Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

Bis(pyridin-2-ylmethanolato- $\kappa^2 N$, O)bis-(trifluoroacetato)nickel(II)

John Bacsa,* Hanhua Zhao and Kim R. Dunbar

Department of Chemistry, Texas A&M University, PO Box 30012, College Station, Texas 77842-3012, USA

Correspondence e-mail: jbacsa@mail.chem.tamu.edu

Key indicators

Single-crystal X-ray study T = 110 KMean $\sigma(\text{C-C}) = 0.003 \text{ Å}$ R factor = 0.036 wR factor = 0.080Data-to-parameter ratio = 11.7

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

The Ni^{II} atom in the title compound, $[Ni(C_2F_3O_2)_2-(C_6H_7NO)_2]$, is located on an inversion centre and is in an irregular coordination environment. Two trifluoroacetate ions and two pyridin-2-ylmethanol molecules coordinate to the Ni^{II} atom. The pyridin-2-ylmethanol ligand coordinates via its pyridyl N atom and its methanol O atom, resulting in a five-membered chelate ring. The ring is puckered in an envelope conformation, with the methanol O atom as flap. The trifluoroacetate ions coordinate via one O atom only. The second O atom accepts a strong hydrogen bond from the methanol hydroxy group.

Received 21 June 2004 Accepted 28 June 2004

Online 9 July 2004

Comment

The molecule of the title compound, (I), is neutral, and consists of an Ni^{II} atom coordinated by two pyridin-2-ylmethanol (pym) molecules and two trifluoroacetate (tfa) ions (Fig. 1). The Ni^{II} atom is located on an inversion centre and there is one crystallographically unique pym ligand and one unique tfa ion. The pym ligand coordinates to Ni^{II} *via* its pyridyl N atom and its methanol O atom, resulting in a five-membered chelate ring. This ring is puckered in a envelope configuration, with O1 as flap (Evans & Boeyens, 1989).

The C—O bond distances [1.242 (3) and 1.247 (3) Å] are intermediate between single and double bonds (bond order 1.5). The trifluoroacetate ion coordinates to Ni^{II} via one O atom only. The negative charge on the second O atom is partially stabilized since this O atom accepts a strong intramolecular hydrogen bond from the methanol hydroxy group. By treating this hydrogen bond as part of the bonding framework, the carboxylate ion is bidentate and, together with

© 2004 International Union of Crystallography Printed in Great Britain – all rights reserved

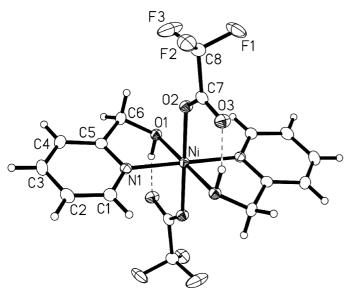


Figure 1 View of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are shown as circles of arbitrary radius and hydrogen bonds are shown as dashed lines.

the intramolecular hydrogen bond, forms a distorted, nearly planar six-membered ring. The coordination environment about the Ni^{II} atom deviates substantially from ideal octahedral geometry due to the conformational preferences of the bidentate pym ligand. Other mononuclear divalent first-row transition metal complexes (M = Mn, Fe, Co, Ni, Cu, and Zn) of pym and the saccharinate anion have been characterized by X-ray crystallography (Yilmaz et al., 2002). The structure of a mononuclear Cu^{II} complex of pym and the salicylate anion has also been published (Hoang et al., 1992). The metal atoms in these complexes are also six-coordinate, and the pym ligands bidentate (binding through the N and O atoms). Each of these complexes is also stabilized by a strong intramolecular hydrogen bond, but in these cases either the carbonyl O or N atoms of the saccharinate or salicylate anions are the acceptors.

Experimental

A solution of pyridin-2-ylmethanol (0.54 g, 5.0 mmol) in tetrahydrofuran (15 ml) was added to a suspension of NiBr₂ (0.62 g, 0.53 mmol) and NaO₂CCF₃ (0.62 g, 4.5 mmol) in tetrahydrofuran (15 ml) with stirring. The color of the suspension changed from light green to blue after adding pyridin-2-ylmethanol. The suspension was refluxed for 4 h and filtered at room temperature. Blue crystals were obtained after the blue filtrate was evaporated slowly under an N2 atmosphere for 3 d.

Crystal data

$[Ni(C_2F_3O_2)_2(C_6H_7NO)_2]$	$D_x = 1.802 \text{ Mg m}^{-3}$
$M_r = 503.00$	Mo $K\alpha$ radiation
Monoclinic, C2/c	Cell parameters from 2173
a = 12.539 (3) Å	reflections
b = 11.113 (2) Å	$\theta = 2.4-27.3^{\circ}$
c = 13.315 (3) Å	$\mu = 1.15 \text{ mm}^{-1}$
$\beta = 92.23 (3)^{\circ}$	T = 110 (2) K
$V = 1854.0 (7) \text{ Å}^3$	Prism, blue
Z = 4	$0.29 \times 0.26 \times 0.13 \text{ mm}$

Data collection

Bruker SMART 1K CCD diffractometer	2012 independent reflections 1769 reflections with $I > 2\sigma(I)$
ω scans	$R_{\rm int} = 0.024$
Absorption correction: multi-scan	$\theta_{\rm max} = 27.2^{\circ}$
(SADABS; Bruker, 2003)	$h = -16 \rightarrow 14$
$T_{\min} = 0.733, T_{\max} = 0.865$	$k = -11 \rightarrow 14$
4350 measured reflections	$l = -12 \rightarrow 17$
Refinement	
D C	4/F 2/F 2) (0.000 P)2

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.022P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.036$	+ 5.385P]
$wR(F^2) = 0.080$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.09	$(\Delta/\sigma)_{\text{max}} < 0.001$
2012 reflections	$\Delta \rho_{\text{max}} = 0.35 \text{ e Å}^{-3}$
172 parameters	$\Delta \rho_{\min} = -0.38 \mathrm{e \mathring{A}^{-3}}$
All H-atom parameters refined	

Selected geometric parameters (Å, °).

2.041 (2)	C2-C3	1.391 (4)
2.070(2)	C3-C4	1.388 (4)
2.077 (2)	C4-C5	1.383 (3)
1.347 (3) C5-C6		1.508 (3)
1.377 (3)	C7-C8	1.549 (3)
1.437 (3) C8-F3		1.322 (3)
1.346 (3) C8-F2		1.333 (3)
1.247 (3)	C8-F1	1.342 (3)
1.242 (3)		
180	C5-C4-C3	119.0 (2)
80.50(7)	N1-C5-C4	121.8 (2)
99.50 (7)	N1-C5-C6	115.6 (2)
180	C4-C5-C6	122.6 (2)
92.26 (7)	O1-C6-C5	111.0 (2)
93.50 (6)	O3 - C7 - O2	129.9 (2)
86.51 (6)	O3-C7-C8	114.8 (2)
N1-Ni-O2 87.74 (7)		115.2 (2)
180	F3-C8-F2	106.9 (2)
122.0(2)	F3-C8-F1	108.2 (2)
119.2 (2)	F2-C8-F1	106.0(2)
113.8 (2)	F3-C8-C7	113.4 (2)
127.0 (2)	F2-C8-C7	112.2 (2)
119.0 (2)	F1-C8-C7	109.8 (2)
119.0(2)		
	2.070 (2) 2.077 (2) 1.347 (3) 1.347 (3) 1.347 (3) 1.346 (3) 1.247 (3) 1.242 (3) 180 80.50 (7) 99.50 (7) 180 92.26 (7) 93.50 (6) 86.51 (6) 87.74 (7) 180 122.0 (2) 119.2 (2) 113.8 (2) 127.0 (2) 119.0 (2)	2.070 (2) C3-C4 2.077 (2) C4-C5 1.347 (3) C5-C6 1.377 (3) C7-C8 1.437 (3) C8-F3 1.346 (3) C8-F2 1.247 (3) C8-F1 1.242 (3) 180 C5-C4-C3 80.50 (7) N1-C5-C4 99.50 (7) N1-C5-C6 180 C4-C5-C6 92.26 (7) O1-C6-C5 93.50 (6) O3-C7-O2 86.51 (6) O3-C7-C8 87.74 (7) O2-C7-C8 180 F3-C8-F2 122.0 (2) F3-C8-F1 119.2 (2) F2-C8-F1 113.8 (2) F3-C8-C7 127.0 (2) F2-C8-C7 119.0 (2) F1-C8-C7

Symmetry code: (i) $\frac{1}{2} - x, \frac{1}{2} - y, 1 - z$.

Table 2 Hydrogen-bonding geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - H \cdot \cdot \cdot A$
$O1-H7\cdots O3^{i}$	0.981 (10)	1.670 (13)	2.628 (2)	164 (3)
Symmetry code: (i)	$\frac{1}{2} - x, \frac{1}{2} - y, 1 - z$			

All the H atoms were located in difference electron-density maps and refined isotropically.

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: X-SEED (Barbour, 2001) and SHELXTL (Bruker, 2000); software used to prepare material for publication: PLATON (Spek, 2003).

We gratefully acknowledge the service provided by Dr Joseph Reibenspies and the X-ray facility at Texas A&M University. We thank the National Science Foundation for PI and NIRT grants (CHE-9906583 and DMR-0103455) and for

metal-organic papers

equipment grants for the CCD X-ray equipment (CHE-9807975). We thank the Department of Energy for a PI grant (DE-FG03-02ER45999). Support from the Welch Foundation (A-1449) and from a Telecommunications and Informatics Task Force (TITF) Grant from Texas A&M University is also gratefully acknowledged.

References

Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.

- Bruker (2000). SHELXTL. Version 6.12. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2001). SMART (Version 5.625) and SAINT (Version 6.34). Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Evans, D. G. & Boeyens, J. C. A. (1989). Acta Cryst. B45, 581-590.
- Hoang, N. N., Valach, F., Dunaj-Jurco, M. & Melnik, M. (1992). Acta Cryst. C48, 443–445.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Yilmaz, V. T., Guney, S., Andac, O. & Harrison, W. T. A. (2002). *Polyhedron*, **21**, 2393–2402.