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ABSTRACT 

 

The purpose of this study is to evaluate oxide dispersoid stability in oxide-

dispersoid-strengthened (ODS) alloys under different ion irradiation conditions. ODS 

alloys are considered as future generation IV reactor cladding and in-core structure 

materials due to their good swelling resistance and high temperature strength. The ferritic-

martensitic (FM) 12Cr ODS alloy which has uniform distribution of oxide dispersoids in 

both phases was selected for this study. Previous studies on this alloy have shown good 

void swelling resistance after 800 peak dpa Fe ion irradiation at high temperature and have 

revealed equilibrium oxide dispersoid size dependency of irradiation temperature. It is 

also found that equilibrium size is closely related to a coherency with matrix. In this study, 

oxide dispersoid size and density of coherent and incoherent dispersoids were further 

studied and analyzed as a function of depth for both phases after ion irradiation. 

Furthermore, He preimplantation study was conducted to see how preimplanted He 

bubbles affect coherent dispersoid size and density under irradiation in TM phase, since 

He is generated by (n,α) transmutation in real reactor which causes He embrittlement. The 

study revealed that He implantation itself does not affect dispersoid size or density, but 

subsequent ion irradiation after 11015 ions/cm2 leads to oxide dispersoid density increase, 

while 11016 ions/cm2 does not, suggesting that small bubbles promote nucleation of 

coherent oxide dispersoid. 

Other factors that affect equilibrium dispersoid size are dpa rate and damage 

cascade factor. The effect of dpa rate on dispersoid size and density was studied on Hf 
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doped ODS alloy, and coherent and incoherent particle size and density were studied as a 

function of local dpa rate (depth). The result showed no noticeable difference on dpa rate, 

and in order to explain the experimental observations, defect-assisted-diffusion 

mechanisms were taken into consideration. A high dpa rate results in enhanced dispersoid 

dissolution, while dispersoid recovery is increased due to defect-assisted diffusion. 

Therefore, the two effects are balanced, leading to a relative insensitivity of dispersoid 

size to dpa rate. The result showed the possibility of utilizing ion accelerator on studying 

ODS alloys to predict their behavior in real reactor environment. 
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1. INTRODUCTION  

 

The need for cladding and structural materials that can withstand high temperature 

and high radiation environment has been increasing in nuclear material field for future 

Gen IV and fusion reactors. This chapter provides background knowledge about some 

advanced Gen IV reactors and ODS alloy which is the one of the promising candidate 

alloys for Gen IV and fusion reactors. Previous studies on ODS alloys, especially 12Cr 

ODS alloy, will be briefly introduced. 

1.1. Advanced Reactors 

1.1.1. Background 

The nuclear energy is one form of energy sources that we have been heavily relied 

on to get an electricity. There are about 450 operable fission reactors worldwide, 

producing about 396,446 MWe which is approximately 10.5 % of global electricity [1]. 

Nuclear fission reactors have been proven its safety and sustainability during past 60 years, 

and with the increasing demand of clean energy, about 55 more reactors are under 

construction worldwide as of 2019 [1]. The current commercial reactors that were built 

and are under constructions are mostly Gen II or Gen III PWR and LWR. To further 

improve current fission reactor designs for better safety, efficiency and sustainability, the 

Gen IV reactors have been proposed and coordinated by Generation IV International 

Forum (GIF). The six Gen IV reactors are VHTR, SFR, SCWR, GRF, LFR and MSR and, 

these designs produce radioactive nuclear wastes that decay within few centuries instead 

of millennia while having 100 to 300 times more energy yield from the same amount of 
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fuel [2,3]. For reactor designs like SFR, GRF, LFR and MSR which have closed fuel cycle 

allow decrease fuel waste volume and fuel refilling cost.  

However, those new Gen IV reactors require higher operation temperature and the 

damage generated from thermal and fast neutrons is much higher than conventional PWR 

and BWR reactors as shown in Figure 1.1 [4]. The expected inlet and outlet temperature 

range is 290-1000 ℃, and the expected highest neutron dose is 200 dpa, which is not 

acceptable for current nuclear materials that have been used in the reactors. On top of this, 

accident tolerant reactor concept uses corrosive chemicals such as sodium, lead bismuth, 

and molten salt as a coolant to reduce a risk of hydrogen gas production and also these 

type of reactors does not have geological limitation on construction site, as they do not 

need a massive amount of water as a coolant. Therefore, future material challenges come 

from various aspects, and the key for feasibility and sustainability of these future reactors 

depends on the nuclear material lifetime. 

Among these Gen IV reactors, SCWR, SFR, and LFR where fast neutron is utilized 

and the operation temperature and neutron dose are high (290-800 ℃, over 200 dpa) are 

the reactor types that ODS alloys are expected to be used as a cladding material or an in-

core structural material [4,5]. In next section, therefore, principle and brief background of 

each reactors will be introduced. 
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Figure 1.1 A table shows reactor core environment and materials for LWR and advanced 

fission reactor concepts (adapted with permission) [4]. 
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1.1.2. SFR, LFR and SCWR 

Figure 1.2 provides a schematic of typical SFR. The SFR utilized liquid sodium as 

a reactor coolant and it can be operated at low pressure with high power density. As shown 

in Fig. 1.2, whole system needs to be a closed system to prevent chemical reaction with 

air and water [7,9]. The advantages of this reactor design are: (1) sodium has low neutron 

absorption cross-section and its isotope decays fast to stable element, (2) sodium has high 

boiling point and it does not need to be pressurized, (3) sodium has excellent heat transfer 

properties, and (4) fast neutrons can consume transuranic elements reducing a nuclear 

Figure 1.2 A schematic of sodium-cooled fast reactor [6]. 
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waste. The down side is the risk of using chemically reactive sodium, and if sodium is 

exposed to water, it generates sodium hydroxide and hydrogen [7,9]. 

As the outlet temperature is about 550 ℃, the cladding and structural materials are 

exposed to high temperature during operation, and due to the nature of utilizing fast 

neutron, the materials will get high level of radiation, reaching 200 dpa. As ferritic ODS 

alloys have shown very good swelling resistance under high dose irradiations, it can be a 

Figure 1.3 A Schematic of lead-cooled fast reactor [6]. 
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good candidate material for this type of reactor, and also due to its high temperature 

strength and creep resistance, it is suitable to use under high temperature. 

Figure 1.3 shows a schematic of typical LFR, and it uses liquid lead or lead-

bismuth eutectic as a coolant. As all liquid metals do, the heat transfer is superior and they 

both have low neutron absorption with low melting temperature and high boiling point. It 

is operable under low pressure, and safer than sodium when exposed to air and water [7,8]. 

This reactor concept, however, has some disadvantages: (1) lead and lead-bismuth are 

heavy and require more structural support which increases building cost, (2) bismuth is 

expensive and a rare element compare to lead or sodium, (3) solidification and leaking can 

cause a damage on reactor, and (4) lead-bismuth produces radioactive element polonium 

[7,8]. 

The reactor outlet temperature is higher than SFR ranging from 500-800 ℃, and it 

is also expected to get a high dose of radiation from fast neutron reaching 150 dpa. For 

the same reason with SFR, ferritic ODS alloys are the promising candidate material for 

this design. 

Figure 1.4 shows a schematic of SCWR. From the advantage of using water as a 

coolant, this reactor design can be either thermal or a fast neutron reactor depending on 

the fuel core design. Difference between current LWR and SCWR is that SCWR is 

operated at supercritical pressure. The water temperature is above critical point but under 

very high pressure which makes it possible to become a superheated steam from liquid 

water. Then, the superheated steam will be supplied to turbine directly to generate 

electricity [7]. Thanks to its design, the efficiency reaches over 44 %, higher than current 



 

7 

 

reactors (34-36 %). It can also be a breeder reactor when it is utilizing fast neutrons. 

However, its high pressure and high temperature design challenges reactor component 

materials greatly. Therefore, materials that can withstand high mechanical and thermal 

stress are needed for fuel cladding and in-core structural materials, and this is why ferritic 

ODS alloys are also a good candidate for this reactor type due to the superior properties 

mentioned above [8]. 

Figure 1.4 A schematic of Supercritical Water Reactor [6]. 
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1.2. Ferritic ODS Alloy 

1.2.1. Background 

ODS alloy is first developed in 1996 by company called INCO, and they used 

mechanical alloying (MA) process to fabricate it. Details on current MA process is 

introduced in section 2.1.1. Until the current ODS alloys are developed, there have been 

many trial and errors in fabrication and testing process. For example, one of the previous 

studies on MA957 ODS alloy showed that the uniformity and stability of dispersoids are 

very important to suppress swelling under irradiation [10]. The MA957 ODS alloy showed 

varying levels of dispersoids in each ferrite grains prior to irradiation, and after 400 dpa 

irradiation at 450 ℃, each grain showed different swelling behavior due to different 

dispersoid levels. The grains contain more oxide dispersoids swelled less than those with 

less oxide dispersoids.  

Figure 1.5 A schematic shows the temperature and neutron dose range where each steel 

can be used [13]. 
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It is well known that ferritic-martensitic (F/M) dual-phase alloy are good at good 

swelling resistance at high temperature [11,12]. F/M steels also have higher thermal 

conductivity and lower expansion coefficients than those of austenitic steels [11,12], 

which is appealing to be used as future reactor cladding or in-core structural materials. 

Especially tempered martensite phase has shown superior void swelling resistance 

compared to ferrite phase when they were irradiated at the same condition. As shown in 

Figure 1.6, the austenitic steels are good for high temperature environment, but they are 

susceptible to high dose radiation. In contrast, ferritic steels are known to be resistant at 

void swelling but the operation temperature is only limited to less than 600 ℃ because of 

their mechanical property deterioration. To overcome this problem, ferritic ODS steels 

have been developed and tested, and they showed good high temperature strength while 

maintaining good radiation resistance. During this process, introducing oxide dispersoids 

uniformly within both ferrite and martensite phase was a challenging part. Recently, dual-

phase 12Cr ODS alloy was successfully developed [14,15], and small size of oxide 

dispersoids are evenly distributed in both ferrite and tempered martensite phases [16,17]. 

Self-ion irradiation test at high temperature and high damage level demonstrated good 

swelling resistance behavior of this alloy in recent studies [16,17], and will be further 

introduced in section 1.2.3. 

1.2.2. Benefits of ODS alloy 

The oxide dispersions help stabilizing grain boundaries and block dislocation 

motion so that the dislocation can act as a point defect recombination site. Oxide 

dispersion itself can act as a defect sinks for point defects trapping and defect annihilation 
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[18-20]. Figures 1.7 provide TEM bright field images of two as-received Japanese alloys, 

SP10 (left) and 15Cr (right) ODS alloys. Left figure shows oxide dispersoids located on 

the grain boundary marked with three red arrows, which further prevent grain growth 

under high temperature and high dose irradiation environment. The right figure reveals 

that oxide dispersoids hinder dislocation movement with oxide dispersoids marked by 

yellow dashed circles. 

Due to those effects of oxide dispersoids, ODS variant alloy shows better swelling 

resistance behavior than ODS non-variant part. As an example, 18Cr10NiTi austenitic 

steel was compared against its ODS variants in Figure 1.8 in terms of void swelling. With 

increasing dpa, non-ODS austenitic steel shows very short transient regime and reaches 

Figure 1.6 TEM bright field images of as-received SP10 alloy (left) and as-received 15Cr 

ODS alloy (right). Red arrows and yellow dashed circles are all indicating oxide 

dispersoids. 
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steady-state swelling rate for austenitic steel (1%/dpa) at 50 dpa. On the other hand, its 

ODS variant showed less steep slope of swelling compared to non-ODS alloy, and also it 

does not show 1%/dpa swelling rate anymore. The comparison of two different phases in 

EP450 Russian alloy revealed that martensite phase has much stronger void swelling 

resistance than ferrite phase. The alloy that shows the most swelling resistance behavior 

is the 12Cr ODS alloy which was introduced earlier. Even after 500 dpa irradiation, the 

void swelling did not even reach 2.5 % for this alloy. Along with swelling resistance 

property, the ODS alloys have also shown a superior high temperature strength and creep 

resistance [18,23-25], which make them a very promising candidate alloy for future Gen 

IV and fusion reactors. For example, Russian dual-phase FM alloy EP-450 and its ODS 

Figure 1.7 Void swelling as a function of dpa for various alloys (adapted with permission) 

[21,22]. 
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variant showed very different creep behavior under high temperature and stress as shown 

in Figures 1.9 [26]. The Fig. 1.9(a) shows deformation of both EP-450 and ODS variant 

alloys as a function of time under 650 ℃ and 140 MPa stress. The EP-450 alloy showed 

more than 10 % deformation before time reaches 500 hrs, while EP-450 ODS showed only 

2 % deformation even after 4000 hrs. At 700 ℃ and 120 MPa, EP-450 showed more 

dramatic deformation rate reaching 20 % of deformation within 10 h of exposure with 

creep rate of 9.1 %/h, and ODS variant showed very low creep rate of 1.82  10-3 %/h 

showing three orders of magnitude difference compared to non-ODS variant. 

Figure 1.8 Thermal creeps of EP-450 and EP-450 ODS alloys obtained at (a) 650 ℃ and 

140 MPa, and (b) 700 ℃ and 120 MPa (reprinted with permission) [26]. 
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1.2.3. Previous work 

Since chapter 3 and 4 are closely related to the previous studies on 12Cr ODS 

alloy, this section will briefly introduce and summarize those previous works done by our 

group [16,17]. Figures 1.10 show different void swelling behavior of ferrite and tempered 

martensite phases after the similar irradiation doses. Ferrite grain showed increasing void 

Figure 1.9 TEM micrographs obtained from 500 nm depth region of 100, 300, and 800 

peak dpa irradiated sample from (a-c) ferrite grains and (d-f) tempered martensite grains 

(adapted with permission) [16]. 
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size with increasing local dpa values. TM phase did not show any large void as shown in 

the ferrite phase, and instead, small size microcavities were observed. 

 Figures 1.11 provide void swelling as a function of depth, and the top figure is 

from ferrite phase and the bottom figure is from TM phase. In ferrite phase, with increasing 

damage level, void swelling tends to increase too although there are some fluctuations 

between doses. The TM grain showed a similar trend, however, the maximum swelling 

was about 0.06 % which is much lower than the maximum swelling of ferrite phase (1.6 

Figure 1.10 Oxide dispersoid size distribution of TM phase of (a) unirradiated sample and 

(b) 100 local dpa irradiated sample at 475 ℃ (reprinted with permission) [17]. 
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%). Considering that the maximum peak dpa was 800, both phases showed very high 

swelling resistance behaviors. 

In oxide dispersoid stability wise, both ferrite and TM phase dispersoids showed 

shrinkage in their size after irradiation, and the change was more dramatic for TM phase 

where large size oxide dispersoids were observed as shown in Figures 1.12. Those large 

oxide dispersoids in TM phase are mostly incoherent as shown in Figures 1.13. The Fig. 

1.13(a) shows unirradiated martensite phase dispersoid size distribution, and large size 

dispersoid was not coherent with matrix (110), while small size dispersoids are mostly 

Figure 1.11 Oxide dispersoid size distribution of (a) unirradiated sample and (c) 100 local 

dpa irradiated sample at 475 ℃ (adapted with permission) [17]. 

Figure 1.12 Oxide dispersoid size distribution of TM phase of (a) unirradiated sample 

and (b) 100 local dpa irradiated sample at 475 ℃ (adapted with permission) [17]. 
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coherent with matrix. Comparison with the irradiated sample (Fig. 1.13(b)) tells us that 

large incoherent dispersoids are not stable under high temperature irradiation and only 

coherent small size dispersoids remain. As a follow-up study, the study on dispersoid 

coherency of each phase as a function of irradiation depth was conducted and the results 

are presented in chapter 3, since the previous study only focused on dispersoid coherency 

of TM phase at one certain depth and damage level. 

Another thing we have learned from previous study is that the dispersoid size 

change reaches equilibrium state after ~60 dpa of self-ion irradiation at high temperature 

as shown in Figure 1.14. They showed a size reduction after 60 dpa, but the mean size and 

size distribution remained almost the same afterwards even at 500 dpa. Another 

temperature dependent study revealed that dispersoid equilibrium size varies with 

Figure 1.13 Dispersoid diameter as a function of increasing dpa in TM phase (reprinted 

with permission) (reprinted with permission) [16]. 
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irradiation temperatures. Figure 1.15 shows that the equilibrium dispersoid size is larger 

at higher temperature, and with decreasing temperature, equilibrium size also decreases. 

This dispersoid equilibrium size temperature dependent behavior was further explained 

by radiation induced dispersoid shrinkage equation and the thermal diffusion model from 

Gibbs and Thomson effect as shown in Figures 1.16. When those two terms are in 

equilibrium state, the equilibrium dispersoid size 𝑟 can be represented by a curve. The 

dispersoid inside a curve will grow, while the dispersoids outside of curve will shrink. 

Then, the right figure in Fig. 1.16 plots numerical solutions of equilibrium states with 

varying irradiation conditions. When the temperature increases and other conditions are 

the same, diffusion coefficient 𝐷  will also increase, leading equilibrium size curve to 

Figure 1.14 Mean dispersoid diameter as a function of increasing dpa with varying 

irradiation temperatures (reprinted with permission) [17]. 
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change from black solid line to red dashed line, which means that equilibrium size is larger 

at elevated temperature. To see the other irradiation parameter effects on dispersoid 

equilibrium size, dpa rate 𝐾 is further studied in chapter 5 on Hf-doped ODS alloy. 
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2. EXPERIMENT PROCEDURE: EQUIPMENT AND TECHNIQUES 

 

In this chapter, the equipment and techniques used in this research will be 

introduced in detail from sample preparation to characterization. The sample preparation 

step is especially very critical to conduct a clean irradiation and it greatly affects entire 

experiment quality and result. Since we are operating ion accelerator by ourselves to 

irradiate specimens in Texas A&M accelerator laboratory, it is also important to know 

how accelerator works and how entire irradiation procedure goes. Using ion accelerator 

to irradiate sample is a high-cost and time-consuming process. To conduct a successful 

experiment without failure, good accelerator operating skill and years of experience are 

essential. Last but not least, obtaining a high quality meaningful data from specimens is 

crucial to research, and to do that, it is important to know how each equipment works. 

Principles, background and operating skills on each characterization equipment will be 

introduced in this chapter. 

2.1. Sample Preparation 

2.1.1. Alloy Manufacturing 

The 12Cr and Hf-doped ODS alloys used in this study were supplied by our 

collaborator, professor Shigeharu Ukai of Hokkaido University, Japan. These alloys were 

manufactured by mechanical alloying (MA) method as shown in Figure 2.1 [1]. The 

ferritic alloy powders were atomized to a size of 150 µm under Ar gas atmosphere and 

further mixed with 20 nm size Y2O3 powder. Those powders were mechanically alloyed 

using attrition type ball milling and agitated at up to 220 rpm for 48 hrs under high-purity 
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Ar gas atmosphere. Then, the resulting powder was moved into a steel can, sealed and 

degassed at 673 K for 2 hrs. After a hot-extrusion at 1423 K, 25 mm diameter consolidated 

Figure 2.1 Manufacturing process of ODS alloys (reprinted with permission) [1]. 
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bar was made. This bar can be further machined to a mother tube and final cladding tube 

by cold-rolling and heat treatment.  

The ODS alloy samples that were shipped from Japan are 25 mm diameter 

consolidated bars, and those were further cut and polished to the size suitable for the 

experiment and post-irradiation characterization which is normally less than 5 mm x 5 mm 

size. The final chemical composition of 12Cr ODS and Hf-doped ODS alloy will be 

introduced in Chapter 3 and 5, respectively. 

2.1.2. Sample Cutting and Polishing 

Prior to surface polishing, samples were cut into 3 mm  6 mm  2 mm size by 

using high-speed manual cut-off saw SYJ-40 (MTI Corporation) in the lab and IsoMet 

1000 (Buehler) precision cutter in Microscopy Imaging Center in Texas A&M University. 

In both machines, silicon carbide (SiC) cut-off blade 80-11195 (Allied) was used. The 

rough cutting was done using SYJ-40 saw, while precise cutting to a smaller dimension 

utilized IsoMet 1000, as it uses gravity fed force which gives less deformation during 

cutting process and also has precise x-axis control. 

Samples are mechanically polished by using Nano 2000 polisher (Pace 

Technologies) and SiC fine grit 8-inch discs. The rough 320 grit is used for grinding down 

the specimen to certain thickness, and 600 (26 µm), 1200 fine grit (15 µm), 800 (P-2400, 

10 µm), 1200 (P-4000, 5 µm) grits are used to further polish down to desired thickness 

and to remove deformation. As 1200 (p-4000) grit is sputter coated and SiC particles are 

randomized, it is good for removing deformation. The 1200 fine grit is electrostatically 

coated and SiC particles are aligned which give more material removal action. Therefore, 
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1200 fine grit is used after 600 grit, while 1200 (p-4000) grit is used at final step. Then, 

red final C polishing cloth is used with water-based diamond colloidal suspensions (0.25 

micron) followed by silica colloidal suspension (0.04 micron). Specimens are further 

sonicated by using Ultrasonic cleaner 1510 (Branson) soaked in acetone for 10-15 mins 

to remove residues, and immediately cleaned by methanol and dried using nitrogen gas 

spray gun. After this final process, the deformation layer on specimens is mostly removed, 

and if there is any deformation layer left, electropolishing can be used to chemically etch 

away the surface. 

Figure 2.2 SEM SE image of electropolished SOC-

14 ODS alloy surface. 
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Specimens are electropolished by using TenuPol-5 jet electropolisher (Struers) 

with 5 vol% perchloric acid and 95 vol% methanol. The voltage of 20 V is applied, and 

polishing is conducted at room temperature or at -20 ℃. After electropolishing, the 

specimen is rinsed in two methanol containing beakers sequentially to remove any 

remaining electrolyte. 

2.1.3. Sample Surface Quality Examination 

To ensure the specimen surface quality before irradiation, secondary electron (SE) 

beam imaging is used. The Vega 3 SEM (Tescan) and Lyra 3 FIB-SEM (Tescan) are used 

to check the surface, and if the specimen is well polished without scratch and deformation 

layer, the grains and grain boundaries are visible under SE image as shown in Figure. 2.2. 

For this particular image, the Lyra 3 FIB-SEM with 10 kV operation voltage was used. 

This image is taken from one of the Japanese ODS alloys, SOC-14, after mechanical 

polishing and electropolishing by the methods introduced in Chapter 2.1.2. The grains are 

clearly distinguishable from each other and no large scratch is visible in this image. 

Occasionally, white contrast particles are observed on the surface as shown in Fig. 2.2 and 

those are possibly a leftover silica from colloidal silica suspension, or it can be a residue 

from electropolishing. 

If the surface looks good under SEM, the specimens are further cleaned with 

acetone to remove copper tape residue on the bottom and with methanol again prior to 

irradiation. Nitrogen gas blower gun was used to dry residual methanol quickly from the 

sample surface. Especially, if it is a high temperature irradiation, specimens need to be 

cleaned thoroughly to prevent any contamination during irradiation. 
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2.2. Irradiation Using Ion Accelerator 

2.2.1. Accelerator Background 

The 1.7 MV Tandem accelerator and 140 kV linear accelerator were used for ODS 

alloy studies. The background and principle of each accelerator will be introduced in this 

section to explain how they work and to shed light on why specific accelerator is used for 

certain experiment. 

2.2.1.1. General Ionex 1.7 MV Tandem Accelerator 

The 1.7 MV Tandem accelerator was manufactured by General Ionex Corporation 

and it is designed to have two separate ion sources. One is SNICS (Source of Negative 

Ions by Cesium Sputtering) and the other one is Duoplasmatron. The SNICS source uses 

a cylindrical shape solid cathode bar, while Duoplasmatron uses injected gas to produce 

ion beam. The SNICS source can produce any elements from H up to Au, except noble 

gases (He, Ar, Xe, Kr etc.). For ODS alloy studies, SNICS source is utilized with pure Fe 

cathode bar, therefore, only SNICS source will be introduced in this section. 

Figure 2.3 A schematic of 1.7 MV Tandem accelerator (reprinted with permission) [2]. 
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Figure 2.3 shows the entire 1.7 MV Tandem accelerator from the source to the 

target chambers. Right end side has SNICS and Duoplasmatron sources which produce 

low energy negatively charged ion beam. Then, the ion beam is fed to low energy magnet 

which is located between sources and main acceleration tank as shown in Figure 2.4. The 

low energy magnet bends ion beam by applying magnetic field which makes it possible to 

select certain mass and send it into main acceleration tank. The light ions like H and He 

need less magnetic field to bend, and heavy ions like Fe and Cu need more voltage applied 

to magnet to bend them. Once the negative ions enter the tank, they are accelerated toward 

high positive voltage terminal at the middle of the tank, and the electrons are stripped by 

injected nitrogen gas. Then, these negative ions become positive ions, and depending on 

how many electrons they lose, they are charged +, 2+ or more. Once they become positive, 

they will be repulsed away from the positive terminal and accelerated toward target 

chamber which has ground potential. Having high positive voltage terminal at the middle 

of the tank makes the ions accelerated twice and this is the reason why this type of 

accelerator is called as a Tandem. To keep the high voltage safe without discharge, the 

whole acceleration tank is filled with SF6 insulating gas, and the pressure is regularly 

Figure 2.4 The 1.7 MV Tandem accelerator in Texas A&M Ion Beam Laboratory. 
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monitored by operators before experiment. The high voltage is achieved by a Cockcroft 

and Walton type cascade generator, consisted of identical stages of capacitors and 

rectifiers. The final energy of ion beam is calculated by using Eq. 2.1, 

E [MeV] =  𝑉𝑛  + (𝑞 + 1) ⋅ 𝑉𝑇 (2.1) 

where 𝑉𝑛 is the energy of injected negative ions, 𝑉𝑇 is the terminal voltage applied, 𝑞 is a 

charge state of ion. This equation implies that if the ions are double charged, the final 

energy will be higher than single charged ions. The injected negative ion energy can be 

calculated by adding extraction and pre-acceleration voltages, and normally those values 

(several kV) are relatively smaller than the terminal voltage (few MV) which do not affect 

that much on final energy. 

After acceleration tank and focusing quadrupoles, ion beam reaches at high energy 

magnet as shown in Fig. 2.3, and the beam is selected by magnet and directed to desired 

Figure 2.5 Schematic showing the principle of SNICS 

source. 
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beam line. By using high energy magnet, different charge state ion beams can be 

distinguished and even isotopes can be separated too. For ODS studies, only implantation 

chamber which is located at left side 11° (L11) was used for Fe implantation, and we used 

3.5 MeV Fe2+ ions. 

Figure 2.5 shows the schematic of SNICS source and how the negative ions are 

produced by Cs sputtering. To produce negatively charged ions from solid cathode bar, 

Cs reservoir needs to be heated first to 100-200 ℃, so that Cs can be evaporated and go 

Figure 2.6 A schematic of internal structure and operation principles of the SNICS source 

(reprinted with permission) [2]. 
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up through the chimney to reach at the ionizer. The ionizer is heated by high current and 

emits thermal electrons. Then, the Cs vapors are enclosed by cool cathode and heated 

ionizer, and some of Cs vapors condense on the cathode surface forming a thin layer, while 

others are ionized by thermal electrons turning into Cs+. These Cs+ ions are further 

accelerated by target voltage toward cathode, sputtering the material out. When Fe is 

sputtered, the thin Cs layer on the cathode surface gives electrons to Fe due to their weak 

electronegativity, and makes negatively charged Fe ions. Those ions leave the cathode 

surface and are accelerated toward ionizer by target voltage, and then further extracted by 

extraction voltage applied to extraction cone as shown in Figure 2.6. 

Once ions leave extraction cone, beam is focused by einzel lens, and further 

accelerated by pre-acceleration column. The Y-steerer located after pre-accelerator helps 

beam positioning in vertical direction and grid lens focuses the beam before it is sent to 

low energy magnet. 

From source to the target chamber, all system requires high vacuum for better 

beam transmission and for clean irradiation without contamination. Source part vacuums 

are maintained at low 10-7 torr range, tank is at 10-6 torr due to nitrogen gas feeding, beam 

lines are maintaining low 10-7 torr, and implantation target chamber is kept at 10-8 torr 

during irradiation. To maintain high vacuum system, each part uses either turbo pump with 

roughing pump or ion pump. We use two types of roughing pump in our system, which 

are rotary vane oil pump and oil-free scroll pump. For the parts where pumps run 

continuously without stopping like sources and beam lines, rotary vane oil pumps are used 

for roughing pump, since back streaming of oil is not a problem. Also, to further prevent 
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back streaming, filters are attached between all oil pumps and turbo pumps. However, the 

part we constantly start and shut off pumping system like target chamber, dry scroll pump 

is used with turbo pump to prevent any oil back streaming to the chamber, since oil can 

be a critical source of carbon. 

2.2.1.2. 140 kV Accelerator 

140 kV accelerator uses gas source to generate positive ions with high current. A 

schematic and a photo of the accelerator are shown in Figure 2.7 and 2.8, respectively. 

The source is in cylindrical shape with small hole at one end with tungsten filament inside. 

When the filament is heated, thermal electrons are generated, and they interact with 

injected gas forming a plasma. To continue the plasma, entire cylindrical source head is 

surrounded by an electromagnet. With this magnet, thermal electrons are confined and 

travel in a long spiral path, increasing an interaction between gas and electrons [2]. The 

bias between anode and filament also helps plasma confinement and shaping [2]. Once 

Figure 2.7 A Schematic of 140 kV accelerator from source to the implantation chamber 

(reprinted with permission) [2]. 
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positively charged ion beam is extracted from source toward main acceleration column, it 

gains energy through acceleration column and goes to selection magnet. This accelerator 

has one selection magnet and one beam line. The beam line has scanning coils which can 

be used for raster beam and slits to confine a beam size. Implantation chamber is 

vacuumed by turbo and dry scroll pumps to avoid back streaming oil contamination while 

source and acceleration column are vacuumed by diffusion oil pump with mechanical oil 

roughing pump. The implantation chamber can do both room temperature and high 

temperature irradiation, and both defocused beam and raster beam can be used in this 

accelerator. Although the beam energy can be obtained from this machine is relatively low 

compare to other 1.7 MV and 3 MV tandem accelerators, this accelerator can produce high 

current beam straightforwardly. For ODS study, therefore, this accelerator was used for 

room temperature He implantation with 120 keV energy He+ and dose of 1E15 and 1E16 

ions/cm2. 

Figure 2.8 A photo of 140 kV accelerator in Texas A&M Ion Beam Laboratory. 
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2.2.2. Irradiation Process 

Before mounting samples on the hot stage, beam size and position need to be 

known. After all beam parameter adjustments including beam defocusing and deflection, 

a clean paper piece is cut and attached on the stage with copper tape. When the paper piece 

is irradiated, it turns color to brown which tells us beam uniformity and size. Once right 

beam size and uniformity are obtained, the beam area is marked by razor blade on the 

copper stage and paper and copper tape are removed. To prevent any contamination during 

irradiation, the stage is cleaned with acetone to remove any adhesives from copper tape 

and cleaned once again with methanol. Then, samples are mounted by using water-based 

carbon free silver paste, and a heat gun is used to dry silver paste for better adhesion. 

Figure 2.9 shows a typical photo of 1.7 MV accelerator copper hot stage with 4 samples 

attached with silver paste. To minimize the exposure of silver paste to beam, and to ensure 

Figure 2.9 A photo of 1.7 MV accelerator hot stage with samples mounted. 
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a good contact between sample and stage for heat conduction, proper amount of silver 

paste needs to be applied. 

The total irradiation time can be calculated when fluence, charge state 𝑞, beam 

area and beam current on the stage are known as shown in Eq. 2.2. The beam current is 

monitored every hour and recorded with stage temperature to adjust the total irradiation 

time. 

Total time [s] =  
𝐹𝑙𝑢𝑒𝑛𝑐𝑒 [

1
𝑐𝑚2] ⋅ 1.602 × 10−19[𝐶] ∙ 𝑞 ∙ 𝑏𝑒𝑎𝑚 𝑎𝑟𝑒𝑎[𝑐𝑚2]

𝐵𝑒𝑎𝑚 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 [𝐴]
(2.2) 

 

The recent study on effect of carbon and other contaminants during accelerator 

irradiation revealed that utilizing beam deflectors can mitigate the problem [3-5]. Those 

carbon and oxygen rich molecules and nitrogen contaminants are dragged to main beam 

by Coulomb-drag effect and delivered to specimens. To avoid this problem, three bending 

magnets were located at the implant chamber beam line, and they deflect the beam to 

zigzag path while the contaminants with lower mass will be bent even with higher angle 

and filtered out during this process. Other charge-neutral molecules are trapped by liquid 

nitrogen cold trap located at the beam line between deflectors and also another cold trap 

is located at the target chamber to maintain high vacuum in the chamber during irradiation. 

For all irradiations on 1.7 MV using Fe beam at high temperature, uniformly 

defocused beam was used instead of raster beam due to the reason that the static defocused 

beam gives more neutron-atypical effects than the raster beam in terms of swelling 

behavior [5]. 
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2.3. Sample Characterization 

2.3.1. Scanning Electron Microscopy (SEM) 

The SEM is normally used to check the specimen surface quality before irradiation 

and also to see the surface change after irradiation. Figure 2.10 shows a photo of Vega 3 

(Tescan) in MIC at Texas A&M University. The electrons are generated by Schottky type 

field emission gun (FEG) and accelerated by applied voltage which is normally 5-20 kV. 

For metal specimens, normally higher operating voltage gives better resolution while 

sacrificing some surface details. In the studies here, operating voltage of 10 kV was used, 

and it was sufficient enough to see the features on the surface and to find a specific region 

(10µm  2 µm) to do FIB on. The condenser lens, objective lens, stigmator and deflection 

coils are used to focus and shape the beam down through the column. Depending on the 

Figure 2.10 A photo of Tescan Vega3 in Texas A&M MIC. 
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purpose, SE and BSE imaging can be used and chemical analysis using characteristic X-

ray (EDX) can be also used with special detector system inserted. 

The SE imaging mode utilizes secondary electrons generated from the surface by 

interaction between surface material’s free electrons and the main electron beam. 

Therefore, the specimen needs to be conductive to obtain a good quality surface image, 

and sometimes Pt coating can be used for nonconductive materials. BSE imaging uses 

backscattered electrons from sample atoms, and it gives Z-contrast image. With increasing 

atomic number, the number of backscattered electrons increases too, which gives higher 

signal to detector. The high Z-number elements, therefore, look brighter in BSE image 

than the low Z-number elements.. 

2.3.2. Focused Ion Beam (FIB) Preparation 

Figure 2.11 A photo of Tescan Lyra 3 FIB-SEM machine in Texas A&M MCF. 
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Figure 2.11 shows a photo of Lyra 3 (Tescan) in MCF at Texas A&M University. 

This FIB-SEM machine enables to cut out small volume from unirradiated and irradiated 

samples, and move it to TEM grid, so that it can be inserted in the TEM machine for 

further analyses. Figure 2.12 shows general e-beam, Ga ion beam and gas injection system 

(GIS) configurations. As e-beam and Ga ion beam columns are located at 55 degree angle, 

stage and specimen need to be tilted to 55 degree for this specific FIB-SEM machine. Due 

to large atom size of Ga, sample is etched out with high sputtering rate, and normally 30 

kV energy Ga beam is used with different aperture and current settings. The sputtering 

rate differs by each material, and softer material like Si normally has higher sputtering rate 

than harder material such as Fe based alloys. The working distance of sample for both e-

beam and i-beam is 9 mm, and this distance need to be kept at all FIB processes to avoid 

any damage when inserting manipulator or GIS. The GIS has five different nozzles and Pt 

is commonly used to protect the material surface from Ga beam while making a TEM 

lamella. A typical TEM lamella lift-out process is shown in Figure 2.13. The 10 µm  2 

µm area with 2-3 µm thickness of Pt layer is deposited on the surface of region of interest 

as shown in Fig. 2.13(a). Current settings between 70 pA – 200 pA are used for Pt 

deposition. Then, surface around Pt layer is etched out using stair rectangular and 

polishing rectangular options, and when the sample thickness reaches to 1.5-2 µm, J-cut 

is used to further cut out the bottom and side connections, except small portion on the top 

left side to hold the sample while welding the manipulator to lamella. 10 nA current is 

used for initial rough etching, and 1 nA and 3 nA current settings are used for polishing 

and cutting afterwards before the sample is moved to TEM grid. When it is ready to be 
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lift-out, manipulator is inserted and attached to the sample by using Pt as shown in Fig. 

2.13(b). The inset figure in Fig. 2.13(c) is a typical TEM copper grid with 4 posts which 

is frequently used for TEM lamellas. The 10 µm  10 µm size with thickness of 1.5 µm 

cross-sectioned specimen is welded on one of the posts like Fig. 2.13(c) using Pt 

deposition. Once it has a firm connection, a 3 nA beam current beam is used to break the 

connection between manipulator and lamella. As TEM specimen needs to be thinned 

enough so that 200 kV energy electron beam can transmit, specimen is further thinned by 

lowering Ga beam currents from 1 nA down to 70 pA until the specimen thickness 

becomes less than 200 nm. While this process, sample is tilted to ± 2º with different 

polishing directions. Then, final cleaning process utilizes 5 kV low energy Ga beam to 

Figure 2.12 A configuration of e-beam, ion beam and GIS in Tescan Lyra 3 FIB-SEM 

machine. 
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remove all FIB-induced damage and to reduce the thickness down to less than 100 nm. 

Once it reaches to desired thickness, the specimen looks bright under SEM as shown in 

Fig. 2.13(d). During the thinning process, in-beam BSE view needs to be always turned 

on and Pt layer needs to be carefully watched, so that sample beneath the Pt layer is not 

etched away. Also, to make a firm connection with grid post, polishing rectangular boxes 

are gradually moved away from the connection, so that it has a gradual thickness decrease 

rather than dramatic thickness change while thinning. 

Figure 2.13 SEM images of TEM lamella lift-out process. 
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2.3.3. Transmission Electron Microscopy (TEM) Analysis 

TEM is a very useful tool for analyzing sample microstructures, especially for void 

swelling analysis, oxide dispersion stability study, and chemical analysis using EDX. In 

this study, both FEI Tecnai G2 F20 ST FE-TEM and F20 FE-TEM were used for analysis 

by using various technique like bright field, dark field, STEM, EELS, and EDX etc. Most 

of the characterizations were conducted using F20 ST FE-TEM and only EELS thickness 

measurement was conducted on F20 FE-TEM which is shown in Figure 2.14. They are 

almost identical with the same operating voltage of 200 kV, but F20 FE-TEM is more 

Figure 2.14 A photo of FEI Tecnai G2 F20 ST FE-TEM in MIC at Texas A&M. 
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frequently used for Cryo-TEM, EFTEM and EELS and has lower resolution than the other 

one, while F20 ST FE-TEM is especially used for HRTEM and EDX analysis. 

Figure 2.15 shows schematic of TEM components and principles of bright field, 

dark field, and diffraction modes. Electrons are generated by ZrO2/W (100) Schottky FEG 

and accelerated toward specimen. Condenser lens magnet focuses the beam and condenser 

aperture determines the total amount of beam arrives at the specimen. Once the beam 

passes through the specimen, objective lens magnet focuses the beam and objective 

Figure 2.15 Schematics of TEM components and principles of each imaging mode [2]. 
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aperture under the lens helps selecting one or more beams that contribute to the final 

image. It is also used to give a higher contrast to bright field imaging. The smaller the 

aperture, the higher contrast can be obtained. The selected area aperture defines a region 

where diffraction pattern is obtained, and the intermediate lens coil magnifies the image 

coming from objective lens. Finally, the projector lens coil further magnifies the image 

from intermediate lens coil and projects it on a phosphorescent screen. 

Depending on the aperture positions, different imaging modes can be selected as 

shown in Fig. 2.15 and Figure 2.16. For example, bright field with good contrast can be 

obtained by using small size objective aperture (10) which only allows main beam to 

penetrate. If certain diffraction pattern is chosen by objective aperture for imaging, dark 

field image can be obtained like Fig. 2.16(b), which is very useful for dispersoid coherency 

study, dislocation loop and dislocation imaging etc. In dark field image, electrons only 

diffracted toward the direction of selected diffraction beam appear bright, while all other 

Figure 2.16 Typical (a) bright field, (b) dark field, and (c) diffraction pattern taken from 

this region of 12Cr ODS alloy. 
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features remain dark. In this way, coherency of oxide dispersoids in the matrix can be 

distinguished.  

Figure 2.17 shows a typical STEM image taken from Hf-doped ODS alloy. This 

particular imaging technique uses a focused fine spot size beam to scan over the specimen 

to obtain an image. It is suitable to see a grain morphologies and Z-contrast by using high-

angle-annular-dark-field (HAADF) detector, and EDX analysis is also can be used under 

this mode. As shown in Fig. 2.17, the particles which have different atomic number clearly 

Figure 2.17 A typical STEM image taken form Hf-doped ODS alloy. 
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show different contrast, and higher Z material appears brighter due to higher scattering 

intensity.  

Figure 2.18 (a) STEM image of two different contrast particles, and EDX point scan 

spectroscopies from (b) dark contrast particle and (c) bright contrast particle. 
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The EDX spectroscopy is a type of microscopy uses finely focused electron beam 

to generate characteristic X-ray for chemical analysis. Each element has distinguishable 

characteristic X-ray energy and EDX spectroscopy can be obtained from certain region of 

STEM image by using AZtec or INCA software. In Figure 2.18, a STEM image shows 

two different contrast particles, and bottom two point scan spectroscopies are from those 

particles. The dark contrast particle is confirmed as Al and O rich particle, possibly an 

Al2O3, while bright contrast particle shows high Hf and Ti concentration, which can be a 

Hf-Ti-O. Other EDX functions like 1D line scan and 2D mapping are also a very useful 

tool to analyze chemical compositions of compounds and matrix. The EFTEM is also good 

for enhancing image contrast, element mapping and quantifying in the image. It utilizes 

energy loss spectrum properties to increase image contrast. In this study, however, 

EFTEM is not used and therefore will not be introduced here. Instead, another powerful 

chemical analysis equipment, which is APT, will be introduced in section 2.3.4. 

Another TEM analysis used in this study is EELS. When known energy of 

electrons lose their energy while interacting with specimen by inelastic scattering, those 

energy losses can be measured by electron spectrometer and the peaks can be 

distinguished from each other. The energy losses are commonly caused by plasmon 

excitation, inner shell ionization, Cherenkov radiation, inter and intra band transitions, and 

phonon excitation. The spectrum peaks from inner shell ionization can be used for 

elemental mapping, because each element requires unique energy for ionization. It is very 

useful to analyze low atomic number materials and has better resolution than EDX. Figure 

2.19 shows a typical EELS. Among many features we can do with EELS, only sample 
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thickness measurement using zero-loss peak is used in this study. The sample thickness 

can be easily calculated by using electron mean free path λ, total beam intensity 𝐼𝑡 and 

zero-loss intensity 𝐼𝑜 as shown below in Eq. 2.3. 

Thickness = −λ ∙ ln (
𝐼𝑜

𝐼𝑡
) (2.3) 

When using log-ratio method, log-rate absolute method was used in this study and 

this method is only valid for high refractive index materials like metal and semiconductors. 

During the process, effective atomic number needs to be inputted and inelastic mean free 

path is computed. The zero-loss counts are isolated for computing relative thickness t, and 

then, the relative thickness value is converted to absolute thickness by using computed 

inelastic mean free path value. It is a quick and reliable thickness measurement tool and 

all TEM specimens examined in this study used EELS to get a thickness data. 

Figure 2.19 A typical EELS show (a) zero-loss peak and plasmon peaks and enlarged 

core-loss edge peaks and (b) inner shell ionization edge from La0.7Sr0.3MnO3 [7]. 
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The final important TEM technique used in this paper is high-resolution TEM 

(HRTEM). The HRTEM is very useful when checking coherency of particle with matrix 

and measuring lattice parameter of unknown precipitates. Along with Fast Fourier 

Transform (FFT), HRTEM helps examining crystal structure of unknown material. To 

obtain a good HRTEM image, good beam alignment is essential. Once alignment is done 

at high magnification, specimen is tilted until it is at certain zone axis under diffraction 

mode. By using proper size of objective lens aligned with beam axis, HRTEM image can 

be obtained like shown in Figure 2.20(a). The Fig. 2.20(b) is a FFT image of HRTEM 

which shows frequencies of lattice parameter. From this image, both matrix and oxide 

dispersoid lattice parameters can be obtained from each dot and we can also see which 

zone axis this HRTEM is taken from. 

Figure 2.20 (a) HRTEM image of oxide dispersoid in Hf-doped ODS alloy and (b) its 

FFT image. 
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3. OXIDE DISPERSOID COHERENCY STUDY ON 12CR ODS ALLOY 

 

3.1. Introduction 

The oxide dispersion strengthened (ODS) alloys have been considered for 

advanced nuclear fusion and fission reactor component materials [1-3] due to its superior 

stability under irradiation [4] and high temperature strength [5]. Among many ODS alloys, 

dual-phase ferritic-martensitic (FM) 12Cr ODS alloy was selected for this study due to its 

good radiation tolerance with improved corrosion and oxidation resistance compared to 

9Cr ODS alloys [6,7,10]. It is known that oxide dispersoids help stabilize grain boundaries 

and act as sinks for both point defects. Also, dispersoids hinder dislocation glide so that 

dislocation can work as recombination site for point defects in the matrix [19,20]. 

Therefore, stability of oxide dispersoids is very important that determines the ODS alloy 

material property under irradiation. One of the important components that affects 

dispersoid stability is coherency. It is known that coherent dispersoids are more stable than 

incoherent dispersoids under irradiation [7]. Chen et al. showed that large incoherent oxide 

dispersoids were observed in unirradiated tempered martensite (TM) phase and they 

disappeared after ~60 local dpa irradiation while small coherent dispersoids were stable 

in the same 12Cr ODS alloy [7]. However, the previous coherency study on this 12Cr 

ODS alloy was limited to only TM phase, and the systematic study on relationship 

between coherency, size and density of dispersoids in different phases has not been 

conducted yet. In this study, therefore, the dispersoid coherency in each ferrite and TM 
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phase as a function of irradiation depth was characterized along with dispersoid size and 

density analyses. 

The interfaces of solid-solid phases can be divided into three different types; 

coherent, semi-coherent, and incoherent. The dispersoid coherency with the matrix is 

related to the interfacial energy as shown in Eq. 3.1 [21,22,28], 

Free energy = Interfacial energy [4π𝑟2𝛾𝑖] + Elastic energy [
4

3
π𝑟3 ∙ 𝜀2𝑐] (3.1) 

where r is radius of oxide dispersoid, 𝛾𝑖  is interfacial energy, ε is relative strain from 

lattice misfit, and 𝑐  is the elastic constant. When the oxide dispersoid is small, the 

interfacial term contributes more on total free energy, and the volumetric elastic energy 

term dominates when dispersoid size is large. The coherent dispersoid has lower 

interfacial energy (𝛾𝑖<200mJ/m2) while incoherent dispersoid has larger value (𝛾𝑖>800 

mJ/m2) [21,28], and therefore, small dispersoids prone to take a coherent relationship with 

matrix to lower down the total free energy by having lower 𝛾𝑖 value [6,26-28]. The critical 

radii of semi-coherent dispersoid were introduced by Ribis et al. [25] calculated from this 

equation using interfacial energy (200-800 mJ/m2) and elastic constant introduced in Ref. 

[23,24] for Y2Ti2O7 and Y2O3. 

Previous studies confirmed that this 12Cr ODS alloy contains pyrochlore Y2Ti2O7 

type dispersoids [6], and Ohnuma et al. showed that this type of oxide nanoparticles has 

the finest size and highest number density [29]. The pyrochlore structure has cube-on-

cube orientation with bcc Fe matrix, and {110} plane of Fe matrix matches with 

{440}Y2Ti2O7 plane [25]. Therefore, small dispersoids will favorably take a coherent 
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relationship with matrix {110}. Therefore, in this study, g110 reflection is utilized for dark 

field imaging to differentiate coherency of dispersoid at each depth and in each phase. 

3.2. Experimental Procedure 

The 12Cr ODS dual-phase alloy was fabricated by Shigeharu Ukai of Hokkaido 

University, Japan by MA process. The chemical composition of this alloy is shown in 

Table 3.1. The Y2O3 powder is added to the rest of the element powder and mechanically 

alloyed in argon gas atmosphere and consolidated at 1100 ℃ for 2 hours. After hot-

extrusion at 1150 ℃ and normalization at 1050 ℃ for an hour, it is tempered at 800 ℃ 

for an hour. The Ti and excess O contents were well controlled in this alloy to produce 

small size high density oxide dispersoids to maximize creep resistivity [10,29]. Other 

fabrication details can be found in the paper published by Ukai et al. [10]. The alloy was 

cut into 3 mm×6 mm×2 mm specimen, and mechanically polished down to a 0.7 mm 

thickness by using SiC paper (down to p4000 grit). A 0.04 μm silica suspension and 

polishing cloth were used for final polishing step to remove cold-work surface region. 

 

Table 3.1 Composition of as-received 12Cr ODS alloy (wt. %). 

Fe Cr C Ni W Ti N Ar Y2O3 Excess O 

Bal. 11.52 0.16 0.34 1.44 0.28 0.007 0.006 0.33 0.10 

 

The specimen was then irradiated using a 1.7 MV Ionex tandem ion accelerator at 

Texas A&M University. Beam energy of 3.5 MeV Fe2+ ions were used to a fluence of 

9.54×1016 ions/cm2 (100 peak dpa). The fluence is calculated by Stopping and Range of 
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Ions in Matter (SRIM) using Kinchin-Pease option with Fe displacement threshold energy 

of 40 eV [11,12]. The irradiation temperature was chosen to 475 ℃ which is close to the 

maximum swelling temperature for ferritic alloys, and it was kept within ±5 ℃ during 

irradiation [13-16]. The beam was defocused over by 6 mm x 6 mm area. The target 

chamber vacuum was kept at 4-6  10-8 torr by using liquid nitrogen cold traps during 

irradiation, and three beam deflectors with liquid nitrogen cold trap were located on the 

beam line to avoid carbon contamination [17,18,30]. 

After irradiation, focused ion beam (FIB) lift-out technique was used to make a 

transmission electron microscopy (TEM) specimen. The FIB specimen was cut and 

thinned by 30 keV Ga+ ion beam to reach ~10 m × ~10 m × ~200 nm size first. Then, 

Ga+ beam energy was dropped to 5 keV for fine thinning to reach a thickness less than 

100 nm and to remove any FIB induced damage on the surface. The TEM characterization 

was conducted using 200 kV electron beam, and bright field (BF), weak beam dark field 

(WBDF), and electron energy loss spectroscopy (EELS) techniques were used. TEM and 

FIB equipment used in this study are FEI Tecnai G2 F20 Super-Twin, FEI Tecnai F20, 

and Tescan Lyra-3 located at Texas A&M University Microscopy Imaging Center and 

Material Characterization Facility. 

3.3. Results 

3.3.1. Grain Stability 

Figure 3.1(a) shows grain morphology of 12Cr ODS alloy after 100 peak dpa 

irradiation, and the irradiated area is enclosed by two dashed lines. The top black dashed 

line refers to sample surface, and the bottom white dashed line indicates end of ion range 
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for 3.5 MeV Fe beam. Grain size for irradiated region is 412  79 nm, and grain size for 

irradiation free thermally annealed region is 557  130 nm. Considering error bars, grain 

size is stable after 100 peak dpa irradiation, which agrees with previous grain stability 

study on this alloy that showed stable grain morphologies even after 800 peak dpa 

irradiation [6]. Figure 3.1(b) shows the Fe ion distribution and dpa curve indicated by red 

dashed line and black solid line respectively as a function of depth calculated by SRIM. 

3.3.2. Dispersoid Stability 

Figures 3.2 shows TEM micrographs of ferrite grains taken from different depths. 

Figures 3.2(a1-e1) show the bright field micrographs at depth of 200 nm, 500 nm, 800 nm, 

1000 nm, and 2000 nm respectively. Corresponding dark field images were taken by using 

WBDF technique with g110 direction excited at (g, 3g) tilting condition, and diffraction 

Figure 3.1 (a) TEM BF micrograph of 100 peak dpa irradiated 12Cr ODS alloy. 

Superimposed black dashed line in (a) indicates irradiation surface and white dashed line 

refers to end of ion range (~ 1.6 µm depth from surface). (b) SRIM calculation of dpa 

(black solid line) and Fe ion implant (red dash line) as a function of depth. 
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patterns are superimposed on each DF image. The scale bar in Fig. 3.2(a1) applies to other 

micrographs too. The oxide dispersoids have dark contrast in BF image, and the 

dispersoids coherent to (110) of matrix will appear bright in DF image, while incoherent 

dispersoids will not show up or show lattice misfit in DF image. The same technique is 

applied to get BF and DF images from martensite phases as shown in Figures 3.3. Images 

were taken from the same depths with ferrite grain to compare dispersoid size and density 

against ferrite phase. Diffraction patterns are superimposed on each DF image. The 2000 

nm depth represents thermally annealed region without any radiation damage. This region 

can be used as a reference because previous study revealed that the dispersoid size after 

1000 nm depth region is close to the dispersoid size of unirradiated as-received sample 

[6], which means that oxide dispersoid size and density are not affected by thermal 

annealing at 475 ℃. 

Figure 3.2 (a1-e1) TEM BF micrographs and (a2-e2) WBDF micrographs of ferrite phase 

at depth of 200 nm, 500 nm, 800 nm, 1000 nm, and 2000 nm, respectively, with TEM 

diffraction patterns superimposed on each DF image. 
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Figures 3.4 show the coherent and incoherent dispersoid size distributions in ferrite 

and TM phases at different depths. The top five histograms show ferrite phase and the 

Figure 3.4 (a1-e1) TEM BF micrographs and (a2-e2) WBDF micrographs of TM phase 

at depth of 200 nm, 500 nm, 800 nm, 1000 nm, and 2000 nm, respectively, with TEM 

diffraction patterns superimposed on each DF image. 

Figure 3.3 Oxide dispersoid size distributions in ferrite and TM phases at different depths. 

Black bars refer to coherent dispersoids and gray bars refer to incoherent dispersoids. 

Superimposed blue solid line and red dashed line are average coherent and incoherent 

dispersoid sizes, respectively. 



 

57 

 

bottom five histograms are from TM phase. Black and gray bars in histogram refer to 

coherent and incoherent dispersoids, respectively. The average coherent and incoherent 

dispersoid sizes are indicated by blue solid lines and red dashed lines, respectively. In 

ferrite grain, the coherent and incoherent dispersoid size shows similar distribution at 2000 

nm region (out of ion range). Under irradiation, both coherent and incoherent average 

dispersoid sizes reduce, and the density of coherent dispersoid increases compare to 2000 

nm region. Also, incoherent dispersoid size is slightly larger than coherent one within the 

irradiated region. 

In TM phase, the coherent and incoherent size distributions are very different at 

2000 nm depth, and incoherent dispersoids take larger size and wider distribution compare 

to coherent dispersoids due to the reason explained in the introduction section (3.1). 

However, within the ion range (≤1000 nm), those large incoherent dispersoids disappear, 

and both coherent and incoherent dispersoid size distribution and density become similar. 

Figure 3.5 Depth distributions of (a) mean dispersoid diameter and (b) total dispersoid 

density in ferrite and TM grains. Superimposed gray solid lines refer to Fe dpa curve and 

dashed lines indicate Fe ion distribution calculated by SRIM. 
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Note that the coherent dispersoid size distribution in TM phase does not show a big 

difference under irradiation compare to out of ion range region. At all depths, the average 

incoherent dispersoid sizes are larger than those of coherent dispersoids. 

Figure 3.5(a) shows the average dispersoid diameter in ferrite and TM phases as a 

function of depth. The dpa curves and Fe ion distributions calculated by SRIM are 

superimposed on each figure. The average dispersoid diameters shrink to similar size (1.5 

~ 2 nm) for both ferrite and TM phases in irradiated region (≤ 1000nm), and TM phase 

Figure 3.6 Depth distributions of coherent and incoherent (a) dispersoid diameter, and (b) 

dispersoid density in ferrite grains, and (c) dispersoid diameter, and (d) dispersoid density 

in TM grains. Gray solid and dashed lines superimposed on each graph refer to Fe ion 

distribution profile, respectively. 
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shows more dramatic change than ferrite phase under irradiation. As shown in figure 

3.5(b), ferrite phase shows huge increase in dispersoid density under irradiation showing 

at most 4.5 times of increment especially at 500 – 800 nm depth, while TM phase shows 

only 1.8 times of increment. 

The size and density data are further subdivided into coherent and incoherent 

dispersoids as shown in figures 3.6. Fig. 3.6(a) shows dispersoid size change as a function 

of depth in ferrite phase. There is a slight dispersoid size reduction under irradiation for 

both coherent and incoherent dispersoids, and incoherent dispersoids are slightly larger 

than coherent dispersoids within the ion range. Fig. 3.6(b) further shows that the dramatic 

density increment in ferrite grain is mostly caused by coherent dispersoid density jump 

rather than incoherent dispersoid. As shown in Fig. 3.6(c), in martensite grain, coherent 

dispersoid size slightly decreases under irradiation, while large incoherent dispersoids 

disappear under irradiation and become similar size to coherent dispersoids. Note that the 

large error bar at 2000 nm is due to wide size distribution of incoherent dispersoids varying 

from 2 nm to 16 nm diameter. In Fig. 3.6(d), coherent and incoherent dispersoid densities 

in martensite phase show minor increment within 1000 nm depth, and density of coherent 

dispersoids is higher than incoherent dispersoids at all depths. 

The volume fraction of dispersoid per unit volume is shown in Table 3.2. Volume 

fraction of oxide dispersoids in ferrite grain is almost consistent considering error bar, 

while large volume fraction change is observed in martensite grain under irradiation. This 

means that dissolved large oxide dispersoids are not reprecipitated to a new oxide 

dispersoid under irradiation and they rather stay as a solute in the matrix. 
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Table 3.2 Volume fraction of oxide dispersoids per unit volume. 

Depth (nm) 200 500 800 1000 2000 

Volume 

fraction (%) 

Ferrite 0.120.06  0.140.08 0.200.10 0.160.08 0.210.13 

Tempered 

martensite 
0.070.05 0.100.04 0.100.04 0.070.04 0.580.77 

 

3.4. Discussion 

It is known that the coherent dispersoids are more favored to be nucleated than 

incoherent dispersoids under certain condition due to their lower interfacial energy [31]. 

The experimental result of ferrite phase also showed that the dispersoid density increment 

is mostly contributed by coherent dispersoid density increase rather than incoherent 

dispersoid. This increment of coherent dispersoid density under irradiation is good for 

material property because small size with high density dispersoids are good for hindering 

dislocation movement and strengthening the material [28,32,33], and also coherent 

dispersoids are better at grain boundary pinning [34,35] compare to the incoherent 

dispersoids. Incoherent dispersoids also give dispersion strengthening effect by giving a 

resistance when dislocation tries to overcome incoherent dispersoids [36]. Although large 

incoherent dispersoids in TM phase are susceptible to irradiation, the small size incoherent 

dispersoids still exist under irradiation, and the density remains almost the same or even 

shows slight increment as shown in Fig. 3.6(d), which will still give dislocation pinning 

effect. Even though coherent dispersoids are more favorable for nucleation as dislocation 

and matrix lattices already match each other, semi-coherent and incoherent dispersoids 
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can still be nucleated and they will be preferentially nucleated at dislocations for lower 

free energy [36]. The good stability of both coherent and incoherent small dispersoids 

under irradiation helps material to sustain its properties under irradiation at high 

temperature. On top of that, nucleation of new oxide dispersoids under irradiation in both 

ferrite and TM phases even promotes material strength by giving more resistance on 

dislocation glide and by providing more surface sink for defect recombination, and this is 

why ODS alloy shows good creep resistance and swelling resistance. 

The ferrite and the TM phase showed different dispersoid density behaviors under 

irradiation as shown in Fig. 3.6(b and d). The ferrite phase showed more dramatic density 

increment especially from coherent dispersoids compared to the TM phase. Both ferrite 

and TM phases are bcc structures, but they have some intrinsic differences. First, for this 

12Cr ODS dual-phase alloy, TM grain size is much smaller (~200 nm) with higher 

dislocation density, while ferrite grains are larger (~ 1 µm) [6]. It is also known that 

martensite phase has more carbon than ferrite phase resulted from rapid phase 

transformation process. Due to these intrinsic differences, ferrite and TM phase have 

shown very different void swelling behavior in previous study [6]. The TM phase swells 

much less than ferrite phase, showing less than 0.06 % swelling, while ferrite exhibits 

about 1.6 % swelling after 800 peak dpa irradiation [6]. Also, a depth where the void 

swelling occurred in ferrite phase (500-800 nm) in previous study matches with the depth 

where coherent dispersoid density is increased (500-800 nm) in ferrite phase of this study. 

Consequently, a hypothesis can be set up that the nucleation of new coherent oxide 

dispersoid is related to the voids generated from irradiation. This is fair postulation since 



 

62 

 

it is known that coherent particles with large elastic strain are favorably nucleated on 

vacancies [36], and those with no or small elastic strain can be nucleated at any place since 

oxygen has higher affinity with vacancy [37]. Fu et al. [37] showed that O in interstitial 

position has high affinity for vacancies due to weak bonding with host element Fe from 

Density Functional Theory (DFT) calculation. Once they form O-vacancy cluster, high O 

affinity solutes like Ti and Y will be attracted to O-vacancy cluster and once it reaches the 

critical concentration for nucleation, they will form new oxide dispersoids [37]. Therefore, 

there is a high possibility that the higher swelling behavior in ferrite phase may affect 

nucleation of oxide dispersoids under irradiation. However, to verify this hypothesis, a 

follow-up study with proper experiment design is needed. 
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4. HE PREIMPLNATATION STUDY ON 12CR ODS ALLOY 

 

4.1. Introduction 

The previous dispersoid coherency study in chapter 3 on 12Cr ODS alloy revealed 

a different response of coherent dispersoid density in ferrite and tempered martensite (TM) 

phases under irradiation. The ferrite phase showed much higher coherent dispersoid 

density increment compare to the TM phase. One hypothesis made is that the difference 

in nucleation of coherent dispersoid may be related to the difference in void swelling 

behavior between ferrite and TM phases, as previous studies on this alloy showed that 

ferrite phase swells much more than TM phase [16,17]. Therefore, to see the effect of 

void, He pre-implantation method is used since He and vacancy forms He-vacancy 

clusters in the bcc Fe matrix [9-13], and also by using He bubbles, (n,α) transmutation 

reaction in real reactor environment can be emulated which causes He embrittlement in 

the material [18-22]. The previous He pre-implantation studies on ODS alloys showed 

how oxide dispersoid suppress the He bubble coarsening after He ion implantation, but 

this study only focused on the He bubble size and density change rather than focusing on 

oxide dispersoid stability and also high dpa Fe irradiation was not conducted after He 

implantation [23]. Chen et al. [24] showed defect evolution under electron irradiation after 

He pre-implantation and they reported that He bubbles help suppression of loop and cavity 

growth. Lu et al. [19] used heavy-ion irradiation after He pre-implantation on 9Cr ODS 

alloy and reported reduced oxide dispersoid size and increased density with increasing 

dose (dpa). However, the systematic study on oxide dispersoid size and density change in 
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terms of coherency before and after He pre-implantation was not conducted yet, and the 

mechanism of density increment along with He presence is not explained well in the 

previous studies. 

Therefore, in this chapter, the experiment is designed and conducted to see the 

effect of pre-existing He bubbles in the matrix on nucleation of coherent dispersoids under 

irradiation by varying He doses. For consistency with the previous coherency study, the 

same 12Cr ODS alloy is used for this study which showed high swelling resistant behavior 

in previous studies [16,17]. 

4.2. Experiment Procedure 

The dual-phase 12Cr ODS alloy was fabricated by Shigeharu Ukai from Hokkaido 

University, Japan by using MA process. The detail fabrication process and chemical 

composition of this alloy is elucidated in chapter 3. Three identical 12Cr ODS alloy 

samples were prepared and cut into 3 mm  6 mm  1.5 mm dimension. Then, samples 

were mechanically polished by using SiC paper up to p-4000 grit, and further polished 

down with 0.25 m diamond suspension and 0.04 m silica suspension to remove cold 

worked region. The final sample thicknesses were ~0.7 mm. 

The experiment design of this study is shown in Figure 4.1. Two samples were 

irradiated by using 140 kV linear accelerator with 120 keV energy He+ raster beam with 

dose of 11015 and 11016 ions/cm2 at room temperature. The 1E15 He sample was 

characterized using FIB and TEM to see an effect of He implantation on oxide dispersoid 

size and density. Then, the same sample was irradiated by using 1.7 MV tandem 

accelerator with 3.5 MeV Fe2+ defocused beam to reach 100 peak dpa at 475 ℃ together 
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with 1E16 sample and other polished 12Cr ODS sample without He preimplantation. The 

average dpa rate was 1.74  10-3 dpa/s for Fe ion beam. Note that three beam deflectors 

were used on 1.7 MV accelerator beam line to filter out charged carbon and other 

contaminants during irradiation, and vacuum was kept at 4.0-6.0  10-8 torr range by using 

liquid nitrogen cold trap on a target chamber [1-3]. Also, liquid nitrogen cold trap was 

located at beam line close to the chamber to eliminate neutral charge contaminants from 

the beam [1-3].  

After Fe ion irradiation, all three samples were characterized after FIB preparation 

and the TEM results were compared against each other to see the He preimplantation effect 

on nucleation of coherent dispersoids. To simulate 3.5 MeV Fe dpa curve and 120 keV He 

ion distributions in the material, the SRIM-2013 Kinchin-Pease option with Fe 

displacement threshold energy of 40 eV was used [4,5] as shown in figure 4.2. 

Figure 4.1 The experiment overview of this study. 
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Fig. 4.2 shows SRIM calculation of 120 keV He ion profiles for both 1E15 and 

1E16 doses and 3.5 MeV Fe 100 peak dpa curve as a function of depth in pure Fe. The 3.5 

MeV Fe beam can penetrate 1.5 µm deep from the surface while showing the maximum 

damage at 1 µm depth region. In case of 120 keV He, the penetration depth is about 0.5 

µm from the surface. The blue patterned area of 120 keV He curve refers 1E15 He, while 

blue dotted curve indicates 1E16 He. The 1E16 He dose reaches over 6000 appm in the 

matrix. The 120 keV energy is selected for He implantation to avoid both free surface 

sinking effect and defect imbalance effect from injected interstitial of Fe beam [6]. The 

300-400 nm depth region where He ion concentration peaks is the region of interest of this 

study. Note that the averaged Fe local dpa for this region is about 43 dpa. 

Figure 4.2 SRIM calculation of He ion (blue dashed line) and Fe damage (black solid 

line) profiles as a function of depth. 
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4.3. Results 

4.3.1. After He implantation 

The TEM images were taken from 350 nm depth region where the He ion peak is 

located to see the effect of He implantation on oxide dispersoid size and density. Figures 

4.3(a) and (b) show bright field and dark field images of He implanted sample taken by 

using (g, 3g) condition with g110 direction excited as indicated in inset diffraction image 

in 4.3(b). The oxide dispersoids have dark contrast in bright field image regardless of 

coherency, while only coherent dispersoids look bright in dark field image. By comparing 

both images, coherent and incoherent dispersoids can be counted separately. Note that 

only TM phase was analyzed in this study due to two reasons. First, the TM phase takes 

80 % of the volume of the alloy. Second, the ferrite phase already showed dramatic density 

change even without He implantation in previous study which will make it harder to judge 

the He implantation effect itself. Therefore, to see the impact of He preimplantation 

Figure 4.3 TEM (a) bright field and (b) dark field image, (c) under focused image and (d) 

over focused image taken from 350 nm depth region. 
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clearer, only TM phase was characterized in this study. Also, only coherent dispersoids 

were counted because newly nucleated oxide dispersoids are prone to take a coherent 

relationship with matrix for lower surface (free) energy. 

Figures 4.3(c) and (d) are TEM bright field under and over focused image 

respectively taken from 350 nm depth region. In under focused image, He bubbles look 

white, while they look dark in over focused image. The He bubble size was measured to 

be less than 1 nm diameter at this depth. The size and density data of oxide dispersoids 

will be shown and compared in chapter 4.3.4. 

4.3.2. After Fe irradiation 

Figure 4.4 TEM bright field and dark field images of Fe irradiated sample taken from 

200, 350, 500, 800, 1000, and 2000 nm depth with diffraction patterns superimposed in 

dark field images. SRIM Fe dpa and He ion profiles are shown with red arrows overlaid 

where each depth was characterized. 
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Figures 4.4 show bright field and dark field images taken from Fe irradiated sample 

at each depth. Images were taken from six different depths including out of ion range 

region (2000 nm) which will be a reference point, just annealed without irradiation. The 

same WBDF condition is used with previous Fig. 4.3 for consistency, and each diffraction 

pattern was inset into DF images. The red arrows superimposed on the SRIM profiles 

indicate the depth characterized for this sample. As shown in Figs. 4.4, large incoherent 

dispersoids are observed at 2000 nm depth, but only small size, mostly coherent 

dispersoids are observed within the ion range (≤1000 nm). 

Figure 4.5 TEM bright field and dark field images of 1E15 He preimplanted Fe irradiated 

sample taken from 200, 350, 550, 800, and 1000 nm depth with diffraction patterns 

superimposed on each dark field image. SRIM Fe dpa and He ion profiles are shown with 

red arrow representing the depth where the TEM images are taken. 
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4.3.3. After He preimplantation and Fe irradiation 

Figures 4.5 show TEM BF and DF sets of 1E15 He preimplantated and Fe 

irradiated sample. The same WBDF condition is used again to take these figures for fair 

comparison with other two previous samples. The 2000 nm depth was not characterized 

this time because it is away from He preimplanted region and the data will be the same 

with Fig.4.4 2000 nm depth. TEM DF image taken from 350 nm region where He ion 

peaks shows higher density of coherent dispersoid in the matrix compare to other DF 

images taken from other depths. Figures 4.6 show TEM BF and DF micrographs of 1E16 

He pre-implanted and Fe irradiated sample taken from the same WBDF condition with 

Figure 4.6 TEM bright field and dark field micrographs of 1E16 He preimplanted and 

Fe irradiated specimen. 
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others. Unlike Fig. 4.5 1E15 350 nm depth dark field image, Fig. 4.6 1E16 350 nm depth 

dark field image does not have many bright features shown which implies that higher dose 

He implantation did not help with the nucleation. Further analysis on size and density on 

this data will be introduced in section 4.4. Figures 4.7 provide TEM bright field images of 

1E16 + Fe irradiated sample taken from 300-500 nm depth region. The He bubble size is 

much larger than 1E15 specimen and the density also look denser. A lot of bubbles were 

observed on the grain boundaries as shown in Fig. 4.7 due to high grain boundary defect 

sink strength. It is a common phenomenon at high He environment, and it can further 

Figure 4.7 TEM bright field micrograph of 1E16 He preimplanted and Fe irradiated 

specimen taken from 300-500 nm depth region. Under and over focus images were shown 

on the right side with red arrows indicating two same He bubbles. 
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cause intergranular cracking. Those He bubbles look bright with enhanced edge contrast 

in under focus image and they look dark with vague boundary in over focus image as 

shown in Fig. 4.7 right two images. Two same He bubbles are indicated by red arrows in 

both images. 

4.3.4. Oxide Dispersoid Size and Density Comparison 

Figure 4.8 shows the dispersoid diameters as a function of depth with different 

irradiation conditions. Superimposed blue dotted line refers to He ion profile and the black 

Figure 4.8 Oxide dispersoid diameters of Fe irradiated, He implanted and He+Fe 

irradiated samples as a function of depth. He ion profile and Fe damage curve are 

superimposed on the figure. 
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solid line shows Fe damage profile from SRIM calculation. For just Fe irradiated sample 

referred by black solid line with circle marker, dispersoid sizes in the ion range are all in 

the similar range considering the error bars because they are all coherent dispersoids. The 

size of dispersoid after 1E15 He implantation referred by cyan triangle marker shows 

almost the same with the size of dispersoid in out of ion range region, which means He 

implantation itself does not affect dispersoid size. 

Figure 4.9 Oxide dispersoid densities of Fe irradiated, He implanted and He+Fe 

irradiated samples as a function of depth. He ion profile and Fe damage curve are 

superimposed on the figure. 
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The 1E15 He + Fe irradiated sample indicated by red solid line with square marker 

showed slightly larger dispersoid sizes in ion range, but this is not related to He 

preimplantation because the size is also larger after He ion peak (600-1000 nm depth). 

Therefore, considering the error bars, it can be regarded as fluctuations from sample to 

sample or grain to grain. The 1E16 He + Fe irradiated sample data is referred by blue solid 

line with diamond marker and they showed similar dispersoid size profile with the Fe 

irradiated specimen (black solid with circle marker), which tells us that the 1E16 dose of 

He preimplantation does not affect on dispersoid size change. 

Figure 4.9 shows the dispersoid densities of each sample as a function of depth. 

The He implanted sample marked with cyan triangle shows similar density with the out of 

ion range of Fe irradiated sample (2000 nm), which means He implantation itself does not 

affect dispersoid density. As shown in chapter 3, the coherent dispersoid density increased 

after Fe irradiation as marked with black solid line with circle markers, and there is 2 times 

of density increasement at 350 nm depth compared to 2000 nm depth. On the other hand, 

1E15 He preimplanted and Fe irradiated sample marked with red solid line with square 

markers shows the highest coherent dispersoid density at He ion peak which is almost 2.7 

times higher than 2000 nm depth of Fe irradiated sample. The lower dispersoid densities 

at 200 nm and 500-1000 nm region are maybe caused by diffused solutes to 350 nm depth 

area. In 1E16 He preimplanted and Fe irradiated specimen, the densities of dispersoid are 

systematically lower than that of Fe irradiated sample within the ion range (≤1000 nm). 

From this observation, we learned that large size He bubbles do not affect on dispersoid 

nucleation under irradiation and there is a possibility that the large bubbles even 
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deteriorate nucleation process. Therefore, we believe that the small size He bubbles in the 

matrix help dispersoid nucleation during Fe irradiation, resulting in higher density of 

coherent dispersoids at that region. However, that effect is only valid when the He bubble 

size is small, and large the He bubbles do not affect on dispersoid nucleation. The coherent 

dispersoid size and density for each case at 350 nm depth and 2000 nm depth for Fe 

irradiated case are summarized in Table 4.1. 

 

Table 4.1 Summary of coherent dispersoid size and density for each irradiation case. 

 Diameter [nm] Density [particles/m3] 

Fe (350 nm) 2.3±0.6 1.21023±9.61021 

He (350 nm) 2.6±0.7 5.91022±1.11022 

1E15 He+Fe (350 nm) 2.5±0.5 1.61023±1.21022 

1E16 He+Fe (350 nm) 2.6±0.6 1.11023±1.31022 

Fe (2000 nm) 2.8±0.6 6.01022±4.01021 

 

Figures 4.10 show oxide dispersoid size distributions of Fe irradiated, He 

implanted, 1E15 He+Fe irradiated, and 1E16 He+Fe irradiated specimens taken from 350 

nm depth region. The black solid lines superimposed on each figure are the size 

distribution of 2000 nm depth region from Fe irradiated sample for comparison. With an 

exception of He implanted sample, the size distributions follow gaussian distribution and 

they show very similar distribution with those from Fe 2000 nm region. The size 

distributions at 350 nm depth of Fe irradiated sample and 1E16+Fe sample show shifted 



 

79 

 

size to right direction compared to out of ion range region (2000 nm depth) while other 

two cases show similar distribution with 2000 nm depth. As only coherent dispersoids 

were counted in TM phase, the dispersoid size distribution remains in the similar range 

(1.5 ~ 5.5 nm diameter) for all cases. The He implanted sample (top right) size distribution 

looks like it has two separated size peaks. However, it is highly likely just caused from 

Figure 4.10 Oxide dispersoid size distribution of Fe irradiated, He implanted, 1E15 

He+Fe, and 1E16 He+Fe irradiated samples at 350 nm depth. Black lines superimposed 

are size distribution of 2000 nm depth region of Fe irradiated sample for comparison. 
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statistic fluctuation due to not enough oxide dispersoid counts from this sample instead of 

containing any meaning in it. 

4.4. Discussion 

As He migration energy is low as 0.078 eV, it can migrate fast and be easily 

trapped at defects such as vacancy, dislocation, grain boundaries, and precipitate surfaces 

[8]. When He is trapped by vacancy, they form He-vacancy clusters in the matrix [9-13], 

and those He-vacancy clusters are further can attract oxygen due to high vacancy-oxygen 

affinity. According to the previous DFT study on vacancy mechanism of high oxygen 

solubility and nucleation of stable oxygen enriched clusters in Fe, oxygen in interstitial 

position shows high affinity for vacancies due to weak bonding with host Fe [7]. As shown 

in Figure 4.11, this O-vacancy mechanism further enables the nucleation of O-enriched 

nanoclusters, and it further attracts solutes with high oxygen affinities like Ti and Y. And 

finally, if it riches certain concentration, oxide dispersoids are formed. In a similar 

Figure 4.11 Mechanism of nucleation of oxide dispersoid with presence of vacancy. 
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mechanism, when oxide dispersoid and He bubble are present in the matrix, oxide 

dispersoid will dissolve under irradiation. Then, oxygens from dispersoid and matrix will 

form oxygen enriched nanoclusters which further attract Ti and Y to form oxide 

dispersoids. Therefore, increment of coherent dispersoid density was observed in 1E15 He 

+ Fe irradiation case due to this mechanism. However, when 1E16 He was implanted 

followed by Fe irradiation, dispersoid density did not show an increment. We believe, in 

this case, the same mechanism happens in the matrix, but the solute concentration around 

the He-vacancy cluster does not reach critical point for nucleation due to large surface 

area and volume of 1E16 He bubbles. 

Although we can use this vacancy mechanism to explain how new oxide dispersoid 

can be formed, still the better way to confirm this hypothesis is conducting in-situ TEM 

while irradiating material at high temperature and also using a modeling to support the 

experimental results. 
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5. DPA RATE STUDY ON HF DOPED ODS ALLOY* 

 

5.1. Introduction 

Oxide-dispersion-strengthened (ODS) alloys represent one class of candidate 

alloys with promising application in nuclear reactors due to their good creep resistance 

and high temperature strength [1-4]. The oxide dispersions help to stabilize grain 

boundaries, block dislocation motion, and act as possible defect sinks for point defect 

trapping and defect annihilation [2,7,8]. However, the superior performance of ODS 

alloys, in general, depends on the stability and structural morphologies of the dispersoids. 

Numerous studies have shown that under ion irradiation, dispersoids are not stable in their 

sizes, densities, volume fractions or chemical compositions [5, 6, 9-16]. Wharry and 

Swenson summarized a wide variety of dispersoid morphology evolution including 

reduced, increased, and no change in the dispersoid sizes, suggesting that multiple active 

mechanisms influencing dispersoid irradiation evolution [10]. Recent studies have 

brought insights into the complicated nature of dispersoid stability under irradiation [11, 

12, 14], such as cascade morphology effect and dose rate effect [11], chemical 

composition effect [12], and dissolution-reprecipitation mechanism [14]. Swenson et al. 

conducted a study comparing neutron, proton and heavy ion irradiation for the dose rate 

                                                 

 

* Reprinted with permission from “Dispersoid stability of ion irradiated oxide-dispersion-

strengthened alloy” by Hyosim Kim, Jonathan G. Gigax, Tianyi Chen, Shigeharu Ukai, 

Frank A. Garner, Lin Shao, 2018. Journal of Nuclear Materials, 509, 504-512, Copyright 

2018 by Elsevier.  
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effects in dispersoid stability [11]. Their study has four orders of magnitude in dose rates, 

and the dose rate effect is coupled with different cascade morphologies [11]. Therefore, it 

is valuable to investigate the dose rate effects by using one single particle type, which is 

the motivation of the present study. 

The dispersoid evolution under irradiation is governed by two competing effects: 

dispersoid dissolution due to damage cascade recoiling and recovery arising from back-

diffusion. The shrinkage of dispersoids under irradiation is described by [17].  

𝑑𝑟

𝑑𝑡
= −𝐾𝜓 (5.1)  

where 𝑟 is the dispersoid radius, t is time, K is the dpa (displacements per atom) rate, ψ is 

a parameter to describe the efficiency of damage cascades to dissolve dispersoids. ψ is a 

product of 𝑙 and 𝑓, where l is the thickness of a dispersoid shell which are affected by 

recoil damage cascades and f is the fraction of solute atoms dissolved. Hence ψ has a unit 

of length. 

The dissolution of dispersoids leads to a concentration increase in the matrix surrounding 

dispersoids. Driven by a concentration gradient, back-diffusion of recoiled solutes tends 

to increase the dispersoid size. When these two competing effects are balanced, dispersoid 

sizes approach to an equilibrium value, 𝑟𝑒 , as calculated by [18]. 

𝑟𝑒 =
𝐷

𝐾𝜓
∙

𝑐 − 𝑐𝑟

𝑐𝑝 − 𝑐𝑟

(5.2) 

where D is the solute diffusion coefficient influenced by radiation-induced defects, c is 

the solute concentration in the matrix, 𝑐𝑝 is the solute concentration in the dispersoid,  𝑐𝑟 
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is the solubility limit at the dispersoid-matrix interface.  The solubility limit at the interface 

is expressed as [18] 

𝑐𝑟 = 𝑐∞ exp (
2𝛾𝑖𝜐𝑎𝑡

𝑘𝑇𝑟
) (5.3) 

 

where c∞ is the solubility for a flat interface (r=), 𝛾𝑖 is the unit interfacial energy at the 

dispersoid-matrix interface, 𝜐𝑎𝑡 is the average atomic volume in the dispersoid, T is the 

temperature, and k is the Boltzmann constant. 

Early studies did not observe a strong dose-rate dependency of dispersoid sizes [6]. 

According to Eq. 2, the dispersoid sizes depend on K.  Hence, diffusivity D must consider 

dose rate effects, which counterbalances dispersoid dissolution (the effect from K) and let 

dispersoid diameters become insensitive to dose rate effects.   

Heavy ion irradiation can induce solute redistribution and has been modelled via rate 

theory [19,20]. Solute migration mediated by defects produced by irradiation (i.e. 

vacancies and self-interstitial atoms) was shown to result in solute gradients that, in some 

cases, mirror irradiation-induced defect profiles. Early studies using a focused electron 

beam to locally introduce damage has shown that dose rate gradients over a length scale 

of one micron can significantly change microchemistry due to point defect flow. The dose 

rate gradient effect in heavy ion irradiation, if there is any, should be detectable [20]. The 

sensitivities of both dispersoid dissolution and solute migration to dpa rates can be well 

tested in ion irradiation experiments through depth profiling of void evolution and depth 

dependent dispersoid characterization. Although the magnitudes of dpa rate difference are 

limited, the study has certain advantage of minimizing beam-heating effects, since only 
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one beam current is used. Therefore, we utilized heavy ion irradiation in the present study 

to examine the oxide evolution in an Hf-doped ODS alloy. The Hf-doped alloy is 

specifically selected since it is extreme swelling resistant, which minimizes the complexity 

from dispersoid-void interactions. 

5.2. Experimental Procedure 

An Hf-doped ferritic ODS alloy fabricated by Kobelco Research Company was 

used in this study. The details of fabrication procedure are reported elsewhere [21]. First, 

the ferritic steel powder and Y2O3 powder are mechanically alloyed and agitated for up to 

48 hrs under argon gas atmosphere. Then, it is degassed at high temperature in 0.1 Pa 

vacuum for 2 hrs, followed by hot extrusion at 1423 K. Hf was intentionally added for 

dispersoid refinement [22]. The chemical composition of this alloy is provided in Table 

5.1. The alloy was cut into specimens of 5 mm×3 mm×2 mm, and mechanically polished 

down to a 0.7 mm thickness by using SiC paper (down to 4000 grit). The final polishing 

step used a 0.04 micron alumina suspension. The sample was then electropolished at room 

temperature using a mixture of 7% perchloric acid and 93% acetic acid. The graphite 

cathode and the sample were biased at a voltage of 2 V and separated at a distance of 4 

cm. A magnetic stirring bar was kept spinning while polishing, and the total polishing time 

was 20 sec.  

The specimen was irradiated at 475C by 3.5 MeV Fe2+ ions to a fluence of 

9.54×1016 ions/cm2, equivalent to 100 peak dpa. The temperature was selected since it is 

close to maximum swelling temperature of ferritic alloys [23-26]. The beam was static as 

the best practice to avoid the rastering/pulse beam effect [27]. The beam spot was about 6 
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mm×6 mm and the current was controlled to be ~200 nA. Liquid nitrogen cold traps 

located in the beam line and target chamber were used during irradiation to keep high 

vacuum (<10-8 torr). To reduce beam-induced carbon contamination, multiple beam 

deflectors were used to filter the carbon contaminants off the Fe beam trajectories. Details 

of these instrumental setups to reduce beam contamination can be found elsewhere 

[28,29]. The damage calculation used Stopping and Range of Ions in Matter (SRIM) [30], 

with Kinchin-Pease option and an Fe displacement threshold energy of 40 eV [31]. 

Irradiated samples were characterized by transmission electron microscopy (TEM) 

with TEM specimens prepared by using the focused ion beam (FIB) lift-out technique. 

The FIB specimen size was ~10 m × ~7 m × ~200 nm in the first-stage of preparation. 

Then 30 keV Ga beam was changed to 5 keV for the second-stage fine thinning to a 

thickness of ~100 nm. TEM characterization was performed using 200 keV FEI Tecnai 

G2 F20 Super-Twin and FEI Tecnai F20, and FIB was performed using Tescan Lyra-3. 

Bright field (BF), weak beam dark field (WBDF), scanning transmission electron 

microscopy (STEM) – high angle annular dark field (HAADF), high resolution TEM 

(HRTEM), energy dispersive spectroscopy (EDS), and electron energy loss spectroscopy 

(EELS) were used to characterize the samples. Dispersoids size measurement is 

challenging for ultra-fine dispersoids (< 1 nm) due to the resolution limit of TEM. Atom 

probe tomography (APT) is more appropriate to characterize small dispersoids. Recent 

comparison studies suggest that sizes and densities of small oxide dispersoids measured 

by TEM and APT are comparable to each other [9]. The dispersoid sizes in the present 

study, although small, are still in the reliable characterization capability of TEM.  
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Furthermore, TEM is critical for the present study in order to check coherency of 

dispersoids. 

 

Table 5.1 Composition of Hf-doped ODS alloy (wt.%) 

Fe Cr C Si Mn P 

Bal. 15.44 0.024 0.03 0.01 <0.005 

S W Al Ti Hf Y2O3 Excess O 

0.002 1.80 3.90 0.12 0.59 0.33 0.10 

 

5.3. Results 

Figures 5.1 compare TEM cross-sectional micrographs before and after irradiation. 

The upper white dashed lines designate the sample surface and lower white dashed line in 

Fig. 5.1(b) defines the end of the ion bombarded region. The red solid line and red dashed 

line superimposed on Fig. 5.1(b) are the dpa profile and the Fe implant profile, 

respectively, calculated by using the SRIM code [30]. There are no noticeable changes in 

grain morphologies after irradiation. The inset in Fig. 1a shows typical oxide dispersoid 

morphologies in the as-received condition. Dispersoid size in the unirradiated specimen 

(Fig. 5.1(a)) were measured to be 5.10.8 nm, while the dispersoid sizes were measured 

to be 4.20.7 nm in the region beyond the ion range in the irradiated specimen (Fig. 

5.1(b)). Hence, thermal annealing (corresponding to depths beyond the bombarded region) 

does not significantly change the dispersoid size, considering statistics. In both samples, 

there are large particles exhibiting either white contrast or dark contrast. The large 

particles (>100 nm) of white contrast are Hf-Ti-O, while the large particles (>50 nm) of 
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dark contrast are Al2O3. Ar gas bubbles over 50 nm diameter were occasionally observed 

in the matrix as well. These particles and bubbles were introduced during alloy fabrication 

and their densities are very low. Hence, they are not subjects of interest in the present 

study. 

 

Figure 5.1 STEM-HAADF and TEM BF micrographs of Hf-doped ODS (a) before 

irradiation and (b) after 100 peak dpa irradiation. SRIM calculation of dpa (red solid line) 

and Fe implant (red dashed line) are superimposed in (b). Two white dashed lines in (b) 

refer to boundaries of the damaged region. 

 

Figure 5.2 shows a TEM cross-sectional micrograph of an irradiated sample, 

superimposed with the SRIM dpa and Fe implant profiles. The dpa peaks at a depth of 

~1000 nm and the Fe implant peaks at ~1200 nm. In order to study the local dpa rate effect, 

five locations (as marked by black dashed lines) at depths of 250 nm (6.71×10-4 dpa/s), 

650 nm (1.19×10-3 dpa/s), 1000 nm (1.73×10-3 dpa/s), 1200 nm (1.06×10-3 dpa/s), and 

2000 nm (0 dpa/s) are characterized. 
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Dispersoids in the unirradiated sample were analyzed with EDS and HRTEM for chemical 

composition and structural information. HRTEM is useful to tell interfacial coherency of 

dispersoids and matrix. Recent studies have shown that the chemical composition of 

dispersoid plays an important role in the microstructure and radiation stability of the 

materials [11-13,32]. Figure 5.3(a) shows a STEM-HAADF image of an oxide particle 

smaller than 10 nm (in an unirradiated sample). The line in Fig. 5.3(a) refers to EDS line 

scan across the particle. The circle and the cross refer to EDS point analysis within the 

particle and in the matrix, respectively. As shown in Fig. 5.3(b), the Fe, Cr, and Al yields 

statistically fluctuate without a conclusive compositional variation, but Y enrichment is 

Figure 5.2 TEM bright field image of 100 peak dpa irradiated Hf-doped ODS. Five 

different depth regions are characterized, as marked by black dashed lines. SRIM-

calculated dpa and Fe ion distribution profiles are superimposed. 
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obvious within the particle. The two black dashed lines are used to mark where the particle 

starts and ends. Fig. 5.3(c and d) show two point scan results from oxide particle and 

matrix, respectively. Two red arrows point to yttrium signals.  Yttrium appears within the 

dispersoid but disappears in the matrix.  

 

Figure 5.3 (a) STEM-HAADF image of an oxide particle smaller than 10 nm in 

unirradiated sample, (b) EDS line spectrum (as marked by the red line marked in (a)), with 

two dash lines marking the starting and ending positions of the oxide particle, (c) point 

spectrum obtained within the nano-oxide particle (as marked by the red circle in (a)), and 

(d) point spectrum from matrix (as marked by the red cross in (a)). 
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Figure 5.4 (a) HRTEM image of a dispersoid in an unirradiated sample with dispersoid-

matrix interfaces marked by black dashed lines and (b) the corresponding Fast Fourier 

Transformation (FFT) image. 

 

Figure 5.4(a) shows a high resolution TEM (HRTEM) micrograph of an oxide 

particle of ~8 nm in diameter, taken from the [1̅11] zone axis of the matrix. The particle 

has a faceted morphology, which is a sign of developing coherent interfaces. Fig. 5.4(b) 

shows the corresponding Fast Fourier Transform (FFT) image, with the patterns of the 

matrix marked with white arrows and the patterns of the particle marked with red triangles. 

The patterns of the particle suggest a fluorite structure of Y2Hf2O7. The FFT pattern also 

shows matrix-oxide interface coherency of (110)𝑀𝑎𝑡𝑟𝑖𝑥//(2̅00)𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒  and 

[1̅11]𝑀𝑎𝑡𝑟𝑖𝑥//[011]𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒. It is reported by Dou et al. that Y2Hf2O7 particle and bcc Fe-

Cr matrix can have orientation correlation of (11̅0)𝑀𝑎𝑡𝑟𝑖𝑥//(02̅0)𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒 and 

(001)𝑀𝑎𝑡𝑟𝑖𝑥//(001)𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒 [33]. 
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Figure 5.5(a) plots the damage and Fe implant profiles, with arrows marking the 

regions locally characterized by TEM. Figs. 5.5(b-f) show the bright field and dark field 

micrographs at depths of 250 nm, 650 nm, 1000 nm, 1200 nm and 2000 nm, respectively. 

The above depths correspond to 39 dpa (at 250 nm, 6.7×10-4 dpa/s), 69 dpa (at 650 nm, 

1.2×10-3 dpa/s), 100 dpa (at 1000 nm, 1.7×10-3 dpa/s), 61 dpa (at 1200 nm, 1.1×10-3 dpa/s), 

and 0 dpa (at 2000 nm). The particles having dark contrast in the bright field TEM images 

are oxide dispersoids. Similar to the previous studies by Chen et al. [6], when the g110 

direction is excited, dispersoids coherent to (110) of the matrix appear as bright features 

in the dark field imaging. Both dispersoid types appear dark or gray in the bright field 

images, but only coherent dispersoids appear bright in the dark field images. Hence, the 

comparison between bright field and dark field images can differentiate coherent and 

incoherent dispersoids. Note that, as we selected one of the six (110) planes by selecting 

one specific g110 direction to check the coherency, there is a possibility that some 

coherent dispersoids may not show up in the dark field image. However, as both coherent 

and incoherent dispersoid diameters are smaller than 10 nm, we assumed that all six (110) 

planes will develop the same coherency with the matrix, and one dark field image taken 

from one specific g110 direction can represent other five directions. For large dispersoids 

in Fig. 5.5(f), they appear with Moiré fringes, suggesting a slight lattice mismatch of the 

dispersoid to (110)Matrix. These semi-coherent dispersoids also appear as bright in the dark 

field images. In comparison with the dispersoids at 2000 nm, which is beyond the Fe 

range, all dispersoids within the irradiated regions are smaller. 
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Figure 5.5 (a) Dpa (red solid line) and Fe implant (red dashed line) profiles, and (b1-g1) 

BF micrographs at depths of 250 nm (irradiated), 650 nm (irradiated), 1000 nm 

(irradiated), 1200 nm (irradiated), 2000 nm (irradiated), and from unirradiated sample (as 

a comparison with irradiated samples), and (b2-g2) corresponding WBDF micrographs 

and TEM diffraction patterns taken at (g, 3g) condition with g110 direction excited. 

 

Figures 5.6(a-e) summarize the detail statistical distributions of dispersoid sizes at 

different depths of the irradiated sample and compare the data with the sizes of 

unirradiated sample (Fig. 5.6(f)). The dark bars refer to coherent dispersoids and the gray 

bars refer to incoherent dispersoids. The solid blue line refers to the mean size of coherent 

dispersoids and the dash red line refers to the incoherent dispersoids. In unirradiated 

sample, the mean sizes of coherent dispersoids and incoherent dispersoid are very close to 

each other. After ion irradiation, both types of dispersoids shrink. But the mean sizes of 
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coherent dispersoids are consistently smaller than that of incoherent dispersoids. The size 

distributions of dispersoids at the depth of 2000 nm (corresponding to 0 dpa) are different 

from that obtained from unirradiated sample, suggesting that thermal annealing effect only 

during the irradiation plays a role to change dispersoids.   

 

 

Figure 5.6 Dispersoid size distributions of irradiated Hf ODS alloy at depths of (a) 250 

nm (38.7 dpa), (b) 650 nm (68.6 dpa), (c) 1000 nm (100 dpa), (d) 1200 nm (61 dpa), (e) 

2000 nm (0 dpa), and (f) unirradiated sample, respectively. The dark bars refer to coherent 

dispersoids and the gray bars refer to incoherent dispersoids. The solid blue lines and 

dashed red lines refer to mean diameters of coherent dispersoids and incoherent 

dispersoids, respectively.   

 

Figure 5.7(a) summarizes the size distributions at different depths. For each depth, 

more than 70 oxide particles were characterized. Although ion irradiation shrinks 

dispersoids, incoherent dispersoids are still statistically larger than coherent dispersoids at 
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all depths. Within the irradiation region shallower than 1000 nm, the mean sizes of 

dispersoids of both types do not show obvious depth (or equivalently, dpa and dpa rate) 

dependencies. The mean sizes of incoherent dispersoids are 2.40.7 nm at depth 250 nm, 

1.90.6 nm at depth 650 nm, 1.80.4 nm at depth 1000 nm, 3.10.7 nm at depth 1200 nm, 

4.51.2 nm at depth 2000 nm, and 5.21.2 nm for unirradiated sample. The mean sizes of 

coherent dispersoids are 1.90.4 nm, 1.60.5 nm, 1.60.3 nm, 2.60.8 nm, 4.41.0 nm at 

the corresponding depths, respectively, and 5.01.2 nm for unirradiated sample. Table 5.2 

lists mean, standard, skewness and kurtosis values of dispersoid size distributions.  

Figure 5.7 Depth distributions of (a) dispersoid diameter, (b) dispersoid density, (c) 

dispersoid volume fraction, and (d) total dispersoid density and average diameter. Dpa 

(gray solid line) and Fe implant (gray dashed line) profiles are superimposed on each 

graph.  
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Fig. 5.7(b) plots the dispersoid densities as a function of depth. Coherent 

dispersoids are systematically denser than incoherent dispersoids. Dispersoid densities at 

250 nm and 650 nm are comparable to each other (about ~5×1023 m-3 for coherent 

dispersoids and ~3×1023 m-3 for incoherent dispersoids for both depths). At 1000 nm 

corresponding to the dpa peak, the dispersoid densities are higher (~8×1023 m-3 for 

coherent dispersoids, and ~4×1023 m-3 for incoherent dispersoids). The total dispersoid 

density at 1000 nm is about 1.5 times that at 250 nm.  

 

Table 5.2 Mean, standard deviation, skewness and kurtosis values of dispersoid size 

distribution. 

Depth 250 nm 650 nm 1000 nm 1200 nm 2000 nm Unirradiated 

Mean 

Coherent 1.89 1.59 1.62 2.55 4.02 5.00 

Incoherent 2.39 1.88 1.83 3.08 4.47 5.23 

Standard 

deviation 

Coherent 0.39 0.48 0.29 0.82 0.92 1.16 

Incoherent 0.65 0.55 0.38 0.73 1.16 1.19 

Skewness 

Coherent 0.79 0.78 0.72 1.60 0.46 0.46 

Incoherent 1.50 1.03 0.75 1.11 0.80 0.57 

Kurtosis 

Coherent 0.46 -0.06 0.21 2.76 0.57 -0.07 

Incoherent 4.16 0.88 0.97 2.04 0.73 0.43 

 

Fig. 5.7(c) presents the dispersoid volume fraction. The volume fractions of 

coherent and incoherent dispersoids are comparable to each other within the irradiated 

region. For the irradiated region at depths 1200 nm, the total dispersoid volume fractions 
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are systematically lower than that out of the irradiation region. The missing solute atoms 

can either diffuse towards the surface or be dissolved into the matrix under irradiation. 

Due to the fact that there is no enhancement of yttrium-rich precipitates near the surface, 

it is most likely that these solutes are dissolved in the matrix. Based on the volume fraction 

difference, the atomic density of dissolved solute atoms is estimated to around 0.18 %. It 

is worth noting that, under irradiation, coherent particles undergo a much less significant 

volume reduction than incoherent particles do, suggesting that, at the irradiation 

temperature of 475 C, coherent particles are more stable than incoherent particles. This 

agrees with results of previous studies by Chen et al. [5,6].      

As shown in Fig. 5.7(d), total dispersoid densities within the irradiation region (at 

depths 1200 nm) are systematically higher than that beyond the irradiated region. The 

total dispersoid density at 2000 nm is 7.9×1022 m-3, while the density at 1000 nm is 

1.17×1024 m-3, larger by a factor of 15. The much higher dispersoid densities must result 

from nucleation of new dispersoids. The highest dispersoid density occurs at the dpa peak. 

Two possible mechanisms can contribute to this: (1) with the highest local dpa rates, the 

effective diffusivity of solute is peaked. Hence the likelihood of solute clustering for 

forming new nucleation sites is peaked, and (2) the likelihood of directly breaking large 

dispersoids into smaller ones is increased in the peak dpa region due to the higher density 

of damage cascades.     

The observation that coherent dispersoids are systematically smaller than 

incoherent dispersoids within the irradiated region agrees with predictions of Eq. 5.3 in 

which 𝛾𝑖  of coherent dispersoids is smaller than that of incoherent dispersoids. The 
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interfacial energy of coherent interfaces was reported by Ribs et al. to be 0.26 - 0.29 J∕m2 

[34], while the interfacial energy of incoherent or semi-coherent interfaces was reported 

by Howe to be 0.3-2.5 J/m2 energy range [35]. Using the experimentally extracted 𝑐 

(=0.18 %) in the present study as the upper limit of 𝑐𝑟 (since 𝑟𝑒 in Eq. (2) must be positive), 

and using the estimated c ∞ (=0.013% at 475 C) [36], we obtain the upper limit of 𝛾𝑖 to 

be about 0.4 J∕m2 in the irradiated region and 1.0 J∕m2 in the damage-free region in the 

present study. 

5.4. Discussion  

According to Eq. 5.2 and further assuming that D is a constant without radiation 

enhancement, the equilibrium dispersoid size 𝑟𝑒 should be inversely proportional to the 

dpa rate K. At depths of 250 nm, 650 nm, and 1000 nm, their dpa rate ratios are 1:1.8:2.6. 

Figure 5.8 plots the dpa rates. In a comparison, experimentally measured 𝑟𝑒 values are 

roughly a constant. To explain the observations, we believe that solute diffusion must be 

strongly defect-assisted, as explained below. 

At high temperatures in the presence of defect sinks, defect annihilation at the sinks 

plays a dominant role in determining defect concentrations, and therefore point defect 

recombination does not contribute as much. Under quasi-steady state condition, local 

defect reactions are governed by equations [37] 

𝑑𝐶𝑉

𝑑𝑡
= 𝐾 − 𝐾𝑉𝑆𝐶𝑆𝐶𝑉, and 

𝑑𝐶𝐼

𝑑𝑡
= 𝐾 − 𝐾𝐼𝑆𝐶𝑆𝐶𝐼 , (5.4) 

where 𝐶𝑉 , 𝐶𝐼  and 𝐶𝑆  are vacancy, interstitial and sink concentrations, respectively. 𝐾𝑉𝑆 

and 𝐾𝐼𝑆  are vacancy-sink reaction, and interstitial-sink reaction rate coefficients, 
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respectively. Defect populations first increase linearly with irradiation time and approach 

to an equilibrium steady state with constant defect concentrations expressed by, 

𝐶𝑉𝑒
=

𝐾

𝐾𝑉𝑆𝐶𝑆
, and 𝐶𝐼𝑒

=
𝐾

𝐾𝐼𝑆𝐶𝑆

(5.5) 

 

On the other hand, for solute atoms which diffuse via interaction with point 

defects, a general expression of their diffusivity is given by [38] 

𝐷 = 𝑓𝑉𝐷𝑉𝐶𝑉 + 𝑓𝐼𝐷𝐼𝐶𝐼 + ⋯ (5.6) 

where 𝑓  is a weight factor determined by both diffusion mechanism and diffusion 

correlation. 𝐷𝑉 and 𝐷𝐼 are the diffusivities of vacancies and interstitials, respectively. The 

defect-assisted diffusion can extend to other defect types such as di-interstitial or di-

vacancy. For simplicity, we ignore the mechanisms involving defect clusters.  

 Combining Eqs. 5.2, 5.5 and 5.6, we obtain  

𝑟𝑒 =

𝑓𝑉𝐷𝑉

𝐾𝑉𝑆
+

𝑓𝐼𝐷𝐼

𝐾𝐼𝑆

𝜓𝐶𝑆
∙

𝑐 − 𝑐𝑟

𝑐𝑝 − 𝑐𝑟

(5.7) 

Hence, there is no dependence of 𝑟𝑒 on dpa rate K.  

The defect sinks (CS ) can be dislocations, voids, or oxide dispersoids. In our 

irradiated samples, voids are not observed due to the good swelling resistance of the alloy 

matrix. Therefore, the most dominant sinks are the dispersoids themselves. As an 

approximation, we can use local total dispersoid density to represent CS  and calculate re 

by using Eq. 5.7. As shown in Fig. 5.8, the predicted re values are reasonably close to the 

experimentally measured values. 
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Figure 5.8 Depth dependence of dpa rates, experimentally measured re and predicated re 

by using Eq. 7. All values are normalized to that at 250 nm. 

 

For Eq. 5.4, we assume a high temperature condition in which defect 

recombination contributes less in comparison with defect annihilation at sinks. Hence, 

interstitial-vacancy recombination is ignored. Even it is not a high temperature condition, 

Eq. 5.4 is still valid for the case having high density defect sinks such as dispersoids in the 

present case. In other words, it is valid for the condition that point defects find sinks first 

before they find their counterpart defects for recombination [37]. For a different and 

extreme case in which the temperature is low and the defect sink density is also low, defect 

reactions are governed by the defect creation rate and interstitial-vacancy recombination 
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only (ignoring defect-sink interaction), the defect reaction equation and the quasi-steady 

state defect concentration are expressed as [37] 

𝑑𝐶

𝑑𝑡
= 𝐾 − 𝐾𝐼𝑉𝐶2 

𝐶𝑒(= 𝐶𝐼𝑒
= 𝐶𝑉𝑒

) = (
𝐾

𝐾𝐼𝑉
)

1
2

(5.8) 

Note in this case, the defect concentrations under quasi-steady state are 

proportional to √𝐾, instead of 𝐾. After substituting 𝐶𝑒 into Eq. 5.6 for D, Eq. 5.2 leads to 

a 𝑟𝑒 dependence on 1/√𝐾, a dependence which is quite weak. The defect concentrations 

under quasi-steady states of various conditions (low temperature vs. high temperature and 

low sink density vs. high sink density) have been systematically summarized by Was [37]. 

Various conditions lead to either a 𝐾 dependence or √𝐾 dependence of quasi-steady-state 

defect concentrations. Regardless of the complexity arising from variations in sink density 

and temperatures, the final 𝑟𝑒  becomes either weakly dependent or completely 

independent of local dpa rates.  In both cases discussed (Eqs. 5.5 and 5.8), we assume that 

quasi-steady states are reached. Our previous studies show that 3.5 MeV ion irradiation of 

a similar ODS alloy at 475C leads to saturated dispersoid diameters at doses of 50 peak 

dpa and beyond [5,6]. Hence, we believe this assumption is valid. Otherwise, dispersoids 

will continue to evolve under changing defect densities.  

Another significant consequence of the present study is to justify the use of ion 

irradiation to simulate neutron irradiation. If dispersoid sizes have weak or no dependence 

on dpa rates, then accelerated testing using accelerated ion irradiation can more accurately 
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predict dispersoid evolution in reactors. However, we need to point out that the currently 

study is limited to dpa rate differences that are less than one order of magnitude, while 

dpa rates in accelerator testing are typically a few orders of magnitude higher than those 

in reactors. Hence, more systematic comparative studies involving larger dpa rates (by 

adjusting beam current) are needed. Furthermore, there are many other factors affecting 

dispersoid morphology evolution. Void swelling, for example, may change dispersoid size 

and density. Small voids can act as nucleation sites of dispersoids. Since we did not 

observe void swelling in the Hf-doped ODS in the present study, such complexity was not 

considered.  For alloys having high density grain boundaries, such as ODS alloys prepared 

with extrusion and severe deformation, radiation induced grain growth or radiation 

induced segregation can change defect sink property, which affects dispersoid stability. 

Previous studies have shown that radiation induced segregation can affect both voids 

nucleation and growth [39].  

Accelerator-based heavy ion irradiation in general has the complexity including, 

but not limited to, surface sputtering, surface defect sink effect, injected interstitials, and 

defect imbalance. Some effects have been recently reviewed by Zinkle and Snead [40]. 

Due to the fact that these effects are sensitive to detail radiation conditions, we here limit 

our discussions below to the condition close to the present study.  For surface sputtering 

effect, recent studies by Jing et al. estimated a sputtered thickness of about 14 nm by 100-

peak-dpa 3.5 MeV Fe ion irradiation [41], based on sputtering yield calculated from SRIM 

simulations. The sputtering effect and its impact on damage profile shifting, therefore, are 

ignorable in the present study. As for surface defect sink effect, it is difficult to tell since 
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the ODS alloy used in the present study is swelling resistant and we cannot observe void 

depletion zone. In pure Fe, 3.5 MeV Fe ion irradiation (450C, 105 peak dpa) creates a 

120 nm  wide void depletion zone (based on the half width of the zone) [42]. Therefore, 

assuming defect migration is comparable in Fe and the ODS alloy, the shallowest 

characterization depth of 250 nm in the present study is away from the surface-affected 

zone. Under the combined effects from injected interstitials due to extra atoms implanted 

and defect imbalance due to spatial difference between interstitials and vacancies, void 

swelling is greatly suppressed at the Fe projected range. Under 100-peak-dpa 3.5 MeV Fe 

ion irradiation at 450C, void swelling in pure Fe appears within the region from 120 nm 

to 825 nm. Therefore, our characterization depths of 250 nm and 650 nm are not affected 

by both the surface effect and the defect imbalance effect. We further believe the 

characterization depth of 1000 nm, correspond to the damage peak, is also valuable for the 

dose rate effect studies due to the following reason. Under defect imbalance effect, the 

excessive interstitials (∆𝐶 = 𝐶𝐼 − 𝐶𝑉) are peaked at about 9104/cm3 per incident 3.5 

MeV Fe ion [42]. This number is much lower than the damage peak ( 𝐶𝐼 , 𝐶𝑉) of 

2.6108/cm3 [42]. Void swelling is sensitive to defect imbalance (∆𝐶). But the defect 

assisted diffusion (Eq. 6) is sensitive to defect densities (𝐶𝐼 , 𝐶𝑉), which are orders of 

magnitude higher than ∆𝐶 . Therefore, the defect imbalance effect (including injected 

interstitial) plays a weak role in influencing D. 
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6. CONCLUSIONS 

 

 

6.1. Oxide Dispersoid Coherency Study on 12Cr ODS Alloy 

The 100 peak dpa self-ion irradiation is carried out on dual-phase 12Cr ODS with 

3.5 MeV Fe2+ at 475 C to see the different behaviors on coherent and incoherent 

dispersoids in ferrite and tempered martensite phases. In ferrite grain, both coherent and 

incoherent dispersoid sizes were stable under irradiation. However, coherent dispersoid 

density increased dramatically at 500-800 nm depth indicating newly nucleated or 

precipitated dispersoid will mostly take coherent relationship with matrix. In martensite 

grain, almost all large incoherent dispersoids disappeared after irradiation, but the 

densities of both coherent and incoherent dispersoid just showed slight increase. 

This stability of coherent oxide dispersoids and increment of density under 

irradiation demonstrates why ODS alloys show good creep strength under high dose 

irradiation and high swelling resistance. 

6.2. He Preimplantation Study on 12Cr ODS Alloy 

The 12Cr ODS alloy samples were irradiated by using 3.5 MeV Fe2+ beam with 

and without He preimplantation to see the effect of pre-existing He bubble on oxide 

dispersoid nucleation. The coherent oxide dispersoid size did not change much under 

irradiation, and He preimplantation did not affect on dispersoid size either. However, 1E15 

He preimplanted sample showed higher oxide dispersoid density at 350 nm depth 
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compared to Fe irradiated sample without He preimplantation. This suggests that He 

bubbles in the matrix worked as a nucleation site for new oxide dispersoids during Fe 

irradiation, increasing oxide dispersoid density. However, 1E16 He preimplanted and Fe 

irradiated sample showed systematically lower dispersoid density than Fe irradiated 

sample, implying large He bubbles do not affect on dispersoid nucleation during Fe 

irradiation.  

The experiment result was supported by studies on helium, vacancy and vacancy-

oxygen affinity. As helium has low migration energy, it can be trapped to vacancy and 

form He-vacancy clusters in the matrix. Since vacancy has high affinity on oxygen, they 

form He-vacancy-oxygen rich cluster, which further attracts other solutes like Ti and Y, 

nucleating oxide dispersoids. The increment of coherent dispersoid density of 1E15 He + 

Fe case can be explained with this mechanism. The 1E16 He + Fe case, however, did not 

show the increase in density and we believe that the large surface area and volume of 

average 3.4 nm diameter He bubble make the solute concentration not to reach the critical 

nucleation limit. 

6.3. Dpa Rate Study on Hf Doped ODS Alloy 

The Hf-doped ferrite ODS alloy was irradiated using 3.5 MeV Fe2+ ion at 475 C 

up to 100 peak dpa. The dispersoid coherencies, sizes and densities at different depths 

were characterized. Both coherent and incoherent dispersoid sizes shrunk in the ion range 

and the incoherent dispersoid sizes were larger than those of coherent dispersoids at all 

depths. The densities were increased in the ion range for both coherent and incoherent 
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dispersoids and the coherent dispersoid densities were higher than those of incoherent 

dispersoids. Despite of the dpa rate differences at each depth, the dispersoid sizes do not 

show noticeable depth dependent changes in the experiment. To explain this, defect-

assisted-diffusion mechanisms were introduced, showing dispersoid size has weak or no 

dependence on dpa rate. Although the dpa rate differences in this study were much smaller 

than that between the real reactor environment and the accelerator test, the present study 

shows the possibility of using ion irradiation to simulate neutron irradiation on studying 

dispersoid stability in ODS alloys. 


