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We study helical phase inflation which realizes “monodromy inflation” in supergravity theory. In the model, inflation is driven
by the phase component of a complex field whose potential possesses helicoid structure. We construct phase monodromy based
on explicitly breaking global 𝑈(1) symmetry in the superpotential. By integrating out heavy fields, the phase monodromy from
single complex scalar field is realized and the model fulfills natural inflation.The phase-axion alignment is achieved from explicitly
symmetry breaking and gives super-Planckian phase decay constant.The 𝐹-term scalar potential provides strong field stabilization
for all the scalars except inflaton, which is protected by the approximate global𝑈(1) symmetry. Besides, we show that helical phase
inflation can be naturally realized in no-scale supergravity with 𝑆𝑈(2, 1)/𝑆𝑈(2) × 𝑈(1) symmetry since the supergravity setup
needed for phase monodromy is automatically provided in the no-scale Kähler potential. We also demonstrate that helical phase
inflation can be reduced to another well-known supergravity inflation model with shift symmetry. Helical phase inflation is free
from the UV-sensitivity problem although there is super-Planckian field excursion, and it suggests that inflation can be effectively
studied based on supersymmetric field theory while a UV-completed framework is not prerequisite.

1. Introduction

Inflation plays a crucial role in the early stage of our universe
[1–3], and supersymmetry was found to be necessary for
inflation soon after its discovery. A simple argument is that
the inflation process is triggered close to the unification scale
in Grand Unified Theory (GUT) [4, 5]. At this scale physics
theory is widely believed to be supersymmetric. To realize
the slow-roll inflation, it requires strict flat conditions on the
potential 𝑉(𝜙) of inflaton 𝜙. The mass of inflaton 𝑚𝜙 should
be significantly smaller than the inflation energy scale due to
the slow-roll parameter

𝜂 ≡ 𝑀
2
𝑃

𝑉


𝑉
≃

𝑚
2
𝜙

3𝐻2
≪ 1, (1)

where 𝑀𝑃 is the reduced Planck mass; otherwise, inflation
cannot be triggered or last for a sufficient long period.
However, as a scalar field, the inflaton is expected to obtain
large quantum loop-corrections on the potential which can
break the slow-roll conditions unless there is extremely fine
tuning. Supersymmetry is a natural way to eliminate such
quantum corrections. By introducing supersymmetry, the
flatness problem can be partially relaxed but not completely
solved since supersymmetry is broken during inflation.
Moreover, gravity plays an important role in inflation, so
it is natural to study inflation within supergravity the-
ory.

Once combining the supersymmetry and gravity theory
together, the flatness problem reappears known as 𝜂 prob-
lem. 𝑁 = 1 supergravity in four-dimensional space-time
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is determined by three functions: Kähler potential 𝐾, super-
potential 𝑊, and gauge kinetic function. The 𝐹-term scalar
potential contains an exponential factor 𝑒𝐾. In the minimal
supergravity with 𝐾 = ΦΦ, the exponential factor 𝑒

𝐾

introduces a term on the inflaton mass at Hubble scale,
which breaks the slow-roll condition (1). To realize inflation
in supergravity, the large contribution from 𝑒

𝐾 to scalar
mass should be suppressed, which needs a symmetry in
𝐾. In the minimal supergravity, 𝜂 problem can be solved
by introducing shift symmetry in the Kähler potential as
proposed by Kawasaki, Yamaguchi, and Yanagida (KYY) [6]:
𝐾 is invariant under the shift Φ → Φ + 𝑖𝐶. Consequently,
𝐾 is independent of Im(Φ), so is the factor 𝑒

𝐾 in the 𝐹-
term potential. By employing Im(Φ) as inflaton, its mass is
not affected by 𝑒

𝐾 and then there is no 𝜂 problem anymore.
The shift symmetry can be slightly broken; in this case, there
is still no 𝜂 problem and the model gives a broad range of
tensor-to-scalar ratios r [7, 8]. 𝜂 problem is automatically
solved in no-scale supergravity because of 𝑆𝑈(𝑁, 1)/𝑆𝑈(𝑁)×

𝑈(1) symmetry in the Kähler potential. Historically, the no-
scale supergravity was proposed to get vanishing cosmol-
ogy constant. At classical level, the potential is strictly flat
guaranteed by 𝑆𝑈(𝑁, 1)/𝑆𝑈(𝑁) × 𝑈(1) symmetry of the
Kähler potential, whichmeanwhile protects the no-scale type
inflation away from 𝜂 problem.Moreover, 𝑆𝑈(𝑁, 1)/𝑆𝑈(𝑁)×

𝑈(1) symmetry has rich structure that allows different types
of inflation. Thus, inflation based on no-scale supergravity
has been extensively studied [9–19]. In thiswork,wewill show
that, in no-scale supergravity with 𝑆𝑈(2, 1)/𝑆𝑈(2) × 𝑈(1)

symmetry, one can pick up 𝑈(1) subsector, together with
the superpotential phase monodromy to realize helical phase
inflation.

Recently, it was shown that 𝜂 problem can be naturally
solved in helical phase inflation [20]. This solution employs a
global 𝑈(1) symmetry, which is a trivial fact in the minimal
supergravity with 𝐾 = ΦΦ. Using the phase of a complex
field Φ as an inflaton, 𝜂 problem is solved due to the global
𝑈(1) symmetry. The norm of Φ needs to be stabilized;
otherwise, it will generate notable isocurvature perturbations
that contradict the observations. However, it is a nontrivial
task to stabilize the norm of Φ while keeping the phase light
as the norm and phase couple with each other. In that work,
the field stabilization and quadratic inflation are realized
via a helicoid type potential. The inflationary trajectory is a
helix line, and this is the reason for the name “helical phase
inflation.” In addition, the superpotential of helical phase
inflation realizesmonodromy in supersymmetric field theory.
Furthermore, helical phase inflation gives a method to avoid
the dangerous quantum gravity effect on inflation.

The single field slow-roll inflation agrees with recent
observations [4, 5]. Such kind of inflation admits a relation-
ship between the inflaton field excursion and the tensor-to-
scalar ratio, which is known as the Lyth bound [21]. It suggests
that, to get large tensor-to-scalar ratio, the field excursion
during inflation should be much larger than the Planck mass.
The super-Planckian field excursion challenges the validity,
in the Wilsonian sense, of inflationary models described by
effective field theory. At Planck scale, the quantum gravity

effect is likely to introduce extra terms which are suppressed
by the Planck mass and then irrelevant in the low energy
scale, while for a super-Planckian field, the irrelevant terms
become important and may introduce significant corrections
or even destroy the inflation process. In this sense, the
predictions just based on the effective field theory are not
trustable. A more detailed discussion on the ultraviolet
(UV) sensitivity of the inflation process is provided in
[22].

A lot of works have been proposed to realize inflation
based on the UV-completed theory, for example, in [23–
30]. However, to realize inflation in string theory, it needs
to address several difficult problems such as moduli stabi-
lization, Minkowski or de Sitter vacuum, and 𝛼

- and higher
string loop-corrections on theKähler potential. However, one
may doubt whether such difficult UV-completed framework
is necessary for inflation. In certain scenario, the super-
Planckian field excursion does not necessarily lead to the
physical field above the Planck scale. A simple example is
the phase of a complex field. The phase factor, like a pseudo-
Nambu-Goldstone boson (PNGB), can be shifted to any value
without any effect on the energy scale. By employing the
phase as an inflaton, the super-Planckian field excursion
is not problematic at all as there is no polynomial higher
order quantum gravity correction for the phase component.
Besides helical phase inflation, inflationary models using
PNGB as an inflaton have been studied [31–39]. For natural
inflation, it requires super-Planckian axion decay constant,
which can be obtained by aligned axions [34] (the axion
alignment relates to 𝑆𝑛 symmetry amongKählermoduli [40])
or anomalous𝑈(1) gauge symmetry with large condensation
gauge group [41]. In helical phase inflation, as will be
shown later, the phase monodromy in superpotential can
be easily modified to generate natural inflation and also
realize the super-Planckian phase decay constant, which
is from the phase-axion alignment hidden in the process
of integrating out heavy fields. Furthermore, all the extra
fields are consistently stabilized based on the helicoid poten-
tial.

Like helical phase inflation, “monodromy inflation” was
proposed to solve the UV sensitivity of large field inflation
[42, 43]. In such model, the inflaton is identified as an axion
obtained from 𝑝-form field after string compactifications.
The inflaton potential arises from the DBI action of branes
or coupling between axion and fluxes. During inflation, the
axion rotates along internal cycles and reduces the axion
potential slowly, while all the other physical parameters are
unaffected by the axion rotation. Interesting realization of
monodromy inflation is the axion alignment [34], which was
proposed to get super-Planckian axion decay constant for
natural inflation, and it was noticed that this mechanism
actually provides an axion monodromy in [44–46]. Actually,
a similar name “helical inflation” was firstly introduced in
[45] for an inflationmodel with axionmonodromy. However,
a major difference should be noted; the “helical” structure
in [45] is to describe the alignment structure of two axions,
while the “helical” structure in our model is from a single
complex field with stabilized field norm.The physical picture
of axionmonodromy is analogical to the superpotential𝑊 in



Advances in High Energy Physics 3

helical phase inflation. For 𝑊, there is monodromy around
the singularityΦ = 0:

Φ → Φ𝑒
2𝜋𝑖

,

𝑊 → 𝑊 + 2𝜋𝑖
𝑊

logΦ
.

(2)

The phase monodromy, together with 𝑈(1) symmetry in
the Kähler potential, provides flat direction for inflation.
In the following, we will show that this monodromy is
corresponding to the global𝑈(1) symmetry explicitly broken
by the inflation term.

In this work, we will study helical phase inflation from
several aspects in detail. Firstly, we will show that the phase
monodromy in the superpotential, which leads to the helicoid
structure of inflaton potential, can be effectively generated
by integrating out heavy fields in supersymmetric field
theory. Besides quadratic inflation, the phase monodromy
for helical phase inflation can be easily modified to realize
natural inflation, in which the process of integrating out
heavy fields fulfills the phase-axion alignment indirectly
and leads to super-Planckian phase decay constant with
consistent field stabilization as well. We also show that helical
phase inflation can be reduced to the KYY inflation by field
redefinition; however, there is no such field transformation
that can map the KYY model back to helical phase inflation.
Furthermore, we show that the no-scale supergravity with
𝑆𝑈(2, 1)/𝑆𝑈(2)×𝑈(1) symmetry provides a natural frame for
helical phase inflation, as 𝑆𝑈(2, 1)/𝑆𝑈(2) × 𝑈(1) symmetry
of no-scale Kähler potential already combines the symmetry
factors needed for phase monodromy. Moreover, we argue
that helical phase inflation is free from the UV-sensitivity
problem.

This paper is organized as follows. In Section 2, we review
the minimal supergravity construction of helical phase infla-
tion. In Section 3, we present the realization of phase mon-
odromy based on supersymmetric field theory. In Section 4,
natural inflation as a special type of helical phase inflation is
studied. In Section 5, the relationship between helical phase
inflation and the KYY model is discussed. In Section 6, we
study helical phase inflation in no-scale supergravity with
𝑆𝑈(2, 1)/𝑆𝑈(2)×𝑈(1) symmetry. In Section 7, we discuss how
helical phase inflation dodges the UV-sensitivity problem of
large field inflation. Conclusion is given in Section 8.

2. Helical Phase Inflation

In four dimensions, 𝑁 = 1 supergravity is determined by
the Kähler potential 𝐾, superpotential 𝑊, and gauge kinetic
function. The 𝐹-term scalar potential is given by

𝑉 = 𝑒
𝐾
(𝐾
𝑖𝑗
𝐷𝑖𝑊𝐷𝑗𝑊 − 3𝑊𝑊) . (3)

To realize inflation in supergravity, the factor 𝑒𝐾 in the above
formula is an obstacle as it makes the potential too steep for
a sufficient long slow-roll process. This is the well-known 𝜂

problem. To solve 𝜂 problem, usually one needs a symmetry
in the Kähler potential. In the minimal supergravity, there is

a global𝑈(1) symmetry in the Kähler potential𝐾 = ΦΦ.This
global 𝑈(1) symmetry is employed in helical phase inflation.
As the Kähler potential is independent of the phase 𝜃, the
potential of phase 𝜃 is not affected by the exponential factor
𝑒
𝐾. Consequently, there is no 𝜂 problem for phase inflation.
However, the field stabilization becomes more subtle. All the
extra fields except inflaton have to be stabilized for single field
inflation, but normally the phase and norm of a complex field
couple with each other and then it is very difficult to stabilize
norm while keeping phase light.

The physical picture of helical phase inflation is that
the phase evolves along a flat circular path with constant,
or almost constant, radius—the field magnitude, and the
potential decreases slowly. So even before writing down the
explicit supergravity formula, one can deduce that phase
inflation, if realizable, should be particular realization of
complex phase monodromy, and there exists a singularity in
the superpotential that generates the phasemonodromy. Such
singularity further indicates that themodel is described by an
effective theory.

Helical phase inflation is realized in the minimal super-
gravity with the Kähler potential

𝐾 = ΦΦ + 𝑋𝑋 − 𝑔 (𝑋𝑋)
2 (4)

and superpotential

𝑊 = 𝑎
𝑋

Φ
ln (Φ) . (5)

The global𝑈(1) symmetry in𝐾 is broken by the superpoten-
tial with a small factor 𝑎; when 𝑎 → 0, 𝑈(1) symmetry is
restored. Therefore, the superpotential with small coefficient
is technically natural [47], whichmakes themodel technically
stable against radiative corrections. As discussed before, the
superpotential 𝑊 is singular at Φ = 0 and exhibits a phase
monodromy

Φ → Φ𝑒
2𝜋𝑖

,

𝑊 → 𝑊 + 2𝜋𝑎𝑖
𝑋

Φ
.

(6)

The theory is well defined only forΦ away from the singular-
ity.

During inflation, the field 𝑋 is stabilized at 𝑋 = 0, and
the scalar potential is simplified as

𝑉 = 𝑒
ΦΦ

𝑊𝑋𝑊𝑋 = 𝑎
2
𝑒
𝑟2 1

𝑟2
((ln 𝑟)

2
+ 𝜃
2
) , (7)

where Φ = 𝑟𝑒
𝑖𝜃, and the kinetic term is 𝐿𝐾 = 𝜕𝜇𝑟𝜕

𝜇
𝑟 +

𝑟
2
𝜕𝜇𝜃𝜕
𝜇
𝜃. Interestingly, in the potential (7), both the norm-

dependent factor 𝑒𝑟
2

(1/𝑟
2
) and (ln 𝑟)

2 reach the minimum at
𝑟 = 1. The physical mass of norm 𝑟 is

𝑚
2
𝑟 =

1

2

𝜕
2
𝑉

𝜕𝑟2

𝑟=1

= (2 +
1

𝜃2
)𝑉𝐼; (8)
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therefore, the norm is strongly stabilized at 𝑟 = 1 during infla-
tion and the Lagrangian for the inflaton is

𝐿 = 𝜕𝜇𝜃𝜕
𝜇
𝜃 − 𝑒𝑎

2
𝜃
2
, (9)

which gives quadratic inflation driven by the phase of
complex field Φ.

In the above simple example given by (4) and (5),
the field stabilization is obtained from the combination of
supergravity correction 𝑒

𝐾 and the pole 1/Φ in𝑊, besides an
accidental agreement that both the factor (1/𝑟

2
)𝑒
𝑟2 and the

term (ln 𝑟)
2 obtain their minima at 𝑟 = 1, while for more

general helical phase inflation, such accidental agreement
is not guaranteed. For example, one may get the following
inflaton potential:

𝑉 = 𝑒
𝐾(𝑟) 1

𝑟2
((ln 𝑟

Λ
)

2

+ 𝜃
2
) , (10)

in which the coefficient 𝑒
𝐾(𝑟)

(1/𝑟
2
) admits a minimum at

𝑟0 ∼ Λ but 𝑟0 ̸= Λ. In this case, the coefficient 𝑒𝐾(𝑟)(1/𝑟2)
still gives a mass above the Hubble scale for 𝑟, while ⟨𝑟⟩ is
slightly shifted away from 𝑟0 in the early stage of inflation, and
after inflation 𝑟 evolves toΛ rapidly. Also, the term (ln(𝑟/Λ))

2

gives a small correction to the potential and inflationary
observables, so this correction is ignorable comparing with
the contributions from the super-Planckian valued phase
unless it is unexpectedly large.

Potential Deformations. In the Kähler potential, there are cor-
rections from the quantum loop effect, while the superpoten-
tial𝑊 is nonrenormalized. Besides, when coupledwith heavy
fields, the Kähler potential ofΦ receives corrections through
integrating out the heavy fields. Nevertheless, because of
the global 𝑈(1) symmetry in the Kähler potential, these
corrections can only affect the field stabilization, while phase
inflation is not sensitive to these corrections.

Given a higher order correction on the Kähler potential

𝐾 = ΦΦ + 𝑏 (ΦΦ)
2
+ 𝑋𝑋 − 𝑔 (𝑋𝑋)

2
, (11)

onemay introduce an extra parameterΛ in the superpotential

𝑊 = 𝑎
𝑋

Φ
ln Φ

Λ
. (12)

Based on the same argument, it is easy to see the scalar
potential reduces to

𝑉 = 𝑎
2
𝑒
𝑟2+𝑏𝑟4 1

𝑟2
((ln 𝑟 − lnΛ)

2
+ 𝜃
2
) . (13)

The factor 𝑒𝑟
2+𝑏𝑟4

(1/𝑟
2
) reaches its minimum at 𝑟20 = 2/(1 +

√1 + 8𝑏), below 𝑀𝑃 for 𝑏 > 0. To get the “accidental
agreement” it needs the parameter Λ = 𝑟0, and then inflation
is still driven by the phase with exact quadratic potential.

Without Λ, the superpotential comes back to (5) and the
scalar potential is shown in Figure 1 with 𝑏 = 0.1. During
inflation ⟨𝑟⟩ ≃ 𝑟0 for small 𝑏, the term (ln 𝑟)

2 contribution to

1

1

0

0

−1

−1

V
(1
0
2
a
2
)

15

10

5

0

𝜙x

𝜙y

Figure 1: The helicoid structure of potential (13) scaled by 10
2
𝑎
2.

In the graph, parameters 𝑏 and Λ are set to be 𝑏 = 0.1 and Λ = 1,
respectively.

the potential, at the lowest order, is proportional to 𝑏
2. After

canonical field normalization, the inflaton potential takes the
form

𝑉 (𝜃) =
1

2
𝑚
2
𝜃 (2𝑏
2
+ 𝜃
2
) , (14)

in which the higher order terms proportional to 𝑏
3+𝑖 are

ignored. With regard to the inflationary observations, take
the tensor-to-scalar ratio r, for example, as

r =
32𝜃
2
𝑖

(𝜃
2
𝑖 + 2𝑏2)

2
≈

8

𝑁
(1 +

𝑏
2

2𝑁
)

−2

, (15)

where 𝜃𝑖 is the phase when inflation starts and 𝑁 ∈ (50, 60)

is the 𝑒-folding number. So the correction from higher order
term is insignificant for 𝑏 < 1.

3. Monodromy in Supersymmetric
Field Theory

As discussed before, phase inflation naturally leads to the
phase monodromy (in mathematical sense) in the superpo-
tential. The phase monodromy requires singularity, which
means the superpotential proposed for phase inflation should
be an effective theory. It is preferred to show how such phase
monodromy appears from a more “fundamental” theory at
higher scale. In [20], the monodromy needed for phase
inflation is realized based on the supersymmetric field theory,
in which the monodromy relates to the soft breaking of a
global 𝑈(1) symmetry.

Historically, the monodromy inflation as an attractive
method to realize super-Planckian field excursion was first
proposed, in a more physical sense, for axions arising from
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string compactifications [42]. In the inflaton potential, the
only factor that changes during axion circular rotation is
from the DBI action of branes. In [44–46], the generalized
axion alignment mechanisms are considered as particular
realization of axion monodromy with the potential from
nonperturbative effects. We will show that such kind of
axion monodromy can also be fulfilled by the superpotential
phase monodromy [20], even though it is not shown in the
effective superpotential after integrating out the heavy fields.
Furthermore, all the extra fields can be consistently stabilized.

The more “fundamental” field theory for the superpoten-
tial in (5) is

𝑊0 = 𝜎𝑋Ψ (𝑇 − 𝛿) + 𝑌 (𝑒
−𝛼𝑇

− 𝛽Ψ) + 𝑍 (ΨΦ − 𝜆) , (16)

where the coupling constants for the second and third terms
are taken to be 1 for simplicity, and a small hierarchy is
assumed between the first term and the last two terms; that
is, 𝜎 ≪ 1. The coupling 𝑌𝑒

−𝛼𝑇 is assumed to be an effective
description of certain nonperturbative effects. Similar forms
can be obtained from 𝐷-brane instanton effect in type string
theory (for a review, see [48]), besides the coefficient 𝛼 ∝

1/𝑓 ≫ 1 in Planck unit, since 𝑓 ≪ 1 is the decay constant
and should be significantly lower than the Planck scale. For
the last two terms of𝑊0, there is a global 𝑈(1) symmetry:

Ψ → Ψ𝑒
−𝑖𝑞𝜃

,

Φ → Φ𝑒
𝑖𝑞𝜃

,

𝑌 → 𝑌𝑒
𝑖𝑞𝜃

,

𝑇 → 𝑇 +
𝑖𝑞𝜃

𝛼
,

(17)

which is anomalous and explicitly broken by the first term.
Phase rotation of the stabilizer field 𝑋 has no effect on
inflation and so is ignored here. The phase monodromy of
superpotential 𝑊 in (6) originates from the 𝑈(1) rotation of
𝑊0:

Ψ → Ψ𝑒
−𝑖2𝜋

,

𝑊0 → 𝑊0 + 𝑖2𝜋𝜎
1

𝛼
𝑋Ψ.

(18)

As shown in [20], the supersymmetric field theory with
superpotential𝑊0 admits the Minkowski vacuum at

⟨𝑋⟩ = ⟨𝑌⟩ = ⟨𝑍⟩ = 0,

⟨𝑇⟩ = 𝛿,

⟨Ψ⟩ =
1

𝛽
𝑒
−𝛼𝛿

,

⟨Φ⟩ = 𝜆𝛽𝑒
𝛼𝛿
,

(19)

with ⟨Φ⟩ ≫ ⟨Ψ⟩ so that near the vacuum the masses of 𝑌,
𝑍, and Ψ are much larger than Φ; besides, the effective mass
of 𝑇 is also large near the vacuum due to large 𝛼. Large 𝛼

was an obstacle for natural inflation as it leads to the axion
decays too small for inflation, while in this scenario large 𝛼

is helpful for phase inflation to stabilize the axion. Therefore,
for the physical process at scale below the mass scale of three
heavy fields, the only unfixed degrees of freedom are 𝑋 and
Φ, which can be described by an effective field theory with
three heavy fields integrated out. The coupling 𝜎𝑋Ψ(𝑇 − 𝛿)

is designed for inflation and hierarchically smaller than the
extra terms in𝑊0.Therefore, to describe inflation process, the
heavy fields need to be integrated out.

To integrate out heavy fields, we need to consider the 𝐹-
terms again. The 𝐹-term flatness of fields 𝑌 and 𝑍 gives

𝐹𝑌 = 𝑒
−𝛼𝑇

− 𝛽Ψ + 𝐾𝑌𝑊0 = 0,

𝐹𝑍 = ΨΦ − 𝜆 + 𝐾𝑍𝑊0 = 0.

(20)

Near the vacuum 𝑌 = 𝑍 ≈ 0 ≪ 𝑀𝑃, the above
supergravity corrections 𝐾𝑌(𝑍)𝑊0 are ignorable, and then
the 𝐹-term flatness conditions reduce to these for global
supersymmetry.This is gained from the fact that although the
inflation dynamics are subtle, the inflation energy density is
close to the GUT scale, far below the Planck scale. Solving
the 𝐹-term flatness equations in (20), we obtain the effective
superpotential𝑊 in (5).

Based on the above construction, it is clear that the phase
monodromy in 𝑊 is from the 𝑈(1) transformation of 𝑊0,
and the pole of superpotential (5) at Φ = 0 arises from the
integration process. The heavy fieldΨ is integrated out based
on the 𝐹-term flatness conditions when ⟨Φ⟩ ≫ ⟨Ψ⟩, while
if Φ → 0, Ψ becomes massless from |𝐹𝑍|

2 and it is illegal
to integrate out a “massless” field. For inflation, the condition
⟨Φ⟩ ≫ ⟨Ψ⟩ is satisfied so the theory with superpotential (5)
is reliable.

As to the inflation term, a question appears: as global
𝑈(1) is explicitly broken by the first term in (16) at inflation
scale, why is the phase light while the norm is much heavier?
The supergravity correction to the scalar potential plays a
crucial role at this stage. The coefficient 𝑒𝐾 appears in the
scalar potential, and because of𝑈(1) symmetry in the Kähler
potential, the factor 𝑒𝐾 is invariant under𝑈(1) symmetry but
increases exponentially for a large norm. Here, the Kähler
potential of 𝑇 should be shift invariant; that is, 𝐾 = 𝐾(𝑇 +

𝑇) instead of the minimal type. Otherwise, the exponential
factor 𝑒𝐾 depends on phase as well and the phase rotationwill
be strongly fixed, like the norm component or Re(𝑇).

When integrating out the heavy fields, they should be
replaced both in superpotential and in Kähler potential by
the solutions from vanishing 𝐹-term equations. So, different
from the superpotential, the Kähler potential obtained in this
way is slightly different from the minimal case given in (4).
There are extra terms like

ΨΨ =
𝜆
2

𝑟2
,

𝐾 (𝑇 + 𝑇) = 𝐾(
1

𝛼2
(ln 𝑟)
2
) ,

(21)

where |Φ| = 𝑟. Nevertheless, since 𝜆 ≪ 1 and 𝛼 ≫ 1, these
terms are rather small and have little effect on phase inflation,
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as shown in the last section. Furthermore, the quantum
loop effects during integrating out heavy fields can introduce
corrections to the Kähler potential as well. However, because
of 𝑈(1) symmetry built in the Kähler potential, these terms,
together with (21), can only mildly affect the field stabiliza-
tion, and phase inflation is not sensitive to the corrections
in Kähler potential. As to the superpotential, it is protected
by the nonrenormalized theorem and free from radiative
corrections.

4. Natural Inflation in Helical Phase Inflation

In the superpotential 𝑊0, the inflation term is perturbative
coupling of complex field𝑇which shifts under global𝑈(1); an
interestingmodification is to consider inflation given by non-
perturbative coupling of 𝑇. Such term gives a modified 𝑈(1)

phase monodromy in the superpotential. And it leads to nat-
ural inflation as a special type of helical phase inflation with
phase-axion alignment, which is similar to the axion-axion
alignment mechanism proposed in [34] for natural inflation
with super-Planckian axion decay constant. Specifically, it
can be shown that the phase monodromy realized in super-
symmetric field theory has similar physical picture to the
modified axion alignment mechanism provided in [44, 45].

To realize natural inflation, the superpotential 𝑊0 in (16)
just needs to be slightly modified:

𝑊1 = 𝜎𝑋Ψ(𝑒
−𝛼𝑇

− 𝛿) + 𝑌 (𝑒
−𝛽𝑇

− 𝜇Ψ)

+ 𝑍 (ΨΦ − 𝜆) ,

(22)

in which 1 ≪ 𝛼 ≪ 𝛽. Again there is a global 𝑈(1)

symmetry in the last two terms of 𝑊1, and the fields transfer
under𝑈(1) like in (17). The first term, which is hierarchically
smaller, breaks the 𝑈(1) symmetry explicitly; besides, a
shift symmetry of 𝑇 is needed in the Kähler potential. The
monodromy of𝑊1 under a circular 𝑈(1) rotation is

Ψ → Ψ𝑒
−𝑖2𝜋

,

𝑊1 → 𝑊1 + 𝜎𝑋Ψ𝑒
−𝛼𝑇

(𝑒
−2𝜋𝑖(𝛼/𝛽)

− 1) .

(23)

The supersymmetric field theory given by (22) admits the
following supersymmetric Minkowski vacuum:

⟨𝑋⟩ = ⟨𝑌⟩ = ⟨𝑍⟩ = 0,

⟨𝑇⟩ = −
1

𝛼
ln 𝛿,

⟨Ψ⟩ =
1

𝜇
𝛿
𝛽/𝛼

,

⟨Φ⟩ = 𝜆𝜇𝛿
−𝛽/𝛼

.

(24)

The parameters are set to satisfy conditions

𝛿
𝛽/𝛼

∼ 𝜆𝜇,

𝜆 ≪ 1,

𝛿 < 1,

(25)

so that ⟨Ψ⟩ ≪ ⟨Φ⟩ and ⟨𝑇⟩ > 0.

Near vacuum, fields 𝑌,𝑍,Ψ, and 𝑇 obtain large effective
masses above inflation scale while 𝑋,Φ are much lighter. At
the inflation scale, the heavy fields should be integrated out.
The 𝐹-term flatness conditions for fields 𝑌 and 𝑍 are

𝐹𝑌 = 𝑒
−𝛽𝑇

− 𝜇Ψ = 0,

𝐹𝑍 = ΨΦ − 𝜆 = 0,

(26)

in which the supergravity corrections 𝐾𝑌/𝑍𝑊1 are neglected
as both𝑌 and𝑍 get close to zero during inflation. Integrating
outΨ and 𝑇 from (26), we obtain the effective superpotential
𝑊
 from𝑊1:

𝑊

= 𝜎𝜆

𝑋

Φ
((

𝜇𝜆

Φ
)

𝛼/𝛽

− 𝛿) . (27)

Given 𝛼 ≪ 𝛽, the effective superpotential contains a term
with fractional power. Inflation driven by complex potential
with fractional power was considered in [49] to get sufficient
large axion decay constant. Here, the supersymmetric field
monodromy naturally leads to the superpotential with frac-
tional power, which arises from the small hierarchy of axion
decay constants in two nonperturbative terms.

Helical phase inflation is described by the effective super-
potential 𝑊; the role of phase-axion alignment is not clear
from𝑊

 since it is hidden in the procedure of integrating out
heavy fields.

The 𝐹-term flatness conditions (26) fix four degrees of
freedom; for the extra degree of freedom, they correspond to
the transformations free from constraints (26):

Ψ → Ψ𝑒
−𝑢−𝑖V

,

Φ → Φ𝑒
𝑢+𝑖V

,

𝑇 → 𝑇 +
𝑢

𝛽
+

𝑖V
𝛽
.

(28)

Parameter 𝑢 corresponds to the norm variation of complex
field Φ, which is fixed by the supergravity correction on the
scalar potential 𝑒𝐾(ΦΦ). Parameter V relates to 𝑈(1) transfor-
mation, which leads to the phase monodromy from the first
term of𝑊1.The scalar potential, including the inflation term,
depends on the superpositions among phases ofΨ,Φ and the
axion Im(𝑇), which are constrained as in (28). Among these
fields, the phase ofΦ has the lightestmass after canonical field
normalization. Similar physical picture appears in the axion-
axion alignment where inflation is triggered by the axion
superposition along the flat direction.

After integrating out the heavy fields, the Kähler potential
is

𝐾 = ΦΦ +
𝜆
2

ΦΦ
+ ⋅ ⋅ ⋅ . (29)

As 𝜆 ≪ 1, the Kähler potential is dominated by ΦΦ; as
discussed before, the extra terms like 𝜆2/ΦΦ only give small
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corrections to the field stabilization. Helical phase inflation
can be simply described by the supergravity

𝐾 = ΦΦ + 𝑋𝑋 + . . . ,

𝑊 = 𝑎
𝑋

Φ
(Φ
−𝑏

− 𝑐) ,

(30)

where 𝑏 = 𝛼/𝛽 ≪ 1 and 𝑐 ≈ 1. The scalar potential given by
the above Kähler potential and superpotential is

𝑉 = 𝑒
𝑟2 𝑎
2

𝑟2
(𝑟
−2𝑏

+ 𝑐
2
− 2𝑐𝑟
−𝑏 cos (𝑏𝜃)) , (31)

in which we have usedΦ ≡ 𝑟𝑒
𝑖𝜃. As usual, the norm 𝑟 couples

with the phase in the scalar potential. To generate single
field inflation, the norm component needs to be stabilized
with heavy mass above the Hubble scale while the phase
component remains light. Due to the phase-norm coupling,
the phase and norm are likely to obtain comparable effective
masses during inflation so it is difficult to realize single
field inflation. However, it is a bit different in helical phase
inflation. The above scalar potential can be rewritten as
follows:

𝑉 = 𝑒
𝑟2 𝑎
2

𝑟2
(𝑟
−𝑏

− 𝑐)
2
+ 𝑒
𝑟2 4𝑎
2
𝑐

𝑟2+𝑏
(sin 𝑏

2
𝜃)

2

. (32)

So its vacuum locates at ⟨𝑟⟩ = 𝑟0 = 𝑐
−1/𝑏 and 𝜃 = 0. Besides,

the coefficient of the phase term 𝑒
𝑟2
(4𝑐/𝑟
2+𝑏

) reaches its
minimal value at 𝑟1 = √1 + 𝑏/2. For 𝑐 ≈ 1, we have the
approximation 𝑟0 ≈ 𝑟1 ≈ 1. The extra terms in 𝐾 give
small corrections to 𝑟0 and 𝑟1, but the approximation is still
valid. So with the parameters in (25), the norm 𝑟 in the
two terms of scalar potential 𝑉 can be stabilized at the close
region 𝑟 ≈ 1 separately. If the parameters are tuned so that
𝑟0 = 𝑟1, then the norm of complex field is strictly stabilized
at the vacuum value during inflation. Without such tuning,
a small difference between 𝑟0 and 𝑟1 is expected but the
shift of 𝑟 during inflation is rather small and inflation is still
approximate to the single field inflation driven by the phase
term ∝ (sin(𝑏/2)𝜃)2. The helicoid structure of the potential
(31) is shown in Figure 2.

It is known that, to realize aligned axion mechanism in
supergravity [50], it is very difficult to stabilize the moduli as
they couple with the axions. In [40], the moduli stabilization
is fulfilled with gauged anomalous 𝑈(1) symmetries, since
𝑈(1) 𝐷-terms only depend on the norm |Φ| or Re(𝑇) and
then directly separate the norms and phases of matter fields.
In helical phase inflation, the modulus and matter fields
except the phase are stabilized at higher scale or by the
supergravity scalar potential. Only the phase can be an
inflaton candidate because of the protection from the global
𝑈(1) symmetry in Kähler potential and approximate 𝑈(1)

symmetry in superpotential.

5. Helical Phase Inflation and the KYY Model

𝜂 problem in supergravity inflation can be solved both in
helical phase inflation and in the shift symmetry in KYY

1

1
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Figure 2: The helicoid structure of potential (31) scaled by 𝑎
2. The

parameters with 𝑐 = 0.96 and 𝑏 = 0.1 are adopted in the graph. It
is shown that the local valley locates around 𝑟 ≈ 1. Note that the
potential gets flatter at the top of the graph.

model. The physics in these two solutions are obviously dif-
ferent. For helical phase inflation, the solution employs 𝑈(1)

symmetry in Kähler potential of the minimal supergravity,
and the superpotential admits a phase monodromy arising
from the global 𝑈(1) transformation:

𝐾 = ΦΦ + 𝑋𝑋 + ⋅ ⋅ ⋅ ,

𝑊 = 𝑎
𝑋

Φ
lnΦ.

(33)

The inflation is driven by the phase of complex field Φ

and several special virtues appear in the model. For the
KYY model with shift symmetry [6], the Kähler potential is
adjusted so that it admits a shift symmetry along the direction
of Im(𝑇):

𝐾 =
1

2
(𝑇 + 𝑇)

2
+ 𝑋𝑋 + ⋅ ⋅ ⋅ ,

𝑊 = 𝑎𝑋𝑇,

(34)

and inflation is driven by Im(𝑇). The shift symmetry is
endowedwith axions so thismechanism is attractive for axion
inflation.

Here, we will show that although the physical pictures are
much different in helical phase inflation andKYY typemodel,
just considering the lower order terms in the Kähler potential
of redefined complex field, helical phase inflation can reduce
to the KYY model.

Because the phase of Φ rotates under the global 𝑈(1)

transformation, to connect helical phase inflation with the
KYY model, a natural guess is to take the following field
redefinitionΦ = 𝑒

𝑇; then helical phase inflation (33) becomes

𝐾 = 𝑒
𝑇+𝑇

+ ⋅ ⋅ ⋅ = 1 + 𝑇 + 𝑇 +
1

2
(𝑇 + 𝑇)

2
+ ⋅ ⋅ ⋅ ,

𝑊 = 𝑎𝑋𝑇𝑒
−𝑇

.

(35)
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TheKähler manifold of complex field𝑇 is invariant under the
holomorphic Kähler transformation

𝐾(𝑇, 𝑇) → 𝐾(𝑇, 𝑇) + 𝐹 (𝑇) + 𝐹 (𝑇) , (36)

in which 𝐹(𝑇) is a holomorphic function of 𝑇. To keep
the whole Lagrangian also invariant under the Kähler trans-
formation, the superpotential transforms under the Kähler
transformation

𝑊 → 𝑒
−𝐹(𝑇)

𝑊. (37)

For the supergravity model in (35), taking the Kähler trans-
formation with 𝐹(𝑇) = −(1/2) − 𝑇, the Kähler potential and
superpotential become

𝐾 =
1

2
(𝑇 + 𝑇)

2
+ ⋅ ⋅ ⋅ ,

𝑊 = 𝑎√𝑒𝑋𝑇,

(38)

which is just the KYY model (34) with higher order cor-
rections in the Kähler potential. These higher order terms
vanish after field stabilization and have no effect on inflation
process. The field relation Φ = 𝑒

𝑇 also gives a map between
the simplest helical phase inflation and the KYY model, such
as the inflaton, arg(Φ) → Im(𝑇), and field stabilization
|Φ| = 1 → Re(𝑇) = 0.

Nevertheless, helical phase inflation is not equivalent to
the KYY model. There are higher order corrections to the
Kähler potential in the map from helical phase inflation to
KYY model, which have no effect on inflation after field
stabilization but indicate different physics in two models. By
dropping these terms, certain information is lost so the map
is irreversible. Specifically, the inverse function 𝑇 = lnΦ of
the field redefinition Φ = 𝑒

𝑇 cannot reproduce helical phase
inflation from the KYY model, unless one introduces higher
dimensional operators in the Kähler potential exactly the
same as given in the expansion (35). Such strict constraint on
each higher dimensional operator is not guaranteed by any
known rule and so is unphysical. As there is no pole or singu-
larity in the KYY model, it is unlikely to introduce pole and
singularity at origin with phase monodromy through well-
defined field redefinition. Actually, the singularity with phase
monodromy in the superpotential indicates rich physics in
the scale above inflation.

6. Helical Phase Inflation in
No-Scale Supergravity

The no-scale supergravity is an attractive frame for GUT
scale phenomenology; it is interesting to realize helical
phase inflation in no-scale supergravity. Generally, the
Kähler manifold of the no-scale supergravity is equipped
with 𝑆𝑈(𝑁, 1)/𝑆𝑈(𝑁) × 𝑈(1) symmetry. For the no-scale
supergravity with exact 𝑆𝑈(1, 1)/𝑈(1) symmetry, without
extra fields no inflation can be realized, so the case with
𝑆𝑈(2, 1)/𝑆𝑈(2) × 𝑈(1) symmetry is the simplest one that
admits inflation.

The Kähler potential with 𝑆𝑈(2, 1)/𝑆𝑈(2)×𝑈(1) symme-
try is

𝐾 = −3 ln(𝑇 + 𝑇 −
ΦΦ

3
) . (39)

In the symmetry of the Kähler manifold, there is 𝑈(1)

subsector, the phase rotation of complex fieldΦ, which can be
employed for helical phase inflation. Besides, the modulus 𝑇
should be stabilized during inflation, which can be fulfilled by
introducing extra terms on𝑇. As a simple example of no-scale
helical phase inflation, here we follow the simplification in [9]
that the modulus 𝑇 has already been stabilized at ⟨𝑇⟩ = 𝑐.
Different from the minimal supergravity, the kinetic term
given by the no-scale Kähler potential is noncanonical:

𝐿𝐾 = 𝐾ΦΦ𝜕𝜇Φ𝜕
𝜇
Φ

=
2𝑐

(2𝑐 − 𝑟2/3)
2
(𝜕𝜇𝑟𝜕

𝜇
𝑟 + 𝑟
2
𝜕𝜇𝜃𝜕
𝜇
𝜃) ,

(40)

in which Φ ≡ 𝑟𝑒
𝑖𝜃 is used. The 𝐹-term scalar potential is

𝑉 = 𝑒
−(2/3)𝐾 𝑊Φ



2
=

𝑊Φ


2

(𝑇 + 𝑇 − ΦΦ/3)
2
, (41)

where the superpotential 𝑊 is a holomorphic function of
superfieldΦ and𝑇 = ⟨𝑇⟩ = 𝑐. It requires a phasemonodromy
in superpotential𝑊 for phase inflation; the simple choice is

𝑊 =
𝑎

Φ
ln Φ

Λ
. (42)

The scalar potential given by this superpotential is

𝑉 =
9𝑎
2

(6𝑐 − 𝑟2)
2
𝑟4

((ln 𝑟

𝑒Λ
)

2

+ 𝜃
2
) . (43)

As in the minimal supergravity, the norm and phase of
complex field Φ are separated in the scalar potential. For the
𝑟-dependent coefficient factor 1/(6𝑐 − 𝑟

2
)
2
𝑟
4, its minimum

locates at 𝑟0 = √3𝑐 and another term (ln(𝑟/𝑒Λ))
2 reaches its

minimum at 𝑟1 = 𝑒Λ. Given that the parameter Λ is tuned so
that 𝑟0 = 𝑟1, in the radial direction, the potential has a global
minimum at 𝑟 = 𝑟0. Similar to helical phase inflation in the
minimal supergravity, the potential (43) also shows helicoid
structure, as presented in Figure 3.

The physical mass of 𝑟 in the region near the vacuum is

𝑚
2
𝑟 =

(2𝑐 − 𝑟
2
/3)
2

4𝑐

𝜕
2
𝑉

𝜕𝑟2

𝑟=√3𝑐

= (4 +
1

2𝜃2
)𝐻
2
, (44)

where𝐻 is theHubble constant during inflation. So the norm
𝑟 is strongly stabilized at 𝑟0. If 𝑟0 and 𝑟1 are not equal but
close to each other, 𝑟 will slightly shift during inflation but
its mass remains above the Hubble scale and inflation is still
approximately the single field inflation.
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Figure 3:The helicoid structure of potential (43) scaled by 𝑎2/𝑐4. In
the graph, the parameter Λ is tuned so that 𝑟0 = 𝑟1. The complex
fieldΦ has been rescaled by√3𝑐, and the scale of field norm at local
valley is determined by the parameter 𝑐 instead of the Planck mass.

Instead of stabilizing 𝑇 independently with the inflation
process, we can realize helical phase inflation from the no-
scale supergravity with dynamical𝑇.There is a natural reason
for such consideration. The phase monodromy requires
matter fields transforming as rotations under 𝑈(1) and also
a modulus 𝑇 as a shift under 𝑈(1). The Kähler potential of 𝑇
is shift invariant. Interestingly, for the no-scale supergravity
with 𝑆𝑈(2, 1)/𝑆𝑈(2) × 𝑈(1) symmetry, as shown in (39), the
Kähler potential 𝐾 is automatically endowed with the shift
symmetry and global 𝑈(1) symmetry:

𝑇 → 𝑇 + 𝑖𝐶,

Φ → Φ𝑒
𝑖𝜃
.

(45)

Therefore, the no-scale Kähler potential fits with the phase
monodromy in (16) and (22) initiatively.

The Kähler potentials of superfields 𝑧 ∈ 𝑋, 𝑌, 𝑍 are
of the minimal type 𝑧𝑧, while for Ψ, its Kähler potential
can be the minimal type ΨΨ, or the no-scale type 𝐾 =

−3 ln(𝑇+𝑇− (ΦΦ+ΨΨ)/3), which extends the symmetry of
Kähler manifold to 𝑆𝑈(3, 1)/𝑆𝑈(3) × 𝑈(1). In this scenario,
the process to integrate out heavy fields is the same as
before. Besides, the potential of phase proportional to |𝑊𝑋|

2

is insensitive to the formula of Kähler potential due to
𝑈(1) symmetry. The major difference appears in the field
stabilization. The scalar potential from phase monodromy in
(16) is

𝑉 = 𝑒
𝐾 𝑊𝑋



2
=

1

(ln 𝑟2/𝛼 + 𝑐 − 𝑟2/3 − 𝜆2𝑟2/3)
3

⋅
1

𝑟2
((ln 𝑟 − lnΛ)

2
+ 𝜃
2
) ≈

1

(𝑐 − 𝑟2/3)
3

⋅
1

𝑟2
((ln 𝑟 − lnΛ)

2
+ 𝜃
2
) ,

(46)

with 𝛼 ≫ 1 and 𝜆 ≪ 1. The field norm 𝑟 is stabilized by
minimizing the coefficient 1/𝑟2(𝑐 − 𝑟

2
/3)
3 and the parameter

𝑐 from ⟨𝑇⟩ determines the scale of ⟨𝑟⟩ = √3𝑐/2. This is
different from helical phase inflation in the minimal super-
gravity, which minimizes the norm based on the coefficient
𝑒
𝑟2
(1/𝑟
2
), and then the scale of ⟨𝑟⟩ is close to𝑀𝑃, the unique

energy scale of supergravity corrections. Similarly, combining
the no-scale Kählermanifold with phasemonodromy in (22),
we can obtain natural inflation.

7. UV-Sensitivity and Helical Phase Inflation

For the slow-roll inflation, the Lyth bound [21] provides a
relationship between the tensor-to-scalar ratio r and the field
excursion Δ𝜙. Roughly it requires

Δ𝜙

𝑀𝑃

⩾ (
r

0.01
)

1/2

. (47)

To get large tensor-to-scalar ratio r ⩾ 0.01, such as in chaotic
inflation or natural inflation, the field excursion should be
much larger than the Planck mass. The super-Planckian
field excursion makes the description based on the effective
field theory questionable. In the Wilsonian sense, the low
energy field theory is an effective theory with higher order
corrections introduced by the physics at the cut-off scale,
like quantum gravity, and these terms are irrelevant in the
effective field theory since they are suppressed by the cut-off
energy scale. However, for the inflation process, the inflaton
has super-Planckian field excursion, which is much larger
than the cut-off scale.Thus, the higher order terms cannot be
suppressed by the Planckmass andmay affect the inflationary
observations significantly. And then they may significantly
affect inflation or even destroy the inflation process. For
example, considering the corrections

Δ𝑉 = 𝑐𝑖𝑉(
𝜙

𝑀𝑃

)

𝑖

+ ⋅ ⋅ ⋅ , (48)

to the original inflaton potential 𝑉, as long as 𝑐𝑖 are of the
order 10−𝑖, in the initial stage of inflation 𝜙 ∼ 𝑂(10)𝑀𝑃, the
higher order terms can be as large as the original potential
𝑉. So for large field inflation, it is sensitive to the physics at
the cut-off scale and the predictions of inflation just based on
effective field theory are questionable.

In consideration of the UV sensitivity of large field
inflation, a possible choice is to realize inflation in UV-
completed theory, like string theory (for a review, see [22]).
To realize inflation in string theory, there are a lot of problems
to solve besides inflation, such as the moduli stabilization,
Minkowski/de Sitter vacua, and effects of 𝛼- and string loop-
corrections. Alternatively, in the bottom-up approach, one
may avoid the higher order corrections by introducing an
extra shift symmetry in the theory. The shift symmetry is
technically natural and safe under quantum loop-corrections.
However, the global symmetry can be broken by the quantum
gravity effect. So it is still questionable whether the shift
symmetry can safely evade the higher corrections like in (48).
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The UV-completion problem is dodged in helical phase
inflation. Since the super-Planckian field excursion is the
phase of a complex field and the phase component is not
directly involved in the gravity interaction, there are no
dangerous high-order corrections like in (48) for the phase
potential.The inflaton evolves along the helical trajectory and
does not relate to the physics in the region above the Planck
scale. For helical phase inflation in the minimal supergravity,
the norm of field is stabilized at the marginal point of the
Planck scale, where the supergravity correction on the scalar
potential gets important based onwhich the normof complex
field can be strongly stabilized. The extra corrections are
likely to appear in the Kähler potential; however, they can
only slightly affect the field stabilization while the phase
inflation is protected by the global 𝑈(1) symmetry in the
Kähler potential; in consequence, helical phase inflation is
not sensitive to these corrections at all. For the helical phase
inflation in no-scale supergravity, the normof complex field is
stabilized at the scale of themodulus ⟨𝑇⟩ instead of the Planck
scale; one can simply adjust the scale of ⟨𝑇⟩ to keep themodel
away from super-Planckian region.

Helical phase inflation is free from the UV-sensitivity
problem, and it is just a typical physical process at the
GUT scale with special superpotential that admits phase
monodromy. So it provides an inflationary model that can be
reliably studied just in supersymmetric field theory.

8. Discussions and Conclusion

In this work, we have studied the details of helical phase infla-
tion from several aspects. Helical phase inflation is realized
in supergravity with global 𝑈(1) symmetry. 𝑈(1) symmetry
is built in the Kähler potential so that helical phase inflation
can be realized by the ordinary Kähler potentials, such as the
minimal or no-scale types. Helical phase inflation directly
leads to the phasemonodromy in the superpotential, which is
singular and an effective field theory arising from integrating
out heavy fields.The phasemonodromy originates from𝑈(1)

rotation of the superpotential at higher scale. Generically, the
superpotential can be separated into two parts𝑊 = 𝑊𝐼 +𝑊𝑆,
where𝑊𝑆 admits the global𝑈(1) symmetrywhile𝑊𝐼 breaks it
explicitly at scale much lower than 𝑊𝑆. Under 𝑈(1) rotation,
the inflation term 𝑊𝐼 is slightly changed, which realizes the
phase monodromy in the effective theory and introduces
a flat potential along the direction of phase rotation. By
breaking the global𝑈(1) symmetry in different ways, we may
get different kinds of inflation such as quadratic inflation,
natural inflation, or the other types of inflation that are not
presented in this work.

An amazing fact of helical phase inflation is that it
deeply relates to several interesting points of inflation and
naturally combines them in a rather simple potential with
helicoid structure. The features of helical phase inflation can
be summarized as follows:

(i) The global 𝑈(1) symmetry is built in the Kähler
potential, so helical phase inflation provides a natural
solution to 𝜂 problem.

(ii) The phase excursion requires phase monodromy in
the superpotential. So helical phase inflation provides,
in the mathematical sense, a new type of monodromy
in supersymmetric field theory.

(iii) The singularity in the superpotential, together with
the supergravity scalar potential, provides strong field
stabilization which is consistent with phase inflation.

(iv) The super-Planckian field excursion is realized by
the phase of a complex field instead of any other
“physical” fields that directly couple with gravity. So
there are no polynomial higher order corrections for
the phase and thus inflation is not sensitive to the
quantum gravity corrections.

To summarize, helical phase inflation introduces a new
type of inflation that can be effectively described by super-
symmetric field theory at the GUT scale. Generically, the
super-Planckian field excursion makes the inflationary pre-
dictions based on effective field theory questionable, since
the higher order corrections from quantum gravity are
likely to affect the inflation process significantly. One of the
solutions is to realize inflation in a UV-completed theory, like
string theory; nevertheless, there are many difficult issues in
string theory to resolve before realizing inflation completely.
Helical phase inflation is another simple solution to the UV-
sensitivity problem. It is based on the supersymmetric field
theory and the physics are clear and much easier to control.
Furthermore, helical phase inflation makes the unification of
inflation theory with GUT more natural, since both of them
are triggered at the scale of 1016 GeV and can be effectively
studied based on supersymmetric field theory.

Besides, we have shown that helical phase inflation also
relates to several interesting developments in inflation theory.
It can be easily modified for natural inflation and realize
the phase-axion alignment indirectly, which is similar to
the axion-axion alignment mechanism for super-Planckian
axion decay constant [34]. The phase-axion alignment is
not shown in the final supergravity model which exhibits
explicit phase monodromy only. However, the phase-axion
alignment is hidden in the process when the heavy fields are
integrating out. For 𝜂 problem in the supergravity inflation,
there is another well-known solution, the KYY model with
shift symmetry. We showed that through field redefinition
helical phase inflation given by (4) and (5) reduces to the
KYYmodel, where the higher order corrections in the Kähler
potential have no effect on inflation process. However, there
is no inverse transformation from the KYY model to helical
phase inflation since no well-defined field redefinition can
introduce the pole and phase singularity needed for phase
monodromy. Helical phase inflation can be realized in no-
scale supergravity. The no-scale Kähler potential automati-
cally provides the symmetry needed by phase monodromy.
In the no-scale supergravity, the norm of complex field is
stabilized at the scale of the modulus.

Our inflation models are constructed within the super-
gravity theory with global 𝑈(1) symmetry broken explicitly
by the subleading order superpotential term. So it is just
typical GUT scale physics and indicates that a UV-completed
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framework seems to be not prerequisite to effectively describe
such inflation process.
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