$\mathrm{BaCu}_{5} \mathrm{Al}_{8}$: A Structure Containing Interconnected $\left[\mathrm{Al}_{8} \mathrm{Cu}_{4}\right]^{2-}$ Icosahedra

Karen J. Nordell and Gordon J. Miller
Department of Chemistry, Iowa State University, Ames, Iowa, 50011 USA

Received December 30, 1994; revised March 6, 1995; accepted March 8, 1995

Abstract

$\mathrm{BaCu}_{5} \mathrm{Al}_{8}$ was synthesized from stoichiometric amounts of the elements by heating in a tube furnace or melting in an arc welder. $\mathrm{BaCu}_{5} \mathrm{Al}_{8}$ forms a variation of the NaZn_{13} structure in which large Ba^{2+} cations are surrounded by a three-dimensional network of interconnected Cu -centered, $\left[\mathrm{Al}_{8} \mathrm{Cu}_{4}\right]^{2-}$ icosahedra. The compound was characterized by both powder and single crystal X-ray diffraction. $\mathrm{BaCu}_{5} \mathrm{Al}_{8}$ crystallizes in the space group $F m \overline{3} c$ (no.226); $a=12.2049(38) \AA ; Z=8 ; R=0.018 ; G$ Goof $=1.16 . \mathrm{EuCu}_{5} \mathrm{Al}_{8}$ was characterized by powder X-ray diffraction, and lattice parameters were refined from the measured 2 -theta values; $a=11.9715(19) \AA$. Magnetic susceptibility for both $\mathrm{BaCu}_{5} \mathrm{Al}_{8}$ and $\mathrm{EuCu}_{5} \mathrm{Al}_{8}$, and resistivity measurements on $\mathrm{EuCu}_{5} \mathrm{Al}_{8}$ are reported. Extended Hückel calculations on stoichiometries ranging from BaCu_{13} to $\mathrm{BaCuAl}{ }_{12}$, demonstrate the tuning of the system's stoichiometry to balance the Fermi energy and overlap populations.

INTRODUCTION

The cluster chemistry of the group 13 elements involves an unusually rich and diverse collection of both nonmetal and metal cluster compounds. Volumes have been written about the cluster chemistry of boron, and recent work has revealed new cluster structures involving the heavier group 13 members. ${ }^{1}$ An analogous cluster chemistry involving aluminum, however, has not been as forthcoming as one might expect based solely on its position in the periodic table: directly under boron and above gallium, whose cluster chemistry is well documented. A few cases aside, ${ }^{2}$ aluminum is not traditionally considered an element with a rich cluster chemistry. (RE) $\mathrm{Cu}_{6} \mathrm{Al}_{6}$, $(\mathrm{RE}=\mathrm{La}, \mathrm{Ce}, \mathrm{Pr}, \mathrm{Nd}, \mathrm{Sm}, \mathrm{Eu})^{3}$ are reported in the $\mathrm{NaZn}{ }_{13}$ structure based
on X-ray powder diffraction, but no detailed crystallography nor single crystal work have been published.

In order to explore aluminum's ability to form cluster compounds, we are investigating the ternary systems $\mathrm{AE}-\mathrm{Cu}-\mathrm{Al}$ and $\mathrm{RE}-\mathrm{Cu}-\mathrm{Al}$, and report here a single crystal investigation of the new compound $\mathrm{BaCu}_{5} \mathrm{Al}_{8}$. The observation of $\mathrm{BaCu}_{5} \mathrm{Al}_{8}$ in the $\mathrm{NaZn}_{13}{ }^{4}$ structure with aluminum and copper in icosahedral positions is particularly interesting with respect to both cluster chemistry of aluminum and any homogeneity width in the (RE) $\mathrm{Cu}_{x} \mathrm{Al}_{13-x}$ system. These new ternary compounds represent a transition from aluminum in delocalized, three dimensional structures with metallic behavior, to localized, electron-precise structures with semiconducting behavior. These new compounds contain aluminum and copper in icosahedra, but they are not isolated clusters. This is, instead, a network of interconnected icosahedra forming large cavities in which the barium atoms reside as large counter-cations. Along with the synthetic chemistry pursued with these new ternary compounds, some extended Hückel calculations were used to investigate the bonding in these icosahedral cluster compounds.

EXPERIMENTAL

Synthesis

Intermetallic materials of varying shoichiometries were prepared by reacting the elements: Ba rod (Johnson-Matthey Electronics, 99.5% purity), Al foil, Cu powder (Johnson-Matthey, 99.5% purity), Eu and La large shot (Ames Lab Rare-Earth Metals Processing, 99.0% purity). These elements were loaded in $\mathrm{Al}_{2} \mathrm{O}_{3}$ crucibles and sealed in evacuated quartz ampoules in an Ar-filled glove box and heated in a tube furnace, or melted in an argon filled, water cooled arc welder with a titanium getter for further argon purification. Reactions in tube furnaces followed the heating program: $25^{\circ} \mathrm{C}$ to $1100{ }^{\circ} \mathrm{C}\left(\sim 5^{\circ} \mathrm{C} / \mathrm{min}\right), 1$ hour soaking at $1100^{\circ} \mathrm{C}$, slowly cooling to $25^{\circ} \mathrm{C}\left(\sim 2^{\circ} \mathrm{C} / \mathrm{min}\right)$. For samples melted in the arc welder, reactants were surrounded by Al foil, melted, and, in some cases, remelted several times after turning the resulting buttons over. Products from both synthetic methods were generally silvergray metallic in appearance, and were increasingly brittle with an increasing Al content. The $\mathrm{BaCu}_{5} \mathrm{Al}_{8}$ structure reported here was solved from a crystal fragment picked from a crucible/tube furnace reaction loaded with the stoichiometry $\mathrm{BaCu}_{2} \mathrm{Al}_{9}$. Reactions with a variety of $\mathrm{Cu}: \mathrm{Al}$ ratios were carried out using both synthetic techniques. See Table I for a summary of our synthetic results.

In many of these cases, the $\mathrm{BaCu}_{5} \mathrm{Al}_{8}$ phase was identified in the powder pattern, sometimes as the only phase, and often mixed with other binaries. Since Ba is a large divalent metal cation in this structure, synthesis has been attempted with other large di- and trivalent metals as well, and single crystal work has begun on products from the $\mathrm{MCu}_{5} \mathrm{Al}_{8}(\mathrm{M}=\mathrm{Sr}, \mathrm{Eu}, \mathrm{La})$ systems, with preliminary results indicating products with a similar stoichiometry and structure as $\mathrm{BaCu}_{5} \mathrm{Al}_{8}{ }^{5}{ }^{5}$

TABLE I
Synthesis with varying stoichiometries

Reaction stoichiometry	Heating method	Reaction products (by powder X-ray diffraction)
BaCu_{13}	arc welder	BaCu_{13} (see Ref. 12)
$\mathrm{BaCu}_{6} \mathrm{Al}_{7}$	furnace and arc welder	$\mathrm{BaCu}_{5} \mathrm{Al}_{8}$
$\mathrm{BaCu}_{5} \mathrm{Al}_{8}$	furnace and arc welder	$\mathrm{BaCu}_{5} \mathrm{Al}_{8}$
$\mathrm{BaCu}_{4} \mathrm{Al}_{9}$	arc welder	$\mathrm{BaCu}_{5} \mathrm{Al}_{8}$
$\mathrm{BaCu}_{3} \mathrm{Al}_{10}$	furnace	$\mathrm{BaCu}_{5} \mathrm{Al}_{8}+\mathrm{CuAl}_{2}+\mathrm{Al}$
BaCuAl_{12}	furnace and arc welder	unknown
BaAl_{13}	arc welder	unknown

TABLE II
Structure determination summary for $\mathrm{BaCu}_{5} \mathrm{Al}_{8}$

Space group	$m F \overline{3} c$ (no. 226)
Unit cell dimensions	$a=12.205(4) \AA$
Volume	$1815.8(10) \AA^{3}$
Z	8
Density (calc.)	$4.946 \mathrm{~g} \mathrm{~cm}^{-3}$
Crystal size/mm	$0.50 \times 0.30 \times 0.20$
Absorption coefficient	$16.776 \mathrm{~mm}^{-1}$
Radiation	Mo K $\alpha(\lambda=0.71073 \AA)$
Temperature/K	$298(1)$
2Θ range	2.0 to 60.0°
Scan range (ω)	0.60°
Scan speed	variable, 1.0 to $10.0 \circ / \mathrm{min}$ in ω
Index ranges	$0 \leq h \leq 12,-16 \leq k \leq 16$,
	$-16 \leq l \leq-16$
Reflections collected	8415
Independent reflections	$117\left(R_{\text {int }}=0.0843\right)$
Observed reflections	$115\left(F_{\mathrm{o}} \geq 4.0 \sigma\left(F_{\mathrm{o}}\right)\right)$
Min./max. transmission	$0.3495 / 0.9006$
Weighting scheme	$w^{-1}=\sigma^{2}(F)+0.0015 F^{2}$
Parameters refined	13
R indices [$\left.F_{\mathrm{o}} \geq 4 \sigma\left(F_{\mathrm{o}}\right)\right]$	$R=0.0186, w R=0.0452$
R indices (all data)	$R=0.0188, w R=0.0452$
Goof* (all data)	1.16
Data-to-parameter ratio	$8.4: 1$
Largest difference peak	$+0.87 \mathrm{e} / \AA^{-3}$
Largest difference hole	$-1.24 \mathrm{e} / \AA^{-3}$

[^0]
Structure Determination

Analysis of reaction products was carried out by both the powder X-ray analysis using an Enraf-Nonius Guinier camera ($\mathrm{Cu} \mathrm{K} \alpha_{1}$ with Si internal standard) and single crystal analysis of $\mathrm{BaCu}_{5} \mathrm{Al}_{8}$ on a Siemens ($\mathrm{Mo} \mathrm{K} \alpha_{1}$) diffractometer. A silver, irregularly shaped crystal taken from the reaction products was loaded, under air, into a capillary and sealed. Using high angle reflections ($2 \Theta>30$ degress), a lattice parameter of $12.205(4) \AA$ was refined with a fit of 6.73 . Further relevant crystallographic data are summarized in Table II.

Using single crystal X-ray diffraction, a face-centered cubic unit cell with Laue symmetry $m \overline{3}$ was indexed from a group of 30 reflections in the 2Θ range from 15° to 30°. A data set of 117 unique reflections and absorption correction reflections was collected on a Siemens P4 diffractometer at $298 \pm 1 \mathrm{~K}$. Lorentz and polarization corrections were applied, and a nonlinear correction based on the decay in the standard reflections was applied to the data set. A series of azimuthal reflections was collected and a semi-empirical absorption correction based on these scans was applied. The structure was solved by direct methods while refinement calculations were performed on a Digital Equipment Micro VAX 3100 computer using the SHELXTLPLUS 6 programs. Positional and displacement parameters are summarized in Table III. (A compilation of all the crystallographic data, both single crystal and powder X-ray diffraction measurements may be obtained upon request from the authors).

TABLE III

Positional coordinates and equivalent isotropic displacement coefficients for $\mathrm{BaCu}_{5} \mathrm{Al}_{8}$

Atom	Site	x	y	z	$U_{\text {eq }}$	Site occ.
Ba	8 a	$1 / 4$	$1 / 4$	$1 / 4$	$0.0065(3)$	1.0
Cu 1	8 b	0	0	0	$0.0147(5)$	1.0
Al	96 i	$0.1166(1)$	$0.1755(1)$	0	$0.0138(4)$	$0.322(3)$
Cu 2	96 i	$0.1166(1)$	$0.1755(1)$	0	$0.0138(4)$	$0.178(3)$

$\mathrm{EuCu}_{5} \mathrm{Al}_{8}$ was synthesized in the arc welder by reaction of the elements and analyzed by powder X-ray diffraction. Using high angle reflections ($2 \Theta>30$ degrees), a lattice parameter of $a=11.972(2) \AA$ was refined with a fit of 3.48 . Single crystal work is in progress and preliminary results suggest an $f c c$ unit cell with a lattice parameter smaller than $\mathrm{BaCu}_{5} \mathrm{Al}_{8}$, in agreement with the powder data.

Physical Measurements

Magnetic susceptibilities were measured on $\mathrm{BaCu}_{5} \mathrm{Al}_{8}$ and $\mathrm{EuCu}_{5} \mathrm{Al}_{8}$ samples, using a SQUID magnetometer. Measurements were made from 6 K to 300 K at a field strength of 3 Tesla (30000 Gauss). After making a diamagnetic core correction,
the $\mathrm{EuCu}_{5} \mathrm{Al}_{8}$ material showed classical paramagnetic behavior with a large signal and an effective moment of 7.82(2) Bohr magnetons, for $T>80 \mathrm{~K}$, corresponding to Eu^{2+}. Magnetic hysteresis measurements were made on the $\mathrm{EuCu}_{5} \mathrm{Al}_{8}$ sample, at 50 K , 75 K and 100 K . The $\mathrm{BaCu}_{5} \mathrm{Al}_{8}$ compound showed temperature independent paramagnetism above $100 \mathrm{~K}\left(X_{\text {TIP }}=1.0 \times 10^{-4} \mathrm{emu} / \mathrm{mol}\right)$, with a tail at low temperatures, possibly due to a paramagnetic impurity.

In previous work on ternary lanthanide aluminides ($\mathrm{EuFe}_{4} \mathrm{Al}_{8}, \mathrm{EuMn}_{4} \mathrm{Al}_{8}$, $\mathrm{EuCu}_{4} \mathrm{Al}_{8}, \mathrm{EuFe}_{6} \mathrm{Al}_{6}$, and $\mathrm{EuCu}_{6} \mathrm{Al}_{6}$, all forming the ThMn_{12} structure ${ }^{7,3}$) Eu is reported as divalent or mixed valent. The evidence for such an assignment comes mostly from the larger unit cell volumes of the Eu compounds compared with the traditionally trivalent rare-earth elements forming the same compounds.

To complement the magnetic data which supported an f^{7} configuration on the Eu, X-ray Photoelectron Spectroscopy (XPS) was carried out on a PHI 5500 Multi-Technique Surface Analysis Equipment for samples of $\mathrm{EuCu}_{5} \mathrm{Al}_{8}$ and EuAl_{4} in order to get core binding energies for $\mathrm{Eu} . \mathrm{EuAl}_{4}$ was selected as a potential standard for Eu^{2+} in an aluminide structure found for all the alkaline earth aluminides. ${ }^{8}$ When analyzing for Eu metal (i.e. Eu^{0}) using XPS, two of the most intense peaks occur at 1125 and 1154 eV corresponding to the 3d shell. For both EuAl_{4} and $\mathrm{EuCu}_{5} \mathrm{Al}_{8}$, peaks for these same two Eu core binding energies ooccurred. The XPS data for freshly made EuAl_{4} suggested that it was inappropriate to consider it as a model for Eu^{2+}, based on the equivalence of binding energies for Eu in EuAl_{4} and those of Eu metal. We hypothesize that there is a mixing of the Eu valence 6s, 6p, and 5d orbitals with the $\left[\mathrm{Cu}_{5} \mathrm{Al}_{8}\right]$ framework, which makes a formal oxidation state of Eu difficult to assign. We are continuing to investigate this issue.

Resistivity measurements were made on the $\mathrm{EuCu}_{5} \mathrm{Al}_{8}$ sample using the Qmethod. ${ }^{9}$ The sample was prepared by mixing 60 mg of $\mathrm{EuCu}_{5} \mathrm{Al}_{8}$ powder ($<150 \mu \mathrm{~m}$ particle size) with dry $\mathrm{Al}_{2} \mathrm{O}_{3}$ powder in a Pyrex tube, which was then evacuated and sealed. Measurements on the " $Q_{"}$ meter were made at temperature intervals from $-174{ }^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}$, with the sample both in and out of the coil. The sample resistivity (ρ) was calculated from the data from the equation: $\rho=4.84 \times 10^{5} \times\left(V a^{2}\right) / \Delta(1 / Q)(\Omega \mathrm{m})$, where V is the volume of the sample $\left(\mathrm{m}^{3}\right), a$ is the radius of the particles (m), and $\Delta(1 / Q)=1 / Q_{\text {in }}-1 / Q_{\text {out. }}$. The resistivity of the $\mathrm{EuCu}_{5} \mathrm{Al}_{8}$ sample was $122(10) \mu \Omega \mathrm{cm}$ at 293 K and $99(7) \mu \Omega \mathrm{cm}$ at 100 K . The data between 100 K and 293 K was fitted to the equation $\rho=87(5)+0.12(2) T$. The resistivites of Cu and Al metal are 1.75 and $2.824 \mu \Omega \mathrm{~cm}$ at 293 K , respectively.

Theoretical Calculations

The electronic structures of these compounds were evaluated using the LCAO approximation in extended Hückel calculations. ${ }^{10}$ Barium atoms were treated as classical cations, donating two electrons to the metallic $\left[\mathrm{Cu}_{x} \mathrm{Al}_{13-x}\right.$] framework, and, therefore, no specific orbital contributions from the barium atoms were considered. Density of states (DOS) and crystal orbital overlap population (COOP) curves were determined by summing over a special k -point set (60 k -points in the irreducible wedge of the first Brilloun zone). The parameters of the atomic orbitals ${ }^{11}$ used in the calculations are given in Table IV.

TABLE IV
Atomic parameters for extended Hückel calculations

Element	Atomic orbital	$H_{\mathrm{ii}} / \mathrm{eV}$	ζ_{1}	C 1	ζ_{2}	C 2
Cu	4 s	-11.40	2.20			
	4 p	-6.06	2.20			
	$3 \mathrm{~d}^{*}$	-14.00	5.95	0.5933	2.30	0.5744
Al						
	3 s	-12.30	1.37			
	3 p	-6.50	1.36			

* Double ζ Slater-type orbitals used for the Cu 3d

DISCUSSION

Structural Description

The $\mathrm{BaCu}_{5} \mathrm{Al}_{8}$ structure is a variation of the NaZn_{13} structure. The structure has a face-centered cubic unit cell, as shown in the packing diagram of Cu -centered icosahedra and Ba^{2+} cations, Figure 1a. In Figure 1b, a clearer section of the structure is shown with the icosahedra surface bonding highlighted.

Figure 1. a) Unit cell »packing" of the Ba^{2+} cations and the large Cu-centered icosahedra. Icosahedra are large circles at $(0,0,0)$, and the Ba^{2+} cations are the smaller circles at $(0.25,0.25,0.25)$.
b) A section of the $\mathrm{BaCu}_{5} \mathrm{Al}_{8}$ complete structure is shown where the large circles are Ba atoms and the smaller circles make up the interconnected icosahedral network of Cu and Al atoms.

The data refined equally well in the noncentrosymmetric space group $F \overline{4} 3 c$ (no. 219), with Pearson's symbol $c F 112$, with the icosahedra slightly tilted, thus destroying the mirror symmetry of the centrosymmetric $F m \overline{3} c$ (no. 226). The structure can be built by starting with a Ba atom in the center of a cube and adding a Cu-centered icosahedron (Figure 2a) on each of the 8 corners of the cube. In the rather large unit cell of this structure, there are 8 such units, so the unit cell contents are $\mathrm{Ba}_{8} \mathrm{Cu}_{8}\left(\mathrm{Cu}_{0.35} \mathrm{Al}_{0.65}\right)_{96}$. Based on the crystallographic data, the centers of the icosahedra are occupied by $\mathrm{Cu}(1)$ atoms (8a), and the icosahedral sites (96i) are randomly occupied by $4 \mathrm{Cu}(2)$ and 8 Al atoms in $\mathrm{BaCu}_{5} \mathrm{Al}_{8}$. The surface (intra) icosahedral bonds are $2.630(5) \AA, 2.694(5) \AA$, and $2.825(4) \AA$, and the inter-icosahedral bonds are $2.652(3) \AA$ and $2.707(3) \AA$, while the bonds from the central $\mathrm{Cu}(1)$ atom to the icosahedral $\mathrm{Cu}(2)$ and Al atoms are slightly shorter at $2.562(2) \AA$. The Ba atoms are surrounded by a 24 vertex snub cube (Figure 2b), with distances from the Ba to the $\mathrm{Cu}(2)$ and Al atoms are 3.576(1) \AA.

Figure 2. a) Cu-centered icosahedron (12 vertices). b) Ba-centered snub cube (24 vertices).

Theoretical Calculation Results

One question the calculations were designed to address was the following: is there an electronic or energetic reason why the ternary phase forms with the stoichiometry $\mathrm{BaCu}_{5} \mathrm{Al}_{8}$? Calculations aimed at providing some answers to this question proceeded by varying the $\mathrm{Cu}: \mathrm{Al}$ ratio from BaCu_{13}, $\mathrm{BaCu}_{12} \mathrm{Al} \ldots \mathrm{BaAl}_{13}$ and considering the total density of states, Fermi ener-

TABLE V
Extended Hückel calculation results

		COOP	
Compound stoichiometry	Fermi energy/eV	Central- surface	Surface- surface (avg.)
	-10.62	0.0739	0.0713
BaCu_{13}	-8.06	0.1239	0.1713
$\mathrm{BaCu}_{8} \mathrm{Al}_{5}$	-7.33	0.1330	0.1708
$\mathrm{BaCu}_{6} \mathrm{Al}_{7}$	-7.03	0.1373	0.1679
$\mathrm{BaCu}_{5} \mathrm{Al}_{8}$	-6.45	0.1333	0.1626
$\mathrm{BaCu}_{4} \mathrm{Al}_{9}$	-4.65	0.1159	0.2323
BaCuAl_{12}	-4.35	0.1673	0.2215
BaAl_{13}			

gies, and COOP curves for the bonding in the icosahedra. Some of the results are summarized in Table V, including both central atom-surface and surface-surface bond overlap populations.

Three sets of density of states (DOS) curves are shown in Figure 3, corresponding to $\mathrm{BaCu}_{13}, \mathrm{BaCu}_{5} \mathrm{Al}_{8}$, and BaCuAl_{12}, with the Fermi energies marked with dotted lines.

The $\mathrm{BaCu}_{13}{ }^{12}$ phase has been identified in the NaZn_{13} structure type, as well as our observation of the $\mathrm{BaCu}_{5} \mathrm{Al}_{8}$ compound; however, the BaCuAl_{12}

Figure 3. Total DOS curves for $\mathrm{BaCu}_{13}, \mathrm{BaCu}_{5} \mathrm{Al}_{8}$, and $» \mathrm{BaCuAl}_{12}$ « from left to right as labeled. The Fermi energies ($E_{\mathrm{F}} / \mathrm{V}$) for each model are marked with a dotted line.
is merely a hypothetical composition in the $\mathrm{BaCu}_{5} \mathrm{Al}_{8}$ structure for these calculations. The DOS curves for all three are dominated by a strong and narrow Cu d-band between -15.0 and -13.0 eV , which broadens as the Cu concentration increases and, above which the DOS is dispersed and nearly featureless in the BaCu_{13} and $\mathrm{BaCu}_{5} \mathrm{Al}_{8}$ curves. The features (i.e. peaks) in the BaCuAl_{12} DOS curve between -9.0 and -4.0 eV correspond to high concentrations of molecular orbitals in the MO diagram of a single Al_{12} icosahedron taken from the structure. These features are smeared out as the $\mathrm{Cu}: \mathrm{Al}$ ratio is increased and the bands are dispersed.

Figure 4 contains the COOP curves for the icosahedral central atom-surface, and surface-surface bonds in $\mathrm{BaCu}_{5} \mathrm{Al}_{8}$.

Figure 4. COOP curves for the central atom-surface ($\mathrm{Cu} 1-\mathrm{Cu} 2 / \mathrm{Al}$) and surface-surface bonding ($\mathrm{Cu} 2 / \mathrm{Al}-\mathrm{Cu} 2 / \mathrm{Al}$) in $\mathrm{BaCu}_{5} \mathrm{Al}_{8}$ are presented. The Fermi energy $(-7.026 \mathrm{eV})$ is marked with a dotted line.

The COOP curves demonstrate an ideal situation which maximizes the bonding in $\mathrm{BaCu}_{5} \mathrm{Al}_{8}$, i.e. the Fermi energy crosses at the change from the bonding to anti-bonding character. In the Cu rich case $\left(\mathrm{BaCu}_{13}\right)$, with a low Fermi energy, there are many bonding states which are not filled, while in the Al rich case $\left(\mathrm{BaCuAl}_{12}\right)$, with a high Fermi energy, there are many antibonding states filled. The strength of the bonding, (i.e. overlap populations) between atoms forming the icosahedra varies as follows; $\mathrm{Al}-\mathrm{Al}>\mathrm{Al}-\mathrm{Cu}>\mathrm{Cu}-\mathrm{Cu}$. Interestingly, this trend does not change as the $\mathrm{Cu}: \mathrm{Al}$ ratio changes. The $\mathrm{Cu}-\mathrm{Al}$ and $\mathrm{Cu}-\mathrm{Cu}$ bonding overlap populations are nearly equal for all the stoichiometries, but the strength of the $\mathrm{Al}-\mathrm{Al}$ bonding increases as the Cu content increases.

Summary

We report the synthesis and X-ray structural characterization of the new compound $\mathrm{BaCu}_{5} \mathrm{Al}_{8}$, whose structure contains interconnected $\left[\mathrm{Al}_{8} \mathrm{Cu}_{4}\right]^{2-}$ icosahedra. Magnetic measurements on $\mathrm{BaCu}_{5} \mathrm{Al}_{8}$ and isostructural $\mathrm{EuCu}_{5} \mathrm{Al}_{8}$ are reported, as well as resistivity measurements for $\mathrm{EuCu}_{5} \mathrm{Al}_{8}$. Further characterization and physical property measurements are being pursued for many other alkaline earth, rare earth, and transition metal ternary aluminides.

Supplementary Materials. - Crystallographic data (excluding structure factors which are available from the authors) for the structures reported in this paper have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication no. CCDC-109/68-825. Copies of the data can be obtained on application to the Director, CCDC, 12 Union Road, Cambridge CB2 1EZ, UK. (Fax: 44 (0) 1223336033; E-mail: teched@chemcrys.cam.ac.uk).

Acknowledgements. - We are grateful to Alejandro Leon-Escamilla for the use of the "Q« meter, Jim Anderegg for the XPS data, and Victor Young for help with the structure refinement. This project was supported by the Donors of the Petroleum Research Fund, administered by the American Chemical Society.

REFERENCES

1. a) N. N. Greenwood and A. Earnshaw, Chemistry of the Elements, Oxford, Pergamon Press, 1990, p. 155.
b) D. Emin, T. Aselage, C. L. Beckel, I. A. Howard, and C. Wood (Eds.) Boron-Rich Solids, AIP Conference Proceedings 140, Albuquerque, NM, 1985.
c) D. Emin, T. Aselage, A. C. Switendick, B. Morosin, and C. L. Beckel (Eds.) Bo-ron-Rich Solids, AIP Conference Proceedings 213, Albuquerque, NM, 1990.
d) J. Corbett and S. Sevov, Inorg. Chem. 30 (1991) 4876.
e) C. Belin and M. Tillard-Charbonnel, Progr. Solid State Chem. (1993) 59.
2. Walfo, Acta Crystallogr. 17 (1964) 57; R. B. King, Inorg. Chim. Acta (1992) 841.
3. I. Felner, J. Less Common Metals 72 (1980) 241.
4. D. Shoemaker, R. Marsh, F. Ewing, and L. Pauling, Acta Cryst. 5 (1952) 637.
5. Publication of results in progress.
6. SHELXTL-PLUS, Version 4.0, Siemens Industrial Automation, Inc., Madison, WI, USA.
7. I. Felner and I. Nowik, J. Phys. Chem. Solids 40 (1979) 1035.
8. P. Villars and L. D. Calvert, Pearson's Handbook of Crystallographic Data for Intermetallic Phases 2 (1989)
9. J. Shinar, B. Dehner, B. J. Beaudry, and D. T. Peterson, Phys. Rev. B37 (1988) 2066.
10. R. Hoffmann and W. N. Lipscomb, J. Chem. Phys. 36 (1962) 2179, 3489; R. Hoffmann, J. Chem. Phys. 39 (1963) 1397; J. H. Ammeter, H. B. Bürgi, J. C. Thibeault, and R. Hoffmann, J. Amer. Chem. Soc. 100 (1978) 3686; M. H. Wangbo, R. Hoffmann, and R. B. Woodward, Progr. Roy. Soc. A366 (1979) 23.
11. E. Clementi and C. Roetti, At. Data Nucl. Data Tables 14 (1974) 177.
12. G. Bruzzone, J. Less Common Metals 25 (1971) 353.

SAŽETAK

$\mathrm{BaCu}_{5} \mathrm{Al}_{8}:$ Struktura koja sadrži međusobno vezane ikozaedre $\left[\mathrm{Al}_{8} \mathrm{Cu}_{4}\right]^{2-}$

Karen J. Nordell i Gordon J. Miller

Grijanjem u cijevnoj peći ili metodom lučnog taljenja stehiometrijskih količina elemenata prireden je $\mathrm{BaCu}_{5} \mathrm{Al}_{8}$. Spoj ima strukturu tipa NaZn_{13} u kojoj su veliki kationi Ba^{2+} okruženi trodimenzijskom mrežom Cu-centriranih ikozaedara $\left[\mathrm{Al}_{8} \mathrm{Cu}_{4}\right]^{2-}$. Spoj je karakteriziran difrakcijom rentgenskih zraka na prahu i na monokristalu. $\mathrm{BaCu}_{5} \mathrm{Al}_{8}$ kristalizira u prostornoj grupi $F m \overline{3} c$ (br. 226); $a=12.2049$ (38) \AA; $Z=8 ; R=0.018 ;$ Goof $=1.16 . \mathrm{EuCu}_{5} \mathrm{Al}_{8}$ je karakteriziran difrakcijom rentgenskih zraka na prahu, parametri jedinične ćelije određeni su iz vrijednosti 2-theta; $a=11.9715(19) \AA$. Dane su vrijednosti magnetskih susceptibilnosti za $\mathrm{BaCu}_{5} \mathrm{Al}_{8}$ i $\mathrm{EuCu}_{5} \mathrm{Al}_{8}$ kao i mjerenja električke otpornosti za $\mathrm{EuCu}_{5} \mathrm{Al}_{8}$. Računi proširenom Hüc-kel-ovom metodom za stehiometrije od BaCu_{13} do BaCuAl_{12} pokazuju prilagodbu stehiometrije sustava Fermijevoj energiji i populaciji prekrivanja.

[^0]: * Goof = Goodness of fit

