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ABSTRACT. West Nile Virus (WNV) made its initial appearance in the New York City (NYC) metropolitan
area in 1999 and was implicated in cases of human encephalitis and the extensive mortality in crows (Corvus 
sp.) and other avian species. Mosquitoes were found to be the primary vectors and NYC’s current policy
on control strategies involved an eradication program that depends on the synchronicity of the summer
mosquito population’s increases with the occurrence of cases in humans. The purpose of this paper is to
investigate whether this is the most effective control strategy because past mathematical models assumed
discrete behavior that is modeled by difference equations for a single summer season was most important
to the virus’s life cycle. However, both surviving mosquito eggs and surviving migratory birds incubate
the virus during the winter, leading to a continuation of infections in the following warmer spring and
summer when the birds return and the eggs hatch. Additionally, the virulence of WNV has been observed
to fluctuate with changes in temperature toward warmer conditions. Models are required that account for
these multi-seasonal dynamics and time-scale calculus is a newly developed method for resolving the
behavior of systems that exhibit both discrete and continuous behavior. We found that, although the static
states of the new temperature delay model are no different from older models, simulations indicate that the
rate of the infection is affected by avian recovery at a lower temperature threshold. Consequently, eradication
strategies should consider that controlling mosquitoes during the fall when colder temperatures occur would
cause a fast and efficient drop to a disease-free state. This could prove rather more effective than mosquito
control in the warmer months.

Key Words: basic reproduction number; delay differential equation; dynamic equations on a time scale;
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INTRODUCTION

The West Nile virus (WNV), a member of the genus
Flavirus, first made its appearance in the Western
Hemisphere, particularly the New York City
metropolitan area, in late August and early
September of 1999 (Lanciotti et al. 1999, Asnis et
al. 2001). The outbreak resulted in 62 reported
infections, eight cases of human encephalitis with
seven fatalities, and extensive mortality in
American crows (Corvus brachrhychos), fish crows
(C. osifragus), and several exotic avian species
including a Chilean flamingo (Phoenicopterus

chilensis) in the Bronx Zoo (Lanciotti et al. 1999,
Asnis et al. 2001, LaDeau et al. 2008). At present,
WNV can now be found over most of North
America, including reports in Canada and Mexico.
It was first identified in Uganda in 1937, with
sporadic outbreaks in Africa, the Middle East, and
eastern Europe through the 1990s (Smithburn 1940,
Hubálek and Halouzka 1999). Besides birds, more
than 20 000 cases of WNV have been reported in
horses in North America (Centers for Disease
Control and Prevention (CDC) 2008). Over 62
species of mosquitoes have tested positive for the
WNV, but the Genus Culex has been identified as
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the dominant vector to avian and human hosts
(Wonham et al. 2004). LaDeau et al. (2008) have
recently elaborated the transmission ecology of
WNV (Fig. 1). Mosquitoes usually contract the
disease from biting avian carriers in which the virus
concentration in the blood has increased
substantially (viremia, such as the American crow).
Likewise, the reservoir population becomes
infected from mosquito bites. Humans and horses
can contract the disease, but are considered a dead-
end host because they do not produce sufficient
virus concentration in the blood to re-infect
mosquitoes if bitten (LaDeau et al. 2008). The virus
can be transmitted by ingestion of mosquitoes or
infected vertebrates (LaDeau et al. 2008).

LaDeau et al. (2008) have noted that researchers
need to evaluate further the causes of temporal and
spatial heterogeneity in vector abundance,
community composition, and their effects on
disease dynamics. Additionally, early predictors of
thresholds of annual epizootics and human
epidemics, including mosquito abundance and
winter pathogen survival, are needed, which is the
main focus of this paper.

Ever since the emergence of WNV in North
America, there have been attempts to mathematically
model the dynamics of the virus in order to provide
decision makers with control and/or eradication
strategies (e.g., Ghosh and Tapaswi 1999, Lord and
Day 2001a, 2001b, Thomas and Urena 2001, Choi
et al. 2002, Wonham et al. 2004, Bowman et al.
2005, Cruz-Pacheco et al. 2005, Lewis et al. 2006)
(see Table 1).

Thomas and Urena (2001) applied a discrete time
system to model the interactions between the virus
life cycle and the consequent effects on humans. A
discrete time system functions by separating time
into generations. They determined that the
important function to track in the control of WNV
is the total number of mosquitoes as a function of
time t in weeks (TM(t); Thomas and Urena 2001).
Their analysis indicated that the percentage of total
mosquitoes eradicated (spray kill rate) had to be
larger than a threshold value to result in average
mosquito population decline. Spray kill rates below
this threshold value resulted only in a temporary
decline of mosquito populations, but not a long-term
or time-averaged decline (Thomas and Urena 2001).
This result allowed policy makers to determine how

much spraying would be required to control the
virus by estimating the spray kill rate and ensuring
it was above the threshold value found in Thomas
and Urena (2001).

The Problem

Despite these encouraging results, all previously
known models only accounted for dynamics during
a single season (Wonham et al. 2006). It has been
observed that, during the North American warm
season, the rate of mosquito larval development
increases, the mosquito population continuously
grows in size, and the number of individual feeds
of a mosquito increases with increasing temperature
and vice versa. Mosquitoes also lay eggs during the
warm season, but the hatched populations abruptly
end with the first cold snap. The surviving eggs
remain dormant over the winter months, leading to
a continuation of infections the following warmer
spring and summer when the birds return and
interactions occur with the hatched eggs. To further
complicate this situation, WNV has been observed
to become more virulent by replicating itself at a
quicker rate during warmer periods and seasons than
during cooler periods (Day 2001, Hartman 2002).
Consequently, there is a need for subsequent models
to capture these multi-seasonal dynamics of WNV
that are a combination of both discrete and
continuous behavior.

Time-Scale Calculus (TSC) Model

The re-emergence of mosquitoes each year should
be modeled over time that is separated into warm
and cold seasons. We couple a continuous model of
the mosquito population’s dynamics during each
summer season with a discrete model that captures
winter bird migration to warmer climates and re-
emergence of the virus through newly hatched
mosquito eggs during the following summer season
(Fig. 2). This type of model is called a dynamic
equation over a time scale or time-scale calculus
(TSC, Hilger 1990).
Difference equations describe population dynamics
by considering time-discrete generation periods. A
difference equation population model describes the
next generation recursively as a function of the
previous generation (Thomas and Urena 2001).
Difference equations are discrete versions of
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Fig. 1. The life cycle of the West Nile virus within vector (mosquito) and reservoir (mosquito, humans,
and birds). Humans are viewed as a dead-end host in this model.

differential equations, which relate the rate of
growth of the population (the derivative) as a
function of the population. In the case of differential
equations, time is continuous as opposed to
discretely labeled generations. Thus, we refer to
difference equations as discrete time equations and
differential equations as continuous time equations.

With the availability of computing power,
difference equation models have increased in use
for population modeling. Many of the properties of
long-term behavior of solutions for discrete time
models have paralleled well-established results
from continuous time theory. Instead of proving
each parallel result individually, Stefan Hilger
introduced the notion of calculus on an arbitrary
time scale, which includes continuous time, discrete
time, and a mix of both (Hilger 1990). A time scale
is simply any closed subset of real numbers with the
purpose of developing an equation that evolves over
values in this scale. For example, for a differential
equation that models population density, the time
scale would begin at time equals zero and run over
all positive real numbers. In the case of a difference
equation model that describes a population of
dividing cells, time is discrete. Each time step is the
amount of time it takes for a single cell to divide. In
this case, the time scale would be positive integers.
Time-scale calculus provides a unified theoretical
tool for any combination of differential and
difference equations. For example, the time scale
for a mosquito population would be: 

(1)

Bohner and Peterson (2001, 2003) further develop
TSC using many of the usual notions of calculus
over time scales, including a generalized derivative,
a unified set of differentiation rules for finding
derivatives (power, product, quotient, and chain
rules), and solutions to first-order equations. In fact,
general results are continually being developed and
extended at the time of the writing of this article.

Consequently, as the infection cycle of West Nile
Virus involves a seasonal component, control
strategies to manage the disease require
consideration of the time scale in Eq. 1. We outlined
the use of TSC to understand multi-seasonal effects
of WNV to assist policy decisions on the virus in
the New York City metropolitan area in a New
Scientist article (Spedding 2003). An outcome of
this research was a collaborative effort between the
policy makers and mathematicians toward the
development of a dynamic equation on a time scale
that includes both temperate and colder seasons. A
mathematical model can evaluate when spraying
will be most beneficial for optimal control. For
example, the model can identify the times at which
the virus’s replication is at a maximum, which is
when eradication efforts would have the greatest
impact. Therefore, a multi-seasonal model is
necessary to evaluate all strategies, not just times
during the warm season.
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Table 1. The five dynamic single-season models for West Nile virus along with their epidemiological
features (FR = reservoir frequency dependence, T = transmission probabilities, VI = viral incubation period,
VT = vertical transmission, RD = reservoir death from virus, RI = reservoir loss of immunity).

Model Description Epidemiological Features

(Lord and Day 2001) System of eight differential equations
Three compartments for vectors
Eight compartments for reservoirs

FR,T,VI, RD, RI, RL
Age structure
States of vectors and reservoirs

(Thomas and Urena 2001) System of six difference equations
Three compartments for vectors
Three compartments for reservoirs
Converted to continuous time in (Lewis
et al. 2006)

MA,VI, VT,RI
States of vectors and reservoirs

(Wonham et al. 2004) System of seven differential equations
Four compartments for vectors
Three compartments for reservoirs

FR,T,VI, RD, RI, RL
State of vector
Age structure for Vector

(Bowman et al. 2005) System of four differential equations
Two compartments for vectors
Two compartments for reservoirs

FR, RD

(Cruz-Pacheco et al. 2005) System of five differential equations
Two compartments for vectors
Three compartments for reservoirs

FR,T, VT,RD, RI
Age structure

METHODS

The goal of the dynamic model is to accurately track
and predict two of the components of the life cycle
of WNV: the mosquito population and the avian
host population in a given week. Our model is based
on a single core dynamic model developed by
Wonham et al. (2006). This core model was the
result of a comparison of the construction and
resulting epidemiological properties of seven
interesting dynamic models (Ghosh and Tapaswi
1999, Lord and Day 2001a, 2001b, Thomas and
Urena 2001, Choi et al. 2002, Wonham et al. 2004,
Bowman et al. 2005, Cruz-Pacheco et al. 2005,
Lewis et al. 2006). Each of these models, including
the core model, described the behavior of WNV over
a single summer season. We build upon the two
dynamic mathematical models based on the core
model to capture seasonal dynamics. In the first
model, we focus on single season temperature
fluctuations and the delay effects of incubating
WNV in mosquitoes. The second model attempts to
understand the dynamics of West Nile over several
seasons.

Time-Scale Model of West Nile

In order to set up a model on a seasonal-dependent
time scale, we need to develop a set of time-scale
assumptions that identify the beginning and end of
each season and the periods when control strategies
will be employed. As this is the first attempt to
model over a multi-season time scale, we present
the simplest case where the mosquitoes and
reservoirs are not coupled as the time scale consists
of the colder seasons (week 20 to week 52 of the
year) when there is no mosquito activity. This
creates a jump in time from week 20 (the end of the
first warm season) to week 52 (the beginning of the
second warm season).

Under these assumptions, the time scale would be:
Season 1 = [0, 20], Season 2 = [52, 72], Season 3 =
[104, 124] and so forth where time is measured in
weeks (Fig. 3). Note that the theoretical mosquito
population increases due to dormant eggs that hatch
at the beginning of the warm season (Fig. 3). We
point out that all the mathematical results on this
particular time scale can be easily generalized to
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Fig. 2. The discrete time analysis by Thomas and Urena (2001) indicated that the important variable to
track in the control of West Nile virus is the total number of mosquitoes as a function of time t in weeks,
TM(t). The left inset shows that pesticide spraying to control mosquito populations is ineffective when
the spray kill rate is below a threshold value. The right inset describes the effectiveness of spraying
when the spray kill rate is higher than the threshold value.

any time scale where Season 1 =[0,x], Season 2=[52,
x+52], Season 3=[104, x+104] and so forth where
x represents the number of weeks in the warmer
season. The approach of the unified calculus is to
define the rate of change over all seasons by one
expression. This expression should reduce to the
regular derivative if the seasons were not
disconnected and should reduce to discrete change
if the time scale consisted of integer moments in
time. This generalization is what is known as the
delta derivative of a function over a time scale
(Bohner and Peterson 2001, 2003). The delta
derivative of a function depends on notions from
abstract mathematics, so we omit the general
definition and refer the interested reader to Bohner
and Peterson (2001). However, as it should be, if
the time scale is the usual real numbers, that is time
runs continuously from zero to infinity, then the
delta derivative of a function over the time scale
reduces to:

(2)

If the time scale is discrete time 0, 1, 2, ... then the
delta derivative of a function over this time scale
reduces to the difference of the function at the n +
1st time step and the nth time step or: 

(3)

Using the delta derivative we model the total
mosquito population density by setting the delta
derivative of the total mosquito population [TM(t)]
equal to the growth rate of the mosquito population
(rM) times the original total mosquito population
density[TM(t)] minus the death of the mosquitoes
due to pesticide spraying [s times the sum of δ(t,ti)
TM(t)]. We make the choice to model the population
growth by the simplest possibility first because even
direct proportional solutions to time-scale problems
have been only recently defined. Likewise, the delta

http://www.ecologyandsociety.org/vol14/iss2/art21/


Ecology and Society 14(2): 21
http://www.ecologyandsociety.org/vol14/iss2/art21/

Fig. 3. A schematic diagram depicting mosquito population growth (vertical axis) as a function of a
seasonal time scale (horizontal axis) where the active mosquito population remains dormant during
winter.

derivative of the total bird population [TB(t)] is
equal to the growth rate of the total bird population
(rB) times the original bird population: 

(4)

The second term on the left-hand side of Eq. 4: 

(5)

represents the death of mosquitoes due to pesticide
spraying. The parameter, s, is the spray kill rate,
which models the percentage of total mosquitoes

eradicated due to pesticide spraying. The function,
δ(t,ti), is an impulse function that is equal to 1 when
spraying occurs at time t = ti, otherwise it is 0. The
values of ti can be defined as time values in the time
scale when spraying occurs. The total impact to the
mosquito population will be the sum of the deaths
due to spraying [s times the sum of δ(t,ti)TM(t)].
We remind the reader that the left-hand side of Eq.
4 is the delta derivative of the total mosquito and
bird population over the seasonal time scale. The
notation is deceptive as the equations appear very
simple, yet a closed form solution to this system is
still ongoing research.

RESULTS

Time-Scale Model Analysis

The first result concerns a no spraying management
scenario where the decay or growth of the mosquito
population depends on the time scale. The length of
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the winter months is equal to 32 total weeks. We
use the result of the asymptotic behavior of a state
variable over a time scale (Gard and Hoffacker
2003) where: 

(6)

if this holds, then the total mosquito population will
decay to zero. On the other hand, if either the
converse set: 

(7)

or 

(8)

hold, then the mosquito population will grow
without bound. This result indicates that control
strategies such as pesticide application should be a
function of the length of the season.

In order to examine analytically the case where the
spray kill rate is not zero, we require the Laplace
Transform over a time scale that was defined
theoretically by Bohner and Peterson (2001, 2003).
The analytical solution for the total mosquito
population depends on an exact calculation of the
inverse Laplace Transform for our specific
equation. Even this simple looking equation on a
time scale does not yet have a closed form solution.
Although there have been significant advances in
Laplace Transform computations, the exact
formulation of the inverse Laplace Transform for
the non-zero spray kill rate case is still ongoing
research (Davis et al. 2007).

Because the seasonal impact on WVN is not a
discrete transition but a gradual drop in fall
temperature, a closer examination of seasonal
temperature fluctuations is required. As stated
previously, the WNV incubation length increases
as the temperature falls (Day 2001). In order to
capture these phenomena, we modeled the virus
incubation length using a delay differential
equation.

Temperature-Dependent Model

Following the core model in Wonham et al. (2006),
we constructed a compartmental susceptible-
infected-recovered (SIR) model with a temperature-
dependent time lag. The mosquito and bird
populations were separated into susceptible,
infected, and recovered categories. For example, in
order for susceptible birds to become infected, a
susceptible bird must be bitten and effectively
infected by an infected mosquito. Figure 4 depicts
a diagram of the interactions denoted by the
variables to be used in the formal mathematical
model. In order to derive an appropriate model that
includes temperature dependence, we modified the
core model by considering a delay in virus
incubation periods in the vector as a function of
temperature.

Each of the sub-population compartments is called
a state variable because we are interested in the state
of the sub-population as time changes. For example,
the total mosquito population can be divided into
the following components: the total mosquito
population = the population of mosquitoes
susceptible to contracting WNV + the population of
mosquitoes exposed to WNV but not yet able to
infect a host + the population of mosquitoes that are
infective + the mosquitoes who are removed from
the system through death. The state variables that
appear in the core WNV model represent the
susceptible, exposed, and infected mosquitoes
(denoted with a subscript V for vector) and the
susceptible, infected, and recovered birds (denoted
with a subscript R for reservoir) (Table 2).

The core model is a system of interconnected
differential equations that correlate the state
variables to each other. Each sub-population’s
differential equation is developed by the sub-
population’s rate of loss and rate of gain. For
example, the susceptible mosquito sub-population
gains new members through births from each of the
total mosquito sub-populations. As a fraction of the
births of exposed and infected mosquitoes retain the
virus, the gain through birth term is going to be the
overall constant birth rate of the total mosquito
population times the sum of the susceptible
mosquitoes (new births from susceptible mosquitoes)
and the proportion of the exposed and infected
vectors that do not retain the virus upon birth.
Mathematically this is formulated by: 
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Fig. 4. The interactions between vectors (V) and reservoirs (R) of the three states of birds and
mosquitoes: susceptible (S), exposed (E), and infected, denoted by the variables to be used in the formal
mathematical model.

(9)

where bV is the mosquito birth rate and ρV is the
fraction of births that retain the infection.

The core model includes an encompassing set of
assumptions that include all epidemiological
features in past mathematical models for WNV. The
assumptions behind the core model are based on
observed WNV dynamics involving the vector
Culex pipiens (Wonham et al. 2006) and six
different reservoir species (Work et al. 1955, Brault
et al. 2004, Komar et al. 2005, Langevin et al. 2005,
Reisen et al. 1996):
 

1. Vector deaths are entirely natural and not
disease related.
 

2. A fraction of vectors that have contracted the
disease transmit the virus to their offspring.
The offspring initially is in the exposed class
(not effectively infected).
 

3. A fraction of infected vectors recover from
the virus and have a loss of infectivity.
 

4. A fraction of reservoirs have loss of immunity
from the virus.

 
Based on specific reservoir species, the parameters
of the model can be chosen to reflect the appropriate
scenario. The mean and range of parameter values
for six different species were collected from the
literature and used for numerical simulations of the
core model in (Wonham et al. 2006). For example,
in the case of the American crow (C.
brachyrhynchos), the probability of surviving
infection is 0 and the length of infectivity is 4–6 d
(Komar et al. 2005).

In order to include the effects of temperature change
in the model, we included a delay term (τ) in the
exposed mosquito sub-population. This delay term
includes information from a past event that impacts
the present situation. Based on the assumption that
the incubation of the virus is inversely proportional
to temperature (Day 2001), we modify the
movement from exposed mosquitoes to infectious
mosquitoes by the delay term where τ ranges from
0 to 2 weeks. The resulting model alters the exposed
and infectious mosquito equations (see Appendix
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Table 2. Definition of the state variables modeled in the West Nile system
of differential equations.

State Vector Reservoir

Susceptible (S) SV SR

Exposed (E) EV

Infectious (I) IV IR

Recovered (R) RR

1). As all the sub-populations are interconnected,
the delay has an impact on all the state variables that
can be seen in the stability analysis and numerical
simulations.

Mathematical epidemiology uses SIR models to
answer several questions. The first is to find the
static states, one of which should be disease free. A
static state is the state that occurs when there is no
change in the state variables as a function of time
(the derivative is zero). The static states often are
what the dynamic states converge to as time evolves.
This fits nicely with the second question: What is
the stability and size of the static state? Finally, the
speed of convergence to the static states is highly
relevant. Reaching a disease-free state in a week as
opposed to a decade is an important consideration
in designing policy for control of WNV.

In order to answer some of these questions,
mathematical epidemiologists compute the basic
reproduction number of a disease (Anderson and
May 1991). This value is the average number of
secondary cases one infected individual will cause.
If this number is less than one, the virus will
converge to a disease-free state. Conversely, if the
basic reproduction number is greater than one, the
disease will spread through the population and
remain endemic. The size of this value is important
because the larger the basic reproduction number,
the more severe impact the disease has on the
population.

Wonham et al. (2006) found that the basic
reproduction number was very sensitive to mosquito
and bird population densities. This value was also

very sensitive to the type of mosquito–bird
interaction. In the modified delay model proposed
here, we found that the basic reproduction number
was not altered by the time delay caused by
temperature drops (Eq. A.2A in the Appendix).

Numerical simulations of the delay model were
conducted using MATLAB’s dde23-solver for
delay differential equations with constant delays
(Shampine and Thompson 2001). Parameters were
estimated as the mean values of the known
parameter ranges for six different reservoir species,
Corvus brachyrhynchos, Turdus migratorius,
Cyanocitta cristata, Passer domesticus, Mimus
polyglottos, Cardinalis cardinalis, and the vector
species Culex pipiens. The parameter values appear
in Wonham et al. (2006) and are based on observed
field data on WNV with original citations listed in
Table 3. Numerical simulations indicated that the
rate of convergence to the disease-free equilibrium
is a function of the time lag. Figure 5A plots the
susceptible, exposed, and infectious classes of
mosquitoes with zero time lag and Fig. 5B plots the
same quantities for an incubation time lag of 2
weeks. Because the populations are converging to
the same disease-free equilibrium, the difference in
convergence rates is not dramatically different (Fig.
5).

Table 4 contains data from the simulations for
exposed mosquito populations and recovered
reservoirs for two different time lags displaying the
numerical difference. These numerical results
indicate quicker reservoir recovery as the incubation
time of the virus in the mosquito lengthens.
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Table 3. List of parameters, meanings, and numerical ranges used to simulate the temperature-dependent
delay differential equation West Nile model. All of the rate parameters are measured in units 1/time.

Parameter Meaning Numerical Range used in Simulation

Vector

bV Percent gain of mosquitoes due to births 0.02–0.07
(Walter and Hacker 1974, Suleman and Reisen
1979, Oda et al. 1999)

dV Percent loss due to natural mosquito deaths 0.02–0.07
(Walter and Hacker 1974, Suleman and Reisen
1979, Oda et al. 1999)

ρV Fraction of births that retains infection 0.000–0.002
(Turell et al. 2001, Dohm et al. 2002, Goddard et
al. 2003, Bugbee and Forte 2004)

αV Probability of virus transmission to vector 0.23–1.00
(Work et al. 1955, Turell et al. 2000, Sardelis and
Turell 2001, Turell et al. 2001, Goddard et al.
2003, Tiawsirisup et al. 2004, Colton et al. 2005,
Tiawsirisup et al. 2005)

νV Probability of loss of infectivity 0.05
(Vanlandingham et al. 2004)

κV Virus incubation rate 0.09–0.12
(Sardelis and Turell 2001)

Reservoirs

αR Probability of virus transmission to reservoir 0.27–1.00
(Turell et al. 2000, Turell et al. 2001, Goddard et
al. 2002, Tiawsirisup et al. 2004, Vanlandingham
et al. 2004, Colton et al. 2005, Tiawsirisup et al.
2005)

βR Biting rate 0.34–0.53
(Griffith and Turner 1996)

dR Percent loss of birds due to natural deaths 0.001–0.002
(Milby and Wright 1976, Dyer et al. 1977,
Hickey and Brittingham 1991)

δR Percent loss of birds due to virus 0.0001
(Wonham et al. 2006)

γR Recovery rate to immunity 0.5
(Wonham et al. 2006)

νR Loss of immunity rate 0
(Wonham et al. 2006)

τ Length of virus incubation in vector in weeks 0–2
(Day 2001)
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Fig. 5. Comparison of simulations of vector population growth with no time lag (τ = 0) to vector
population growths with a 2-week time lag (τ = 2) (A). Comparison of simulations of reservoir
population growth with no time lag (τ = 0) to reservoir population growths with a 2-week time lag (τ =
2) (B).

DISCUSSION

The purpose of our model development for the
WNV was to include seasonal effects on virus
dynamics. If we incorporate longer virus incubation
periods as a function of lower temperature, our
model shows that the lengthening incubation period
does not impact the disease reproduction number,
but does affect the rate of convergence to the
disease-free equilibrium. Because the virus
incubates for a longer time as the temperature drops,
we observe faster avian recovery, which speeds up

the development of solutions. The results indicate
that eradication efforts would be more effective
during colder temperature periods relative to
warmer periods. In fact, our results suggest that
eradication efforts during the fall could prove more
effective than in the warmer months.

If we extend the single season model to a multi-
seasonal time-scale equation, it is seen that
convergence to a disease-free equilibrium is a
function of the length of the winter season. A longer
winter season extends the range of allowable
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Table 4. Numerically simulated model values for exposed mosquitoes and recovered reservoirs for two
different values of virus incubation delay lengths (? = 0.1 and ? = 2 weeks). Both populations are decreasing
as a function of virus incubation length, indicating a faster convergence to the disease-free equilibrium.

Week 1 3 5 10 15

Exposed Mosquitoes
τ= 0.1

6.0558 24.1528 30.5103 20.6888  10.5632

Exposed Mosquitoes
τ=2

6.1693 26.0955 32.4479 19.149  9.8783

Recovered Reservoir
τ= 0.1

6.138 32.8816 57.9375 94.6948 110.7719

Recovered Reservoir
τ=2

6.1372 32.7328 57.0247 91.7347 108.1411

mosquito growth rate to force a disease-free
equilibrium. This implies that less pesticide
spraying is required for a longer winter season.

We expect that if a model also includes a slower rate
of mosquito larval development and the number of
individual feeds of a mosquito decreases when
temperature decreases (see Hartman 2004) this
convergence will be even quicker. In terms of
determining policy decisions regarding West Nile,
the impact of this result is to “strike while the iron
is hot,” i.e., stronger controls as the temperature
drops can have a more profound effect on
controlling the development of WNV the following
year.

CONCLUSIONS

Impact on Management Decisions

This study successfully applied time-scale calculus
to ultimately provide the metropolitan area of New
York City with quantitatively derived recommendations
on the timing of insect control to eradicate mosquito
populations that carried the WNV. It was found that
controlling mosquito populations at the end of a
season appears to be an effective way to force
declines in the virus. Consequently, this study
demonstrated the feasibility of using time-scale
calculus to study a complex dynamical system
where both continuous and discrete behavior of

virus, insect, bird, and human populations had to be
considered simultaneously. Furthermore, time-
scale calculus provides an alternative tool to other
approaches for examining dynamic systems such as
catastrophe theory and self-organization that are
discussed in this Special Feature (e.g., Lockwood
and Lockwood 2008).

For this particular work, continued study of the two
time-scale models could partially answer many
questions about the development of this virus and
how to control it. As demonstrated by this study,
time-scale calculus models could be used for policy-
making decisions, such as testing spraying
strategies dependent on a given time scale and time
of year that could possibly eradicate the disease.
Possible improvements to this model include
connecting the delay model with the time-scale
model along with bird migration and developing a
time-dependent biting rate parameter that slows as
the temperature drops. Such a model would require
an equation based on two separate time scales, thus
implementing a relatively new and open area of
research in time-scale calculus.

Responses to this article can be read online at:
http://www.ecologyandsociety.org/vol14/iss2/art21/
responses/
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Appendix 1. Description of Delay Differential Equation Model for Single Season West Nile with
seasonal effects.

Please click here to download file ‘appendix1.pdf’.
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