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S U M M A R Y
It is frequently considered that many planetary magnetic fields originate as a result of convec-
tion within planetary cores. Buoyancy forces responsible for driving the convection generate
a fluid flow that is able to induce magnetic fields; numerous sophisticated computer codes
are able to simulate the dynamic behaviour of such systems. This paper reports the results
of a community activity aimed at comparing numerical results of several different types of
computer codes that are capable of solving the equations of momentum transfer, magnetic
field generation and heat transfer in the setting of a spherical shell, namely a sphere containing
an inner core. The electrically conducting fluid is incompressible and rapidly rotating and
the forcing of the flow is thermal convection under the Boussinesq approximation. We follow
the original specifications and results reported in Harder & Hansen to construct a specific
benchmark in which the boundaries of the fluid are taken to be impenetrable, non-slip and
isothermal, with the added boundary condition for the magnetic field B that the field must be
entirely radial there; this type of boundary condition for B is frequently referred to as ‘pseudo-
vacuum’. This latter condition should be compared with the more frequently used insulating
boundary condition. This benchmark is so-defined in order that computer codes based on local
methods, such as finite element, finite volume or finite differences, can handle the boundary
condition with ease. The defined benchmark, governed by specific choices of the Roberts,
magnetic Rossby, Rayleigh and Ekman numbers, possesses a simple solution that is steady
in an azimuthally drifting frame of reference, thus allowing easy comparison among results.
Results from a variety of types of code are reported, including codes that are fully spectral
(based on spherical harmonic expansions in angular coordinates and polynomial expansions
in radius), mixed spectral and finite difference, finite volume, finite element and also a mixed
Fourier-finite element code. There is good agreement among codes.
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Spherical shell numerical dynamo benchmark 713

1 I N T RO D U C T I O N

Many planets possess magnetic fields that are thought to be generated by thermal and compositional convection within their electrically
conducting cores, creating the so-called self-excited dynamo mechanism. Since the appearance of the first 3-D self-consistent Boussinesq
models of thermal convection almost 20 yr ago (Glatzmaier & Roberts 1995; Kageyama et al. 1995), interest has grown in calculating
numerical solutions to this physical system. The underlying equations that must be solved are those of momentum conservation, magnetic
field generation and heat transfer. Considering the non-trivial nature and non-linearity of these underlying equations, there remains a need to
verify that the computer codes provide accurate solutions to the physical system; it is also important to provide simple reference solutions
that allow newly developed codes to check that they are correct implementations of the physics, and to allow these codes to assess their
accuracy. The provision of a relatively simple solution with clear diagnostics we term as a benchmark, and this particular benchmark grew
out of discussions initiated at the Studies of the Earth’s Deep Interior meeting held in Leeds in 2012.

In geophysics, benchmark solutions were provided for mantle convection in cartesian geometries some decades ago, and in geomagnetism
a very useful benchmarking exercise was coordinated by U. Christensen subsequent to the discovery of a particularly simple dynamo solution
(Christensen et al. 2001; Christensen et al. 2009, hereinafter B1). This benchmark exercise was set in the geometry of a spherical shell, with
convection driven by a temperature difference between an inner core and the outer boundary of the spherical shell. In the present work we
remain with this geometry, it being the appropriate geometry for the core of the Earth. In B1 three different benchmarks were devised, of
both a hydrodynamic and magnetohydrodynamic nature, these latter benchmarks being convectively driven dynamos (supporting magnetic
fields). It is the purpose of this work to study a modification of B1 first presented by Harder & Hansen (2005). The modification of the
magnetic boundary condition from that of B1 is designed to allow computer codes that are not based on spherical harmonics in the angular
direction to conveniently compute solutions. This is an important development in view of the fact that many new solution strategies are being
developed that are based on ‘local methods’, examples of which can be found in Section 4. Central to these benchmarks is the fact that
all of them possess simple solutions, in the form of steadily azimuthally drifting convection and magnetic fields. Consequently, kinetic and
magnetic energies remain constant and, together with other properties, these provide very clear diagnostics that are amenable to reproduction
by different numerical techniques.

The modification of the magnetic boundary conditions that we implement requires that the magnetic field be purely radial on the
boundary. Since this condition is approximated by the physical conditions arising from a boundary made from very high permeability material
(sometimes termed ‘ferromagnetic material’), the boundary conditions are sometimes referred to as ‘ferromagnetic boundary conditions’
or ‘pseudo-vacuum conditions’. In a spherical shell the effect of these types of boundary conditions on dynamo action has been studied by
Guervilly & Cardin (2010) and Roberts et al. (2010). They have been used for almost 20 yr since the pioneering paper of Kageyama et al.
(1995).

Our benchmarking exercise has attracted submissions from authors implementing a wide assortment of computer codes. Of the eight
different results submitted, four are computed using a spectral method (involving spherical harmonics in the angular directions) and three
are computed with so-called local methods, namely finite volume or finite element methods; there is also one mixed ‘global-local’ method.
A discussion of the performance of such codes on the original B1 can be found in Wicht et al. (2009). Of interest is the fact that the local
methods use different approaches to ensuring that magnetic fields are divergence-free. It is well known that writing the magnetic field B
in terms of a vector potential A as B = ∇∧A will automatically satisfy the required solenoidality condition. But another approach is to
introduce a fictitious ‘magnetic pressure’ (Brackbill & Barnes 1980; Tóth 2000), essentially a Lagrange multiplier for the imposition of the
zero divergence constraint. Of the groups taking part, three use the latter approach while one uses the A formulation.

The present benchmarking exercise has a sister exercise that is set in a full sphere geometry, described in Marti et al. (2013); this
full sphere geometry is potentially challenging for some codes as a result of the presence of a coordinate singularity at r = 0 when one
treats the governing equations in the sphere in spherical coordinates (r, θ , φ) that are presumably convenient from the point of view of
boundary conditions. Flows in the first two benchmarks of Marti et al. (2013) are driven by thermal convection, again under the Boussinesq
approximation, and in the third by a boundary forcing. The benchmarks 1 and 2 of Marti et al. (2013) differ from those of B1 in their use of
stress-free boundary conditions, rather than non-slip conditions. In the present work, we remain with the same no-slip boundaries of B1. The
use of stress-free boundaries can sometimes cause problems with angular momentum conservation (see the discussion in Jones et al. 2011).

The present activity is one of several brethren that have recently been provided to the community. A new benchmark for anelastic
convection has recently been described by Jones et al. (2011), and solar mean field benchmark has also recently been provided by Jouve et al.
(2008).

The layout of the paper is as follows. In Section 2, we describe the physical problems to be addressed. In Section 3, we give a brief
overview of the different numerical methods that have been employed by the different contributing teams. In Section 4, we present and discuss
the results from the different codes.

2 T H E N U M E R I C A L B E N C H M A R K

Here we define the benchmark in the form of a convection-driven magnetohydrodynamic dynamo in a rotating spherical shell with ‘pseudo-
vacuum’ magnetic boundary condition. We consider a Newtonian fluid with homogeneous and constant material properties, and describe a
solution, first studied by Harder & Hansen (2005), that is steadily drifting in azimuth in the rotating frame. Results of the different contributing
groups are presented in Section 4.
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714 A. Jackson et al.

2.1 Magnetohydrodynamic equations

We employ a geometry of a spherical shell of outer radius ro and inner radius ri and fix the radius ratio ri/ro = 0.35; we denote fluid velocity
by u, magnetic field by B and temperature by T, and we adopt the Boussinesq approximation. The spherical coordinates will be denoted (r,
θ , φ) and z is the axis of rotation of the system. The following symbols denote the parameters of the system: � = �ẑ is the rotation rate, μ0

is the permeability of free space, ρ0 is the density, �T is the temperature difference between the fixed temperatures on the inner and outer
boundaries, ν, κ and η are the kinematic viscosity, thermal diffusivity and magnetic diffusivity respectively, and α is the thermal expansivity.
Gravity is assumed to vary linearly with radius and has value g on the outer boundary. Choosing a non-dimensionalisation for time of
t = (d2/η)t′, for length of r = dr ′ (where d = ro − ri is the depth of the shell), for magnetic field of B = (2�ρ0μ0η)

1
2 B ′ and for temperature

of T = (�T)T′ (where the primed quantities are the non-dimensional versions), and dropping the primes, we obtain the following equations:(
Ro

∂

∂t
− E∇2

)
u = Ro u ∧ (∇ ∧ u) + (∇ ∧ B) ∧ B + q Ra T r − ẑ ∧ u − ∇ P̂,

(
∂

∂t
− ∇2

)
B = ∇ ∧ (u ∧ B),

(
∂

∂t
− q∇2

)
T = −u · ∇T,

(1)

∇ · B = 0, ∇ · u = 0. (2)

These equations have been written in terms of the following dimensionless parameters

Magnetic Rossby number Ro = η/(2�d2),

Ekman number E = ν/(2�d2),

Modified Rayleigh number Ra = g α �T d

2�κ
,

Roberts number q = κ/η.

(3)

We note that the Magnetic Rossby number is sometimes referred to as the Magnetic Ekman number.
In B1 the timescale chosen was the viscous diffusion timescale, and some readers may find it beneficial to have a conversion between

the control parameter definitions used here and those used by B1; these, along with derived quantities, are given in Table 1.
The boundary conditions on T are fixed temperature, thus T = 1 at r = ri = 7/13 and T = 0 at r = ro = 20/13; boundary conditions

on velocity are non-penetration and no slip, thus u = 0 on both boundaries. For the magnetic field we implement the condition that the field
must be purely radial on both boundaries, a condition that has been used for many years. This condition is significantly easier to implement in
all types of discretized versions of (1), since it represents a local condition. Compared to the usual electrically insulating boundary condition
that is used in, for example, Christensen et al. (2001), it can be easily implemented by requiring that

Bθ = Bφ = 0 at r = ri, ro, (4)

The original integrations of Kageyama et al. (1995) as well as subsequent simulations of, for example, Miyagoshi et al. (2010) have
championed the use of this boundary condition. However, as we see, it can lead to significant differences in the solution, compared to the use
of the more conventional insulating boundary condition. The influence of boundary conditions in a Cartesian geometry has been studied by
Thelen & Cattaneo (2000) and by Gissinger et al. (2008) in a cylindrical geometry in the context of the VKS experiment.

Our benchmark uses exactly the same parameters (Table 2) as used in the original dynamo benchmark (Christensen et al. 2001) but with
the modified magnetic boundary conditions studied by Harder & Hansen (2005).

Table 1. Conversion table between the present bench-
mark and B1. The symbols P, Pm and ε are the Prandtl
number, magnetic Prandtl number and the radius ra-
tio, respectively of B1.

Christensen et al. (2001) [B1] Present benchmark

E/2 E
(1 − ε)PRa/2 Ra

Pm/P q
E/(2Pm) Ro
P2

m Ekin Ekin

P2
m Emag Emag

Pmu u
B/

√
2 B

T T
t/Pm t
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Spherical shell numerical dynamo benchmark 715

Table 2. Parameters defining the
benchmark solution.

E Ra q Ro

5 × 10−4 32.50 5 10−4

2.2 Initial conditions

The initial conditions for velocity is a quiescent state u = 0 and for temperature we adopt the same profile as in Christensen et al. (2001)

T = rori

r
− ri + 21√

17920π
(1 − 3x2 + 3x4 − x6) sin4 θ cos 4ϕ, (5)

where x = 2r − ri − ro. This describes a conductive state with a perturbation of harmonic degree and order four superimposed. The importance
of the initial temperature is in the fourfold symmetry which it brings into the solution.

The initial condition for the magnetic field is very important, as the dynamo for the specified parameters is subcritical, in other words it
cannot grow from an arbitrary infinitesimal perturbation; Although a variety of initial conditions has been investigated, it cannot be excluded
that different initial conditions may lead to other dynamo solutions. Thus we prescribe the following initial condition for B in real space:

Br = 1√
2

5

8

−48 ri ro + [4 ro + ri (4 + 3 ro)] 6r − 4[4 + 3 (ri + ro)] r 2 + 9 r 3

r
cos θ,

Bθ = − 1√
2

15

4

(r − ri) (r − ro) (3 r − 4)

r
sin θ,

Bφ = 1√
2

15

8
sin π (r − ri) sin 2θ. (6)

It is easy to see that Bθ = Bφ = 0 at ri and ro, the condition ∂

∂r (r 2 Br ) = 0|ri,ro is satisfied as well.
The magnetic vector B can be written in terms of the toroidal and poloidal scalar fields, T and P:

B = ∇ ∧ (T r) + ∇ ∧ ∇ ∧ (P r). (7)

The toroidal and poloidal scalars can be decomposed in fully normalized spherical harmonics Y m
l and radial functions of the form:

T =
∑

T m
l (r )Y m

l (θ, φ) (8)

with a similar expression for P; here we make use of

Y m
l (θ, φ) = Pm

l (cos θ )eimφ (9)

where Pm
l is a Legendre function.

Making use of these expansions, the spectral form of the initial magnetic field is
⎧⎪⎪⎨
⎪⎪⎩

T 0
2 = 1√

2

5

4
sin π (r − ri),

P0
1 = 1√

2

5

16
{−48 ri ro + [4 ro + ri (4 + 3 ro)] 6r − 4[4 + 3 (ri + ro)] r 2 + 9 r 3}.

(10)

In terms of the magnetic vector potential A, we have the initial condition as⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Ar = 1√
2

15

16
r sin[π (r − ri)] cos(2θ ) + f1(r ) +

∫ {
f2(r, θ ) + r

∂ f2(r, θ )

∂r

}
dθ

Aθ = f2(r, θ )

Aφ = 1√
2

5

16
{−48riro + [4ro + ri(4 + 3ro)]6r − 4[4 + 3(ri + ro)]r 2 + 9r 3} sin θ + K/(r sin θ ),

(11)

where B = ∇ ∧ A; f1, f2 are arbitrary functions and K is an arbitrary constant. For the calculations performed by Cébron, these functions and
constant were taken to be zero.

2.3 The form of the solution

In this section, we describe a steadily drifting solution (where the magnetic and kinetic energies are constant in time) that acts as a dynamo
and which is therefore suitable for a benchmark study. The parameters are those suggested by Harder & Hansen (2005) in which a solution
exists that has fourfold symmetry in longitude and is symmetric about the equator. Just as in Christensen et al. (2001), the solution is steadily
drifting and can be expressed in the form (u, B, T ) = f (r, θ, ϕ − ω t). The influence of the changed boundary conditions is substantial in this
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716 A. Jackson et al.

Figure 1. Properties of the solution, computed using a spectral method by SMJ. (a) The evolution of the rms magnetic field versus time, starting from the
prescribed initial condition. Although the solution evolves to a pseudo-steady state in a few tenths of a diffusion time, several magnetic diffusion times are
required to find a true steady state. (b) The energy spectrum decomposed into azimuthal modes, showing the true fourfold symmetry. (c) The energy spectrum
decomposed as a function of spherical harmonic degree, showing twelve orders of magnitude of decrease by spherical harmonic degree 100. (d) The magnetic
and kinetic energies on a logarithmic energy and timescale.

regime, because the drift of the solution is completely changed. In case 1 of Christensen et al. (2001), the drift rate ω is negative, indicating
retrograde drift; in this benchmark the sign of the drift is changed, indicating prograde drift. Figs 1(a) and (d) show the evolution of the
field with time, starting with the recommended initial conditions. When the solution is computed with a spherical harmonic-based code, the
spectrum can be seen to have fallen off substantially by spherical harmonic degree 100 (Fig. 1 c). By dint of the fourfold symmetry (Fig. 1 b),
spherical harmonic-based codes can accurately compute the solution by imposing this symmetry if required; this was implemented by some
of the participants. Figs 2–4 show the field and flow structure. Because of the changed boundary condition, we emphasis that, apart from
the fourfold symmetry, this solution is not the same as that of B1. The change in the drift rate indicates that the pseudo-vacuum boundary
condition cannot be considered to be an approximation to an insulating boundary condition: the physics is entirely altered.

2.4 Requested results

Global averages and local data at specific points were requested from the participating groups. The angular drift speed ω, and magnetic and
kinetic energies were requested; the latter two are defined as

Emag = 1

2 Ro

∫
|B|2 dV (12)

Ekin = 1

2

∫
|u|2 dV . (13)

where the integration volume is the fluid shell. Following Christensen et al. (2001), we also request local data. A point where local data are
to be taken is fixed in the drifting reference frame. We take a point at a mid depth (r = (ri + ro)/2) in the equatorial plane (θ = π/2) whose
φ-coordinate is given by the conditions ur = 0 and ∂ur

∂ϕ
> 0. For this point uφ , Bθ and T are requested.
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Figure 2. Meridional sections through the solution in the steady state. The plane of the figures is that containing the benchmark point (defined in seq. 2.4).
(a) Radial magnetic field. (b) Bθ . (c) Bφ . (d) Radial velocity field. (e) vθ . (f) vφ . (g) Temperature field.

Figure 3. Equatorial sections through the solution in the steady state. (a) Radial magnetic field. (b) Bθ . (c) Bφ . (d) Radial velocity field. (e) vθ . (f) vφ . (g)
Temperature field.

3 C O N T R I B U T I N G N U M E R I C A L C O D E S

Here we give a short description of the numerical techniques and algorithms used by each simulation group.
Tilgner (T): Pseudospectral code using a spherical harmonic expansion in the angular variables and Chebyshev polynomials in radius,

embedded in a poloidal–toroidal representation for magnetic field and velocity. Time stepping is implemented by a combination of an implicit
Crank–Nicolson scheme for the diffusion terms and an explicit Adams–Bashforth scheme for the Coriolis and the non-linear terms; both
schemes are second order accurate. Early versions of the code are described in Tilgner & Busse (1997) and Tilgner (1999).

Sheyko, Marti & Jackson (SMJ): Spectral simulation using spherical harmonics for the angular component and finite differences in
radius. The incompressibility condition is guaranteed by the use of a toroidal–poloidal decomposition of the vector fields. A second order
predictor–corrector scheme is used for the time integration. The code was developed by Ashley Willis (see Willis et al. 2007), with subsequent
optimization for the Cray XMP.
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718 A. Jackson et al.

Figure 4. The left-hand column shows isolines of the azimuthally averaged uϕ (top) and Bϕ (bottom) in the meridional plane. The right column shows isolines
of ur (top) at mid-radius r = (ri + ro)/2 and of Br (bottom) at the surface of the shell r = ro.

Takehiro, Sasaki and Hayashi (TSH): Spectral simulation using spherical harmonics for the angular components and Chebychev
polynomials in radius (see Sasaki et al. 2012). The incompressibility condition is guaranteed by the use of a toroidal–poloidal decomposition
of the vector fields. The time integration is performed with a Crank–Nicolson scheme for the diffusive terms and a second order Adams–
Bashforth scheme for the other terms.

Simitev and Busse (SB): Pseudospectral numerical code using spherical harmonics expansion in the angular variables and Chebyshev
polynomials in radius. Time stepping is implemented by a combination of an implicit Crank–Nicolson scheme for the diffusion terms and an
explicit Adams–Bashforth scheme for the Coriolis and the non-linear terms; both schemes are second order accurate. Early versions of the
code are described in Tilgner & Busse (1997) and Tilgner (1999) and the code has been extensively modified and used for a number of years
Simitev & Busse (2005, 2009, 2012) and Busse & Simitev (2006, 2008).

Cébron (C): Finite element method simulation using the standard Lagrange element P1–P2, which is linear for the pressure field and
quadratic for the velocity field, and a Galerkin Least-Squares (GLS) stabilization method (Hauke & Hughes 1994). Quadratic Lagrange
elements are used for the temperature field, and quadratic Nédélec (edge) elements are used for vector potential A, such that B = ∇∧A.
The (unstructured) mesh is made of prisms in the boundary layer and tetrahedrons in the bulk. The incompressibility of the velocity field is
imposed using a penalty method. The time stepping uses the implicit differential-algebraic solver (IDA solver), based on variable-coefficient
backward differencing formulas (e.g. Hindmarsh et al. 2005). The integration method in IDA is variable-order, the order ranging between
1 and 5. At each time step, the system is solved in a fully coupled way with a geometric multigrid GMRES iterative solver. This is all
implemented via the commercial code COMSOL Multiphysics R© (see Cébron et al. 2012, for further details).
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Spherical shell numerical dynamo benchmark 719

Ribeiro, Nore, and Guermond (RNG): Hybrid Fourier and finite element method using a Fourier decomposition in the azimuthal direction
and the standard Lagrange elements P1–P2 in the meridian section (with P1 for the pressure and P2 for the velocity field). The meridian mesh
is made of quadratic triangles. The velocity and pressure are decoupled by using the rotational pressure-correction method. The timestepping
uses the second-order Backward Difference Formula (BDF2). The non-linear terms are made explicit and approximated using second-order
extrapolation in time. The code is parallelized in Fourier space and in meridian sections (domain decomposition with METIS Karypis & Kumar
2009) using MPI and PETSC (Portable, Extensible Toolkit for Scientific Computation) Balay et al. (1997, 2012a,b). This is implemented in
the code SFEMaNS (for Spectral/Finite Element method for Maxwell and Navier–Stokes equations) Guermond et al. (2007, 2009, 2011).

Vantieghem (V): Massively MPI-parallel unstructured finite-volume code (Vantieghem 2011), based on a domain decomposition with
METIS (Karypis & Kumar 2009). For this benchmark, a grid of the cubed-sphere type was used. All the spatial discretization operators are
based on finite-difference-like stencils. To advance the equations in time, a semi-implicit Crank–Nicolson/Adams–Bashforth formulation is
used for the non-linear terms, and a Crank–Nicolson discretization for the diffusive, Coriolis and buoyancy terms. The pressure–velocity
splitting is based on a canonical fractional step-method (Kim & Moin 1985). A Lagrange multiplier (termed magnetic pressure) is added to the
induction equations to enforce the divergence-free constraint on B. The pressure Poisson equations are solved using a BiCGstab(2)-method.

Zhan and Schubert (ZS): This approach uses the ‘element-by-element’ finite element method described in Chan et al. (2007). The
magnetic field itself is used as the field that is solved for (without the use of a vector potential) and the divergence-free condition is
implemented using a Lagrange multiplier. Quadratic Hood-Taylor elements are used for u, T and B and linear elements for the pressure.

4 R E S U LT S

Fig. 5 summarizes the results from the contributing codes. We plot them as a function of resolution R based on the number of degrees of
freedom in the calculation. For grid-based codes, R is simply N 1/3

grid where Ngrid is the number of elements or volumes in the calculation. For
spectral codes R = [Nr · (Lmax(2Mmax + 1) − M2

max + Mmax + 1)]1/3. The same approach was used in B1.
It is clear that all participants succeeded in finding the correct solution to the benchmark. The only variability is in the fidelity with which

the solution is determined, but in all cases the agreement is better than 6 per cent, this worst case being for the medium-resolution calculation
of C; we neglect the two extremely low resolution results supplied by T in this respect. The benchmark by nature is a very smooth and regular
solution, and therefore spectral methods have a distinct advantage. It is clear that accurate solutions can be computed with a truncation level
of degree 42 in spherical harmonics and either 33 Chebychev polynomials in radius or about 80 finite difference points in radius. Fig. 5
shows that the spectral methods of SMJ, T, TSH and SB all agree almost perfectly with one another and can be used to create a reference
solution. It is unfortunate that two of the local codes only present one point. In the case of C, using the commercial code COMSOL, this is
because the version of the code used is purely serial; it therefore takes a tremendously long time (several months on a single core) to run the
5.12 diffusion times of the solution reported. The two local codes that allow us a comparison of rates of convergence are the finite volume
code by V and the finite element code by ZS. The ZS code appears to have reached converged values for all quantities. For the local values
these are very accurate, with discrepancy from spectral solutions at the level of 0.21–0.52 per cent; for an unknown reason the discrepancy
is larger when global quantities are compared, with the discrepancy being at the level of 1.4 per cent in the magnetic energy. The finite
volume code by V needs higher resolution for convergence to have been demonstrated. Drifting solution can be a problem for local codes
because the solution drift with respect to the grid leads to additional oscillations even in the energies. To illustrate the size of the problem, for
solution V the reported values are averages over 0.5 magnetic diffusion times. Typical amplitudes for the oscillation of the magnetic energy
are 0.3 per cent (at resolution 64), 0.12 per cent (96) and 0.06 per cent (128); note that these values are small compared to the difference with
the pseudospectral solution, so that the averaging interval does not fundamentally affect the reported values.

Definitive values for the benchmark are taken from the most highly resolved calculations of SMJ, T, TSH and SB (see Tables 3 and 4),
though note a very small discrepancy in the drift rate computed by TSH; this quantity is usually the most difficult to determine precisely, as
in the sister exercises B1 and Marti et al. (2013). We present definitive values for the benchmark with error corridors in Table 5.

Indicative time steps used by the codes at the highest resolutions are 4 × 10−6 (V), 3 × 10−6 (SB), 2.5 × 10−6 (TSH) and 1.6 × 10−5

(SMJ). Code V was run on 512 processors at the highest resolution. Note that the choice of magnetic Prandtl number 5 results in a dynamo
solution that is close to the onset of stable dynamo action. Therefore, the stable solution only settles in slowly, as can be observed from Fig. 1(a),
and long time integrations are required to obtain stable solutions. This aspect made this benchmark particularly challenging, especially for
local codes that are computationally much more expensive than spectral ones.

5 D I S C U S S I O N

As was the case for the benchmark B1 and the sister study of Marti et al. (2013), dynamos in the weakly driven regime have a simple structure
that offer a distinct advantage to spectral methods. Despite the view that spectral codes will be replaced by local methods because of superior
parallelism, it is clear that spectral codes will continue to have an important role on strictly spherical problems. The current code of SMJ
(originating with Willis et al. 2007) shows good scaling on up to 1200 processors on a CRAY XE6 architecture, while the fully spectral code
of Marti (described in Marti et al. 2013) has been tested on up to 2000 processors, again with good performance.
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Figure 5. Results of the different codes. (a) uφ at the requested point in the equatorial plane (θ = π/2) whose r and φ-coordinates are given in Section 3. For
the key to the codes used, see Section 4. (b) Bθ at the same point. (c) Temperature T at the same point. (d) Magnetic energy Emag defined by (13). (e) Kinetic
energy Ekin defined by (13). (f) The drift rate ω. No values were contributed by Cébron to (a), (b) or (c), and no value was given by RNG for (f). For contributor
ZS the resolution has been taken to be 61/3 times the number of radial nodes, in agreement with Chan et al. (2007).
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Table 3. Spectral codes contributing to the benchmark. The number of significant figures given are those reported
by the authors, thus there are different numbers of significant figures, particularly for local quantities. Nr, L and
M are the number of radial nodes or modes, and maximum spherical harmonic degree and order, respectively. R
is the overall resolution in one direction. The code by RNG is a mixed spectral-finite element.

Nr L M R uφ Bθ T Emag Ekin ω Author

50 32 29 37 −58.0792 0.986 0.4261 79849.4 14892.8 3.7656 SMJ
80 42 42 52 −58.167 0.9931 0.4259 80076.3 14847.3 3.751 SMJ
96 48 48 61 −58.1705 0.9935 0.4259 80076.2 14846.9 3.7489 SMJ
96 60 53 70 −58.1796 0.9929 0.426 80074.7 14847.2 3.749 SMJ

128 64 64 81 −58.1786 0.993 0.4259 80072.7 14846.9 3.7489 SMJ
200 100 100 126 −58.1786 0.993 0.4259 80072.7 14846.5 3.7488 SMJ

33 32 64 33 −58.2075 0.99201 0.42587 82313.8 14531.4 4.02768 TSH
33 64 128 51 −58.1901 0.99423 0.42577 80082.1 14844.1 3.73999 TSH
33 128 256 81 −58.1825 0.99318 0.42587 80073.1 14845.7 3.73999 TSH
21 21 21 21 −58.307 0.9012 0.4391 79914.4 15191.1 3.736 T
33 21 21 25 −58.367 0.9011 0.4394 79893.9 15214.9 3.732 T
33 42 42 39 −58.1615 0.9931 0.4259 80071.2 14845.8 3.75 T
33 84 84 62 −58.1785 0.993 0.4259 80072.7 14846 3.75 T
65 42 42 49 −58.165 0.993 0.4259 80067.8 14846.8 3.751 T
65 84 84 77 −58.179 0.993 0.4259 80068.3 14847.2 3.751 T
33 42 11 30 −58.1695 0.9934 0.4259 80057.2 14815.3 3.6998 SBa

33 64 65 51 −58.1765 0.9928 0.4259 80000.7 14822.8 3.7484 SB
41 96 97 72 −58.1775 0.9929 0.4259 80025.7 14831.3 3.7488 SB

129 64 65 81 −58.177 0.9929 0.4259 80068.9 14845.2 3.7487 SB
90 180 60 99 −58.2985 1.0079 0.4224 80292.2 14836 RNGa, b

aThis was run with assumed fourfold symmetry.
bThe three resolutions (90, 180, 60) refer to Nr, Nz and Nφ , respectively.

Table 4. Local codes contributing to the benchmark. For V and ZS, R = 61/3N is a measure
of the overall resolution, since N is the radial resolution. In the case of V this is exact, since
a cubed sphere with 6N3 gridpoints is used; for ZS the relationship is approximate but quite
accurate.

N R uφ Bθ T Emag Ekin ω Author

64 116 −56.697 0.9092 0.4277 75162.4 15293.7 3.8236 V
96 174 −57.555 0.9462 0.4271 77572.0 15064.7 3.7712 V

128 232 −57.932 0.9746 0.4263 79012.3 14940.9 3.7457 V
50 91 −60.43 0.9614 0.4274 77643.3 15476.8 3.962 ZS
80 145 −58.48 0.9782 0.4271 78324.1 15136.6 3.835 ZS
96 174 −58.32 0.9974 0.4270 81621.7 15035.7 3.798 ZS

128 232 −58.51 0.9955 0.4270 81211.4 15032.7 3.794 ZS
200 363 −58.48 0.9951 0.4270 81209.6 15031.5 3.794 ZS

71 74756.4 14873.4 3.93 C

We should perhaps comment on the overall accuracy of local codes on these spherical problems. In the original B1 dynamo benchmark,
the code of Chan et al. (2007) showed agreement with case 1 at a level of 7.7 per cent, a discrepancy that must largely be attributable to
the difficulties in handling an insulating exterior. The present benchmark dispenses with that difficulty, and the better agreement at the level
of 1.4 per cent reported by ZS must now be attributable to the actual solution of the differential equations themselves in the fluid. We note
parenthetically that the finite volume formulation of Harder & Hansen (2005) shows a similar level of discrepancy in the case 1 benchmark
of B1, at a level of about 6 per cent (reported in Wicht et al. 2009). For the case 1 benchmark, the finite element formulation of Matsui &
Okuda (2005) has achieved agreement at a level of 3.6 per cent, while the so-called ‘control volume’ method of Simkanin & Hejda (2009)
achieves an agreement with the case 2 benchmark of B1 of better than 6 per cent in all variables; it is again the drift rates that are the most
difficult to retrieve accurately.

The advantage of local methods is in their flexibility to work in non-spherical geometries. The code of RNG has been used extensively
in a cylindrical geometry to study the Von Karman dynamo (Guermond et al. 2009, 2011); and the code of Chan et al. (2007) used by ZS has
been used to simulate the fluid dynamics in rotating spheroids (see Zhang et al. 2012, and references to other applications therein). Indeed,

Table 5. Recommended values for the benchmark, derived from the four spectral solutions, along with suggested error
corridors expressed in absolute and percentage terms. For the estimate of ω we omitted the TSH solution.

uφ Bθ T Emag Ekin ω

Value −58.179 0.9930 0.42589 80071 14846 3.7495
Error 0.002 0.0001 0.00001 2.5 1 0.001
Percentage error 0.004 per cent 0.01 per cent 0.002 per cent 0.003 per cent 0.006 per cent 0.03 per cent
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Wu & Roberts (2009) have used a gridpoint method to simulate a dynamo in a spheroid that is driven by precession, and the finite element
method has been used by Cébron et al. (2012) to perform MHD simulations in a triaxial ellipsoid. These applications are clearly the forté of
local methods.

To summarize, as we noted in Section 1, it is particularly gratifying to see that local methods based on both A and B formulations are
able to perform equally well. No account was taken in this exercise of the relative efficiency of the different codes, in terms of the time taken
to solution. This will form a focus of future efforts that the community will undertake.
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