5 2.0 1.0 1.5
Overnight PACU - - - - 17.5 - 17.5
Patient Sample Path 11 8 4 4 1 2 3
(# of patients)

managers can easily incorporate to define a set of patients to be served in a day.

For ease of exposition, we display the duration times in hours and round them off to the bins

with size of 30 minutes as in Table 4.6. The table provides durations including turnover times,

i.e., 30 min in OR and 15 min in PACU durations (e.g., OR duration + Turnover time in OR for a

ShortOR-ShortPACU patient is 68.4+30 = 98.4min ≈ 1.5hr). The last row of Table 4.6 represents

an Monday patient sample path7. We later use this table to feed and evaluate our heuristics.

The demand for surgeries in outpatient settings continues to grow. Hence, the importance

7We use rounded mean number of patients for each patient group (e.g., 11 ShortOR-ShortPACU patients) as the
average number of patients.
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of ASC capacity planning that accommodates timely access to services while utilizing resource

efficiently also continues to grow. We tackle this issue by starting with the deterministic patient

sample path for each weekday and deterministic duration at each stage. As can be seen later,

our capacity planning approach can be adapted easily to the environment with stochastic patient

sample paths and durations to provide capacity implications of such uncertainties.

4.5 Adaptive Capacity Planning Framework

In this section, we discuss our capacity planning approach. Because of the three-stage structure

of an ASC, which is well-known for high complexity in HFS literature, there is a limited chance

of using exact methods. More importantly, the capacity, which is our decision variable, is a given

parameter in HFS formulations (Ruiz and Vázquez-Rodríguez, 2010). As a result, how to decide

the right capacity is rarely discussed in the literature. Our approach to deal with this challenge

starts from splitting the three stages in to two parts: (1) derive the capacity in OR and PACU

stages; (2) derive the capacity in HR stage. Since we focus on the later two stages first, we call this

approach backward capacity planning8.

In Part (1), we first obtain the upper bound on the numbers of ORs and PACUs (Section 4.5.1).

Next, we propose a capacity planning approach to find optimal numbers of ORs and PACUs (Sec-

tion 4.5.2). Specifically, we formulate a mixed integer program (MIP), Problem P1, that generates

the schedule of planned daily patient demand for given numbers of OR and PACU (Section 4.5.2.1).

Afterwards, we develop an algorithm AdaptiveASC that iteratively evaluates capacity to provide

the most cost-efficient combination of the numbers of ORs and PACUs under the trade-off between

capacity construction cost and overtime cost (Section 4.5.2.2). Because of the computational com-

plexity in solving Problem P1 in the algorithm, we derive lower bounds on the objective function

of P1 (Section 4.5.2.3) and develop a heuristic BackwardASC to replace the exact model Problem

P1 (Section 4.5.2.4).

Afterwards, in Part (2), using a minimum cost flow model, we derive the optimal number of

8One might wonder what if we plan capacity in forward approach, i.e., we focus on the HR and OR stages first and
determine the PACU stage later. Since the OR and PACU stages are relatively more costly than the HR stage, we find
evidence that the backward approach outperforms the forward approach. See Appendix C.8 for details
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HR required to preserve the patient schedules obtained in Part (1) (Section 4.5.3). Ultimately, our

approach not only derives a cost-efficient ASC capacity but also provides patient scheduling guide-

lines under such capacity, which are important strategic and operational issues for ASC planners.

4.5.1 Upper Bounds on the Number of ORs and PACUs

Algorithm FFP1 derives upper bounds on the numbers of ORs and PACUs. We modify the

“First Fit" (FF) strategy used for the well-known bin packing problem to obtain a feasible assign-

ment of patients into the daily regular hours of our problem setting. By running Algorithm FFP1,

ASC managers may find the largest capacity for OR and PACU stages to serve the planned daily

patient demand.

Algorithm First Fit for Problem P1 (FFP1)

Input: The set of I patients and a bin consists of a pair of OR and PACU. Initialize the bin size to T .

The bin is a two-machine, no-wait flowshop, F2|no-wait, m1 = 1, m2 = 1|Cmax.

Step 0: We need to allocate patients into each bin such that patients are scheduled in no-wait manner

(between OR and PACU) and their total completion time is no more than T . Initially, open only one

bin.

Step 1: Number the given set of patients in random order, i ∈ I = {1, 2, · · · , I}. Patient i’s duration

times in OR and PACU are pi1 and pi2, respectively. If patient i requires overnight-stay in PACU, then

set pi2 = 0. Let no be the number of patients requiring overnight-stay in PACU. Let i = 1.

Step 2: Begin to schedule patient i in the first bin opened at the earliest available time. If patient i

violates the threshold completion time T for either OR or PACU, then schedule the patient in the next

opened bin (at the earliest available time) until patient i does not violate the threshold completion time

T of that bin. If Patient i does not fit into any open bin, then open a new bin and schedule patient i in

the new bin.

Step 3: Set i = i+ 1. If i ≤ I go to Step 2.

Step 4: Register the number of bins opened during the process of scheduling all patients i ∈ I as Λ.

Output: The number of ORs is Λ, and the number of PACUs is Λ + no. Stop.

We initialize the number of ORs as R1 = Λ and PACUs as R2 = Λ+no. We discuss the details
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in Section 4.5.2.2, but such initialization of ORs and PACUs is useful to efficiently run Algorithm

AdaptiveASC, which finds the optimal number of ORs and PACUs. A numerical illustration of

Algorithm FFP1 is given in Appendix C.5.

4.5.2 Planning Capacity of OR and PACU

In this section, we elaborate our exact model Problem P1 for given capacity in OR and PACU,

derive lower bounds on the objective function, then propose a polynomial time algorithm Adap-

tiveASC that iteratively updates the capacity in OR and PACU stages until it finds an optimal solu-

tion. Finally, we develop our heuristic BackwardASC to replace the computationally challenging

exact model P1.

4.5.2.1 Mixed Integer Program Problem P1

Although our ultimate goal is to decide capacity in each stage, the complex interactions across

multiple stages in an ASC require significant coordination and thus convey the challenges in for-

mulating a single model for simultaneously scheduling patients and deciding the number of rooms

in each stage.

We thus solve the two-stage HFS problem (Problem P1) with the predetermined capacity in

ORs and PACUs. Building upon this formulation that enables us to consider the trade-off between

the capacity construction cost and the overtime cost of the two stages, we later propose an algorithm

(Algorithm AdaptiveASC) that iteratively adjust the capacity in each stage to find the capacity that

minimizes the sum of capacity construction cost and overtime cost.

We assume that patients are punctual, hence, there are no delays because of the late arrival

of patients. All the ASC operations are elective in nature, so there is no capacity assigned to

emergency patients9. The time horizon is discretized into time periods {0, · · · , K}, where K is

an upper bound on the last patient’s completion time (i.e., makespan). No idle time is allowed

between OR and PACU for each patient. Overtime occurs if completion time in any stage exceeds

the regular close of business T . The notations used in Problem P1 are listed in Table 4.7. For

9ASCs may have high priority add-on cases that need to be fit into the current day’s schedule, but such cases rarely
happen. Thus, for ease of exposition, we ignore this functionality in our study.
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simplicity, we assume the same unit overtime costCo
s per nurse for one hour across available rooms

in stage s10. The cost parameters are assumed to follow Ce
1 > Ce

2 > Co
1 > Co

2 , which generally

holds in practice. Note that we focus on minimizing the overtime cost in ORs and PACUs together

with the amortized construction cost of them, but Problem P1 can be easily modified to include

idle time cost, i.e.,
∑

s∈S
∑

r∈Rs

[
Cd
s (T−

∑T−1
t=0

∑
i∈I y

t
isr)
]
, in the current objective funtion (4.1),

where Cd
s is the unit idle time cost in stage s. We later show in Theorem 3 that problems with and

without idle time cost in the objective function are equivalent if certain conditions hold.

Table 4.7: Notations for the time-based formulation of P1

Indices:
i index for a patient, i ∈ I = {1, · · · , I}.
s index for a stage, s ∈ S = {1, 2} where 1=OR, 2=PACU stage, respectively.
r index for a room, r ∈ Rs = {1, · · · , Rs}.
t index for a time, t ∈ K = {0, · · · ,K}

Parameters:
Rs Number of rooms in stage s.
pis Duration of patient i at stage s.
Ces Amortized daily capacity construction cost for a room at stage s.
Cos Unit cost of overtime in stage s.
K Upper bound of completion time for all patients (i.e., makespan), K ≥

∑
i∈I
∑

s∈S pis.
T Length of regular hours. E.g., 10 hours (7am to 5pm).

Decision Variables:
xtisr If xtisr = 1, patient i starts processing on room r in stage s at time t, otherwise 0.
ytisr If ytisr = 1, patient i uses room r in stage s at time t, otherwise 0.
zts The number of occupied rooms at time slot t in stage s. Note that zst ≤ Rs.
fis Completion time of patient i in stage s.
gsr Completion time of room r in stage s.
hsr Overtime of room r in stage s.
ωtsr Binary variable in if-else statement.

10Our method can, however, be easily modified to handle distinct unit costs across rooms even in a same stage.
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Problem P1:

min
xtisr,y

t
isr,z

t
s,fis

∑
s∈S

∑
r∈Rs

Co
shsr︸ ︷︷ ︸

Overtime Cost

+
∑
s∈S

Ce
sRs︸ ︷︷ ︸

Amortized Capacity Construction Cost

(4.1)

subject to∑
r∈Rs

K−1∑
t=0

xtisr = 1, ∀i ∈ I, ∀s ∈ S, (4.2)

∑
i∈I

t−1∑
t′=max{0,t−pis}

xt
′

isr ≤ 1, ∀s ∈ S, ∀r ∈ Rs, ∀t ∈ {1, · · · , K}, (4.3)

min{K−1,t+pis−1}∑
t′=t

yt
′

isr ≥ pisx
t
isr, ∀i ∈ I, ,∀s ∈ S, ∀r ∈ Rs, ∀t ∈ {0, · · · , K − 1}, (4.4)∑

i∈I

∑
r∈Rs

ytisr = zts, ∀s ∈ S, ∀t ∈ {0, · · · , K − 1}, (4.5)

K−1∑
t=0

zts =
∑
i∈I

pis, ∀s ∈ S, (4.6)

∑
r∈Rs

K−1∑
t=0

(t+ pis)x
t
isr ≤ fis, ∀i ∈ I, ∀s ∈ S, (4.7)

∑
r∈R1

K−1∑
t=0

txti2b ≥ fi1, ∀i ∈ I, (4.8)

fi2 − (fi1 + pi2) ≤ 0, ∀i ∈ I, (4.9)

(t+ 1− gsr) ≤ Kωtsr, ∀s ∈ S, ∀r ∈ Rs, ∀t ∈ {0, · · · , K − 1}, (4.10)∑
i∈I

ytisr ≤ K(1− ωtsr), ∀s ∈ S, ∀r ∈ Rs, ∀t ∈ {0, · · · , K − 1}, (4.11)

gsr − T ≤ hsr, ∀s ∈ S, ∀r ∈ Rs, (4.12)

xtisr, y
t
isr, w

t
sr ∈ {0, 1}, ∀i ∈ I, ∀s ∈ S, ∀r ∈ Rs, ∀t ∈ {0, · · · , K − 1}, (4.13)

zts, fis gsr hsr ≥ 0, ∀s ∈ S, ∀r ∈ Rs, ∀t ∈ {0, · · · , K − 1} (4.14)

The objective function (4.1) is to minimize the overtime cost in both OR and PACU and the

amortized capacity construction cost of them. Note that Rs, ∀s ∈ S , is a parameter. Constraint

(4.2) ensures that for each stage s, each patient i starts his stay in only one room r. Constraint
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(4.3) indicates that for each stage s, at most one patient can be processed at any time in any

room. Constraint (4.4) provides pis consecutive time slots for patient i in stage s. Constraint (4.5)

counts the number of occupied rooms at time slot t in stage s. Constraint (4.6) assures that the

total duration times equal to the total number of time slots that the rooms are occupied in stage s

over the entire planning horizon. Constraint (4.7) defines completion time of patient i in stage s.

Specifically, the completion time equals to the sum starting time of patient i and her processing

time. Constraint (4.8) ensures that patient i in OR cannot proceed to PACU until finishing execution

is OR. Constraint (4.9) ensures that there is no-wait between OR and PACU. Constraints (4.10) and

(4.11) collectively ensure that the room completion time is nonzero as long as any patient occupies

the room. Constraint (4.12) defines the overtime amount. Constraints (4.13) and (4.14) denote the

binary and non-negative constraints, respectively.

Administrators of healthcare providers prefer a block-scheduling approach that develops sched-

ules for a group of patients rather than for an individual patient or a service type because of its

flexibility in generating schedules (Price et al., 2011). In this context, we also define the duration

time of patient i in stage s, pis, based on the patient group in which the patient i is assigned (as

discussed in Section 4.4). As provided in Appendix C.3, pis in our data follows log-normal or

weibull distribution, as in the literature (e.g., Gul et al., 2011). Later, in the computational study,

we extend our model to study to what extent the duration uncertainty affects the capacity.

In Lemma 1 below, we first formally show that Algorithm FFP1 derives the upper bound of

the number of ORs and PACUs for Problem P1.

Lemma 1. Algorithm FFP1 provides an upper bound for the objective of Problem P1 and on the

number ORs and PACUs.

Proof: Algorithm FFP1 provides a solution to Problem P1 with zero overtime cost as it obtains

a schedule with all completion times before time T , except for the overnight-stay patients in PACU.

The solution is feasible to P1 and thus it is an upper bound for the objective of Problem P1 and for

the numbers of OR and PACU. The total cost of this solution is π, where π = ΛCe
1 + (Λ + no)C

e
2
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+ {the cost of overnight-stay at PACU}. It is easy to see that FFP1 obtains solution with an upper

bound on the number of ORs and PACUs. The reasoning is as follows: if the number of ORs

(respectively, PACUs) is set to Λ + 1 (respectively, Λ + no + 1), then the objective function value

increases above π as the cost of deploying more rooms increases and the overtime cost remains

zero. Also, the cost of overnight-stay at PACU remains the same in the optimal solution. Thus,

FFP1 provides upper bounds on the number of ORs and PACUs. �

Minimizing the makespan in the two-stage hybrid flow shop problem with no-wait between the

two processing stages is known to be strongly NP-hard, even in the case in which stage one contains

one machine,m1 = 1, and stage 2 has two machines,m2 = 2 (denoted asF2(m1,m2)|no-wait, m1 =

1, m2 = 2|Cmax) (Sriskandarajah and Ladet, 1986). This complexity result can easily be carried

over to the decision version of Problem P1. Hence, it is strongly NP-hard, even when R2 = 2,

∀s ∈ S, as shown in Theorem 1.

Theorem 1. The decision problem corresponding to Problem P1 is strongly NP-complete, even

when R1 ≥ 2 and R2 ≥ 2.

Proof: Consider the decision problem devised in Sriskandarajah and Ladet (1986) for problem

F2(m1,m2)| no-wait, m1 = 1, m2 = 2|Cmax, where the number of jobs, n = 5N + 2, m1 = 1,

m2 = 2, and the makespan, D ≤ FT , where FT = (12N + 1)L+ (N + 2)B, where the integers

N and B are the parameters from 3-Partition and L = (N + 3)B. Now we construct the decision

problem for Problem P1 with R1 = 1 and R2 = 2 as follows: Set the length of regular hours,

T = FT = (12N + 1)L+ (N + 2)B and the number of patients, I = n = 5N + 2. We now need

to answer the following question: Does there exist a sequence of patients such that the total cost π

is less than or equal to Ce
1 + 2Ce

2? Note that π does not include overtime cost. It is easy to see that

there exists a solution to Problem P1 with π ≤ Ce
1 + 2Ce

2 only if there exists a solution to problem

F2(m1,m2)|no-wait, m1 = 1, m2 = 2|Cmax with the makespan, D ≤ (12N + 1)L+ (N + 2)B,

and vice-versa. This completes the proof. �

As discussed earlier, a no-wait constraint is a special case of a blocking constraint. We adopt
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the no-wait constraint in our main model because of its practical relevance in ASC operations.

However, we show in Theorem 2 that Problem P1 with blocking constraint is indeed equivalent to

that with no-wait constraint.

Theorem 2. Problem P1 with blocking constraint is equivalent to Problem P1 with no-wait con-

straint for R1 ≥ 1 and R2 ≥ 1.

Proof: Each feasible schedule to Problem P1 with blocking constraint can easily be converted

into a schedule for Problem P1 with no-wait constraint with the same completion times for all ORs

and PACUs, by changing the processing times and vice-versa. Thus, the result follows because

there is no change in total cost as a result of this transformed schedule. �

Along with overtime, idle time in ORs and PACUs is often discussed in patient scheduling

literature (e.g., Bai, 2017). In Theorem 3, we show that Problem P1 is equivalent to the problem

that also including idle time cost in ORs and PACUs if certain conditions hold. The condition
Co

1

Cd
1

=
Co

2

Cd
2

in Theorem 3 is a generalized expression for, for example, Co
1 = 1.7Cd

1 and Co
2 = 1.7Cd

2 ,

which are often claimed in the literature (Jebali et al., 2006; Lamiri et al., 2008; Pulido et al., 2014),

i.e., the overtime cost is around 70% higher than the idle time cost for both stages.

Theorem 3. Problem P1 is equivalent to Problem P̂1 (P̂1 includes cost of idle time incurred in

OR and PACU beds) when Co
1 > Co

2 > 0, Co
1 > Cd

1 > Cd
2 > 0, and Co

1

Cd
1

=
Co

2

Cd
2

, where Cd
s denotes

unit cost of bed idle time in stage s, s = 1, 2.

Proof: Note that the numbers of ORs and PACUs are fixed at R1 and R2, respectively. Let

σ (respectively, σ̂) be an optimal schedule for Problem P1 (respectively, Problem P̂1 ). T is the

regular operating time. Overtime occurs if OR and PACU are used beyond time T . Thus the

regular operating time available for OR (respectively, PACU) is R1T (respectively, R2T ).

Let tos (respectively, t̂os) be the total overtime in σ (respectively, σ̂), where s = 1, 2.

Let tds (respectively, t̂ds) be the total idle time in σ (respectively, σ̂), where s = 1, 2.

Note that RsT − tds + tos = RsT − t̂ds + t̂os, where s = 1, 2. This implies that t̂ds = tds + t̂os − tos.
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Let πσ (respectively, πσ̂) account for the total idle and overtime cost in σ (respectively, σ̂). Note

the bed costs are the same in σ and σ̂. Thus, we have

πσ =
∑

s t
d
sC

d
s +

∑
s t
o
sC

o
s and πσ̂ =

∑
s t̂
d
sC

d
s +

∑
s t̂
o
sC

o
s .

Note that πσ̂ =
∑

s t̂
d
sC

d
s +

∑
s t̂
o
sC

o
s =

∑
s(t

d
s + t̂os − tos)Cd

s +
∑

s t̂
o
sC

o
s , That is,

πσ̂ = (
∑

s t
d
sC

d
s +

∑
s t
o
sC

o
s ) +

∑
s(t̂

o
s − tos)Cd

s +
∑

s(t̂
o
s − tos)Co

s . This implies that

πσ̂ = πσ +
∑

s(t̂
o
s − tos)Cd

s +
∑

s(t̂
o
s − tos)Co

s = πσ +
∑

s(t̂
o
s − tos)(Cd

s + Co
s ).

Note that t̂o1C
o
1 + t̂o2C

o
2 ≥ to1C

o
1 + to2C

o
2 , otherwise it contradicts that σ is optimal for P1.

Moreover, note that
∑

s(t̂
o
s − tos)(C

d
s + Co

s ) ≤ 0, otherwise it contradicts that σ̂ is optimal for

P̂1. This implies that (t̂o1 − to1)(Cd
1 + Co

1) + (t̂o2 − to2)(Cd
2 + Co

2) ≤ 0. Thus, we have

t̂o1C
o
1 + t̂o2C

o
2 ≥ to1C

o
1 + to2C

o
2 . (4.15)

(t̂o1 − to1)(Cd
1 + Co

1) + (t̂o2 − to2)(Cd
2 + Co

2) ≤ 0. (4.16)

The results follows from the four cases below:

Case 1: t̂o1 ≤ to1 and t̂o2 ≤ to2. This implies that t̂o1C
o
1 + t̂o2C

o
2 ≤ to1C

o
1 + to2C

o
2 . Together with

relation (4.16) above, we have t̂o1C
o
1 + t̂o2C

o
2 = to1C

o
1 + to2C

o
2 . This in turn implies that t̂o1 = to1 and

t̂o2 = to2, and thus σ = σ̂.

Case 2: t̂o1 ≤ to1 and t̂o2 > to2. Let t̂o1 + δ1 = to1 and t̂o2 = to2 + δ2, where δ1 ≥ 0 and δ2 > 0. Consider

two sub-cases:

Case 2.1: δ1 = 0. Relation (4.16) implies that δ2(Cd
2 + Co

2) ≤ 0. This contradicts with Cd
2 > 0,

Co
2 > 0, and δ2 > 0. Thus, this case is not feasible.

Case 2.2: δ1 > 0. If δ1 = δ2, then relation (4.16) implies (t̂o2 − to2)Co
2 ≥ (to1 − t̂o1)Co

1 ⇔ δ2C
o
2 ≥

δ1C
o
1 ⇔ Co

2 ≥ Co
1 , which contradicts with Co

2 < Co
1 . If δ1 6= δ2, Relation (4.16) implies that

δ2C
o
2 ≥ δ1C

o
1 , i.e., δ1

δ2
≤ Co

2

Co
1
. Relation (4.16) implies that δ2(Cd

2 + Co
2) ≤ δ1(C

d
1 + Co

1), that is

δ1
δ2
≥ Cd

2+C
o
2

Cd
1+C

o
1
. This case is feasible if Co

2

Co
1
≥ Cd

2+C
o
2

Cd
1+C

o
1
⇔ Co

2(Cd
1 + Co

1) ≥ Co
1(Cd

2 + Co
2), that is

Co
2C

d
1 ≥ Co

1C
d
2 , or equivalently, C

o
1

Cd
1
≤ Co

2

Cd
2

.
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Case 3: t̂o1 > to1 and t̂o2 ≤ to2. Similar to Case 2, let t̂o1 = to1 + δ1 and t̂o2 + δ2 = to2, where δ1 > 0 and

δ2 ≥ 0. Consider two sub-cases:

Case 3.1: δ2 = 0. Relation (4.16) implies that δ1(Cd
1 + Co

1) ≤ 0. This contradicts with Cd
1 > 0,

Co
1 > 0, and δ2 > 0. Thus, this case is not feasible.

Case 3.2: δ2 > 0. If δ2 = δ1, then Relation (4.16) implies (t̂o1 − to1)(Cd
1 + Co

1) ≤ (to2 − t̂o2)(Cd
2 +

Co
2)⇔ δ1(C

d
1 +Co

1) ≤ δ2(C
d
2 +Co

2)⇔ Cd
1 +Co

1 ≤ Cd
2 +Co

2 , which contradicts that Cd
1 > Cd

2 and

Co
1 > Co

2 . If δ2 6= δ1, Relation (4.16) implies that δ1(Cd
1 + Co

1) ≤ δ2(C
d
2 + Co

2), i.e., δ1
δ2
≤ Cd

2+C
o
2

Cd
1+C

o
1
.

Relation (4.16) implies (to2 − t̂o2)Co
2 ≤ (t̂o1 − to1)Co

1 ⇔ δ2C
o
2 ≤ δ1C

o
1 , i.e., δ1

δ2
≥ Co

2

Co
1
. This case is

feasible if Cd
2+C

o
2

Cd
1+C

o
1
≥ Co

2

Co
1
⇔ Co

1(Cd
2 + Co

2) ≥ Co
2(Cd

1 + Co
1), that is Co

1C
d
2 ≥ Co

2C
d
1 , or equivalently,

Co
1

Cd
1
≥ Co

2

Cd
2

. From Case 2.2 and Case 3.2, σ = σ̂ when Co
1

Cd
1

=
Co

2

Cd
2

.

Case 4: t̂o1 > to1 and t̂o2 > to2. This implies that t̂o1C
o
1 + t̂o2C

o
2 > to1C

o
1 + to2C

o
2 . By rearranging the

terms, we obtain (t̂o1− to1)(Cd
1 +Co

1)+(t̂o2− to2)(Cd
2 +Co

2) > 0 that contradicts with Relation (4.16).

Hence, this case is not feasible. �

In view of the NP-completeness in the strong sense of Problem P1, developing an efficient and

effective heuristic is desirable. We propose a heuristic, namely BackwardASC in Section 4.5.2.4,

that first generates a daily patient schedule in OR and PACU stages. In the next section, we propose

an algorithm that derives the optimal numbers of OR and PACU.

4.5.2.2 Algorithm AdaptiveASC to Derive Optimal Numbers of OR and PACU

For a given set of patients, Iw, in each weekday w ∈ W = {1, · · · , 5}, Problem P1 minimizes

total cost, namely the sum of overtime cost and construction cost, when the number of rooms Rs in

each stage s is a fixed parameter. Motivated from the trade-off between the two cost measures, we

propose an algorithm, namely AdaptiveASC, to find the optimal numbers of ORs and PACUs that

minimize the total cost to serve patient demand over weekdays. The main idea is to efficiently up-

date the number of rooms in each stage after initializing the number of ORs asR1 = maxw∈W{Λw}

and PACUs as R2 = maxw∈W{Λw + nwo }, where Λw is the number of ORs derived by Algorithm

FFP1 and nwo is the number of overnight-stay patients in weekday w.
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Let Π(r1, r2) be the sum of objective function values of Problem P1 over weekdays, ∀w ∈

W , where r1 and r2 represent the numbers of ORs and PACUs, respectively. Let Π(r1, r2) =

Πo(r1, r2) + Πe(r1, r2), where Πo and Πe denote the overtime cost and the construction cost, re-

spectively. We include a visual representation of Algorithm AdaptiveASC in Figure 4.4. Π(r1, r2)

is convex over r1 ∈ [1, R1] and r2 ∈ [1, R2] as illustrated later in Figure 4.6 in the computa-

tional study . Lemma 2 shows that there indeed exists r∗2 such that Π(r1, r
∗
2) is less than equal to

Π(r1, r
∗
2−1) and Π(r1, r

∗
2 +1), given r1 is fixed. Similar case can be shown for r1 when r2 is fixed.

Lemma 2. Given the number of ORs, R1, there exists r2 such that the following relations hold:

1. Π(R1, r2 + 1) ≥ Π(R1, r2), and

2. Π(R1, r2 − 1) ≥ Π(R1, r2),

where Π(r1, r2) is an optimal solution obtained by solving Problem P1 for given r1 and r2.

Proof: The results follow from the trade-off between the amortized PACU construction cost

Ce
2 and the PACU overtime cost Co

2 . As long as Πo(R1, k)−Πo(R1, k+ 1) < Ce
2 , it is beneficial to

reduce the number of PACUs (Item 1), because Πo is a non-increasing function of r2. Hence, for a

certain number of PACU r2, Πo(R1, r2 − 1)− Πo(R1, r2) ≥ Ce
2 holds (Item 2). �

Algorithm AdaptiveASC terminates after a finite number of iterations as shown in Lemma 3.

Lemma 3. Algorithm AdaptiveASC terminates in a finite number of iterations and its time com-

plexity is O(Λ2).

Proof: We begin the algorithm with the initial numbers of ORs and PACUs, namely RUB
1 =

maxw∈W{Λw} and RUB
2 = maxw∈W{Λw}+ maxw∈W{nwo }, obtained by Algorithm FFP1 and the

number of overnight-stay patients. Algorithm AdaptiveASC updates either the number of ORs or

PACUs and evaluates the objective function of Problem P1. Specifically, beginning with the initial

number of ORs, RUB
1 , we calculate the total cost starting from the initial number of PACUs, RUB

2 .

Next, we obtain the total cost after reducing the number of PACUs by one. We continue this process
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Figure 4.4: Flow Chart of Algorithm AdaptiveASC
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as long as the total cost decreases. Once the total cost begins to increase, we store the currently

minimum total cost and stop reducing the number of PACU. Instead, now we reduce the number

of OR by one, reset the number of PACU to RUB
2 , and again calculate the total cost by reducing

the number of PACU by one in each iteration. In this way, we search the two-dimensional space

until there is no improvement in Π and obtain the optimal numbers of ORs and PACUs. Since the

numbers of OR and PACU can be integers in [1, RUB
1 ] and [1, RUB

2 ], respectively, the algorithm

terminates in a finite number of iterations and we get quadratic time complexity, i.e., O(N2) where

N = maxw∈W{Λw}. �

Further, Theorem 4 shows that Algorithm AdaptiveASC find an optimal solution in the finite

number of iterations.

Theorem 4. Algorithm AdaptiveASC terminates with an optimal solution Π(r∗1, r
∗
2) that minimize

the sum of capacity construction cost and overtime cost, where Π(r1, r2) is obtained by solving

Problem P1 optimally for given r1 and r2.

Proof: It is sufficient to prove that Algorithm AdaptiveASC finds an optimal solution for

given R1. Suppose the optimal solution is Π(R1, r̄2) and Algorithm AdaptiveASC terminates with

a solution Π(R1, r̂2) such that Π(R1, r̄2) < Π(R1, r̂2). Then, Π(R1, r̄2) > Π(R1, r̄2 − 1) or

Π(R1, r̄2) > Π(R1, r̄2 + 1) must hold, otherwise the solution Π(R1, r̄2) would have been found

by the algorithm as shown in Lemma 2. These relations contradict the optimality of Π(R1, r̄2).

Hence, the result follows. �

In Algorithm AdaptiveASC, iteratively solving Problem P1 is computationally challenging. We

thus develop an efficient and effective heuristic, namely BackwardASC. Before, we derive lower

bounds on Problem P1 that we use to evaluate the heuristic.

4.5.2.3 Lower Bound on the Makespan and the Total Cost

The majority of scheduling literature discusses lower bounds on the makespan but not on the

cost objective function (Ruiz and Vázquez-Rodríguez, 2010). We also recognize a significant
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challenge in specifying a proper lower bound on our cost objective function. However, since we

are only able to solve Problem P1 for small-sized instances, e.g., up to ten patients in a day, we

propose simple lower bounds on both the makespan and the objective function for Problem P1.

We use these lower bounds to evaluate the performance of Heuristic BackwardASC for large-sized

problem instances.

Consider the problem of scheduling a set of independent patients I = {1, 2, · · · , I}, in which

each patient i consists of a chain of two operations .{Oi1, Oi2}, ∀i ∈ I The first operation Oi1

of any patient i needs to be processed on the rooms in stage 1 during an uninterrupted pro-

cessing time pi1 ≥ 0, and then the second operation Oi2 needs to be processed on one of the

rooms in stage 2 during an uninterrupted processing time pi2 ≥ 0. We denote R1 parallel ORs

in the first stage by {M1,1,M1,2, · · · ,M1,R1} and the R2 parallel PACUs in the second stage by

{M2,1,M2,2, · · · ,M2,R2}.

Let fHm (respectively, fHc ) denote the makespan (respectively, the total cost) obtained by any

heuristic H and use fLBm (resp., fLBc ) to stand for a lower bound of the optimal makespan (respec-

tively, the optimal total cost). We use the following formulas to calculate the lower bounds:

fLBm = max
{ 1

R1

∑
i∈I

pi1 + min
i∈I

pi2,
1

R2

∑
i∈I

pi2 + min
i∈I

pi1,max
i∈I
{pi1 + pi2}

}
. (4.17)

fLB1
c = min

s∈S
Co
s ·max

{
0, R1 ·

( 1

R1

∑
i∈I

pi1 + min
i∈I

pi2 − T
)
,

R2 ·
( 1

R2

∑
i∈I

pi2 + min
i∈I

pi1 − T
)}

+
∑
s∈S

Ce
sRs (4.18)

Additionally, we propose two alternative lower bounds for the total cost. The idea on the second

lower bound fLB2
c begins from the optimal total cost f ∗c that can be stated as follows:

f ∗c = Co
1 ·max

{
0,
∑
i∈I

pi1 + td1 −R1T
}

+ Co
2 ·max

{
0,
∑
i∈I

pi2 + td2 −R2T
}

+
∑
s∈S

Ce
sRs

(4.19)

where td1 and td2 are the idle times in the first stage and the second stage, respectively, in the optimal
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solution (as defined in Theorem 3). Since td1 ≥ 0 and td2 ≥ R2 ·mini∈I pi1, we have:

fLB2
c = Co

1 ·max
{

0,
∑
i∈I

pi1 −R1T
}

+ Co
2 ·max

{
0,
∑
i∈I

pi2 +R2 ·min
i∈I

pi1 −R2T
}

+
∑
s∈S

Ce
sRs ≤ f ∗c

The third lower bound fLB3
c better captures the overtime caused by overnight-stay patients. For

any patient i, her earliest time to enter any PACU is pi1. If the patient stays overnight, then we can

capture the PACU overtime of her as pi1 + pi2 − T . Hence, we have:

fLB3
c = Co

1 ·max
{

0,
∑
i∈I

pi1 −R1T
}

+ Co
2 ·
∑
i∈I

max
{

0, pi1 + pi2 − T
}

+
∑
s∈S

Ce
sRs

(4.20)

The lower bound on total cost used to evaluate heuristics is fLBc = max{fLB1
c , fLB2

c , fLB3
c }

(Section 4.6.1). We use the relative percentage above the lower bound, Gap(%) = 100(fH. −fLB
. )

fLB
.

as

the performance measure of heuristic H for both fLBm and fLBc .

4.5.2.4 Heuristic BackwardASC to Solve Problem P1

Heuristic BackwardASC aims to assign patients to an ASC that has R1 ORs and R2 PACUs

to minimize the overtime cost. Notice that R1 is not necessarily equal to R2. The main idea

of heuristic BackwardASC is to tightly sequence patients into ORs and PACUs to reduce idle

times, and thus to minimize the overtime in the system, while obeying the no-wait constraint

between the two stages. Building upon a minimum deviation algorithm suggested by Xie et al.

(2004) that aims to minimize makespan, heuristic BackwardASC splits the patients into two groups,

i.e., (1) overnight-stay and (2) non-overnight-stay. The heuristic first sequences the overnight-

stay patients to prevent excessive overtime in PACU caused by the overnight-stay patients. Once

all overnight-stay patients are scheduled, we schedule non-overnight-stay patients in the same

approach. Heuristic BackwardASC is a greedy algorithm, i.e., once a partial schedule is obtained,
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this partial schedule will not be changed.

Each loop schedules one patient. At the beginning of each loop, let M1,k1 be the OR that first

becomes idle, and let t1 be the time when M1,k1 becomes idle. Similarly, let M2,k2 be the PACU

that is the first idle room among other PACUs, and let t2 be the time that M2,k2 becomes idle. We

find an unscheduled patient i with pi1 being closest to max{0, t2 − t1} (i.e., i = argmini∈I |pi1 −

max{0, t2 − t1}|). To reduce the idle time, patient i is scheduled next on the first stage OR M1,k1

and the second stage PACU M2,k2 . In other words, if pi1 ≥ t2 − t1, patient i starts to process on

OR M1,k1 immediately; otherwise, patient i has to start on OR M1,k1 after (t2 − t1 − p1i) amount

of waiting time. By doing so, we iteratively generate a new partial schedule with one more patient

scheduled.

Heuristic BackwardASC for Problem P1 (BackwardASC)

Input: There are R1 ORs, {M1,1,M1,2, ...,M1,R1}, and R2 PACUs, {M2,1,M2,2, ...,M2,R2}. I =

{1, 2, ..., I} is a set of patients to be scheduled. I = Io ∪ Ino, where Io is the set of overnight-stay

patients and Ino is the set of non-overnight-stay patients. (p1i, p2i) is the duration times of patient

i ∈ I in (OR, PACU).

Step 1: Let M1,k1 be the OR that first becomes idle (break ties arbitrarily), and let t1 be the time when

M1,k1 becomes idle. Similarly, let M2,k2 be the PACU that first becomes idle (break ties arbitrarily),

and let t2 be the time when M2,k2 becomes idle.

Step 2: If Io 6= ∅, find an unscheduled patient i ∈ Io with pi1 being closest to max{0, t2 − t1};

otherwise, find an unscheduled patient i ∈ Ino with pi1 being closest to max{0, t2 − t1}.

Step 3: To reduce the idle time, schedule patient i next on the first stage ORM1,k1 and the second stage

PACU M2,k2 . In other words, if pi1 ≥ t2 − t1, patient i starts to process on OR M1,k1 immediately;

otherwise, patient i starts on OR M1,k1 after waiting (t2 − t1 − p1i) time.

Step 4: If I = ∅, stop. Otherwise, go to Step 1.

Output: A schedule for patients in I.

We provide a formal description of Heuristic BackwardASC in Appendix C.4 and its numerical

illustration in Appendix C.5. We later evaluate the performance of BackwardASC in the compu-
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tational study. Specifically, we compare the effectiveness of the heuristic with Problem P1 using

small instances and the lower bounds discussed in Section 4.5.2.3.

4.5.3 Obtain the Minimal Number of HRs

Having obtained the optimal numbers of OR and PACU and the patient schedules, we now

derive the minimal number of HRs that preserve the previously obtained schedule of patients in

ORs and PACUs. Here, we consider HRs as buffers that cost much less than ORs and PACUs, thus

cost measures related to HRs are ignored.

The problem can be formulated as a minimum cost flow (MCF) problem. In our construction

of the MCF network, nodes Ii and I ′i correspond to HR enter time and HR exit time of patient i.

Ō and S̄ denote a source node and a sink node, respectively. The upper and lower bounds on an

arc (Ii, I
′
i) are 1, enforcing each patient to be served by exactly one HR. The arc (I

′
i , S̄) linking the

patient HR exit time and sink node has a unit flow cost. Figure 4.5 illustrates a simple example of

the MCF model with six patients. In this example, we need at least three HRs to preserve the HR

schedule of the six patients (e.g., patients 1 and 2 in HR1, patients 3 and 4 in HR2, patients 5 and

6 in HR3), and thus the solution is three. The MCF admits a polynomial-time solution as shown in

Lemma 4.

Lemma 4. The MCF model admits a polynomial-time solution and is equivalent to optimizing the

minimum number of HRs that preserve the sequence of patients in ORs. The overall complexity of

MCF is O (n4 log n), where n = 2(I + 1).

Proof: The goal of the MCF model is to serve patients with minimum number of HRs while

preserving the sequence of the patients in ORs. It is straightforward to verify that each feasible

flow corresponds to a feasible pre-operative service plan in a single HR. Thus, the optimal solution

to the MCF model constructed above is equivalent to optimally deciding the number of HRs, and

the proposed MCF model can be solved polynomially. The complexity of solving the MCF model

is O(n4 log n), where n = 2(I+1) is the number of nodes in the network (Ahuja et al., 1993). The

result holds in general. �
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Figure 4.5: Minimum Cost Flow diagram for determining the minimum number of HRs that pre-
serve the sequence of patients in ORs [Ō: Source, I: Patients, S̄ : Sink]

Notes: Solid lines indicate flows through HRs.

4.6 Computational Experiments

The key objectives of our computational study are (i) to evaluate the performance of Heuristic

BackwardASC with respect to Problem P1 (Section 4.6.1), and (ii) to explore the impact of various

business parameters related to ASC operations on capacity (Section 4.6.2). To be more specific, we

study the impacts of uncertain composition of patient groups (Section 4.6.2.3), of uncertain patient

durations (Section 4.6.2.4), and of uncertain overnight-stays (Section 4.6.2.5). We also conduct

sensitivity analysis on the construction and overtime cost parameters (Section 4.6.2.6). For the

first objective, we generate a small problem based on the real instances described in Tables 4.5 and

4.6. We also compare the heuristic solution to the lower bound on the objective function. For the

second objective, we generate new instances and perform an extensive set of experiments.

Figure 4.6 shows an example of total cost, overtime cost, and amortized capacity construction

cost over different combinations of the numbers of ORs and PACUs. In this figure, we observe a

convex shape of overtime cost, i.e., increasing overtime cost at an increasing rate as the number

of ORs and/or PACUs decreases. The capacity construction cost increases linearly as the numbers
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of ORs and PACUs increase. Taken together, the total cost function also has a convex shape,

similar to EOQ cost curves. This is to be expected, since having excessive capacity leads to a large

construction cost even if the overtime cost becomes less. In contrast, having insufficient capacity

drastically increases overtime cost with relatively small savings on construction cost. Based on the

trade-offs, Algorithm AdaptiveASC derives the optimal ORs and PACUs with minimal total cost.

Figure 4.6: Example of Total Cost (left), Overtime Cost (middle), and Amortized Capacity Con-
struction Cost (right) for an Instance in the Computational Study

4.6.1 Performance of Heuristic BackwardASC with respect to Problem P1 and its Lower

Bound

Due to computational complexity, the optimal solution of Problem P1 can be obtained only

for small-sized instances, e.g., daily patient demand of ten to fifteen. For the instances having

optimal solutions11, the gap between Heuristic BackwardASC and Problem P1 ranges from 4 to

8%. However, such instances are much smaller than the daily number of patients being served in

practice. To evaluate the performance of our heuristic for larger-sized instances, we compare total

costs relative to the lower bound fLBc (proposed in Section 4.5.2.3) and show the results in Figure

4.7. If the capacity is too small compared to the daily demand, the gap is large. The gap increases

exponentially if the PACU capacity is less then the OR capacity. This observation perhaps indicates
11We consider only non-trivial instances that have overtime.
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that our lower bounds impose limitations on capturing the extensive overtime in PACUs. However,

as long as the number of daily patients is reasonably large for given capacity (i.e., 30 patients

for 10 to 15 ORs), the gap is 35% or less. Given limited literature on the cost objective function

in the HFS domain (Ruiz and Vázquez-Rodríguez, 2010) and significant challenges to develop

well-performing lower bounds, Heuristic BackwardASC generates a solution comparable to that of

Problem P1.

Figure 4.7: Performance of Heuristic BackwardASC with respect to LB

Notes: We randomly generated patient instances with a simulation size of 500 for each ca-
pacity combination and the number of daily patients.

4.6.2 Impacts of Business Parameters related to ASC Operations on Capacity

In this section, we first propose different strategies in defining aggregate weekly patient sched-

ules. Afterward, we investigate the impacts of several uncertain business parameters on the capac-

ity decision.

4.6.2.1 Aggregate Weekly Schedule

We provide a guideline for developing a daily patient sample path over weekdays. ASC plan-

ners may have a planned weekly patient demand and classify the patients into a small number of
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patient groups as suggested in Section 4.4. The next step is to allocate the patients over weekdays.

We propose three strategies of defining patient sample paths over weekdays and compare the

resulting capacity plans in this computational study. The first strategy is simply to follow the

current patient sample paths as listed in Table 4.5. The second strategy is to evenly allocate the

patient groups over weekdays, as listed in Table 4.8. Lastly, the third strategy is to define certain

weekdays for specific patient groups, as listed in Table 4.9. In these example patient sample paths,

we allocate patient groups 1 and 2 (i.e., relatively simple and short surgeries) into Monday and

Tuesday and patient groups 3 to 7 (i.e., relatively complex and long surgeries) into the other three

weekdays. ASC planners can selectively choose either one of the three strategies or combined

version of them, depending on other factors such as the availability of surgeons and equipment.

After performing a numerical study over an extensive set of instances, we observe that the

results of the first strategy are quite similar to the second strategy, implying that the current patient

sample paths are reasonably balanced over weekdays. Therefore, we focus on comparing the first

and third strategies in the rest of the computational studies to provide capacity implications for the

two different patient sample path strategies.

Table 4.8: Balanced Patient Sample Path by Weekday (Average # of patients)

Patient Group Monday Tuesday Wedesday Thursday Friday
1 11.84 (3.44) 11.84 (3.44) 11.84 (3.44) 11.84 (3.44) 11.84 (3.44)
2 5.52 (1.95) 5.52 (1.95) 5.52 (1.95) 5.52 (1.95) 5.52 (1.95)
3 2.42 (1.24) 2.42 (1.24) 2.42 (1.24) 2.42 (1.24) 2.42 (1.24)
4 8.29 (5.60) 8.29 (5.60) 8.29 (5.60) 8.29 (5.60) 8.29 (5.60)
5 0.55 (0.49) 0.55 (0.49) 0.55 (0.49) 0.55 (0.49) 0.55 (0.49)
6 1.22 (0.41) 1.22 (0.41) 1.22 (0.41) 1.22 (0.41) 1.22 (0.41)
7 2.10 (0.93) 2.10 (0.93) 2.10 (0.93) 2.10 (0.93) 2.10 (0.93)

Notes: Standard deviation of the number of patients is in parenthesis.
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Table 4.9: Dedicated Patient Sample Path by Weekday (Average # of patients)

Patient Group Monday Tuesday Wedesday Thursday Friday
1 29.60 (8.61) 29.60 (8.61) 0 (0) 0 (0) 0 (0)
2 13.80 (4.88) 13.80 (4.88) 0 (0) 0 (0) 0 (0)
3 0 (0) 0 (0) 4.04 (2.27) 4.04 (2.27) 4.04 (2.27)
4 0 (0) 0 (0) 13.81 (4.48) 13.81 (4.48) 13.81 (4.48)
5 0 (0) 0 (0) 0.91 (1.79) 0.91 (1.79) 0.91 (1.79)
6 0 (0) 0 (0) 2.04 (2.47) 2.04 (2.47) 2.04 (2.47)
7 0 (0) 0 (0) 3.50 (2.32) 3.50 (2.32) 3.50 (2.32)

Notes: Standard deviation of the number of patients is in parenthesis.

4.6.2.2 The Testbed

In our simulation runs, we generate 100 instances for each day. Therefore, in our analysis, we

have tested 73, 500 daily instances (i.e., five days a week, three strategies in defining patient sample

paths, 16 uncertainty levels on patient group compositions + 16 uncertainty levels on patient dura-

tions + 10 probabilities of staying overnight per each patient + 7 different sets of cost parameters:

100× 5× 3× (16 + 16 + 10 + 7) instances). The MIP model, Problem P1, and related algorithms

are implemented in C++ and solved using CPLEX (version 12.6.1) with 2.70 GHz CPU, 32 GB

RAM, and Windows 10 operating system. Heuristic BackwardASC and related algorithms (e.g.,

FFP1 and AdaptiveASC) are implemented in Matlab and solved with the same system.

4.6.2.3 Impact of Uncertain Patient Groups Composition on Capacity

We generate a set of patient instances that are characterized by the total number of patients to

be served in a day and the composition of patient groups as listed.

Table 4.10 provides a guideline for deciding capacity in each stage for varying levels of un-

certainty in patient sample paths over weekdays. When the risk level is γ, the number of patients

for each patient group is realized from (µ − γσ, µ + γσ), where µ (respectively, σ) is the mean

(respectively, standard deviation) of the number of patients from a focal patient group. For ex-

ample, if γ = 0.6, the number of patients classified into Patient Group 2 from dedicated patient
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sample path strategy (i.e., Table 4.9) is the value of randomly generated number from the range

[13.80− 0.6 · 4.88, 13.80 + 0.6 · 4.88], rounded to the nearest integer.

In Table 4.10, we observe that the capacity in each stage and the total cost increase as the risk

level increases, implying that deviating from a daily patient sample path requires additional capac-

ity for both actual and dedicated patient sample path strategies. Interestingly, the dedicated patient

sample path strategy costs on average 8.78% more than the actual strategy (with max 17.18% when

γ = 2.2 and min 1.29% when γ = 0.4) because of excess overtimes driven by the longer surgeries

assigned on Wednesday to Friday. Meanwhile, the dedicated strategy requires on average 23% (or

4.1 units) fewer HRs than the actual strategy because the variance of OR durations in each day is

smaller. In conclusion, as long as geographical space is not a strict constraint (especially for HRs),

the actual patient sample path strategy is recommended as it generally leads to lower total costs.

Table 4.10: Results of Computational Experiment: Uncertain Composition of Patient Groups

Actual Patient Sample Path Dedicated Patient Sample Path

Risk Lv. #HR #OR #PACU
OR

OT Cost
PACU

OT Cost
Total
Cost

#HR #OR #PACU
OR

OT Cost
PACU

OT Cost
Total
Cost

0.0 16.0 8 10 118.6 947.8 2516.3 11.2 8 11 109.0 1056.8 2660.8
0.2 16.0 8 10 122.7 930.8 2503.6 11.2 8 11 96.8 956.8 2548.6
0.4 16.0 8 10 153.4 980.1 2583.5 11.2 8 11 125.5 996.9 2617.4
0.6 16.0 8 10 169.7 981.0 2600.8 12.6 9 11 118.5 956.9 2695.4
0.8 18.0 9 11 102.1 926.1 2648.2 12.6 9 11 125.9 950.2 2695.4
1.0 17.9 9 11 123.5 940.0 2683.5 12.6 9 12 173.7 1003.7 2842.4
1.2 17.8 9 11 164.4 1014.7 2799.1 12.6 9 13 186.9 1058.9 2955.8
1.4 17.7 9 11 184.3 1006.7 2811.0 13.9 10 14 152.2 1030.1 3062.3
1.6 17.6 9 12 194.6 1072.1 2931.7 13.8 10 14 218.4 1097.2 3195.6
1.8 17.5 9 12 218.7 1105.8 2989.4 15.0 11 14 214.5 1062.0 3281.4
2.0 19.2 10 12 181.2 1054.2 3025.4 14.9 11 15 242.7 1161.2 3453.9
2.2 18.9 10 13 222.2 1113.9 3171.1 16.1 12 17 282.0 1282.3 3829.3
2.4 18.8 10 13 266.2 1163.2 3264.4 16.0 12 17 318.1 1306.7 3889.9
2.6 20.5 11 14 238.1 1217.1 3460.2 17.3 13 18 308.6 1338.7 4082.3
2.8 20.0 11 15 208.7 1183.1 3441.8 15.7 12 18 320.3 1328.7 3958.9
3.0 22.0 12 15 213.5 1228.3 3616.9 17.0 13 19 388.3 1431.8 4300.2

Note: OT = Overtime, Simulation instances = 100 for each weekday and for each risk level.
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4.6.2.4 Impact of Uncertain Patient Duration on Capacity

In developing our capacity framework, we thus far assume deterministic patient durations in

each stage. In reality, however, no two patients have the same durations even if they are classified

into same patient group. Hence, we examine the impact of uncertain patient durations on capacity

decision. Following an approach known as job hedging in the literature (Gul et al., 2011; Yellig

and Mackulak, 1997), we generate patient durations as (1 + γZ)µ, where γ is a risk level ranging

from [0, 3], Z is a random variable following standard normal distribution N(0, 1), and µ is the

mean duration in each stage of a patient group in which a focal patient is classified.

As listed in Table 4.11, if the actual (respectively, dedicated) patient sample path strategy is

selected, the total cost increase on average is 5.66% (respectively, 5.53%) as the risk level γ in-

creases by 0.2. Also, the optimal HR capacity of the dedicated strategy is very sensitive to the

duration uncertainty. For example, only 7.84% (or 1.3 units) of HRs are added if the risk level γ

jumps from 0 to 3.0 for the actual strategy, whereas 90.20% (or 10.1 units) more HRs are needed

for the dedicated strategy.

4.6.2.5 Impact of Uncertain Overnight-Stay on Capacity

We consider each patient as a potential overnight-stay patient with a certain probability, rather

than assuming that the number of overnight-stay patients are given. Our ASC patient flow data

includes an indicator variable predicting each patient as either overnight-stay or non-overnight-

stay before surgical procedures are provided to the patients. Surprisingly, the accuracy of the

indicator is only around 59%12. We thus generate a random variable Z following a standard normal

distribution for each patient, and assign 15 hours as PACU duration if Z < Prob(Ovngt), where

Prob(Ovngt) ∈ [5%, 50%] with 5% intervals.

As listed in Table 4.12, the 5% increase in overnight-stay probability increases on average 1.44

PACUs (respectively, 1.78) and 7.4% (respectively, 7.9%) of total cost for the actual (respectively,

dedicated) patient sample path strategy.

12Let θ be the predicted overnight-stay and x be the actual overnight-stay indicators. In our data of 1960 patient
records, p(x|θ) = 113

196 = 58.85%. p(θ) = 192
1960 = 9.80% and p(x) = 160

1960 = 8.16%.
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Table 4.11: Results of Computational Experiment: Uncertain Patient Duration

Actual Patient Sample Path Dedicated Patient Sample Path

Risk Lv. #HR #OR #PACU
OR

OT Cost
PACU

OT Cost
Total
Cost

#HR #OR #PACU
OR

OT Cost
PACU

OT Cost
Total
Cost

0.0 16.0 8 10 117.4 931.2 2498.7 11.2 8 11 111.4 1046.7 2653.1
0.2 17.8 9 10 164.9 979.3 2719.3 12.6 9 11 161.7 1069.7 2851.4
0.4 18.9 10 11 147.0 1006.2 2898.2 14.9 11 11 143.9 1062.0 3075.9
0.6 17.5 11 11 134.2 1037.0 3041.3 16.5 12 12 98.5 1059.7 3198.2
0.8 16.1 11 11 210.8 1140.0 3220.8 16.3 12 12 164.4 1183.5 3387.9
1.0 15.0 11 11 313.0 1260.9 3443.9 15.9 12 13 223.9 1274.7 3583.6
1.2 15.3 12 11 368.5 1315.0 3678.5 16.3 13 13 256.2 1317.5 3783.7
1.4 16.8 14 12 305.9 1287.8 3883.7 15.9 13 14 347.0 1415.2 4017.2
1.6 16.3 14 12 403.0 1407.8 4100.8 15.5 13 14 463.7 1542.0 4260.7
1.8 17.2 15 13 394.1 1439.7 4293.8 16.3 14 14 522.4 1619.5 4521.9
2.0 17.0 15 13 493.5 1535.7 4489.2 16.9 15 15 574.0 1677.8 4801.9
2.2 16.7 15 13 614.1 1705.5 4779.6 16.8 15 15 687.8 1801.2 5038.9
2.4 17.6 16 14 615.4 1739.0 4984.3 18.7 17 16 631.6 1782.6 5259.2
2.6 17.4 16 14 723.8 1837.5 5191.4 20.5 19 16 581.4 1841.0 5517.4
2.8 17.4 16 14 840.3 1943.1 5413.4 21.4 20 17 551.8 1892.2 5709.0
3.0 17.3 16 14 973.2 2097.3 5700.6 21.3 20 17 658.9 2017.0 5940.8

Note: OT = Overtime, Simulation instances = 100 for each weekday and for each risk level.

Table 4.12: Results of Computational Experiment: Uncertain Overnight-Stay

. Actual Patient Sample Path Dedicated Patient Sample Path

Pr(Ovngt) #HR #OR #PACU ∆#PACU
OR

OT Cost
PACU

OT Cost
Total
Cost

∆Total
Cost

#HR #OR #PACU ∆#PACU
OR

OT Cost
PACU

OT Cost
Total
Cost

∆Total
Cost

5% 16 8 8 - 133.6 788.6 2282.1 - 11.178 8 9 - 109.3 874.1 2388.4 -
10% 16 8 10 2 123.7 946.5 2520.2 10.4% 11.2 8 11 2 115.5 1052.4 2662.9 11.5%
15% 16 8 11 1 134.9 1125.7 2755.7 9.3% 11.2 8 13 2 120.5 1228.2 2933.6 10.2%
20% 16 8 13 2 126.0 1276.3 2987.3 8.4% 11.2 8 14 1 144.4 1429.4 3203.8 9.2%
25% 16 8 14 1 126.6 1421.2 3177.8 6.4% 11.2 8 16 2 131.0 1589.3 3440.3 7.4%
30% 16 8 15 1 139.6 1595.9 3410.5 7.3% 12.6 9 17 1 111.7 1658.5 3660.2 6.4%
35% 16 8 17 2 135.4 1759.8 3660.2 7.3% 12.6 9 20 3 85.1 1827.9 3938.0 7.6%
40% 16 8 18 1 140.2 1930.3 3880.5 6.0% 12.6 9 22 2 104.3 2010.6 4229.8 7.4%
45% 16 8 19 1 146.6 2098.4 4100.0 5.7% 12.6 9 23 1 117.3 2180.3 4457.6 5.4%
50% 16 8 21 2 127.3 2245.6 4317.8 5.3% 12.6 9 25 2 116 2354.32 4720.32 5.9%

Average 1.44 7.4% 1.78 7.9%

Note: OT = Overtime, Simulation instances = 100 for each weekday and for each level of overnight-stay probability.
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4.6.2.6 Sensitivity Analysis on Capacity Construction Cost

We explore the trade-off between the capacity construction cost and the overtime cost in this

sensitivity analysis.

As listed in Table 4.13, the higher construction costs lead to a smaller size of capacity in each

stage as expected and significantly higher total cost because of excessive overtimes. For example,

if the construction costs (Ce
1 , C

e
2) double from (5.0, 3.0) to (10.0, 6.0) while the overtime cost

parameters remain as the same, the total cost increases by 147.38% (respectivley, 146.27%) for the

actual (respectively, the dedicated) patient sample path strategy.

Table 4.13: Results of Computational Experiment: Sensitivity Analysis on Capacity Construction
Cost:

Actual Patient Sample Path Dedicated Patient Sample Path
OR

Est Cost
PACU

Est Cost
#HR #OR #PACU

OR
OT Cost

PACU
OT Cost

Total
Cost

#HR #OR #PACU
OR

OT Cost
PACU

OT Cost
Total
Cost

2.5 1.5 22 11 12 5.2 789.8 1273.7 17.7 13 13 0.5 810.3 1363.3
5.0 1.5 16 8 11 109.2 923.8 2156.8 11.2 8 12 101.8 1039.1 2275.8
5.0 3.0 16 8 10 120.4 938.1 2508.5 11.2 8 11 112.2 1061.7 2669.0
7.5 3.0 14 7 10 238.0 1068.2 3725.0 9.8 7 10 265.6 1174.8 3859.2
7.5 4.5 14 7 9 261.4 1049.4 4190.8 9.8 7 10 281.3 1187.3 4449.8

10.0 4.5 12 6 9 433.4 1211.7 5556.4 8.4 6 9 579.4 1395.5 5886.1
10.0 6.0 10 5 8 798.8 1466.8 6205.6 8.4 6 9 567.0 1385.9 6573.0

Note: OT = Overtime, Simulation instances = 100 for each weekday and for each combination of cost parameter settings.

4.7 Conclusion and Future Research Directions

Ambulatory Surgery Centers (ASCs) have transformed the outpatient experience for millions of

people by offering a convenient, personalized, lower-priced alternative to hospitals. The majority

of ASCs are at least partially owned by physicians, which allows for better control over scheduling.

Additionally, physicians can personally guide innovative strategies for governance in responds to

the dynamic environment of operations, e.g., Medicare frequently updates the list of surgeries

allowable in ASCs. Extant literature suggests efficient patient scheduling decision for established
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facilities, but there is limited research that provides capacity planning/renovation tools under such

dynamic environments, which is the focus of our study.

Benefiting from the detailed patient flow data, we provide an adaptive capacity planning frame-

work for ASCs that have multi-stage service systems: pre-, intra-, and post-operative stages. We

present the mathematical formulation to the problem based on the bin packing model to initially

decide the number of operating rooms (intra-op stage) to serve planned patient demand. After-

wards, we iteratively use the hybrid flow shop model to find the efficient size of post anesthesia

care unit (post-op stage) and the minimum cost flow model to find the optimal number of holding

rooms (pre-op stage). In these models, the trade-off between the capacity construction cost and

overtime cost guides the optimal solution. However, finding an optimal solution using the exact

mathematical model is challenging. We thus propose an effective heuristic that performs well and

can be applied to much larger problems. Furthermore, through computational analysis, we provide

managerially relevant insights on how varying patient groups that need different amounts of ser-

vice time in each stage and uncertainty in durations affect the capacity planning decisions. Future

research can further implement the surgeon scheduling, which will be useful for those who already

have surgeon information in the capacity planning stage.
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5. CONCLUSION

My dissertation explores challenging yet encouraging payment policies and operational issues

in the U.S. healthcare system. Motivated by bundled payment policies that aim to reduce practice

variation, the first essay contributes by developing a precise measure of practice variation within

a hospital and by examining the relationship between practice variation and hospital operational

performance. From a theoretical lens of statistical process control, I empirically observe that the

practice variation positively relates to the patient length of stay and the total cost per capita. Also,

I find differential impacts of underuse variation in test-ordering practice on test-ordering cost and

care-delivery cost, especially when the process quality and experiential quality measures are taken

into account together.

Doing so enables managers and policy-makers to understand conditions on which better per-

formance is achieved. I believe that an in-depth study on such practice variation can lead to more

efficient operations of bundled payment reform models, the target opportunity of which is to reduce

waste by decreasing variation in care-delivery processes. This essay documents novel evidence of

how and to what extent the practice variation affects healthcare operations. Practice variation may

lead to poor operational performance, and if not managed well, the excessive practice variation

may diminish the benefits of quality initiatives. I hope this essay promotes research to further

explicate this important practice variation metric.

Given the heterogeneity of clinical practice and performance across hospitals, the second essay

devises a flexible stepwise framework for provider selection in the context of bundled payment

models. Compared to the existing method that selects high ranked applicants based on a weighted

average composite score (Gupta and Mehrotra, 2015), the study contributes by providing structured

procedures that consider various dimensions of evaluation criteria separately and provide flexibility

for participating providers to bid any combinations of care episodes they desire to join. The payer

who operates this framework may also selectively decide winner groups depending on her prefer-

ence/requirement of the evaluation criteria. For example, if the payer focuses on cost-efficiency
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(i.e., expected savings under bundled payment policy) rather than performance (i.e., care quality

and productivity), the providers with high potential in saving costs will be selected. Also, the

combinatorial auction model can handle geographical constraints such as the minimum number of

healthcare providers to be selected in a single region. This function is beneficial as such geograph-

ical constraints are often considered by healthcare policy-makers to propagate new policies across

the regions to secure patients’ accessibility in an environment of limited resources. The numeri-

cal study supports the effectiveness of our selection framework compared to the weighted average

method, indicating the potential suboptimal performance of existing methods (CMS, 2015a).

To perform post hoc analysis that compares the existing selection process and my framework

in a more convincing manner, future research may benefit from the detailed application data of

ongoing nationwide bundled payment initiative. The data includes detailed information (e.g., bun-

dled payment care episodes, care episode lengths, discount rates, historical average payments, risk

track, episode status) of each participating provider and several interesting descriptions such as the

care improvement plan, the cost-saving plan, the quality measures for each care episode, and the

design for gain-sharing. These detailed descriptions will enable researchers to refine my selection

framework and to thoroughly compare and analyze the properties and performance of the providers

selected via existing methods and the proposed selection framework.

Lastly, the third essay develops novel models that drive adaptive capacity decisions for ambu-

latory surgery centers (ASCs). I explicitly consider three sequential stages that are typical patient

flows in ASCs: the pre-operative at holding room (HR), the intra-operative at operating room (OR),

and the post-operative at post-anesthesia care unit (PACU). In general, all activities are not inde-

pendent and are connected closely. Furthermore, the duration of each activity has considerable

uncertainty. The interdependence of activities and uncertainties in patient-mix as well as their du-

rations pose a significant challenge to surgical centers for managing the capacity of each activity

and achieving a smooth patient flow. Under an assumption that the weekly target patient demand

is defined by the ASC planners, the problem becomes how to determine the proper balance of

capacity in each of the three stages and how to allocate such weekly demand to each weekday.
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Considering the sequential stages with multiple rooms in each stage, ASC is modeled as a

hybrid flow shop. From modeling perspectives, this study contributes by proposing an algorithm

that derives the optimal size of capacity, which has not been addressed in scheduling literature. As

ORs are the most expensive resource in ASCs, I first formulate a problem that provides patients’

daily schedule for given fixed OR and PACU capacities. Afterward, I develop an algorithm that

finds the optimal numbers of OR and PACU that minimizes the sum of overtime cost and capacity

construction cost, the critical trade-off in this study. As a final step, I derive the minimum number

of HRs that preserves the patient schedule determined in ORs and PACUs. Meanwhile, I provide

several structural properties of the problem. Because of the computational complexity of the exact

original model, I develop a heuristic that is straightforward, easy to implement, and fast enough to

evaluate room capacity under uncertain business parameters such as patient-mix, service durations,

overnight-stay probabilities and the relative ratio between the capacity construction cost and the

overtime cost.

In contrast to the traditional top-down approach to capacity planning, my approach contributes

by proposing a bottom-up strategy based on optimization methods combined with analytics that

are informed by operational-level archival patient data. I expect this approach to guide ASC prac-

titioners who are concerned with the cost and capacity implications of adding/removing specific

surgical procedures in their facility. Future research may further implement surgeon scheduling,

which will be useful for those who already have surgeon information in the capacity planning

stage.

Using multiple research methods, including applied econometric analysis to deliver policy im-

plications in the first essay, framework development for policy implementation in the second essay,

and analytical modeling for process improvement in the third essay, my dissertation diagnoses the

complexity of modern healthcare operations management and finds opportunities to improve the

system. I hope my empirical findings and modeling approaches shed light on better understanding

of payment reform policies, its implementation, and capacity decisions in healthcare.
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APPENDIX A

SUPPLEMENT TO CHAPTER 2

A.1 Table of Acronyms

Table A.1 contains a list of acronyms used in Chapter 2.

Table A.1: Table of Acronyms in Chapter 2

Acronym Meaning
ACR American College of Radiology
AHA American Heart Association
AHRQ Association for Healthcare Research and Quality
AMI Acute Myocardial Infarction
BPCI Bundled Payments for Care Improvement
CBSA Core-Based Statistical Area
CDM Charge Description Master
CMI Case Mix Index
CMS Centers for Medicare & Medicaid Services
CV Coefficient of Variation
EQ Experiential Quality
FFS Fee For Service
GMM Generalized Method of Moments
HCAHPS Hospital Consumer Assessment of Healthcare Providers and Systems
HCUP Healthcare Cost and Utilization Project
HF Heart Failure
HHS Department of Health and Human Services
HIMSS Healthcare Information and Management Systems Society
HIT Health Information Technologies
HQA Hospital Quality Alliance
ICU Intensive Care Unit
IV Instrumental Variable
LOS Length-of-Stay
MS-DRG Medicare Severity - Diagnosis Related Group
MSPB Medicare Spending Per Beneficiary
PN Pneumonia
PQ Process Quality
SID State Inpatient Discharge
SPC Statistical Processing Control
TQM Total Quality Management
WACV Weighted Average Coefficient of Variation

A.2 Variable Descriptions

The variables used in this study are summarized in Table A.2.
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Table A.2: Variable Descriptions

Variable Level Description Source
Dependent Variables

TotalLOS Hos-Conda Logarithm of risk-adjusted average total LOS (Sum of LOS per discharge if a focal
patient is readmitted within 30 days).

HCUP

TotalCost Hos-Cond Logarithm of risk- and inflation-adjusted average total cost (Sum of cost per dis-
charge if a focal patient is readmitted within 30 days). Note: TotalCost = TestCost +
CareCost.

HCUP

TestCost Hos-Cond Logarithm of risk- and inflation–adjusted average cost related to ordering laborato-
ry/radiology test (Sum of related costs if a focal patient is readmitted within 30 days).

HCUP

CareCost Hos-Cond Logarithm of risk- and inflation–adjusted average cost of delivering care (Sum of
related costs if a focal patient is readmitted within 30 days).

HCUP

Independent and Moderator Variables
WACVGT

all Hos-Cond Practice variation during a patient care-episode (patient cohort defined by MS-DRG
code). Target Standard T ∈ {h, c, s} where h=Hospital-average, c=County-average,
and s=State/CBSA-average.

HCUP

WACVGT
under Hos-Cond Underuse practice variation in ordering laboratory/radiology tests (patient cohort de-

fined by MS-DRG code). Target Standard T ∈ {h, c, s}
HCUP

WACVGT
over Hos-Cond Overuse practice variation in ordering laboratory/radiology tests (patient cohort de-

fined by MS-DRG code). Target Standard T ∈ {h, c, s}
HCUP

WACVDT
all Hos-Cond Practice variation during a patient care-episode (patient cohort defined by princi-

pal diagnosis code). Target Standard T ∈ {h, c, s} where h=Hospital-average,
c=County-average, and s=State/CBSA-average.

HCUP

WACVDT
under Hos-Cond Underuse practice variation in ordering laboratory/radiology tests (patient cohort de-

fined by principal diagnosis code). Target Standard T ∈ {h, c, s}
HCUP

WACVDT
over Hos-Cond Underuse practice variation in ordering laboratory/radiology tests (patient cohort de-

fined by principal diagnosis code). Target Standard T ∈ {h, c, s}
HCUP

ProcQual Hos-Cond How well each hospital adhere to standardized guidelines endorsed as best practices CMS HCb

ExpeQual Hospital Patient perceptions of the level of interaction with their caregivers during their hos-
pital stay (HCAHPSc survey)

CMS HC

Control Variables
Bed Size Hospital ln(Number of Beds) in a hospital. CMS IFd

CMI Hospital Case Mix Index reflects the diversity, clinical complexity, and the needs for resources
in the population of all the patients in the hospital.

CMS IF

Teaching Hospital Teaching intensity defined as resident-to-bed ratios. CMS IF
Wage Index Hospital Index intended to measure differences in hospital wage rates across labor markets. CMS IF
Outlier Adj Hospital CMS operating outlier adjustment factor, which reflects unusually costly cases treated

by the focal hospital.
CMS IF

OPDSH Adj Hospital CMS operating disproportionate share hospital payment adjustment factor, which re-
flects the hospital’s propensity to treat uninsured and Medicaid patients who need
more resources in general.

CMS IF

Governmental Hospital 1 = Government sponsored, 0 = Private. CMS HC
Nonprofit Hospital 1 = Nonprofit, 0 = For profit. CMS HC
Urban Hospital 1 = Located in urban area, 0 = rural area. CMS CRe

Additional Variables for Risk-Adjustment of Dependent Variables
Agebin Patient Age bins with each representing a 5-year period (e.g., Age 50 to 54). HCUP
Gender Patient 1 = Female, 0 = Male. HCUP
Ethnicity Patient White, Black, Hispanic, Asian, etc. HCUP
ComorIndex Patient The Elixhauser Comorbidity Index: 29 comorbidities (e.g., AIDS, depression). HCUP
Note: LOS, Cost, WACV related measures, ProcQual, and ExpeQual are variables that are calculated using data from the corresponding sources.

a Hos-Cond: Hospital-Condition level. It can be aggregated to Hospital level; b CMS HC: CMS Hospital Compare Database;

c HCAHPS: Hospital Consumer Assessment of Healthcare Providers and Systems; d CMS IF: CMS Impact Files; e CMS CR: CMS Cost Reports.
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A.3 Decision on Revisits from HCUP SID Data

In the HCUP SID Data from NY and FL states, a metric called visitlink is provided that

enables us to track whether a focal patient revisited the hospital in a fiscal year. We illustrate this

in the four cases below to show how we determine total LOS and total cost. See Table A.3.

Table A.3: Example of HCUP data structure

Case Visitlink Revisit ID Days to Event LOS DRG Total Charges Days Btwn Admission Readmission Indicator

A 22 1 17860 2 293 2288 . 0
22 2 17884 2 292 15570 22 1

...
B 143 0 17806 5 291 55467 0 0

...

C
426 1 15098 3 292 22210 . 0
426 2 15127 2 293 6487 27 1
426 3 15138 3 293 14286 8 1

...

D

1271 1 16033 2 292 10184 0 0
1271 2 16053 8 291 26568 12 1
1271 3 16165 4 292 14916 108 0
1271 4 16246 2 291 17937 79 0

Case A: This patient (visitlink ID=22) is readmitted in 22 days after the initial discharge. We

consider these two discharge records as a same claim. Thus, Total LOS = 4, Initial LOS = 2,

Readmission LOS = 2, and Total Charge = 5588+15570 = 21158.

Case B: Most frequent case. Single visit no readmission throughout a given year and state.

Case C: This patient (visitlink ID=426) is readmitted two times, i.e., 27 days after the initial dis-

charge and 8 days after the second discharge. Because the days between two consecutive admission

are less than 30 days, we still consider the three discharge records as a single claim. Total LOS =

8, Initial LOS = 3, Readmission LOS = 5, and Total Charge = sum of three Total Charges.

Case D: Most complicated case. This patient (visitlink 1271) is readmitted four times in a year.

Based on the 30-day readmission rule adopted by CMS, we consider the first two discharge records

as a single claim, and the other two records are separate claims since the days between the admis-

sions are greater than 30 days. Thus, there are three independent claims for this patient.

We follow CMS guidelines to distinguish between unplanned and planned readmissions since

157



some readmissions are medically necessary and thus unavoidable (Horwitz et al., 2012). For exam-

ple, (1) some types of care are always considered planned (obstetrical delivery, transplant surgery,

maintenance chemotherapy, rehabilitation); (2) otherwise, a planned readmission is defined as a

non-acute readmission for a scheduled procedure; and (3) admissions for acute illness or for com-

plications of care are never planned (HCUP, 2012).

A.4 Measurement of Practice Variation: An Illustration

Figure A.1 illustrates how the measure of practice variation is constructed after patients are

classified into one of the MS-DRG codes. We calculate the coefficient of variation (CV) of total

charges for patients within the same MS-DRG code, and then obtain a weighted-average value at

the medical condition- or hospital-level, with the weight as the number of patients in each MS-

DRG code.

Figure A.1: Illustration: Measurement of Practice Variation
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A.5 Summary Statistics, Admission Types, and Race of Patient Sample by Condition

A.5.1 Summary Statistics of Patient Sample

Table A.4 lists summary statistics by condition for the patient sample used in our analysis.

Within each condition, patients with comorbidities tend to have a greater number of diagnoses and

procedures with longer LOS and higher total charges.

Table A.4: Patient Sample Summary Statistics by Condition

Condition AMI
MS-DRG 280 (w/ MCC) 281 (w/ CC) 282 (w/o MCC/CC)

Mean SD Min Max Mean SD Min Max Mean SD Min Max
Age 79.65 10.68 20 112 79.06 10.55 21 107 77.87 10.54 23 107
Female 0.52 0.50 0 1 0.54 0.50 0 1 0.52 0.50 0 1
# Comorbidities 3.65 1.71 0 12 3.07 1.58 0 11 2.20 1.32 0 9
# Diagnoses 15.18 5.24 2 31 12.49 4.50 2 31 8.82 3.75 1 31
# Procedures 2.22 2.43 0 19 1.76 1.93 0 15 1.52 1.77 0 14
LOS (in Days) 6.81 5.52 0 170 4.29 3.19 0 87 2.66 2.08 0 59
Total Charges ($) 49,060.64 40,372.08 673 358,844 32,685.22 22,359.31 1,077 189,394 23,708.13 16,587.78 282 150,636
N 93,639 52,758 38,211
Condition HF
MS-DRG 291 (w/ MCC) 292 (w/ CC) 293 (w/o MCC/CC)

Mean SD Min Max Mean SD Min Max Mean SD Min Max
Age 78.03 11.86 18 113 78.68 11.16 20 111 79.90 10.36 19 110
Female 0.52 0.50 0 1 0.53 0.50 0 1 0.54 0.50 0 1
# Comorbidities 3.94 1.71 0 13 3.49 1.64 0 11 2.63 1.44 0 10
# Diagnoses 15.14 5.22 2 31 13.54 4.56 2 31 10.52 3.94 1 31
# Procedures 1.29 1.78 0 19 0.74 1.31 0 15 0.47 1.02 0 13
LOS (in Days) 6.79 5.44 0 186 4.92 3.57 0 149 3.34 2.31 0 79
Total Charges ($) 41,174.71 34,417.86 703 301,674 27,331.79 20,148.72 234 205,894 18,688.38 12,445.40 144 147,858
N 210,558 217,342 117,654
Condition PN
MS-DRG 193 (w/ MCC) 194 (w/ CC) 195 (w/o MCC/CC)

Mean SD Min Max Mean SD Min Max Mean SD Min Max
Age 76.79 13.07 18 113 77.13 12.21 18 120 77.64 11.95 18 111
Female 0.52 0.50 0 1 0.55 0.50 0 1 0.53 0.50 0 1
# Comorbidities 4.54 1.89 0 13 3.68 1.73 0 13 2.64 1.51 0 11
# Diagnoses 14.08 5.09 2 31 11.45 4.44 2 31 8.38 3.72 1 31
# Procedures 1.19 1.69 0 17 0.74 1.36 0 15 0.48 1.08 0 14
LOS (in Days) 7.15 5.20 0 313 5.17 3.40 0 103 3.68 2.33 0 66
Total Charges ($) 41,617.19 31,143.99 440 239,904 27,687.79 19,492.20 770 147,841 19,636.97 12,618.53 590 95,451
N 112,524 170,278 81,147

We also observe from this table that the standard deviation of the total charges is very large,

even for a single DRG code classified within either AMI, HF, or PN. This phenomenon is also com-

mon for other medical conditions. For example, Rosenthal (2013) describes two patients having

the same deep lacerations, but who ended up with very different charges.
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A.5.2 Admission Types and Race of Patient Sample

Table A.5 lists admission types and race by condition for the patient sample used in our anal-

ysis. For all three medical conditions, we observe that a majority of patients are classified as

emergency or urgent.

A.6 Measures and Summary Statistics for Process Quality & Experiential Quality

Table A.6 lists the yearly individual measures for process quality and experiential quality, and

their summary statistics, from 2007 to 2013. We observe that the list of process quality measures

varies somewhat across years.

A.7 Correlation Table for Key Variables

Table A.7 reports correlations between lagged key variables and practice variation measures.

We observe that lagged operational performance variables and control variables are correlated with

our main explanatory variables, providing support for the use of dynamic panel GMM. Addition-

ally, Table A.8 reports correlations between alternative practice variation measures.
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Table A.5: Admission Types and Race of the Patient Sample by Condition

Condition AMI
MS-DRG 280 (w/ MCC) 281 (w/ CC) 282 (w/o MCC/CC)

Freq. Percent Freq. Percent Freq. Percent
Admission Emergency 83,315 88.97 45,916 87.03 33,179 86.83
Type Urgent 8,352 8.92 5,411 10.26 3,975 10.40

Elective 1,889 2.02 1,396 2.65 1,030 2.70
Others 61 0.06 23 0.04 20 0.05
Missing 22 0.02 12 0.02 7 0.02
Total 93,639 100.00 52,758 100.00 38,211 100.00

Race White 69,425 74.14 39,632 75.12 28,294 74.05
Black 9,863 10.53 5,119 9.70 3,312 8.67
Hispanic 8,953 9.56 5,178 9.81 4,244 11.11
Asian 1,064 1.14 447 0.85 387 1.01
Native American 196 0.21 72 0.14 387 1.01
Other 3,759 4.01 2,081 3.94 68 0.18
Missing 379 0.40 229 0.43 204 0.53
Total 93,639 100.00 52,758 100.00 38,211 100.00

Condition HF
MS-DRG 291 (w/ MCC) 292 (w/ CC) 293 (w/o MCC/CC)

Freq. Percent Freq. Percent Freq. Percent
Admission Emergency 189,100 89.81 190,523 87.66 103,914 88.32
Type Urgent 16,078 7.64 19,534 8.99 9,974 8.48

Elective 5,278 2.51 7,201 3.31 3,710 3.15
Others 74 0.03 59 0.03 43 0.03
Missing 28 0.01 25 0.01 13 0.01
Total 210,558 100.00 217,342 100.00 117,654 100.00

Race White 144,002 68.39 152,398 70.12 80,658 68.56
Black 33,010 15.68 33,214 15.28 18,069 15.36
Hispanic 23,113 10.98 21,633 9.95 12,979 11.03
Asian 2,163 1.03 1,697 0.78 990 0.84
Native American 423 0.20 357 0.16 260 0.22
Other 7,215 3.43 7,456 3.43 4,349 3.70
Missing 632 0.30 587 0.27 349 0.30
Total 210,558 100.00 217,342 100.00 117,654 100.00

Condition PN
MS-DRG 193 (w/ MCC) 194 (w/ CC) 195 (w/o MCC/CC)

Freq. Percent Freq. Percent Freq. Percent
Admission Emergency 101,453 90.16 150,432 88.34 72,163 88.93
Type Urgent 8,355 7.43 14,668 8.61 6,628 8.17

Elective 2,675 2.38 5,100 3.00 2,296 2.83
Others 29 0.03 43 0.02 43 0.05
Missing 12 0.01 35 0.02 17 0.02
Total 112,524 100.00 170,278 100.00 81,147 100.00

Race White 82,919 73.69 130,387 76.57 60,872 75.01
Black 13,039 11.59 14,577 8.56 7,220 8.90
Hispanic 11,111 9.87 17,012 9.99 8,853 10.91
Asian 1,368 1.22 2,108 1.24 1,058 1.30
Native American 228 0.20 306 0.18 183 0.23
Other 3,461 3.08 5,312 3.12 2,642 3.26
Missing 398 0.35 576 0.34 319 0.39
Total 112,524 100.00 170,278 100.00 81,147 100.00
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Table A.6: Measures and Summary Statistics for Process & Experiential Quality (2007-2013)

Code Measure Name Mean SD Obs. 2007 2008 2009 2010 2011 2012 2013

Process Quality
Condition: AMI

AMI-1 Patients Given Aspirin at Arrival 97.04 6.41 1654 ◦ ◦ ◦ ◦ ◦
AMI-2 Patients Given Aspirin at Discharge 96.39 8.15 2169 ◦ ◦ ◦ ◦ ◦ ◦ ◦
AMI-3 Patients Given ACE Inhibitor or ARB for Left Ventricular

Systolic Dysfunction (LVSD)
92.76 13.84 1460 ◦ ◦ ◦ ◦ ◦

AMI-4 Patients Given Smoking Cessation Advice/Counseling 97.38 11.21 1393 ◦ ◦ ◦ ◦ ◦
AMI-5 Patients Given Beta Blocker at Discharge 96.67 7.69 1630 ◦ ◦ ◦ ◦ ◦
AMI-6 Patients Given Beta Blocker at Arrival 92.47 8.05 346 ◦
AMI-7A Patients Given Fibrinolytic Medication Within 30 Min-

utes Of Arrival
41.60 39.90 356 ◦ ◦ ◦ ◦ ◦ ◦ ◦

AMI-8A Patients Given PCI Within 90 Minutes Of Arrival 87.28 15.01 1040 ◦ ◦ ◦ ◦ ◦ ◦ ◦
AMI-10 Patients Given a Prescription for a Statin at Discharge 96.15 6.70 820 ◦ ◦ ◦
OP-2 Fibrinolytic Therapy received within 30 minutes 54.08 33.86 206 ◦ ◦ ◦ ◦ ◦
OP-3b Median Time to transfer patients for Acute Coronary In-

tervention
86.50 57.03 290 ◦ ◦ ◦ ◦ ◦

OP-4 Aspirin at Arrival 96.06 10.60 1067 ◦ ◦ ◦ ◦ ◦
Condition: HF

HF-1 Patients Given Discharge Instructions 87.08 16.82 2366 ◦ ◦ ◦ ◦ ◦ ◦ ◦
HF-2 Patients Given an Evaluation of Left Ventricular Systolic

(LVS) Function
96.51 9.95 2377 ◦ ◦ ◦ ◦ ◦ ◦ ◦

HF-3 Patients Given ACE Inhibitor or ARB for Left Ventricular
Systolic Dysfunction (LVSD)

93.40 9.23 2289 ◦ ◦ ◦ ◦ ◦ ◦ ◦

HF-4 Patients Given Smoking Cessation Advice/Counseling 96.61 9.42 1647 ◦ ◦ ◦ ◦ ◦
Condition: PN

PN-1 Patients Given Oxygenation Assessment 99.51 1.68 705 ◦ ◦
PN-2 Patients Assessed and Given Pneumococcal Vaccination 89.36 12.71 1717 ◦ ◦ ◦ ◦ ◦
PN-3B Patients Whose Initial Emergency Room Blood Culture

Was Performed Prior To The Administration Of The First
Hospital Dose Of Antibiotics

94.06 7.52 2360 ◦ ◦ ◦ ◦ ◦ ◦ ◦

PN-4 Patients Given Smoking Cessation Advice/Counseling 95.87 9.88 1689 ◦ ◦ ◦ ◦ ◦
PN-5C Patients Given Initial Antibiotic(s) within 6 Hours After

Arrival
93.67 6.85 1694 ◦ ◦ ◦ ◦ ◦

PN-6 Patients Given the Most Appropriate Initial Antibiotic(s) 92.59 8.31 2372 ◦ ◦ ◦ ◦ ◦ ◦ ◦
PN-7 Patients Assessed and Given Influenza Vaccination 87.29 14.29 1695 ◦ ◦ ◦ ◦ ◦

Experiential Quality
Comp 1 Nurses communicated well 71.72 6.96 2265 ◦ ◦ ◦ ◦ ◦ ◦ ◦
Comp 2 Doctors communicated well 76.28 5.29 2265 ◦ ◦ ◦ ◦ ◦ ◦ ◦
Comp 3 Help received quickly 57.66 8.94 2265 ◦ ◦ ◦ ◦ ◦ ◦ ◦
Comp 4 Pain controlled well 65.54 6.32 2265 ◦ ◦ ◦ ◦ ◦ ◦ ◦
Comp 5 Staff explained medicines 56.54 6.71 2265 ◦ ◦ ◦ ◦ ◦ ◦ ◦
Comp 6 Given discharge instructions 80.11 5.60 2265 ◦ ◦ ◦ ◦ ◦ ◦ ◦

Notes: Some measures, which have too few (n < 25) cases for purposes of reliably predicting hospital performance, do not have scores, leading to a
small number of observations (e.g., AMI-7A, OP-2).
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A.8 Charge Components by Condition

Table A.9 lists the percentage of non-zero observations (i.e., the percentage of patients who

received at least a single service that incurs a non-zero amount of charges), and the percentage of

total charges for each state, for each charge component by condition.

Table A.9: Charge Components by Condition

Condition AMI
Charge Name % Non-zero Obs. % Totchg FL % Totchg NY % Totchg All
Emergency Room Charge 85.00 6.32 5.74 6.05
Room Charges 54.01 4.17 28.52 15.64
Laboratory Charges 98.54 21.62 13.04 17.58
Radiology and Other Imaging 94.28 9.31 5.92 7.72
Intensive Care Charges 45.88 10.94 9.96 10.48
Coronary Care Charges 25.24 4.57 8.81 6.56
Pharmacy Charges 94.92 12.55 5.85 9.39
Medical and Surgical Supply 75.69 4.14 1.89 3.08
Respiratory Services 48.54 2.98 2.10 2.56
Cardiology Charges 77.73 16.41 10.38 13.57
Condition HF
Charge Name % Non-zero Obs. % Totchg FL % Totchg NY % Totchg All
Emergency Room Charge 87.91 7.54 6.33 6.99
Room Charges 64.94 7.74 43.86 24.01
Laboratory Charges 98.63 25.1 13.74 19.95
Radiology and Other Imaging 97.56 10.14 5.43 8.01
Intensive Care Charges 32.16 11.24 4.29 8.10
Coronary Care Charges 17.22 4.97 5.10 5.03
Pharmacy Charges 95.39 12.24 4.78 8.86
Medical and Surgical Supply 66.69 3.4 1.39 2.50
Respiratory Services 60.54 4.43 2.81 3.70
Cardiology Charges 55.39 5.37 4.33 4.9
Condition PN
Charge Name % Non-zero Obs. % Totchg FL % Totchg NY % Totchg All
Emergency Room Charge 87.77 7.10 6.48 6.81
Room Charges 83.04 11.72 47.15 28.56
Laboratory Charges 98.52 20.53 13.12 17.01
Radiology and Other Imaging 96.95 13.54 7.46 10.65
Intensive Care Charges 19.67 7.32 2.08 4.83
Coronary Care Charges 7.51 2.94 1.48 2.24
Pharmacy Charges 95.76 18.33 7.9 13.37
Medical and Surgical Supply 66.52 3.58 1.76 2.71
Respiratory Services 73.23 6.32 4.33 5.37
Cardiology Charges 21.79 2.11 1.69 1.91
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A.9 Robustness Check: Alternative Measure of Practice Variation

In calculating the underuse/overuse variation of test-ordering practice in the manuscript, we

use “hospital-average” test-ordering charge as a presumed target standard. “County-average” and

“State/CBSA1-average” could also be worthwhile standards, as illustrated for pneumonia patients

in 2011, as shown in the example in Figure A.2. Indeed, a recent mandatory bundled payment pro-

gram operated by CMS, namely Comprehensive Care for Joint Replacement (CJP) Model, adopts

a similar approach. In the CJP program, the target price for a care-episode bundle is set prospec-

tively and reflects a blend of hospital-specific and regional data,2 suggesting the possibility of using

a target standard obtained from a broader regional boundary than a single hospital.

Figure A.2: Variation in Test-Ordering Practice, Target: County-Average (Left) and State/CBSA-
Average (Right)

We provide results of using the alternative practice variation metrics with different targets.

As listed in Table A.10 for Hypothesis 1 and Tables A.11 and A.12 for Hypothesis 2, we ob-

serve largely consistent results. Practice variation measures using the State/CBSA-average as a

target standard tend to show relatively weak evidence (either smaller magnitudes in coefficients

or insignificant coefficients), possibly implying that using an unnecessarily large regional bound-

1Core-Based Statistical Area refers collectively to both metropolitan statistical areas and micropolitan areas.
2http://www.singletrackanalytics.com/blog/15-11-23/top-ten-things-you-need-know-now-medicare-cjr-program-

final
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ary may diminish the association between the practice variation and operational performance that

could be identified with a target standard having a proper regional boundary.

Lastly, we observe an interesting pattern between the underuse- and overuse-variation in test-

ordering practice when county-average is used as a target standard (see Figure A.3). They are

inversely proportional to each other, meaning that a hospital that tends to overuse laboratory/ra-

diology tests is less likely to underuse the test, which makes sense. By performing an efficient

frontier analysis, one may identify Pareto-optimal hospitals for test-ordering practice. Examining

drivers of their detailed test-ordering practices could facilitate practitioners and policy-makers to

identify “best practices,” suggesting an opportunity for worthwhile future research.

Figure A.3: Underuse- vs. Overuse-Variation in Test-Ordering Practice

A.10 Robustness Check: Results by Condition

Figure A.4 shows histograms of the practice variation measure constructed by condition, i.e.,

WACVGH
all,j where j ∈ {AMI,HF, PN}. We observe similar distributions of practice variation

across the hospitals for each condition. We examine our hypotheses condition-by-condition and

consistently find supporting evidence as listed in Table A.13 and Table A.14.
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Figure A.4: Practice Variation by Condition

Table A.13: Results of System GMM (Testing H1 by Hospital-
Condition)

Dep Varj Length of Stay

Medical Condition AMI HF PN

(M1) (M2) (M3)
ProcQualityj (PQj ) −0.043 −0.047∗ −0.030

(0.044) (0.028) (0.058)

ExpQuality (EQ) −0.959∗∗ −0.531∗∗ −0.590∗∗
(0.382) (0.224) (0.229)

WACVGH
all,j 0.340∗∗∗ 0.451∗∗∗ 0.521∗∗∗

(0.081) (0.054) (0.057)

PQj*WACVGH
all,j 0.095 0.062 0.046

(0.078) (0.053) (0.103)

EQ*WACVGH
all,j 1.245∗ 0.770∗∗ 1.033∗∗

(0.692) (0.391) (0.422)

Dep Var(t−1) 0.869∗∗∗ 0.575∗∗∗ 0.428∗∗∗

(0.119) (0.060) (0.064)

Controls Yes Yes Yes
Year Dummies Yes Yes Yes
Observations 1390 1344 1482
Hospitals 313 321 322
Instruments 65 65 65
AR(1) (p-value) (0.000) (0.000) (0.000)
AR(2) (p-value) (0.810) (0.694) (0.091)
Hansen test (p-value) (0.182) (0.130) (0.433)
Diff.-in-Hansen test (p-value) (0.104) (0.101) (0.415)

Standard errors in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
Subscript j represents that condition-specific measures are used.
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Table A.14: Results of System GMM (Testing H2 by Hospital-
Condition)

Dep Varj Cost of Care-Delivery

Medical Condition AMI HF PN

(M1) (M2) (M3)
ProcQualityj (PQj ) 0.056 0.005 0.051

(0.036) (0.014) (0.072)

ExpQuality (EQ) −0.608∗∗ −0.143∗∗ −0.691∗∗
(0.243) (0.056) (0.342)

WACVGH
under,j 0.750∗∗∗ 0.322∗∗∗ 0.731∗∗

(0.191) (0.087) (0.362)

WACVGH
over,j 0.086 −0.022 −0.207

(0.154) (0.064) (0.319)

PQj*WACVGH
unver,j −0.172 −0.046 −0.156

(0.106) (0.049) (0.221)

PQj*WACVGH
over,j −0.138 0.019 0.192

(0.095) (0.044) (0.247)

EQ*WACVGH
under,j 1.885∗∗ 0.370∗∗ 2.224∗∗

(0.745) (0.186) (1.038)

EQ*WACVGH
over,j 0.753 −0.008 −0.173

(0.654) (0.097) (0.686)

Dep Var(t−1),j 0.743∗∗∗ 0.753∗∗∗ 0.620∗∗∗

(0.082) (0.029) (0.104)

Controls Yes Yes Yes
Year Dummies Yes Yes Yes
Observations 1390 1344 1482
Hospitals 313 321 322
Instruments 83 83 83
AR(1) (p-value) (0.000) (0.000) (0.000)
AR(2) (p-value) (0.983) (0.661) (0.062)
Hansen test (p-value) (0.309) (0.360) (0.160)
Diff.-in-Hansen test (p-value) (0.146) (0.376) (0.216)

Standard errors in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
Subscript j represents that condition-specific measures are used.
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A.11 Robustness Check: Alternative Measure of Process Quality

Anecdotally, dealing with process quality (PQ) measures imposes a considerable burden on

physician practices in terms of understanding the measures, collecting and reporting performance

data, and understanding performance reports from third party payers, but the extent of that bur-

den has not been quantified (Casalino et al., 2016). Although there is much to gain from quality

measurement, the current PQ measurement system is far from efficient and contributes to negative

physician attitudes toward quality measures (Meltzer and Chung, 2014). To capture the burden of

measuring and reporting process quality, a measure that is being updated every year as listed in

Table A.6, we measure process quality burden (PQB) as below to address any association between

the burden of quality measurement and its impact on operational performance:

PQBo
it =

∑
j∈J
∑

m∈Mj
|∆Nijmt| ·∆qijmt∑

j∈J
∑

m∈Mj
|∆Nijmt|

, (A.1)

where ∆Nijmt = Nijmt −Nijm,t−1 and ∆qijmt = qijmt − qijm,t−1.

Note that if a measure m is newly added in year t, then qijmt′ = 0 for t′ < t. Similarly, if the

measure m is topped-out in year t, then qijmt′′ = 0 for t′′ ≥ t. In this way, we capture the increased

or decreased burden of measuring and reporting a specific process quality metric. Instead of using

an indicator variable approach, which cannot capture subtle variations over time, we adopt this

approach to reflect heterogeneous reactions of hospitals to PQ measure updates. For example,

one hospital might have a much larger relevant patient sample, compared to another hospital, in

applying a new PQ metric, implying different levels of burden.

We find consistent results even after replacing the original PQ measure with the PQB measure,

as listed in Table A.15. PQB (as well as PQ) is not significantly associated with performance either

directly or as a moderator of practice variation.
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A.12 Post-hoc Analysis: Patient Outcomes as Dependent Variables

While our main dependent variables of interest are operational performance measures such as

patient length-of-stay and care-delivery cost per capita, whether the practice variation relates to

patient outcomes is also an important question, considering “The Triple Aim: Care, Health, and

Cost” developed by the Institute of Healthcare Improvement.

We hence test the impact of practice variation on a hospital’s readmission rate and mortality

rate. While lower practice variation is associated with lower mortality rate as M6 in Table A.16 im-

plies, we could not find any significant relationship between the practice variation and readmission

rate as in M3. Note, however, that our readmission and mortality rates impose some limitations.

Our HCUP data can track patient revisits only within a hospital (i.e., we are not able to track pa-

tient readmission across hospitals) and thus our readmission rate is not complete.3 Similarly, our

mortality rate is also not complete since we can only track patient deaths that occurred during a

hospital stay (unlike the CMS measure that tracks patient deaths even after discharge up to 30

days). We thus leave the delicate examination of this relationship as future work.

A.13 Post-hoc Analysis: Determinants of Practice Variation

A main focus of bundled payment contracts is to standardize care processes by changing the

ways physicians and hospitals deliver care. In this section, we report post-hoc analyses that in-

vestigate another important question, concerning what factors lead to different levels of practice

variation across hospitals. In particular, we investigate (1) whether the time-varying hospital-level

characteristics are determinants of practice variation, and (2) whether the practice variation origi-

nates from physician-level personal behavior or organizational-level environments. To address the

first issue, we estimate a dynamic panel model with the practice variation measure as a dependent

variable. The second issue is addressed in a descriptive sense using a t-test as follows.

3Our weighted average readmission rate across AMI, HF, and PN is around 11.5% on average (SD: 0.022, Max:
0.152) while the CMS hospital compare data shows around 21% on average (SD: 0.02, Max: 0.29) (Senot et al., 2015).
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Table A.16: Hospital-Level Results of System GMM (WACVG, Dep: ReadmRate, MortRate)

Dep Var Readmission Rate Mortality Rate
(M1) (M2) (M3) (M4) (M5) (M6)

ProcQuality (PQ) 0.001 0.001 0.006 −0.000 0.000 −0.020∗∗

(0.001) (0.001) (0.011) (0.001) (0.001) (0.009)

ExpQuality (EQ) 0.004 −0.004 −0.055 0.004 0.005 −0.019

(0.007) (0.005) (0.064) (0.009) (0.010) (0.055)

WACVGH
all 0.026∗∗∗ 0.045 0.026∗∗ 0.031∗∗∗

(0.007) (0.048) (0.011) (0.011)

PQ*WACVGH
all −0.005 0.037∗∗

(0.019) (0.017)

EQ*WACVGH
all 0.118 0.033

(0.112) (0.093)

Teaching Intensity 0.003 −0.002 0.004 0.011∗∗∗ 0.005 −0.000

(0.004) (0.003) (0.011) (0.004) (0.004) (0.006)

Bed Size −0.001 −0.002∗∗ −0.003∗ −0.000 −0.001 −0.001

(0.001) (0.001) (0.002) (0.001) (0.001) (0.001)

Case Mix Index −0.014∗∗∗ −0.014∗∗∗ −0.023∗∗∗ 0.001 0.000 0.001

(0.003) (0.003) (0.005) (0.003) (0.003) (0.004)

Wage Index −0.005 −0.008∗∗ −0.005 0.006∗ 0.004 0.004

(0.004) (0.003) (0.005) (0.003) (0.003) (0.004)

OPDSH Adj Factor 0.008 0.006 0.015∗∗ −0.006 −0.005 −0.003

(0.006) (0.005) (0.007) (0.004) (0.004) (0.005)

Outlier Adj Factor −0.013 −0.012 −0.020 −0.019∗ −0.026∗∗ −0.028∗∗

(0.010) (0.009) (0.014) (0.011) (0.011) (0.013)

Dep Var(t−1) 0.044 0.017 −0.011 0.539∗∗∗ 0.604∗∗∗ 0.601∗∗∗

(0.035) (0.024) (0.119) (0.090) (0.091) (0.104)

Year Dummies Yes Yes Yes Yes Yes Yes
Observations 1527 1527 1527 1527 1527 1527
Hospitals 324 324 324 324 324 324
Instruments 41 49 65 41 49 65
AR(1) (p-value) (0.000) (0.000) (0.001) (0.000) (0.000) (0.000)

AR(2) (p-value) (0.471) (0.218) (0.351) (0.047) (0.069) (0.104)

Hansen test (p-value) (0.060) (0.119) (0.148) (0.062) (0.105) (0.347)

Diff.-in-Hansen test (p-value) (0.050) (0.091) (0.062) (0.320) (0.131) (0.321)

Standard errors in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Notes: The results are based on a system GMM model (Arellano and Bond, 1991; Blundell and Bond, 1998) estimated as in Equation (2.11).
Standard errors are corrected for heteroskedasticity. AR(1) and AR(2) are tests for first-order and second-order serial correlation in the first-
differenced residuals, under the null of no serial correlation. The Hansen test of overidentification is under the null that all instruments are
valid. The difference-in-Hansen test of exogeneity is under the null that instruments used for the equations in levels are exogenous.
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A.13.1 Determinants of Practice Variation: Hospital Characteristics

Our main analysis focused on examining the impact of practice variation on hospital opera-

tional performance. The underlying assumption is that the time-varying hospital characteristics

that are used as proxies for the hospital’s operating environment (i.e., teaching intensity, bed size,

case mix index, wage index, operating disproportionate share hospital payment adjustment fac-

tor, and outlier adjustment factor) are the determinants of practice variation. In other words, the

exogenous components of those characteristics are assumed to have a causal effect on practice

variation (Wintoki et al., 2012). Previous studies provide empirical evidence showing that this is

the case (e.g., Lake and Friese, 2006), but not all of these studies control for potential endogeneity

that current hospital characteristics can be related to past levels of practice variation. Thus, we

examine whether hospital characteristics are actual determinants of practice variation by applying

the dynamic panel model (i.e., system GMM estimator) and further by comparing the results with

the static model (i.e., OLS estimator). An empirical model we estimate is below:

xit = α +
∑
p

λp · xit−p + γ · Zit + ηi + εit (A.2)

where x is practice variation and Zit is a vector of hospital characteristics including operational

performance. Note that unlike our previous main model, we regress hospital characteristics on

practice variation, while controlling for lagged practice variation. Table A.17 shows the results.

Models (1) and (2) are the results of static4 OLS and system GMM, respectively, with contempo-

raneous process quality and experiential quality, while Model (3) is with lagged quality measures.

Models (4) to (6) are similar to Models (1) to (3) except that the WACVD version of practice

variation is used, instead of WACVG. The results show that neither contemporaneous nor lagged

quality metrics relate to the magnitude of practice variation. Instead, hospitals with higher teaching

intensity, larger bed size, located in areas with a higher wage index, and outlier adjustment factors

tend to have higher levels of practice variation. We discuss the implications in the next section,

while here we focus more on comparing the results between static OLS and dynamic panel GMM

4Static in a sense that lagged practice variable is not included in the model.
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estimates.

According to Model (2), the system GMM results are similar to the static OLS estimates (i.e.,

Model (1)) even after controlling for simultaneity, time-invariant unobserved heterogeneity, and

the possible impact of past practice variation on current hospital characteristics. Thus, if we are

interested in the effect of hospital characteristics on practice variation (a “structure-performance”

relationship), then the relationship between present values of the explanatory variables and past

values of the dependent variables may be less important than the relationship in our main model

(i.e., the effect of practice variation on operational performance, or “performance-performance”

relationship). Indeed, the explanatory variables (e.g., teaching intensity and bed size) are not de-

termined by past dependent variables (i.e., practice variation). If any link exists from past practice

variation to current hospital characteristics, then that will be indirect via the effect of practice vari-

ation on operational performance. While a strong relationship is reasonable between past hospital

characteristics and current levels of practice variation, the reverse argument is weaker. Hospital

managers usually do not increase current teaching intensity nor bed size because they have higher

past levels of practice variation. Thus, as Table A.17 suggests, we have similar results from either

OLS or system GMM estimates when we examine the effect of hospital characteristics on practice

variation.

Meanwhile, it is also notable to examine the importance of controlling for both time-invariant

unobservable heterogeneity and the dynamic relation between current practice variation and past

hospital operational performance. For example, the estimated magnitudes of the effect of teaching

intensity, bed size, wage index, and the outlier adjustment factor on practice variation from system

GMM are smaller than those from static OLS estimates. This finding indicates possible upward

biases from static OLS estimates due to the combination of unobservable heterogeneity and the

endogeneity coming from the impact of past practice variation on current hospital characteristics.

In Appendix A.13.3, we also investigate whether the level of practice variation varies across the

hospital controls, which are static in most cases (i.e., governmental, non-profit, and for-profit).
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Table A.17: Quality Measures as Antecedent of Practice Variation Measures (Dep: WACVG, WACVD)

Dep Var WACVG_Hos WACVD_Hos

Estimation OLS System GMM OLS System GMM

(M1) (M2) (M3) (M4) (M5) (M6)

ProcQuality (PQ) −0.002 −0.002 −0.002 −0.000

(0.002) (0.004) (0.002) (0.004)

ExpQuality (EQ) −0.001 −0.009 0.007 0.018

(0.011) (0.041) (0.012) (0.040)

PQ(t−1) 0.002 0.002

(0.005) (0.005)

EQ(t−1) 0.023 0.022

(0.066) (0.070)

Teaching Intensity 0.143∗∗∗ 0.101∗∗∗ 0.099∗∗∗ 0.153∗∗∗ 0.057∗∗ 0.043∗

(0.021) (0.034) (0.038) (0.024) (0.025) (0.025)

Bed Size 0.024∗∗∗ 0.019∗∗∗ 0.018∗∗ 0.012∗ 0.010∗∗ 0.008

(0.006) (0.006) (0.007) (0.007) (0.005) (0.006)

Case Mix Index 0.019 0.009 0.001 0.026 0.001 −0.004

(0.016) (0.015) (0.015) (0.020) (0.016) (0.018)

Wage Index 0.065∗∗∗ 0.073∗∗∗ 0.077∗∗∗ 0.055∗∗ 0.068∗∗∗ 0.067∗∗∗

(0.022) (0.019) (0.023) (0.025) (0.018) (0.021)

OPDSH Adj Factor −0.030 −0.021 −0.012 −0.003 0.005 0.004

(0.022) (0.022) (0.024) (0.028) (0.020) (0.021)

Outlier Adj Factor 0.148∗∗∗ 0.141∗∗∗ 0.120∗∗ 0.092∗ 0.074 0.065

(0.045) (0.046) (0.059) (0.053) (0.061) (0.076)

Total LOS(t−1) 0.065∗∗∗ −0.007 −0.013 0.081∗∗∗ −0.043∗ −0.056∗∗

(0.016) (0.033) (0.037) (0.021) (0.024) (0.023)

Total Cost(t−1) −0.016∗ −0.014∗ −0.014∗ −0.023∗ −0.015∗∗ −0.013∗∗

(0.009) (0.008) (0.009) (0.014) (0.006) (0.006)

Dep Var(t−1) 0.324∗ 0.386∗ 0.643∗∗∗ 0.734∗∗∗

(0.175) (0.208) (0.115) (0.113)

Government 0.037∗∗∗ 0.055∗∗∗

(0.009) (0.010)

Non-profit 0.017∗∗∗ 0.028∗∗∗

(0.006) (0.007)

Urban 0.003 0.013

(0.008) (0.010)

Year Dummies Yes Yes Yes Yes Yes Yes
Observations 1518 1518 1518 1518 1518 1518
Hospitals 323 323 323 323 323 323
R2 0.44 0.40

Instruments 50 40 50 40
AR(1) (p-value) (0.000) (0.002) (0.000) (0.000)

AR(2) (p-value) (0.118) (0.094) (0.073) (0.072)

Hansen test (p-value) (0.200) (0.082) (0.571) (0.702)

Diff.-in-Hansen test (p-value) (0.225) (0.465) (0.163) (0.645)

Standard errors in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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A.13.2 Determinants of Practice Variation: Personal vs. Organizational

We have focused on either time-varying or time-invariant hospital-level characteristics to ad-

dress potential determinants of practice variation. One other possibility is that the level of practice

variation may vary mainly due to the physicians’ idiosyncratic medical decision-making processes

and behaviors, regardless of such organizational factors.

We thus tackle this issue using a descriptive approach. We track big attending physicians5 who

work at a minimum of two different hospitals and have 20 or more patients for each hospital in a

year. If any physician works at more than two hospitals, we focus on the first two hospital with

higher volumes. Our data contains 428 physician-years of such cases. We derive physician-level

practice variation for each case. Risk-adjusted charge measures are again used in the calculation of

practice variation to rule out patient-mix related variations. We posit that if the practice variation

arising from personal behavior dominates that due to organizational factors (e.g., hospital charac-

teristics discussed earlier and/or guidelines, pressures, and culture at the hospital), then practice

variation of a focal physician across hospitals will be similar no matter what the hospital is.

Figure A.5 summarizes our findings. The solid blue dots (the open red dots) represent higher

(lower) practice variation between the two hospitals where a focal physician works. The dashed

line (the solid) is the lowess6 regression of the higher (lower) practice variation. The horizontal-

axis is the hospital identifiers that are sorted in ascending order and reassigned in terms of average

practice variation across hospitals. From the increasing pattern of the lowess either for higher or

for lower practice variation, again we observe that the levels of practice variation varies across

hospitals. More importantly and interestingly, we find a significant gap between the two lowess

lines. Therefore, we claim that, on average, physician-level practice variation may depend on the

hospitals that physicians are working at (although our insights are only applicable to the physicians

with a high volume of patients). According to an unpaired t-test assuming unequal variance, the

difference between higher and lower practice variations is significantly different from zero (t −
5Attending physicians have final responsibility for patient care, although some of the decisions can be made by

others such as residents, medical students, or mid-level practitioners.
6Lowess: Locally Weighted Scatterplot Smoothing
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stat = −19.38, p < 0.001). In other words, our analysis reveals that a significant portion of

practice variation can be explained from organizational factors (even if we cannot fully ignore the

effect of each physician’s personal behavior in our measure of practice variation).

Figure A.5: Physician-level Practice Variation for Physicians who visit Multiple Hospitals

A.13.3 Practice Variation by Hospital Controls

In Appendix A.13, we discuss the determinants of practice variation. Although the magnitudes

of coefficients are smaller for the system GMM estimates compared to OLS, the results are largely

consistent. Time-invariant control variables such as governmental, non-profit, and urban disappear

in the results of system GMM due to the first-difference in the process of estimation. In the static

OLS estimates (i.e., Model (1) and (4) in Table A.17), we find that governmental or non-profit

private hospital is associated with significantly higher level of practice variation, compared to for-

profit private hospitals.

We again observe the patterns from the histograms shown in Figure A.6. Interestingly, we also

find that the degree of dispersion in practice variation across governmental hospitals is higher than

that of private hospitals. In other words, although the total number of governmental hospitals is

much smaller than private hospitals, we observe a greater number of governmental hospitals than
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private hospitals with higher practice variation (e.g., WACV G_Hospital ≥ 0.8), indicating that

variable practices are being used inside governmental hospitals.

Figure A.6: Histogram of Practice Variation by Hospital Control

A.14 Post-hoc Analysis: Practice Variation as Antecedent of Quality Measures

In this section, we address whether the process quality and experiential quality measures are

observable measures of unobservable hospital-level decision-making processes. In other words, we

examine the possibility of practice variation as an antecedent of these quality measures. We clarify

from conceptual, practical, and statistical perspectives that the practice variation measure in our

study is indeed capturing a distinct dimension of process variability, during a patient care episode,

which is not necessarily related to either process quality or experiential quality. Thereby, we

validate that the process and experiential quality measures satisfy the requirements to be considered

as moderators.

Let us first discuss characteristics of the process quality measure, which are fundamentally

different from the practice variation measure. First, as listed in Table A.6 in Appendix A.6, each

metric in the process quality domain specifies a certain clinical protocol delivered to a patient

cohort at a point of time (e.g., AMI-6: Patients given Beta blocker at arrival). Hence, the short-

listed process metrics may not necessarily be affected by the overall process variability reflected in

our practice variation measure. That is because, compared to the narrowed-boundary of the process

quality metrics, our practice variation measure is designed to reflect all of the services and items
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provided during a patient care-episode using detailed medical charge information. As listed in M5

of Table A.18 and of Table A.19, we could not find any statistical evidence of practice variation as

an antecedent of process quality. In these tables, we also provide the results for lagged rather than

contemporaneous practice variation (M6 in each table) and OLS as an estimation strategy (M4 in

each table). None of these settings provides significant evidence.

Second, in practice, process quality is often used to measure a hospital’s “average” level of

adherence to standard protocols, whereas our practice variation is more interested in capturing

“dispersion” level of clinical services provided to a patient cohort.

Third, as requested by CMS, hospital managers are aware of the process quality, collect the

process quality scores by themselves, and report them to CMS. We believe this is another impor-

tant aspect that distinguishes our practice variation measure from the process quality measure. Our

proposed approach for measuring practice variation did not exist during the period of data, and

thus practitioners and healthcare managers were obviously not aware of their practice variation

level. Hence, hospitals with high process quality possibly exhibit a wide spectrum of practice vari-

ation. In a simple two-by-two matrix, for example, each hospital can fall into one of the following

combinations: (High PQ, High WACV), (High PQ, Low WACV), (Low PQ, High WACV), and

(Low PQ, Low WACV), again supporting the insignificant results of the practice variation as an

antecedent of process quality.

Similar arguments to those discussed above apply for the experiential quality as well. In ad-

dition, unlike process quality, which deals with attributes controllable by stakeholders inside a

hospital, experiential quality is less controllable due to the patient engagement, also supporting the

insignificant relationship between practice variation and experiential quality (as in M1 to M3 of

Table A.18 and of Table A.19).
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Table A.18: Practice Variation (WACVG) as Antecedent of Quality Measures

Dep Var ExpQuality (EQ) ProcQuality (PQ)

Estimation OLS System GMM OLS System GMM

(M1) (M2) (M3) (M4) (M5) (M6)

WACVG 0.033 −0.083 −0.052 −0.694
(0.051) (0.346) (0.255) (0.560)

WACVG(t−1) 0.044 −1.112
(0.716) (0.721)

ProcQuality (PQ) 0.009 −0.030∗∗∗

(0.006) (0.009)

ExpQuality (EQ) 0.209 −1.809∗∗∗

(0.162) (0.558)

PQ(t−1) −0.027∗∗∗ 0.719∗∗∗ 0.743∗∗∗

(0.008) (0.064) (0.059)

EQ(t−1) 0.508∗∗∗ 0.539∗∗∗ −1.714∗∗∗

(0.073) (0.091) (0.469)
Controls Yes Yes Yes Yes Yes Yes
Year Dummies Yes Yes Yes Yes Yes Yes
Observations 1518 1518 1518 1518 1518 1518
Hospitals 323 323 323 323 323 323
R2 0.33 0.42
Instruments 50 41 50 41
AR(1) (p-value) (0.000) (0.000) (0.000) (0.000)
AR(2) (p-value) (0.130) (0.098) (0.592) (0.288)
Hansen test (p-value) (0.210) (0.091) (0.101) (0.080)
Diff.-in-Hansen test (p-value) (0.165) (0.555) (0.060) (0.273)

Standard errors in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table A.19: Practice Variation (WACVD) as Antecedent of Quality Measures

Dep Var ExpQuality (EQ) ProcQuality (PQ)

Estimation OLS System GMM OLS System GMM

(M1) (M2) (M3) (M4) (M5) (M6)

WACVD 0.093∗ 0.156 −0.023 −0.804
(0.049) (0.202) (0.265) (0.655)

WACVD(t−1) 0.540 −0.984
(0.524) (0.722)

ProcQuality (PQ) 0.009 −0.030∗∗∗

(0.005) (0.009)

ExpQuality (EQ) 0.208 −1.668∗∗∗

(0.162) (0.533)

PQ(t−1) −0.026∗∗∗ 0.717∗∗∗ 0.736∗∗∗

(0.008) (0.063) (0.058)

EQ(t−1) 0.496∗∗∗ 0.486∗∗∗ −1.638∗∗∗

(0.078) (0.081) (0.465)
Controls Yes Yes Yes Yes Yes Yes
Year Dummies Yes Yes Yes Yes Yes Yes
Observations 1518 1518 1518 1518 1518 1518
Hospitals 323 323 323 323 323 323
R2 0.44 0.40
Instruments 50 41 50 41
AR(1) (p-value) (0.000) (0.000) (0.000) (0.000)
AR(2) (p-value) (0.146) (0.130) (0.591) (0.274)
Hansen test (p-value) (0.072) (0.158) (0.151) (0.220)
Diff.-in-Hansen test (p-value) (0.524) (0.548) (0.084) (0.091)

Standard errors in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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A.15 Impact of Dispersion on Value

Most of the literature discussed in our study investigates association between explanatory vari-

ables and dependent variables which are both at “mean” levels. Several previous studies instead

examine how the “dispersion” level of one metric impacts other variables. For example, Perdikaki

et al. (2012) investigate how store traffic and labor relate to sales performance in the context of

retail operations, where intra-day traffic variability is operationalized as traffic standard deviation

divided by traffic mean. In the field of marketing, Luo et al. (2013) examine how brand rating

dispersion impacts abnormal returns and idiosyncratic risk of a firm, where the brand dispersion

is defined as a variance in brand ratings across consumers. Other examples include the relation-

ship between customer satisfaction heterogeneity and shareholder value (Grewal et al., 2010) and

applications of the judgment uncertainty and magnitude parameters (JUMP) model (e.g., Chan-

drashekaran et al., 2005).

Similarly, our research also constructs a variable for hospital-level practice variation, which is

a measure of dispersion, and reports a descriptive analysis of how the practice variation correlates

with operational performance. This is a valid research approach because there is potentially added

information in variance that could inform process quality or experiential quality beyond the mean.

Specifically, if the source of the variance is clinical practice discordance, variation would be a

hurdle to reduce cost and to improve health outcomes, whereas if the source is stable heterogeneity

in practice, variation could be a good thing (e.g., a sign of patient-centered practice), a bad thing

(e.g., a sign of subjective or randomized practice that deviates from essential steps), or even a

neutral signal.
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APPENDIX B

SUPPLEMENT TO CHAPTER 3

B.1 DEA Formulation: BCC and output-oriented

The first DEA model, the Charnes-Cooper-Rhodes (CCR) model, developed by Charnes et al.

(1978) is based on the assumption of constant return to scale (CRS). Later, Banker et al. (1984)

enhance the CCR model and develop the Banker-Charnes-Cooper (BCC) model using the variable

return to scale (VRS).

We introduce the formulation of BCC model. Since DEA is a non-parametric method, we

don’t need an explicit specification of the functional relationship between inputs and outputs (i.e., a

production fuction)(Cherchye et al., 2000). These models can be distinguished by the envelopment

surface and the orientation. CRS or VRS can be taken as the form of the envelopment surface. The

surface of CRS is represented by a straight line that starts from the origin and passes through the

first DMU that it meets as it approaches the observed values. Align with the meaning of CRS, the

CRS surface model assume that an increase in inputs result in a proportional increase in outputs.

On the other hand, the surface of VRS envelops the observations by connecting the outermost

DMUs, including the one met by the CRS surface. The VRS model allows an increase in input

values to result in a non-proportional increase of output levels. Decreasing returns to scale (DRS)

occurs above the point where CRS and VRS meet, and increasing returns to scale (IRS) occurs

below the point.

One other important characteristic of DEA models is orientation, which indicates the direction

an inefficient DMU get closer to the efficient frontier. Input oriented represents a decrease in its

input while keeping the same output level, whereas output oriented means an increase in its output

levels while maintaining the same level of inputs. Input oriented DEA scores range between 0 and

1.0, and output oriented DEA scores range between 1.0 and infinity. However, it is same that both

cases 1.0 is efficient.
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The basic formulation can be transformed into LP by fixing the denominator to a constant

value, e.g., 1.0, which can be interpreted as setting a constraint on the weights vp. Now we get

the LP model from the nonlinear original model which is included in Section 3.4.2. The subscript

o ∈ N denotes a focal DMU. Each HP, in turn, becomes a focal HP when its efficiency score is

being computed.

Maximize
v,u

∑
q∈Q

uqOqo

Subject to∑
p∈P

vpIpo = 1, (B.1)∑
q∈Q

uqOqi ≤
∑
p∈P

vpIpi,∀i ∈ N (B.2)

vp, uq ≥ 0

The problem above is solved once for each DMU to derive the relative efficiency scores. The

dual formulation has been mentioned as being preferable from a computational point of view since

typical primal models have many more rows than columns. The dual DEA model can be written

as below.

Minimize
λ

z0 = θo

Subject to∑
i∈N

λiOqi ≥ Oqo, (B.3)

θoIpo ≥
∑
i∈N

λiIpi, (B.4)

λi ≥ 0

The model discussed above is the input oriented CCR model after the authors of Charnes et al.

(1978). The input oriented BCC model can be obtained based on the dual, and adds a restriction
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on the λ’s as in (B.5) that we call convexity constraint.

∑
i∈N

λi = 1 (B.5)

This trasforms the model from being CRS to VRS. The scores from this model are called pure

technical efficiency score as they eliminate scale-efficiency from the analysis (Vujcic and Jemric,

2001; Cooper et al., 1996). If we replace (B.3) and (B.4) with (B.6) and (B.7) given below respec-

tively, then the problem becomes output oriented CCR model. Also, with addition of the convexity

constraint (B.5), it becomes output oriented BCC model.∑
i∈N

λiIpi ≤ Ipo (B.6)

θoOqo ≤
∑
i∈N

λiOpi (B.7)

One difficult issue with every health application is whether to use DEA models that assume CRS

or VRS. Researchers should address this question based on prior knowledge and logical inferences

about the production context. While imaginative guesses are tolerable, it is unacceptable to pick a

model to get âĂIJbetter lookingâĂİ DEA results (Cooper et al., 2011).

If the scope is defined in hospital-level, then the model introduced above can be directly used.

However, if the scope is smaller than facility, let’s say care process of each bundle, then it is

meaningful to compare the relative efficiency level for the HPs who are interested in the bundle.

Thus, we solve the following DEA model for each episode k in K with notations listed in Table

B.1.

Table B.1: Notations used in CRS DEA model (Episode Level)

Parameters:
Ikpi Value of input p parameter for HP i of episode k.
Ok

qi Value of output q parameter for HP i of episode k.
Decision Variables:
vkp Weights for the inputs.
ukq Weights for the outputs.
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Maximize

∑
q∈Q u

k
qO

k
qo∑

p∈P v
k
pI

k
po

Subject to∑
q∈Q u

k
qO

k
qi∑

p∈P v
k
pI

k
pi

≤ 1,∀i ∈ N, (B.8)

ukq∑
p∈P v

k
pI

k
pi

≥ ε,∀q ∈ Q, (B.9)

vkp∑
p∈P v

k
pI

k
pi

≥ ε,∀p ∈ p (B.10)

Constraints (B.8) ensure that no HP is more than 100 percents efficient. Constraint (B.9) and

(B.10) ensure that each weight for the inputs and outputs is strictly positive since ε > 0.

B.2 Package Combination Options under 4 Bundles

Table B.2: Package Combination Options under 4 Bundles

DRG194 DRG280 DRG291 DRG470
Package 1 1 0 0 0
Package 2 0 1 0 0
Package 3 0 0 1 0
Package 4 0 0 0 1
Package 5 1 1 0 0
Package 6 1 0 1 0
Package 7 1 0 0 1
Package 8 0 1 1 0
Package 9 0 1 0 1
Package 10 0 0 1 1
Package 11 1 1 1 0
Package 12 1 1 0 1
Package 13 1 0 1 1
Package 14 0 1 1 1
Package 15 1 1 1 1
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APPENDIX C

SUPPLEMENT TO CHAPTER 4

C.1 Table of Acronyms

Table C.1 contains a list of acronyms used in Chapter 4.

Table C.1: Table of Acronyms in Chapter 4

Acronym Meaning
ASC Ambulatory Surgery Center
HR Holding Room
OR Operating Room
PACU Post Anesthesia Care Unit
CPT Current Precedural Terminology
RCCP Rough Cut Capacity Planning

C.2 Sequence of ASC Events

In Table C.2, we provide a detailed sequence of ASC events. We define (Operating Room In

Time-Holding Room In Time) as HR duration and (Out Of Operating Room-Operating Room In

Time) as OR duration. Similarly, we calculate (Patient Discharge-Out Of Operating Room) as

PACU duration.

C.3 Details in Defining Patients Groups and Patients Sample Path

In this section, we provide supportive information on the way we define patient groups and

patient sample path for the multi-specialty ASC. There are four admission type of patients, i.e.,

Early Morning Admission (EMA, who becomes inpatient), Inpatient (IP, who return back to their

own ward after surgery), Observation (who stays overnight, but not necessarily), and Same-day

Surgery (SAS, who most likely discharge shortly but also can stay overnight depending on recovery

status). The majority of observation patients went through Phase 3 (85.4%, i.e., 164 out of 192

patients) while some SAS patients also went through Phase 3 (7.25%, i.e., 118 out of 1508). Note,
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Table C.2: Sequence of ASC Events

Phase Event Name Process Order

HR

Admit Time 1
Patient Ready for Preop 2
Holding Room In Time 3
HR Staff Done 4
HR Anesthesia Ready 5
HR Ready for OR 6
Intraop Room Ready 7
Anesthesia Start 8

OR

Operating Room In Time 9
Induction 10
Anesthesia Ready 11
Position/Prep Start 12
Time Out 13
Procedure Start 14
Procedure Conclusion Begun 15
Incision Closed 16
Procedure Stop 17
OR Holding Start 18

PACU

Out Of Operating Room 19
Anesthesia Finish 20
Anticipated Out 21
Ready For Attending 22

however, that not all the patients with Phase 3 are the overnight-stay. On average, SAS patients stay

at Phase 3 shorter than Observation patients. IP patients are returned to their wards, so that average

duration at Phase 3 is significantly shorter than other Admit Types. In sum, correctly classifying

admission type is important (especially, Observation or SAS) in capacity planning, although it is

impossible to be perfect.

As an additional patient characteristic, we may explicitly consider two types of anesthesia in

the pre-op stage: regional block and general. In general, a patient with regional block anesthesia

requires longer time in the Holding Room (HR, i.e., pre-operative stage) but shorter time for re-

covery in the Post Anesthesia Care Unit (PACU, i.e., post-operative stage) compared to a patient

with general anesthesia. As surgery characteristics, we may consider ASA code1 (codes 1-4), and

surgical APGAR score for surgical complexity, in addition to service types and related Current

Procedural Terminology (CPT) codes.

In our sample data, all patients stay in ASC 24 hours or less. Patients are classified as an

1ASA physical status classification system assesses the fitness of patients before surgery.
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Table C.3: The number of clusters for each service type in low acuity ASC

Service Type Service Type Name # CPT Codes # Obs. # Clusters
1 OTOLARYNGOLOGY/H&N 98 523 4
2 OPHTHALMOLOGY 84 354 3
3 GENERAL ONCOLOGY SURGERY 50 330 4
4 ORTHOPEDIC 108 272 4
5 PLASTIC SURGERY 106 248 4
6 ORAL & MAXILLOFACIAL 32 79 4
7 GENERAL SURGERY 20 75 2
8 OTHERS 25 79 3

Total 523 1960 28

overnight-stay if they stay in phase 3 at least from 12 am to 7 am. Under this setting, there are

patients whose phase 3 is more than 7 hours but still classified as non-overnight-stay.

Initially, we relied on service type (e.g., orthopedic, plastic surgery) to fit the duration distri-

bution at each stage. For example, for the patients classified as plastic surgery, we check the vi-

sualizations of distribution as in (a), (b), and (c) in Figure C.1 as well as Goodness-of-fit statistics

(e.g., Kolmogorov-Smirnov, Carmer-von Mises, and Anderson-Darling statistics) and Goodness-

of-fit criteria (e.g., AIC and BIC) to define a distribution for each service type and for each stage.

We found that lognormal distribution fits nicely with the OR duration of entire plastic surgery pa-

tients. However, we realized that standard deviation is large as (d) in Figure C.1, meaning that the

mean duration may not be very useful to run the deterministic model. Motivated by this result, we

delve into CPT codes within a service type and conduct k-means cluster analysis to come up with

patient clusters for each service type in terms of OR and PACU duration.

Table C.3 contains the number of clusters (i.e., k in k-means clustering). In determining the

appropriate “k”, we have compared several options listed in Table C.42 and select the reasonable

size of clusters using visualization tools as in Figure C.2.

Afterwards, we provide fitted duration distribution for a similar group of clusters across the

service types. The results are summarized in Table 4.4 and details are included in Table C.6 and

C.7. We observe that average and standard deviation of HR duration are similar across service type

2http://stackoverflow.com/questions/15376075/cluster-analysis-in-r-determine-the-optimal-number-of-clusters

191

http://stackoverflow.com/questions/15376075/cluster-analysis-in-r-determine-the-optimal-number-of-clusters


Figure C.1: Fitting the OR Duration Distribution of 234 Plastic Surgery Patients in Our Data

(a) Empirical and Theoretical CDFs (b) Histogram and Theoretical Densities

(c) Cullen and Frey Graph (d) Bootstrapped Values of Parameters

Table C.4: List of Options to Decide k in k-means Clustering

Option # Description
1 Looked for a bend or elbow in the sum of squared error (SSE) scree plot. The location of the elbow in

the resulting plot suggests a suitable number of clusters for the kmeans (See http://www.statmethods.
net/advstats/cluster.html and http://www.mattpeeples.net/kmeans.html for more).

2 Two. Partitioned around medoids to estimate the number of clusters using the pamk function in the
fpc package in R.

3 Calinsky criterion: Another approach to diagnosing how many clusters suit the data. We try 1 to 10
groups.

4 Determine the optimal model and number of clusters according to the Bayesian Information Crite-
rion for expectation-maximization, initialized by hierarchical clustering for parameterized Gaussian
mixture models using mclust package in R.

5 Affinity propagation (AP) clustering using apcluster in R (see http://dx.doi.org/10.1126/science.
1136800).

6 Gap Statistic for Estimating the Number of Clusters with trying 2-10 clusters.
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Figure C.2: Example of Clustering Results: Orthopedic (right) and Plastic Surgery(left)

and clusters, which again support the evidence that HR duration is independent of OR or PACU

duration. We thus provide fitted duration distribution of HR duration for entire patients (see Table

C.5), and of OR duration and PACU duration for each patient group (see Table C.6 and C.7).

Table C.5: Summary Statistics of HR Duration

ASC Type Low Acuity
Cluster Type All
Observations 1960
HR Obs. 1948
HR Duration Mean 136.33
HR Duration Std 67.62
HR Duration Median 121
HR Duration Min 16
HR Duration Max 621
HR Fitted Distribution lognormal
Parameter 1: Median 4.81
Parameter 1: 95% CI [4.79 4.82]
Parameter 2: Median 0.47
Parameter 2: 95% CI [0.46 0.49]

To understand the variation in patient sample path, we plot the weekly time series by the seven

patient cluster types as in Figure C.33. We observe a significant variation in patient demand, for

example, in week 3 there are 74 patients that could be classified as Cluster Type 1 while there are

3Out of 14-week data we have, we plot nine complete weeks. The other five weeks have either holidays or missing
value as they are the beginning/ending point of the sample data.
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Table C.6: Summary Statistics of OR and PACU Duration for each Patient Group (Part 1)

ASC Type Low Acuity Low Acuity Low Acuity
Cluster Type ShortOR-

ShortPACU
ShortOR-

ModeratePACU
ModerateOR-
ShortPACU

Observations 735 674 176
OR Obs. 727 333 154
OR Duration Mean 68.43 77.91 137.73
OR Duration Std 34.58 34.73 57.74
OR Duration Median 63 71 134
OR Duration Min 10 12 34
OR Duration Max 305 217 361
OR Fitted Distribution lognormal lognormal gamma
Parameter 1: Median 4.11 4.26 6.05
Parameter 1: 95% CI [4.09 4.15] [4.21 4.30] [5.240 7.572]
Parameter 2: Median 0.49 0.45 0.04
Parameter 2: 95% CI [0.46 0.51] [0.43 0.48] [0.037 0.055]
PACU Obs. 725 333 152
PACU Duration Mean 66.45 99.09 100.97
PACU Duration Std 38.46 69.94 63.50
PACU Duration Median 58 82 85
PACU Duration Min 13 21 36
PACU Duration Max 479 591 381
PACU Fitted Distribution lognormal lognormal lognormal
Parameter 1: Median 4.09 4.45 4.49
Parameter 1: 95% CI [4.05 4.12] [4.40 4.49] [4.42 4.55]
Parameter 2: Median 0.46 0.51 0.48
Parameter 2: 95% CI [0.44 0.49] [0.47 0.53] [0.43 0.54]

Table C.7: Summary Statistics of OR and PACU Duration for each Patient Group (Part 2)

ASC Type Low Acuity Low Acuity Low Acuity Low Acuity
Cluster Type ModerateOR-

ModeratePACU
ModerateOR-

OvernightPACU
LongOR-

ModeratePACU
LongOR-

OvernightPACU
Observations 512 45 108 141

OR Obs. 510 33 68 127
OR Duration Mean 144.82 166.27 280.29 225.25
OR Duration Std 56.41 81.58 85.09 87.31
OR Duration Median 135.5 164 264 214
OR Duration Min 44 59 99 32
OR Duration Max 525 390 521 536
OR Fitted Distribution lognormal lognormal gamma gamma
Parameter 1: Median 4.91 5.03 10.09 6.72
Parameter 1: 95% CI [4.87 4.9] [4.80 5.20] [7.870 15.196] [5.409 8.352]
Parameter 2: Median 0.38 0.45 0.04 0.03
Parameter 2: 95% CI [0.36 0.4] [0.34 0.56] [0.028 0.058] [0.024 0.037]
PACU Obs. 510 33 67 127
PACU Duration Mean 125.41 1155.60 173.97 1201.30
PACU Duration Std 65.59 173.25 87.97 151.75
PACU Duration Median 110 1175 147.00 1209
PACU Duration Min 23 827 60 865
PACU Duration Max 538 1467 455 1482
PACU Fitted Distribution lognormal weibull lognormal weibull
Parameter 1: Median 4.72 8.30 5.04 9.10
Parameter 1: 95% CI [4.68 4.76] [7 10] [4.96 5.14] [8 11]
Parameter 2: Median 0.46 1229.70 0.45 1267.20
Parameter 2: 95% CI [0.44 0.49] [1186 1279] [0.37 0.55] [1248 1287]
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only 46 patients in week 8.

Figure C.3: Patient Flow at the Ambulatory Surgery Center

C.4 Formal Description of Heuristic BackwardASC

Let ai be the time point when OR M1i becomes idle (i = 1, 2, · · · , R1) and bi be the time point

when PACU M2,i becomes idle (i = 1, 2, · · · , R2). G stands for the ordered scheduling list of the

patients and I represents the indices set of the patients not scheduled yet. Io (respectively, Ino)

is the indices set of overnight-stay patients (respectively, non-overnight patients). We provide a

formal description of Heuristic BackwardASC in Algorithm 1.

C.5 Illustration of Heuristics

Illustration of Algorithm FFP1 (Upper Bound of ORs and PACUs)

Example 1: There are six patients, P = {P1, P2, ..., P6}, to be served in an ASC in a day. The

durations at (OR, PACU) stages are {(9, 3), (11, 2), (7, 4), (6, 5), (4, 4), (3, 3)} time units where

1 time unit is 0.5 hours. Note that we only consider the Non-overnight PACU (NOPACU) stay.

Algorithm FFP1 is a greedy algorithm that derives the upper bound of the number of ORs and
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Algorithm 1 Heuristic BackwardASC
1: Input: R1 ORs, {M1,1,M1,2, ...,M1,R1

}, and R2 PACUs, {M2,1,M2,2, ...,M2,R2
}. I = Io ∪ Ino =

{1, 2, ..., I}, a set of patients to be scheduled where Io is the set of overnight-stay patients and Ino is the set
of non-overnight-stay patients. (p1i, p2i), the duration times of patient j ∈ I in (OR, PACU). G = ∅, an ordered
scheduling list of patients.

2: Step 0: ai ← 0, ∀i ∈ {1, 2, · · ·R1} and bi ← 0, ∀i ∈ {1, 2, · · · , R2}.
3: Step 1: t1 ← mini{ai} and k1 ← argmini{ai} (break ties arbitrarily).
4: t2 ← min{bi} and k2 ← argmin{bi} (break ties arbitrarily). Let t = max{0, t2 − t1}.
5: Step 2:
6: if Io 6= ∅ then i← argmini∈Io{|p1i − t|} (break ties arbitrarily).
7: Io ← Io \ {i} and G ← G ∪ {i}.
8: elsei← argmini∈Ino{|p1i − t|} (break ties arbitrarily).
9: Ino ← Ino \ {i} and G ← G ∪ {i}.

10: end if
11: Step 3:
12: if p1i ≥ t then ak1

← ak1 + p1i and then bk2
← ak1

+ p2i
13: else ak1

← bk2
and bk2

← bk2
+ p2i.

14: end if
15: Step 4: If Io = Ino = ∅, Stop. Otherwise, go to Step 1.
16: Output: G, the ordered scheduling list of patients.

NOPACUs without overtime. Given list of patient P, we first assign patient P1 at time 0 to OR1

and PACU1 accordingly with no-wait constraint between the two stages. Second, when P2 is

assigned to the same OR and PACU, overtime, i.e., the duration beyond the regular hour T , is

expected. Hence, we increase the number of OR and PACU by one and schedule at time 0. Next,

we assign patient P3 to the first set of OR and PACU as no overtime is expected. Conduct the same

process until all patients are assigned. Thus, Algorithm FFP1 generates three ORs and PACUs

with the following daily schedule: P1, P3 are allocated to (OR1, PACU1) in this order; P2 is

allocated to (OR2, PACU2); and P4, P5, P6 are allocated to (OR3, PACU3) in this order. See

Figure C.4. Once we know the expected number of overnight-stay patients M , e.g., 2, then 3 ORs

and 5 PACUs become the initial settings in AdaptiveASC algorithm.

Illustration of Heuristic BackwardASC

Example 2: There are five patients, P = {P1, P2, ..., P5}, to be served in an ASC in a day. The

number of rooms at (OR, PACU) is (2,2). The durations at (OR, PACU) stages of the patients

are {(12, 4), (3, 20), (7, 9), (11, 9), (4, 6)} (in this example we assume Io = ∅, i.e., there is no

overnight-stay patients). When the heuristic begins, t1 = t2 = t = 0, and hence, patient P2 is
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Figure C.4: The schedule obtained by Algorithm FFP1: Derived number of ORs and NOPACUs
are (3,3)

allocated first to (OR1, PACU1). Second, we still have t1 = t2 = t = 0, and patient P5 is assigned

to (OR2, PACU2). Third, t1 = 3, t2 = 10, t = 7, and thus, patient P3 is processed at (OR1,

PACU2). Fourth, t1 = 4, t2 = 19, t = 15, patient P1 is assigned next at (OR2, PACU2). Lastly,

t1 = 10, t2 = 23, t = 13, and only patient P4 can be processed next and we assign her to (OR2,

PACU1). See Figure C.5.

Figure C.5: The schedule obtained by Heuristic BackwardASC: OR and PACU overtimes are 3
and time units, respectively

C.6 Sequence-based Formulation of Problem P1

While the formulation of Problem P1 in Section 4.5.2.1 is based on the discretized time slots

over planning horizon, the sequence-based version of Problem P1 with both overtime and idle time

in each stage can be formulated as follows (Additional notations are listed in Table C.8).
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Table C.8: Additional notations for the sequence-based formulation of P1

Parameters:
PRTi Earliest available time of patient i.

Decision Variables:
xii′s If xii′s = 1, patient i′ is served right after patient i in stage s.
tsisr Time at which patient i enters room r in stage s.
tfisr Time at which patient i leaves room r in stage s.
yisr yisr = 1 if tsisr > 0.
CTsr Makespan of room r in stage s.
OTsr Overtime of room r in stage s.
ITsr Idle time of room r in stage s.

The objective function is to minimize the sum of idle time and overtime:

min
∑
s∈S

∑
r∈Rs

[
Cd
s ITsr + Co

sOTsr

]
+
∑
s∈S

Ce
sRs (C.1)

Each patient i can enter the stage 1 after at least his earliest available time:

tsi1b ≥ PRTi ∀i ∈ I, ∀r ∈ R1, (C.2)

The time when patient i enters stage s ≥ 2 is the sum of previous stage’s entering time and the

duration in stage s− 1:

∑
b∈Rs

tsisr =
∑

r∈B(s−1)

tsisr + pi,s−1 ∀i ∈ I, ∀s ∈ S/{1}, (C.3)

Let Iis = {i′ ∈ I | patient i′ can follow directly after patient i on stage s}. A single patient i′ can

be served after patient i, vice versa:

∑
i′∈Iis

xii′s ≤ 1 ∀i ∈ I, ∀s ∈ S, (C.4)∑
i∈Ii′s

xi′is ≤ 1 ∀i′ ∈ I, ∀s ∈ S, (C.5)

xii′s + xi′is ≤ 1 ∀i ∈ I, ∀i′ ∈ I, ∀s ∈ S, (C.6)
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As long as I ≥ Rs, ∀s ∈ S, we can assume that all rooms will process at least one patient with no

loss of generality. In this case, there will be exactly Rs patients with no followers:

∑
i∈I

∑
i′∈Iis

xii′s = I −Rs ∀i ∈ I, ∀r ∈ R1, (C.7)

Patient i′ cannot enter stage s while patient i′ is being served in the stage s:

∑
b∈Rs

tsisr + pis ≤
∑
r∈Rs

tsi′sb +M(1− xii′s) ∀i ∈ I, ∀s ∈ S, (C.8)

Similarly, the entering time of patient i in stage (s + 1) is at least as fast as the entering time of

patient i′:

∑
b∈Rs

tsi(s+1)b ≤
∑
r∈Rs

tsi′sb +M(1− xii′s) ∀i ∈ I, ∀s ∈ S/{2}, (C.9)

The entering time of patient i in stage s should be greater than the sum of durations of previous

patient i′:

∑
b∈Rs

tsisr ≥
∑
i′∈Iis

xi′is(PRTi′ +
∑
s′≤s

Pi′s′) ∀i ∈ I, ∀s ∈ S, (C.10)

If tsi′sb > tsisr, then tsi′sb ≥ tfisr, ∀i, s, b. This if-statement can be written as follows:

0 ≤ (tsisr − tsi′sb) +M · di′isr ∀i, i′ ∈ I, ∀r ∈ Rs, ∀s ∈ S, (C.11)

tfisr − tsi′sb ≤M · (1− di′isr) ∀i, i′ ∈ I, ∀r ∈ Rs, ∀s ∈ S, (C.12)

where di′isr ∈ {0, 1}, ∀i, i′ ∈ I, ∀r ∈ Rs, ∀s ∈ S.
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We write the definition of yisr, i.e., yisr ≥ 1 if tsisr > 0 as the following set of constraints:

0 ≤ (yisr − 1) +M · zisr ∀i ∈ I, ∀r ∈ Rs, ∀s ∈ S, (C.13)

tisr ≤M · (1− zisr) ∀i ∈ I, ∀r ∈ Rs, ∀s ∈ S, (C.14)

where zisr ∈ {0, 1}, ∀i, s, b. Each patient i in each stage s can only occupy a single room:

∑
r∈Rs

yisr = 1 ∀i ∈ I, ∀s ∈ S, (C.15)

Patient i in room r and stage s leaves after the duration in stage s:

tfisr = tsisr + pisyisr ∀i ∈ I, ∀r ∈ Rs, ∀s ∈ S, (C.16)

The makespan of room r in stage s is the maximum completion time across all patients:

CTsr = max
i∈I
{tfisr} ∀r ∈ Rs, ∀s ∈ S, (C.17)

Let hisr ∈ {0, 1}, ∀i, s, b. Also, let the upper bound of tfisr be UBisr, ∀i, s, b. Then, the

constraint (C.17) can be rewritten as the following set of constraints:

0 ≤ tisr ≤ UBisr ∀i ∈ I, ∀r ∈ Rs, ∀s ∈ S, (C.18)

CTsr ≥ tfisr ∀i ∈ I, ∀r ∈ Rs, ∀s ∈ S, (C.19)

CTsr ≤ tfisr + UBisr(1− hisr) ∀i ∈ I, ∀r ∈ Rs, ∀s ∈ S, (C.20)∑
i∈I

hisr = 1 ∀r ∈ Rs, ∀s ∈ S, (C.21)

Overtime of room r in stage s is defined as max{CTsb− T, 0}, ∀b ∈ Rs, s ∈ S:

OTsr ≥ CTsr − T ∀r ∈ Rs, s ∈ S (C.22)
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In this sequence-based formulation, the idle time ITisr is the most intricate variable to capture

properly:

ITsr ≥ T −
∑
i∈I

max
[

min{T, tfisr} − tsisr, 0
]
∀r ∈ Rs, ∀s ∈ S. (C.23)

Collectively, the sequence-based of Problem P1 can be formulated as:

min
∑
s∈S

∑
r∈Rs

[
Cd
s ITsr + Co

sOTsr

]
+
∑
s∈S

Ce
sRs

subject to Constraints (C.2) - (C.23)

C.7 Alternative Heuristic to Solve Problem P1 when R1 = R2 = R

We propose an alternative heuristic, BackwardASCAlt, which is devised based on the heuristic

proposed by Sriskandarajah (1993) for problem F2(m1,m2)|no-wait, m1 = m2 = m ≥ 2|Cmax.

We begin with the m parallel processing centers that comprises m ORs and m PACUs (thus, each

processing center is a simple two-machine no-wait flow shop). Heuristic BackwardASCAlt assigns

patients to the m parallel processing centers and derive a sequence of the patients assigned to each

processing center. Specifically, the heuristic calculates the total treatment time of each patient by

summing the processing times at both intra- and post-op rooms. Subsequently, the heuristic evenly

allocates the total sum of treatment times tom parallel processing centers using Multi-fit algorithm

(Friesen, 1984). Afterwards, the sequence of patients is determined in each of the m two-machine

flow shops by the algorithm proposed by Gilmore and Gomory (1964).

To apply BackwardASCAlt, we use the patient sample path and duration information as listed

in Table 4.6. BackwardASC algorithm calculates the total cost when the number of rooms for OR

and PACU are and M + |IoMj
|, respectively, where |IoMj

| is the maximum number of overnight-

stay patients in a day across weekdays5. We iteratively run BackwardASCAlt for multiple cases by

changing the size ofRs and then compare the results described in Step 4 of the algorithm.
5In our scenario, IoMj

= max{4, 2, 2, 3, 2} = 4 where the numbers are the rounded sum of average ModerateOR-
OvernightPACU patients and average ModerateOR-OvernightPACU patients listed in Table 4.5
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Algorithm 2 Heuristic BackwardASCAlt

1: Input: R ORs, {M1,1,M1,2, ...,M1,R}, and R PACUs, {M2,1,M2,2, ...,M2,R}. I = Io ∪ Ino = {1, 2, ..., I}, a
set of patients to be scheduled where Io is the set of overnight-stay patients and Ino is the set of non-overnight-
stay patients. (p1i, p2i), the duration times of patient i ∈ I in (OR, PACU).

2: Step 1: Partition the problem into m flowshop problems each having two centers (i.e., OR and PACU) with each
center having exactly one room.

3: Step 2: A virtual parallel machine shop withm rooms is formed by considering each flow shop {M1,j ,M2,j}, as a
single room Mj . Using Multi-fit algorithm, schedule I patients (of processing time requirements p1, p2, · · · , pI )
in the parallel machine shop. In this way, patients are allocated to m flowshops. Three different approaches of
Multi-fit available as below:

4: ◦Multi-fit approach 1: pi based on sum of OR and non-overnight PACU durations, i.e., pi = p1i + p2i.
5: ◦Multi-fit approach 2: pi based on OR duration only, i.e., pi = p1i.
6: ◦Multi-fit approach 3: pi based on non-overnight PACU duration only, i.e., pi = p2i.
7: Step 3: Let IMj = IoMj

∪ InoMj
be a set of patients for each flowshop Mj , where IoMj

is a set of overnight patients
and InoMj

is a set of non-overnight patients.
8: if IoMj

= ∅ then
9: The algorithm proposed by Gilmore and Gomory (1964)4 optimally solve the flowshop Mj .

10: else
11: Apply Gilmore and Gomory (1964) algorithm to IoMj

and InoMj
separately.

12: Sequence the optimal order of jobs from IoMj
first and then from InoMj

.
13: Add |IoMj

| number of PACUs for overnight patients.
14: end if
15: Step 4: Let I∗Mj

be the optimal sequence in the flowshop Mj . Calculate makespan, overtime cost at each stage
based on predefined regular hours (e.g., 7am to 5pm for ORs).

16: Output: The ordered scheduling list of patients in each flowshop Mj .

• Example of BackwardASCAlt: Let I = 17, R = 4. The durations of the patients are listed

in Table C.9. Remind that BackwardASCAlt begins with the case R1 = R2 = 4 and finalize with

the increased number of R2 depending on the number of overnight-stay patients. There are two

overnight-stay patients in this example (i.e., i = 15, 17), thusR2 becomes 6. Figure C.6 illustrates

the scheduling results of Heuristic BackwardASCAlt.

Table C.9: The durations of the patients for the example.

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
p1i 1.5 1.5 1.5 1.5 1.5 1.5 2.0 2.0 2.0 2.0 3.0 3.0 3.0 3.0 3.5 5.5 4.5
p2i 1.5 1.5 1.5 1.5 1.5 1.5 2.0 2.0 2.0 2.0 2.0 2.0 2.5 2.5 2.0 1.0 1.5
pover2i - - - - - - - - - - - - - - 17.5 - 17.5
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Figure C.6: Patient scheduling generated by BackwardASC (with multifit on OR+PACU)

Notes: Patient schedules are based on the example in Table C.9 (initial R1 = R2 = 4)). The value in each cell
indicates “Cluster Type: Duration(Patient i).” Cmax = 14, LBCmax

= 11.63, Ratio = 1.2038.

C.8 Forward Capacity Planning Approach

In the backward capacity planning approach, we have scheduled patients in ORs and PACUs

using Heuristic BackwardASC, and then determined the required number of HRs using Minimum

Cost Flow (MCF) model that preserves the scheduling results obtained from BackwardASC. This

approach is called backward ASC scheduling algorithm because we first schedule OR and PACU,

which are both resource intensive compared to HR. In this section, given the number of HRs (i.e.,

the output of MCF), we develop a forward ASC scheduling algorithm that particularly resembles

the practice in which patients are scheduled from the beginning of the process. We compare the

performances of both approaches.

In the forward approach, (1) we use Heuristic ForwardASC that similarly works as Backwar-

dASC but schedules patients in the number of HR and ORs that are determined in the backward

approach. (2) We next develop heuristic NumPACU to decide the minimal number of PACUs that

preserve the patient schedule in the HR and ORs.

C.8.1 Heuristic ForwardASC

Refer to Heuristic BackwardASC and adjust it to apply in HR and OR stages rather than OR

and PACU Stages.
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C.8.2 Obtain the Number of PACUs

Similar to the MCF model in the backward approach, we can derive the number of PACUs to

preserve the scheduling results obtained from ForwardASC. Based on the obtained starting time

and ending time at HR and OR stages for n patients, we determine the number of PACUs that

preserves the scheduling of patients in HRs and ORs.

C.8.3 Comparison of Backward Planning Approach to Forward Approach

To evaluate the average case performance of the backward and forward heuristics, we design

computational experiments, compare the effectiveness of the heuristics under various conditions,

and discuss our findings. In this section, we consider both overtime and idle time in calculating

total cost.

We begin with the case of deterministic patient sample path and deterministic duration at each

stage. Table C.10 compares the backward and forward capacity planning approaches regarding the

total costs and their lower bound results as well as the derived number of rooms in HR and PACU,

for each given number of OR. When we run Heuristic BackwardASCAlt, the multifit algorithm is

applied to the sum of OR and PACU durations. Monday’s patient sample path, for example, the

capacity of [HR,OR,PACU ] = [18, 10, 14] (respectively, [HR,OR,PACU ] = [20, 11, 14]) re-

veals the lowest total cost according to the backward approach (respectively, the forward approach).

Across the patient sample paths for all five weekdays, the capacity of [HR,OR,PACU ] =

[15, 9, 11.6] (respectively, [HR,OR, PACU ] = [19, 10, 14]) reveals the lowest total cost for the

backward approach (respectively, the forward approach). Under the objective of cost minimiza-

tion, we observe that the backward capacity planning approach requires smaller numbers of rooms

rather than the forward approach to schedule the same list of patients.

Uncertainty exists in daily patient sample path (as listed in Table 4.5), for example, the average

number of ShortOR-ShortPACU patients (i.e., patient group 1) on Monday is 11.45 with standard

deviation 3.33. We thus perform the simulation with instance size 1000 to reflect the stochas-

tic patient sample path on capacity planning and list the results in Table C.11. Compared to the
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deterministic patient sample path in Table C.10, the smallest average total cost of backward ap-

proach (respectively, forward approach) has increased from 76.8 to 91.2, i.e., 18.8% (respectively,

81.5 to 98.4, i.e., 20.7%). Uncertainty in either patient-mix or duration of patient stays incurs

additional costs, implying the benefits of simple patient-mix and accurate duration estimates in

capacity planning. Across all five weekdays, the capacity of [HR,OR,PACU ] = [15.3, 9, 11.8]

(respectively, [HR,OR,PACU ] = [18.5, 11, 12.9]) reveals the lowest total cost for the backward

approach (respectively, the forward approach).

In Figure C.7, we compare the results of computational experiments with stochastic Monday

patient sample path for backward and forward approaches. According to the subfigure (b), as

the number of ORs increases, the number of backward PACUs increases unlike the number of

forward PACUs that almost remains as the same. The backward approach is more cost-efficient

than forward approach, particularly when the number of ORs are smaller than or equal to the

optimal (as in subfigure (g)) where the total cost is defined as a sum of the costs related to OR idle

time, OR overtime, and PACU over-staffing time cost. That is because the backward approach has

patient schedules with relatively smaller OR overtime (as in subfigure (e)) and PACU over-staffing

time (as in subfigure (f)), even if the amount of OR idle time is a bit higher (as in subfigure (d))

than the forward approach.

Insight 1. Backward planning approach is more cost-efficient than forward approach, particularly

when the number of ORs are small. That is because the backward approach reveals less OR

overtime and PACU overtime than the forward approach, even if OR idle time of the backward

approach increases a bit.
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Table C.10: The Results of Backward vs. Forward ASC Capacity Planning: Deterministic Case

Backward ASC Capacity Planning Forward ASC Capacity Planning
OR 6 7 8 9 10 11 12 13 6 7 8 9 10 11 12 13

Monday

HR 10 12 13 15 18 20 19 19 10 12 13 15 18 20 19 19
PACU 10 11 12 13 14 15 16 17 13 14 10 11 12 14 12 13

Total Cost 160.3 128.3 113.0 102.8 101.0 107.3 123.3 132.8 225.0 192.5 152.3 130.3 113.3 111.3 121.5 130.3
Cost/LB 3.6 3.6 4.2 5.6 10.1 7.4 5.2 4.1 7.4 9.0 3.5 3.7 4.2 7.7 4.5 4.0

Tuesday

HR 10 12 12 15 19 20 18 18 10 12 12 15 19 20 18 18
PACU 8 9 10 11 12 13 14 15 13 13 11 13 15 17 12 13

Total Cost 104.3 85.3 61.8 62.8 71.5 85.0 100.0 110.0 171.0 138.0 105.0 80.3 69.0 76.0 86.5 96.5
Cost/LB 3.8 4.5 5.9 20.9 6.0 4.0 3.3 2.8 7.1 9.2 17.5 5.4 2.2 1.6 2.9 2.5

Wednesday

HR 11 14 15 14 20 21 18 19 11 14 15 14 20 21 18 19
PACU 8 9 10 11 12 13 14 15 14 13 14 12 15 17 12 13

Total Cost 106.3 75.8 74.8 66.0 73.8 80.0 95.0 110.0 175.3 133.0 107.3 87.8 65.8 70 81.5 90.0
Cost/LB 3.4 3.3 5.2 11.0 6.1 3.8 3.2 2.8 7.3 8.9 5.5 29.2 2.3 1.6 2.7 2.3

Thursday

HR 11 13 14 14 19 20 17 18 11 13 14 14 19 20 17 18
PACU 9 10 11 12 13 14 15 16 13 12 12 10 12 11 12 13

Total Cost 141.3 104.5 95.3 86.5 86.5 91.8 106.8 117.8 204.3 166.3 138.0 111.5 90.8 92.0 104.3 114.0
Cost/LB 3.9 3.8 5.0 8.2 13.3 5.9 4.4 3.5 6.9 8.1 12.0 4.1 8.6 4.8 4.3 3.4

Friday

HR 10 13 13 17 19 16 16 19 10 13 13 17 19 16 16 19
PACU 8 9 10 11 12 13 14 15 12 13 12 12 16 11 12 13

Total Cost 81.3 63.0 59.5 66.0 79.0 91.0 91.0 121.0 139.0 106.3 81.8 63.0 68.5 81.8 90.8 98
Cost/LB 3.5 4.2 9.2 6.6 4.2 3.3 2.5 2.6 8.2 5.6 7.8 6.0 1.5 2.9 2.5 2.1

Avg HR 10.4 12.8 13.4 15 19 19.4 17.6 18.6 10.4 12.8 13.4 15 19 19.4 17.6 18.6
Avg PACU 8.6 9.6 10.6 11.6 12.6 13.6 14.6 15.6 13.0 13.0 11.8 11.6 14.0 14.0 12.0 13.0

Avg Total Cost 118.7 91.4 80.9 76.8 82.4 91.0 103.2 118.3 182.9 147.2 116.9 94.6 81.5 86.2 96.9 105.8
Avg Cost/LB Ratio 3.6 3.9 5.9 10.5 7.9 4.9 3.7 3.2 7.4 8.1 9.2 9.7 3.8 3.7 3.4 2.9

Notes: Deterministic Patient Sample Path and Deterministic Durations, OR idle cost Cd = 1.5, OR overtime cost
Co

1 = 2, PACU over-staffing cost Co
2 = 1, and 6 ≤ R1 = R2 ≤ 13

Table C.11: The Results of Backward vs. Forward ASC Capacity Planning: Stochastic Case

Backward ASC Capacity Planning Forward ASC Capacity Planning
OR 6 7 8 9 10 11 12 13 6 7 8 9 10 11 12 13

Monday

HR 10.2 11.9 13.6 15.2 16.9 18.5 20.1 21.7 10.2 11.9 13.6 15.2 16.9 18.5 20.1 21.7
PACU 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 12.7 13.1 13.2 12.4 12.6 13.0 13.1 13.8

Total Cost 164.8 141.2 124.6 115.8 113.2 116.1 123.1 133.1 225.7 192.6 164.2 142.4 127.8 120.8 121.3 124.3
Cost/LB 3.6 3.8 4.4 5.8 7.9 7.1 5.1 4.0 6.5 6.5 6.0 4.9 4.8 4.9 4.8 3.8

Tuesday

HR 10.2 11.9 13.6 15.4 17.0 18.5 20.0 21.7 10.2 11.9 13.6 15.4 17.0 18.5 20.0 21.7
PACU 8.2 9.2 10.2 11.2 12.2 13.2 14.2 15.2 12.0 12.7 13.2 12.9 13.2 13.8 13.7 14.3

Total Cost 119.9 100.4 88.3 83.7 85.8 91.9 100.5 112.0 181.9 152.1 127.0 108.8 96.9 91.9 93.9 98.1
Cost/LB 3.9 4.5 5.9 7.0 5.2 3.6 2.9 2.6 6.9 6.7 5.8 5.6 4.3 3.1 2.7 2.3

Wednesday

HR 10.3 12.1 13.7 15.5 17.1 18.7 20.1 21.3 10.3 12.1 13.7 15.5 17.1 18.7 20.1 21.3
PACU 8.5 9.5 10.5 11.5 12.5 13.5 14.5 15.5 12.2 12.8 13.0 13.3 13.0 13.4 13.5 13.8

Total Cost 124.8 103.6 90.2 85.8 87.5 93.8 103.0 114.4 188.5 158.7 132.3 111.7 99.8 94.2 95.7 100.8
Cost/LB 4.1 4.8 6.6 8.4 5.8 4.0 3.2 2.8 7.2 6.9 6.2 5.3 4.7 3.5 2.9 2.5

Thursday

HR 9.9 11.6 13.3 14.9 16.7 18.2 19.4 20.4 9.9 11.6 13.3 14.9 16.7 18.2 19.4 20.4
PACU 9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0 11.4 11.8 11.3 11.4 11.7 11.8 12.3 13.1

Total Cost 141.1 118.3 103.8 96.5 96.4 100.7 108.7 118.5 197.1 166.7 140.5 120.6 108.5 104.5 106.3 111.4
Cost/LB 3.7 4.0 5.0 7.3 8.6 5.8 4.2 3.4 6.1 6.3 5.8 5.8 5.7 5.7 4.3 3.3

Friday

HR 10.3 12.0 13.8 15.4 16.9 18.3 19.7 21.3 10.3 12.0 13.8 15.4 16.9 18.3 19.7 21.3
PACU 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 11.1 11.7 12.0 12.0 12.6 12.8 13.3 13.7

Total Cost 90.0 75.9 71.1 74.0 81.2 91.6 103.6 115.8 135.4 109.1 89.1 79.3 76.6 80.8 86.9 95.4
Cost/LB 3.5 4.5 6.8 6.1 4.0 3.1 2.7 2.5 6.4 5.6 4.5 3.8 2.9 2.5 2.2 2.0

Avg HR 10.2 11.9 13.6 15.3 16.9 18.5 19.9 21.3 10.2 11.9 13.6 15.3 16.9 18.5 19.9 21.3
Avg PACU 8.8 9.8 10.8 11.8 12.8 13.8 14.8 15.8 11.9 12.4 12.5 12.4 12.6 12.9 13.2 13.7

Avg Total Cost 128.1 107.9 95.6 91.2 92.8 98.8 107.8 118.7 185.7 155.9 130.6 112.6 101.9 98.4 100.8 106.0
Avg Cost/LB Ratio 3.8 4.3 5.7 6.9 6.3 4.7 3.6 3.0 6.6 6.4 5.7 5.1 4.5 3.9 3.4 2.8

Notes: Stochastic Patient Sample Path (# simulation instance = 1000) and Deterministic Durations, OR idle cost
Cd = 1.5, OR overtime cost Co

1 = 2, PACU over-staffing cost Co
2 = 1, and 6 ≤ R1 = R2 ≤ 13
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Figure C.7: BackwardASCAlt vs. ForwardASC

(a) # HRs by # ORs (b) # PACUs by # ORs

(c) HR Idle Time (d) OR Idle Time

(e) OR Overtime (f) PACU Over-staffing Time

(g) Total Cost

Notes: Results of computational experiment with stochastic Monday patient sample path: BackwardASCAlt versus
ForwardASC (# simulation instance = 1000).
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C.9 Extension: Implementation of Surgeon Scheduling on Capacity Planning

Block/rotation scheduling (i.e., scheduling surgeons to different services for each week or

month) is an important scheduling problem. Block schedules must satisfy coverage needs of the

system along with individual training/administrative requirements to fulfill each surgeon’s needs

(Lemay et al., 2017). For scheduling purpose, we may also consider surgeon ID since every sur-

geon has one’s own skill sets and experience that affect the duration of the surgical procedure.

In our patient flow data, we are able to observe Surgeon ID for each patient. As listed in Table

C.12, each surgeon prefer a certain weekday in general. For example, Surgeon #33 conducted 57

surgeries out of 58 on Monday while Surgeon #32 performed 109 surgeries out of 115 on Tuesday.

If the ASC managers have such information in planning capacity, it is beneficial to consider the

information as they work as additional constraints in our model that may increase the desired level

of capacity in each stage.

Table C.12: Count of Patient Case IDs by Surgeon and by Weekday

Preferred Day Surgeon ID Mon Tue Wed Thu Fri # Case ID

Mon

33 57 1 58
91 22 18 12 52
29 40 2 42
37 30 1 7 38
51 30 4 1 35
67 32 32
12 22 1 4 27
70 22 4 26
11 13 1 2 1 17
68 10 1 11
46 5 3 2 10
26 9 9

Tue

32 109 6 115
72 1 47 4 10 62
77 23 9 5 37
84 2 18 2 4 4 30
13 27 2 29
34 26 1 27
87 16 1 2 19
76 14 14
73 6 5 1 12
69 7 7

Notes: Surgeons who prefer Monday and Tuesday are listed for illustrative purpose.
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