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A variant of the leapfrog transformation is discussed. It is pointed out
that the presented variant of the leapfrog transformation is a powerful
graph-theoretical technique for generating many classes of (chemical)
graphs. This technique is applied to polyhexes, square animals and other
planar polycyclic graphs with cycles of various sizes.

The leapfrogging technique was introduced for systematic generation of fuller-
enes.!” A given fullerene C, of n carbon atoms can be always used to generate a
larger fullerene C,, with 3n carbon atoms by the leapfrog transformation. The leap-
frogging technique is actually a very powerful graph-theoretical technique which can
be used for generating many different classes of graphs.

In this report, we wish to discuss a variant of the leapfrogging technique and
describe its application to several classes of planar polycyclic graphs. This variant
of the leapfrogging technique consists of two steps: the first step involves the omni-
capping process® and the second step the construction of the inner dual.? The variant
differs from the original proposal in using the inner dual instead of the dual.

Let us call the initial polycyclic (polygonal) graph the parent graph. The omni-
capping process (which is also called the stellar subdivision) consists of putting a

* Reported in part at MATH/CHEM/COMP 93 and the First Croatian Meeting on Fullerenes (Rovinj: June
21-25, 1993)
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vertex (planting a seed) in the center of each face (polygon) of the planar embedding
of the polycyclic graph and then connecting it with the vertices of a polygon. This
process produces a deltagonal polycyclic graph for the parent graph. We call the del-
tagonal polycyclic graph the delta graph. All faces in the delta graph are trigonal.
The first step of the leapfrog transformation ends with the creation of the delta
graph. This process is illustrated in Figure 1 for the case of the heptagon.
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HEPTAGON PLANTING A SEED DELTAHERTAGON
(a parent graph) (a delta graph)

Figure 1. The omnicapping process.

The inner dual can be constructed in the following way:? Place one vertex in the
center of each face and, if two faces have an edge e in common, join the correspond-
ing vertices with an edge e’ crossing only e. Construction of the inner dual of the
deltatetrabenzoanthracene graph (i.e.,, the dualization of the delta graph) is shown
in Figure 2.
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THE INNER DUAL OF THE
DELTATETRABENZOANTHRACENE GRAPH

Figure 2. Construction of the inner dual of deltatetrabenzoanthracene graph, i.e., dualization
of the delta graph.

The inner dual operation gives a novel polycyclic graph from the delta graph,
called the leapfrog graph. An important point to emphasize is that the symmetry
characteristics of the parent graph and its leapfrog graph match, unless there are
bridges in either of these two graphs. The leapfrog transformation may be schema-
tized as:

construction of the
omnicapping process inner dual

parent graph ———9 delta graph e leapfrog graph
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Below we describe the use of the above procedure on several classes of chemical
graphs.

(1) The leapfrogging of polyhexes

Dias!® first used the leapfrog transformation outside the fullerene domain. Dias
has used it for generating polyhexes.!®%!! Polyhexes are planar graphs that may be
obtained by any combination of regular hexagons, such that two of its hexagons have
exactly one common edge or are disjoint.!? Dias has shown that any simply con-
nected polyhex (i.e., polyhex without holes) with n vertices can be transformed by
the leapfrog method into a successor polyhex or nonpolyhex graph (such as biphenyl)
with [3(n — V,) + 6] vertices (V, = the number of vertices with the degree equal to
2). If the result is a polyhex, it contains the maximum number of Clar sextets!3 and
the same point symmetry group as the parent graph.

In Figure 3 we give the leapfrog transformation of a triangulene graph into a

tribenzo[a,g,m]coronene graph. The corresponding conjugated hydrocarbons are
open-shell and closed-shell structures, respectively.

OMNICAPPING

—_— -

DUALIZATION

TRIANGULENE GRAPH
TRIBENZO[a,g,m]CORONENE GRAPH

Figure 3. The leapfrogging of a triangulene graph into a tribenzol[a.g.m]coronene graph.

The tribenzo[a,g,m]coronene graph can produce, by an additional leapfrog trans-
formation, a 2,12,22-triphenyl-hexabenzo[bc,ef,hi,kl,no,qr]—coronene graph (see Fig-
ure 4), which is again a closed-shell polyhex but this one cannot further procreate
into another polyhex.

We note that the leapfrog transformation of benzene leads back to benzene (ro-
tated by 30° from its original orientation). This is the null leapfrog.

In Figure 5, we give the leapfrog transformation of a simple coronoid graph (i.e.,
multiply-connected polyhex) with 8 hexagons. The end product of this leapfrogging
is a cyclic graph, also with eight hexagons. However, this graph is no longer a poly-
hex. We note that any coronoid with n vertices can be transformed by leapfrogging
into cyclopolyphenyl with 3(n-V,) vertices.
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2,12,22-TRIPHENYL-HEXABENZO(bc ef hi kl,no,qr] CORONENE GRAPH

Figure 4. A 2,12,22—-triphenyl-hexabenzo[bc,ef,hi, kl,no,qr]jcoronene graph which is the leapfrog
product of a tribenzo[a,g,m]coronene graph.

It is interesting to consider the leapfrogging transformation as the driving
mechanism of some kind of cellular automaton. Several types of »life« cycles may be
noted in dependence on the characteristics of the starting polyhex. If the polyhex
contains no two linked internal vertices, the starting animal will disintegrate into
isolated rings in, at most 3 successive leapfrog transformations. An example is
shown in Figure 6.

If there is one or more isolated edges between the internal vertices, the starting
polyhex will break away into as many components as there were such edges. All com-
ponents are equal and repeating the leapfrog operation makes them oscillate with
spitting out free hexagons, as shown in Figure 7.
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Figure 5. The leapfrogging of a coronoid graph with eight hexagons into a cyclooctaphenyl graph.
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Figure 6. A polyhex which disintegrates into free hexagons by repetitive leapfrogging.
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Figure 7. A polyhex which settles down to stable fluctuating structures. Edges between internal
vertices are bold marked.
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Figure 8. A minimal polyhex which continuously grows by repeating the leapfrog operation. Ed-
ges between the internal vertices are bold marked.
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ANIMAL GRAPH
Figure 9. The leapfrogging of a two-cell animal into a bicyclobutadienyl graph.

Finally, if there is at least one internal vertex linked to two other internal ver-
tices, the starting polyhex will grow as exemplified in Figure 8. It can be shown that
the above classification holds generally, that is, not only for a polyhex but for any
planar graph.

(i) The leapfrogging of square animals

Another name for square animals! is square-cell configurations..!®1¢ In the
mathematical literature for square animals, we also encounter the term polyomi-
noes.!” A square animal is made up of squares which are simply- or multiply-con-
nected.!® The square animal grows in the following way: It starts with a single
square and grows by adding squares, one at a time, in such a way that the new
square has at least one side in contact with a side of a square already present in
the animal. In Figure 9, we give the leapfrogging of a two-square animal. Another
example is presented in Figure 10.

Square animals are simply-connected if they have no holes and multiply-con-
nected if they possess holes. Harary and Palmer describe multiply-connected square
animals as holey animals.! The smallest hole is the size of a square. In Figure 11
we give as an example the leapfrogging of a multiply-connected square animal.

We note that a square animal with a number R of squares produces, by the leap-

frog transformation, a leapfrog animal with 4R vertices. A leapfrog of the square ani-
mal is not a square animal any more.
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Figure 10. The leapfrogging of a fenestrane-like square animal into a pentacyclic graph con-
sisting of four 4-membered cycles and one 8-membered cycle.
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Figure 11. The leapfrogging of a holey animal with 10 squares into a cyclodecacyclobutadienyl
graph.

(iii) The leapfrog of polycyclic graphs with rings of various sizes

The leapfrog transformation can be applied to any planar polycyclic graph with-
out any difficulty. In Figure 12 we depict the leapfrogging of an azulene graph. The
leapfrog product of the azulene graph is a sesquifulvalene graph.

Note that all vertices in the leapfrog graph are either di- or trivalent, and that
the only new rings produced by the leapfrog operation are hexagons. Repetitive ap-

DUALIZATION

AZULENE GRAPH SESQUIFULVALENE GRAPH

Figure 12. The leapfrogging of an azulene graph into a sesquifulvalene graph.
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plication of the leapfrog operation on the starting graph provides continuous grow-
ing, the resulting graphs are more and more dominated by the hexagonal lattice
fragments.
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SAZETAK
Biljeska o varijanti »preskok« transformacije kemijskih grafova
Darko Babié, Nened Trinajstié i Douglas J. Klein
U radu je razmatrana jedna varijanta transformacije »preskok«. Prikazana varijanta tran-
sformacije »preskok« moéna je graf-teorijska tehnika za generiranje mnogih klasa (kemijskih)

grafova. Ova tehnika primijenjena je na polihekse, kvadratne »Zivotinje« i druge planarne po-
licikli¢ke grafove s prstenovima raznih veliina.
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