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This work is concerned with nonlinear parameter identification in partial
differential equations subject to impulsive noise. To cope with the non-Gaussian
nature of the noise, we consider a model with L1 fitting. However, the non-
smoothness of the problem makes its efficient solution challenging. By approxi-
mating this problem using a family of smoothed functionals, a semi-smooth
Newton method becomes applicable. In particular, its super-linear convergence
is proved under a second-order condition. The convergence of the solutions
to the approximating problems as the smoothing parameter goes to zero is
shown. A strategy for selecting the regularization parameter based on a bal-
ancing principle is suggested. The efficiency of the method is illustrated on
several benchmark inverse problems of recovering coefficients in elliptic differ-
ential equations, for which one- and two-dimensional numerical examples are
presented.

1. Introduction

We are interested in the nonlinear inverse problem

S(u) = yδ,

where S : X → Y is the parameter-to-observation mapping and yδ represents experimental
measurements corrupted by impulsive noise. Throughout we assume that the space Y
compactly embeds into Lq for some q > 2, yδ is bounded almost everywhere, and X is
a Hilbert space. The spaces X and Y are defined on the bounded domains ω ⊂ Rn and
D ⊂ Rm, respectively. Such models arise naturally in distributed parameter identification
for differential equations, where typically Y is H1(D) or H

1
2 (D) and X is L2(ω) or H1(ω).
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The noise model for the measured data yδ plays a critical role in formulating and solving
the problem. In practice, an additive Gaussian noise model is customarily adopted, which
leads to the standard L2 fitting. However, non-Gaussian (e.g., impulsive) noises may occur
in practical applications. For instance, the noise may follow a Laplace distribution as in
certain inverse problems arising in signal processing [3]. Noise models of impulsive type,
e.g., salt-and-pepper or random-valued noise, are characterized by the fact that the given
data contains a (possibly large) number of outliers, while other points are uncorrupted.
Generally, these measurement errors are attributed to uncertainties in instrument calibration
and physical limitations of the devices and experimental conditions, and occur in image
processing because of malfunctioning pixels in camera sensors, faulty memory locations in
hardware, or transmission in noisy channels [5].

As was demonstrated in, e.g., [12], L2 fitting is inadequate for coping with such noise,
as the use of the L2 model can lead to inacceptable reconstruction errors in such cases.
Statistically speaking, L1 fitting is more robust to outliers than the more conventional
L2 counterpart in the sense that outliers have less influence on the solution [19], and is
deemed suitable when the data possibly contains outliers. Consequently, models involving
L1 fitting have recently received considerable interest, e.g., in imaging [12, 22] as well as
parameter identification [6]. These considerations motivate the adopting the model

(P) min
u∈X

{
Jα(u) ≡ ‖S(u)− yδ‖L1 +

α

2
‖u‖2

X

}
.

We are mainly interested in various structural properties of the L1-norm fitting compared
with the more conventional L2-norm counterpart. Our main goal in this work is to resolve
the computational obstacle posed by the non-differentiability of the L1-norm, such that
Newton-type methods are applicable when the operator S has the necessary differentiability
properties.

Due to the practical significance of L1 models, there has been a growing interest in
analyzing their properties as well as in developing efficient minimization algorithms.
A number of recent works have addressed the analytical properties of models with L1

fitting, explaining their superior performance over the standard model for certain types of
noise and elaborating the geometrical structure of the minimizers in the context of image
denoising [2, 7, 14, 31], i.e., when S is the identity operator. In addition, several efficient
algorithms [11–13, 29] have been developed for such problems.

However, all these works are only concerned with linear inverse problems, and their
analysis and algorithms are not directly applicable to the nonlinear case of our interest. The
optimality system is not differentiable in a generalized sense, and thus can not be solved
directly with a (semi-smooth) Newton method. We consider a smoothed variant, and
prove the convergence as the smoothing parameter tends to zero. The smoothed optimality
system is solved by a semi-smooth Newton method, and its superlinear local convergence
is established under a second-order condition. To the best of our knowledge, this work
represents a first investigation on L1 fitting with general nonlinear inverse problems. The
applicability of the proposed approach and its numerical performance is illustrated with
several benchmark problems for distributed parameter identification for elliptic partial
differential equations.

The rest of this work is organized as follows. In the remainder of this section, we
introduce a selection of model problems for which our approach is applicable. In Section 2,
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we derive the optimality system of problem (P) for general nonlinear inverse problems.
The approximating problems, convergence as the smoothing parameter tends to zero, and
their numerical solution using a semi-smooth Newton method are studied in Section 3.
We also discuss the important issue of choosing suitable regularization and smoothing
parameters. Finally, in Section 4, we present numerical results for our model problems.

1.1. Inverse potential problems

A first nonlinear model problem consists in recovering the potential term in an elliptic
equation. Let Ω ⊂ Rd be an open bounded domain with a Lipschitz boundary Γ. We
consider the equation

(1.1)


−∆y + uy = f in Ω,

∂y
∂n

= 0 on Γ.

The inverse problem is to recover the potential u defined on ω = Ω from noisy ob-
servational data yδ in the domain D = Ω, i.e., S maps u ∈ X = L2(Ω) to the solu-
tion y ∈ Y = H1(Ω) of (1.1). Such problems arise in heat transfer, e.g., damping de-
sign [26] and identifying heat radiative coefficient [28]. We shall seek u in the admissible
set U = {u ∈ L∞(Ω) : u ≥ c} ⊂ X for some fixed c > 0.

1.2. Inverse Robin coefficient problem

Our second example considers the recovery of a Robin boundary condition from boundary
observation. Let Ω ⊂ R2 be an open bounded domain with a Lipschitz boundary Γ
consisting of two disjoint parts Γi and Γc. We consider the equation

(1.2)


−∆y = 0 in Ω,

∂y
∂n

= f on Γc,

∂y
∂n

+ uy = 0 on Γi.

The inverse problem consists in recovering the Robin coefficient u defined on ω = Γi from
noisy observational data yδ on the boundary D = Γc, i.e., S maps u ∈ X = L2(Γi) to y|Γc ∈
Y = H

1
2 (Γc), where v 7→ v|Γc denotes the Dirichlet trace operator and y is the solution to

(1.2). This class of problems arises in corrosion detection and thermal analysis of quenching
processes [6, 21]. We shall seek u in the admissible set U = {u ∈ L∞(Γi) : u ≥ c} ⊂ X for
some fixed c > 0.

1.3. Inverse diffusion coefficient problem

Our last example, identification of a diffusion coefficient, addresses stronger regularization
for the parameter. Let Ω ⊂ R2 be an open bounded domain with a smooth boundary Γ.
We consider the equation

(1.3)

{
−∇ · (u∇y) = f in Ω,

y = 0 on Γ.
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with f ∈ Lq(Ω) for some q > 2. The inverse problem consists in recovering the diffusion
coefficient u within ω = Ω from the noisy observational data yδ in the domain D = Ω, i.e.,
S maps u ∈ X = H1(Ω) to the solution y ∈ Y = W1,q

0 (Ω), q > 2, of (1.3). Such problems
arise in estimating the permeability of underground flow and the conductivity of heat
transfer [4,9,30]. We shall seek u in the admissible set U = {u ∈ L∞(Ω) : λ ≤ u ≤ λ−1}∩X
for some fixed λ ∈ (0, 1).

Remark 1.1. In this work, we assume that the true solution u† of the inverse problem lies in
the interior of U and do not explicitly enforce the constraint u ∈ U, in order to focus the
presentation on the treatment of the non-smoothness inherent in the L1-fitting problem.
There is no fundamental difficulty in including this constraint in the optimization, however,
in which case the first equality in the optimality conditions (OS) should be replaced by a
variational inequality. When the domain of definition is given by box constraints (as in the
model problems), the modified optimality system can still be solved using a semi-smooth
Newton method after applying a Moreau–Yosida regularization, cf. [17].

These model problems share the following properties, which are verified in Appendix A
and are sufficient to guarantee the applicability of our approach.

(A1) The operator S is uniformly bounded in X and completely continuous: If for u ∈ U,
the sequence {un} ⊂ U satisfies un −⇀ u in X , then

S(un)→ S(u) in L2(D).

(A2) S is twice Fréchet differentiable.

(A3) There exists a constant C > 0 such that for all u ∈ U and h ∈ X there holds

‖S′(u)h‖L2 ≤ C‖h‖X .

(A4) There exists a constant C > 0 such that for all u ∈ U and h ∈ X there holds

‖S′′(u)(h, h)‖L2 ≤ C‖h‖2
X .

The twice differentiability of S in (A2) is required for a Newton method, see Section 3.2,
and ensures strict differentiability required for the chain rule, see the proof of Theorem 2.1.
The a priori estimate in (A3) is employed in analyzing the convergence of the approximate
solutions, while (A4) will be used to show local superlinear convergence of the semi-smooth
Newton method.

2. Optimality system

The existence of a minimizer uα ∈ X of problem (P) for fixed α > 0 follows from standard
arguments (cf., e.g., [27]) due to the uniform boundedness and complete continuity of S.
We next derive the necessary first-order optimality conditions for uα.
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Theorem 2.1. For any local minimizer uα ∈ X of problem (P) there exists a pα ∈ L∞(D) with
‖pα‖L∞ ≤ 1 such that the following relations hold:

(OS)

{
S′(uα)

∗pα + αj(uα) = 0,

〈S(uα)− yδ, p− pα〉L2 ≤ 0 for all ‖p‖L∞ ≤ 1.

Here S′(u)∗ denotes the adjoint of S′(u) with respect to L2(D), and j : X → X ∗ is the
(linear) duality mapping, i.e., j(u) = ∂( 1

2 ‖u‖
2
X ). Note that both S(u) and yδ are in L2(D),

and hence the duality pairing 〈S(u) − yδ, p〉L1,L∞ coincides with the standard L2-inner
product.

Proof. Upon setting

F : X → R, u 7→ α

2
‖u‖2

X ,

G : L1(D)→ R, v 7→ ‖v‖L1 ,

we have that

Jα(u) = F (u) + G(S(u)− yδ).

Since the operator S is twice Fréchet differentiable ((A2), which implies strict differen-
tiability) and G is real-valued and convex, the sum and chain rules for the generalized
gradient [10, Thms. 2.3.3, 2.3.10] yield that for all u ∈ X , the functional Jα is Lipschitz
continuous near u and the relation

∂Jα(u) = F ′(u) + S′(u)∗∂G(S(u)− yδ)

holds. The necessary condition 0 ∈ ∂Jα(uα) for every local minimizer uα of Jα (cf., e.g., [10,
Prop. 2.3.2]), thus implies the existence of a subgradient pα ∈ ∂G(S(uα)− yδ) ⊂ L∞(D)
such that

0 = αj(uα) + S′(uα)
∗pα

holds, which is the first relation of (OS). Since G is convex, the generalized gradient
reduces to the convex subdifferential (cf. [10, Prop. 2.2.7]), and by its definition we have
the equivalence

pα ∈ ∂G(S(uα)− yδ) ⇔ S(uα)− yδ ∈ ∂G∗(pα),

where G∗ is the Fenchel conjugate of G (cf., e.g., [15, Chap. I.4]), given by the indicator
function of the unit ball B ≡ {p ∈ L∞(D) : ‖p‖L∞ ≤ 1}. The subdifferential of G∗ coincides
with the normal cone to B. Consequently, we deduce that pα ∈ ∂G(S(uα)− yδ) if and only
if

〈S(uα)− yδ, p− pα〉L2 ≤ 0

holds for all p ∈ L∞(D) with ‖p‖L∞ ≤ 1, which is the second relation of (OS).
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The following structural information for a solution uα of problem (P) is a direct conse-
quence of (OS) and is of independent interest.

Corollary 2.2. Let uα be a minimizer of problem (P), and pα ∈ L∞(D) as given by Theorem 2.1.
Then the following relations hold:

S(uα)− yδ = 0 a.e. on {x ∈ D : |pα(x)| < 1} ,

S(uα)− yδ ≥ 0 a.e. on {x ∈ D : |pα(x)| = 1} ,

S(uα)− yδ ≤ 0 a.e. on {x ∈ D : |pα(x)| = −1} .

This can be interpreted as follows: the box constraint on the dual solution pα is active
where the data is not attained by the primal solution uα. In particular, the dual solution pα

acts as a noise indicator.

By using a complementarity function [8, 20], we can rewrite the second relation of (OS)
as

S(uα)− yδ = max(0, S(uα)− yδ + c(pα − 1)) + min(0, S(uα)− yδ + c(pα + 1))

for any c > 0. This can be further discriminated by pointwise inspection to the following
three cases:

1. (S(uα)− yδ)(x) > 0 and pα(x) = 1,

2. (S(uα)− yδ)(x) < 0 and pα(x) = −1,

3. (S(uα)− yδ)(x) = 0 and pα(x) ∈ [−1, 1].

Consequently, we have the following concise relation

pα = sign(S(uα)− yδ),

from which we obtain a reduced optimality system

(OS’) αj(uα) + S′(uα)
∗(sign(S(uα)− yδ)) = 0.

3. Solution by semi-smooth Newton method

In view of (OS’) and the lack of smoothness of the sign function, the optimality system
(OS) is not differentiable even in a generalized sense, which precludes the application
of Newton-type methods. Meanwhile, gradient descent methods are inefficient unless
the step lengths are chosen appropriately, which, however, necessarily requires a detailed
knowledge of Lipschitz constants. Therefore, we propose to approximate (P) using a local
smoothing of the L1 norm.
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3.1. Approximation

To obtain a semi-smooth Newton system, we wish to replace the sign function in (OS’) by a
locally linear smoothing. We therefore consider for β > 0 the following smoothed problem:

(Pβ) min
u∈X
‖S(u)− yδ‖L1

β
+

α

2
‖u‖2

X ,

where ‖v‖L1
β

is a Huber-type smoothing of the L1 norm:

‖v‖L1
β
≡
∫

Ω
|v(x)|β dx, |v(x)|β ≡


v(x)− β

2 if v(x) > β,
−v(x)− β

2 if v(x) < −β,
1

2β v(x)2 if |v(x)| ≤ β.

The existence of a minimizer uβ of (Pβ) follows as before. Since the mapping ψ : R→ R,
t 7→ |t|β, is differentiable with a globally Lipschitz continuous derivative t 7→ signβ(t),

signβ(t) ≡


1 if t > β,
−1 if t < −β,
1
β t if |t| ≤ β,

we have that ψ defines a differentiable Nemytskii operator from Lp(D) to L2(D) for every
p ≥ 4 (see, e.g., [27, Chap. 4.3] and references therein) with pointwise defined derivative
signβ(v)h. We thus obtain the necessary optimality conditions for uβ:

(OSβ) αj(uβ) + S′(uβ)
∗(signβ(S(uβ)− yδ)) = 0.

Remark 3.1. This Huber-type smoothing is equivalent to an L2-penalization of the dual
variable p ∈ L∞(D) in (OS). To see this, we consider (OS) as the optimality conditions of
the primal-dual saddle point problem

min
u∈L2

max
‖p‖L∞≤1

〈S(u)− yδ, p〉L2 +
α

2
‖u‖2

X ,

which makes use of the dual representation of the L1-norm. We now introduce for β > 0
the penalized saddle point problem

min
u∈L2

(
max
‖p‖L∞≤1

〈S(u)− yδ, p〉L2 − β

2
‖p‖2

L2

)
+

α

2
‖u‖2

X .

The corresponding optimality conditions are given by

(3.1)

{
S′(uβ)

∗pβ + αj(uβ) = 0,

〈S(uβ)− yδ − βpβ, p− pβ〉L2 ≤ 0.

for all p ∈ L∞(D) with ‖p‖L∞ ≤ 1. By expressing the variational inequality again using a
complementarity function with c = β, we obtain by pointwise inspection that

pβ = signβ(S(uβ)− yδ).

Inserting this expression into the first relation of (3.1) yields precisely (OSβ).
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We next show the convergence of solutions to the approximating problems (Pβ) to a
solution to problem (P).

Theorem 3.2. Let βn → 0. Then the sequence of minimizers {uβn} of (Pβ) contains a subsequence
converging in X to a minimizer of (P).

Proof. Let un ≡ uβn . Note that for any β > 0, there holds |v(x)|β ≤ |v(x)|, and consequently

‖S(uα)− yδ‖L1
βn
≤ ‖S(uα)− yδ‖L1 .

Now the minimizing property of un implies

(3.2) ‖S(un)− yδ‖L1
βn
+

α

2
‖un‖2

X ≤ ‖S(uα)− yδ‖L1
βn
+

α

2
‖uα‖2

X ,

from which it follows that the sequence {un} is uniformly bounded in X . Therefore, there
exists a subsequence, also denoted by {un}, and some u∗ ∈ X such that un −⇀ u∗ in X . By
the strong continuity of S, c.f. (A1), we have S(un) → S(u∗) in L2, and this convergence
is pointwise almost everywhere after possibly passing to a further subsequence [16]. In
addition, since |t|β → |t| as β→ 0 for every t ∈ R, we have that |S(uα)− yδ|βn converges
pointwise to |S(uα)− yδ|. Fatou’s Lemma then implies

(3.3) ‖S(u∗)− yδ‖L1 =
∫

D
lim
n→∞
|S(un)− yδ|βn dx ≤ lim inf

n→∞
‖S(un)− yδ‖L1

βn
.

Meanwhile, by virtue of Lebesgue’s dominated convergence theorem [16], we deduce

lim
n→∞
‖S(uα)− yδ‖L1

βn
= ‖S(uα)− yδ‖L1 .

These three relations together with the weak lower semicontinuity of norms indicate

‖S(u∗)− yδ‖L1 +
α

2
‖u∗‖2

X ≤ ‖S(uα)− yδ‖L1 +
α

2
‖uα‖2

X .

This together with the minimizing property of uα implies that u∗ is a minimizer of (P).
To conclude the proof, it suffices to show that lim supn→∞‖un‖X ≤ ‖u∗‖X holds. To this

end, we assume the contrary, i.e. that there exists a subsequence of {un}, also denoted
by {un}, satisfying un −⇀ u∗ in X and limn→∞‖un‖X ≡ c > ‖u∗‖X . Letting uα = u∗ and
n→ ∞ in (3.2), we arrive at

lim sup
n→∞

‖S(un)− yδ‖L1
βn
+

α

2
c2 ≤ ‖S(u∗)− yδ‖L1 +

α

2
‖u∗‖2

X ,

i.e., lim supn→∞‖S(un)− yδ‖L1
βn

< ‖S(u∗)− yδ‖L1 , which is in contradiction with the weak
lower semicontinuity in (3.3). This concludes the proof.
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3.2. Semi-smooth Newton method

To solve the optimality system (OSβ) with a semi-smooth Newton method, we consider it
as an operator equation F(u) = 0 for F : X → X ∗,

F(u) = αj(u) + S′(u)∗(signβ(S(u)− yδ)),

where signβ : Y → L2(D) can be expressed using the pointwise max and min functions as

signβ(v) = β−1 (v−max(0, v− β)−min(0, v + β)) .

We now argue the Newton differentiability of F. We know (e.g., from [25]) that the
function z 7→ max(0, z) is Newton differentiable from Lp to Lq for any p > q ≥ 1 with its
Newton derivative given pointwise by

DN max(0, z)(x) =
{

1, if z(x) > 0,
0, if z(x) ≤ 0.

An analogous statement holds for the min function. This yields Newton differentiability of
signβ from Y ↪→ Lq(D), q > 2, to L2(D). By the chain rule and the Fréchet differentiability
of S, it follows that P : X → L2(D),

P(u) = signβ(S(u)− yδ),

is Newton differentiable as well, and its Newton derivative acting on a direction v ∈ X is
given as

DN P(u)v = β−1χI (S′(u)v).

Here, χI is defined pointwise for x ∈ D by

χI (x) =

{
1, if |(S(u)− yδ)(x)| ≤ β,
0, else.

For a given uk, one Newton step consists in solving for the increment δu ∈ X in

(3.4) αj′(uk)δu + (S′′(uk)δu)∗P(uk) + β−1S′(uk)∗(χIk S′(uk)δu) = −F(uk)

and setting uk+1 = uk + δu. Given a way to compute the action of the derivatives S′(u)v,
S′(u)∗v and [S′′(u)v]∗p for given u, p and v (given in Appendix A for the model problems),
system (3.4) can be solved iteratively, e.g., using a Krylov method.

It remains to show the uniform well-posedness of system (3.4), from which superlinear
convergence of the semi-smooth Newton method follows by standard arguments. Since the
operator S is nonlinear and the functional is possibly non-convex, we assume the following
condition at a minimizer uβ: There exists a constant γ > 0 such that

(3.5) 〈S′′(uβ)(h, h), P(uβ)〉L2 + α‖h‖2
X ≥ γ‖h‖2

X
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holds for all h ∈ X . This is related to standard second-order sufficient optimality conditions
in PDE-constrained optimization (cf., e.g., [27, Chap. 4.10]). The condition is satisfied for
either large α or sparse residual S(uβ)− yδ, since

(3.6) 〈S′′(uβ)(h, h), P(uβ)〉L2 + α‖h‖2
X ≥ (α− C‖P(uβ)‖L2)‖h‖2

X

holds by the a priori estimate on S′′ (A4). In the context of parameter identification
problems, this is a reasonable assumption, since for a large noise level, α would take a large
value, while a small α is chosen only for small noise levels (which, given the impulsive
nature of the noise, is equivalent to strong sparsity of the residual). In the latter case,
we observe that P(uβ) = signβ(S(uβ) − yδ) can be expected to be small due to the L2

smoothing of signβ (cf. Remark 3.1 and note that P(uβ) = pβ). Condition (3.5) is thus
satisfied if either α or β is sufficiently large. However, this property depends on β, which
together with Theorem 3.2 motivates the use of a continuation strategy in β, see section
3.3. We remind that in general it is not possible to check such conditions a priori even for
quadratic functionals.

Proposition 3.3. Let β > 0 be given. If condition (3.5) holds, then for each u ∈ U sufficiently
close to a solution uβ of (OSβ), the mapping DN F : X → X ∗,

DN F(u) = αj′(u) + S′′(u)∗P(u) + β−1S′(u)∗χIS′(u)

is invertible, and there exists a constant C > 0 independent of u such that

‖(DN F)−1‖L(X ∗,X ) ≤ C.

Proof. For given w ∈ X ∗, we need to find δu ∈ X satisfying

〈αj′(u)δu + (S′′(u)δu)∗P(u) + β−1S′(u)∗χIS′(u)δu, v〉X ∗,X = 〈w, v〉X ∗,X

for all v ∈ X . Letting v = δu and observing that 〈j′(u)v, v〉X ∗,X = ‖v‖2
X (since X is a

Hilbert space), we obtain

α ‖δu‖2
X + 〈S′′(u)(δu, δu), P(u)〉L2 + β−1 ∥∥χIS′(u)δu

∥∥2
L2 = 〈w, δu〉X ∗,X .

Now the pointwise contraction property of the min and the max function implies

‖P(uβ)− P(u)‖L2 ≤ β−1‖S(uβ)− S(u)‖L2

+ β−1‖max(0, S(uβ)− yδ − β)−max(0, S(u)− yδ − β)‖L2

+ β−1‖min(0, S(uβ)− yδ + β)−min(0, S(u)− yδ + β)‖L2

≤ 3β−1‖S(uβ)− S(u)‖L2 .

Consequently, by the continuity of the mapping S, for sufficiently small ‖uβ − u‖X , we
have small ‖P(uβ) − P(u)‖L2 as well. Thus, by condition (3.5) and the locally uniform
boundedness of S′′, c.f. (A4), there exists an ε > 0 such that

α ‖δu‖2
X + 〈S′′(u)(δu, δu), P(u)〉L2

= α ‖δu‖2
X + 〈S′′(u)(δu, δu), P(uβ)〉L2 + 〈S′′(u)(δu, δu), P(u)− P(uβ)〉L2

≥ γ ‖δu‖2
X − Cε ‖δu‖2

X ≥
γ

2
‖δu‖2

X
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holds for all u with ‖u− uβ‖X ≤ ε if ε is sufficiently small.
Finally, we deduce by the Cauchy-Schwarz inequality that

γ

4
‖δu‖2

X ≤ ‖w‖X ∗ ‖δu‖X .

This implies the claim.

Thus, system (3.4) is semi-smooth, and from standard results (e.g., [25], [20, Th. 8.5]) we
deduce the following convergence result for the semi-smooth Newton method.

Theorem 3.4. Let β > 0 and condition (3.5) hold. Then the sequence of iterates uk in the semi-
smooth Newton method (3.4) converge superlinearly to a solution uβ of (OSβ), provided that u0 is
sufficiently close to uβ.

3.3. Parameter choice

The regularized formulation (P) of the parameter identification problem S(u) = yδ requires
specifying the regularization parameter α, whose correct choice is crucial in practice.
Usually, it is determined using knowledge of the noise level δ by, e.g., discrepancy principle.
However, in practice, the noise level δ may be unknown, rendering such rules inapplicable.
To circumvent this issue, we propose a heuristic choice rule based on the following
balancing principle [12]: Choose α such that

(3.7) (σ− 1)‖S(uα)− yδ‖L1 −
α

2
‖uα‖2

X = 0

is satisfied. The underlying idea of the principle is to balance the data fitting term with the
penalty term, and the weight σ > 1 controls the trade-off between them. This weight de-
pends on the relative smoothness of residual and parameter, but not on the data realization.
The principle does not require a knowledge of the noise level, and has been successfully
applied to linear inverse problems with L1 data fitting [11, 12].

We compute a solution α∗ to the balancing equation (3.7) by the following simple fixed
point algorithm proposed in [11]:

(3.8) αk+1 = (σ− 1)
‖S(uαk)− yδ‖L1

1
2‖uαk‖2

X
.

This fixed point algorithm can be derived formally from the model function approach [12].
The convergence can be proven similar to [11], by observing that the proof given there
does not depend on the linearity of the forward operator.

Theorem 3.5. If the initial guess α0 satisfies (σ− 1)‖S(uα0)− yδ‖L1 − α0
2 ‖uα0‖2

X < 0, then the
sequence {αk} generated by the fixed point algorithm is monotonically decreasing and converges to
a solution to (3.7).

Of similar importance is the proper choice of the smoothing parameter β. If β is too large,
the desirable structural property of the L1 model will be lost. However, the second-order
condition (3.6) depends on β and cannot be expected to hold for arbitrarily small β. In
particular, the convergence basin for the semi-smooth Newton method is likely to shrink
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Algorithm 1 Path-following semi-smooth Newton method.

1: Choose β0, q < 1, βmin > 0, u0 ∈ U, k∗ > 0, set n = 0
2: repeat
3: Set u0 = un, k = 0
4: repeat
5: Compute yk = S(uk)
6: Compute active and inactive sets

Ak
+ =

{
x ∈ D : (yk − yδ)(x) > β

}
Ak
− =

{
x ∈ D : (yk − yδ)(x) < −β

}
Ik =

{
x ∈ D : |(yk − yδ)(x)| ≤ β

}
7: Compute pk = signβ(y

k − yδ)

8: Compute F(uk) = αj(uk) + S′(uk)∗(pk)
9: Compute update δu by solving

αj′(uk)δu + S′′(uk)∗(pk)δu + β−1S′(uk)∗χIk S′(uk)δu = −F(uk))

10: Set uk+1 = uk + δu, k← k + 1.
11: until (Ak

+ = Ak−1
+ and Ak

− = Ak−1
− and ‖rk‖ ≤ tol) or k = k∗

12: if k < k∗ then
13: Set n← n + 1, un = uk, βn = qβn−1
14: end if
15: until k = k∗ or βn < βmin

as β decreases to zero. This motivates the following continuation strategy: Starting with a
large β0 and setting βn+1 = qβn for some q ∈ (0, 1), we compute the solution uβn of (OSβ)
using the previous solution uβn as an initial guess.

A crucial issue is then selecting an appropriate stopping criterion for the continuation.
Since we are most interested in the L1 structure of the problem, we base our stopping rule
on the following finite termination property of the linear L1 fitting problem [12, Prop. 3.6]:
If the active sets coincide for two consecutive iterations of the semi-smooth Newton
method, the semi-smooth optimality system is solved exactly. In addition, the convergence
is usually very fast due to the continuation strategy, and the required number of iterations
is independent of the mesh size (this property is well-known as mesh independence [18]).
Hence, if the active sets (cf. Ak

+ and Ak
− in Algorithm 1) are still changing after a fixed

number of iterations, we deduce that the semi-smoothness of the operator F(u) might be
lost and return the last feasible solution uβn−1 as the desired approximation. In practice, we
also check for smallness of the norm of the gradient to take into account the nonlinearity
of S, and safeguard termination of the algorithm by stopping the continuation if a given
very small value βmin is reached.

A complete description of this approach, hereafter denoted by path-following semi-smooth
Newton method, is given in Algorithm 1.
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4. Numerical examples

We now present some numerical results for several benchmark parameter identification
problems with one- and two-dimensional elliptic differential equations to illustrate the
features of the proposed approach. In each case, the forward operator was discretized
using finite elements on a uniform grid (triangular, in the case of two dimensions). We
denote by P0 the space of piecewise constant functions (on each element), while P1 is the
space of piecewise linear functions. Unless otherwise stated, the number N of grid points
are 1001 in 1d and 128× 128 in 2d.

We implemented the semi-smooth Newton (SSN) method as given in Algorithm 1. The
iteration was terminated if the active sets did not change and the norm of the gradient fell
below 1.00× 10−6, or if 20 iterations were reached. Given the true solution u†, we generate
the noisy data yδ by modifying the exact data y† = S(u†) pointwise as follows

yδ =

{
y† + ‖y†‖L∞ ξ, with probability r,
y†, otherwise,

where the random variable ξ follows the standard normal distribution and r ∈ (0, 1) is the
percentage of corrupted data points. Unless otherwise noted, we take r = 0.3. The exact
noise level δ is defined by δ = ‖yδ − y†‖L1 . The Newton system (3.4) is solved iteratively
using BiCGstab (with tolerance 1.00× 10−6 and maximum number of iterations 100). The
reduction rate q is set to 1

2 .
All timing tests were performed with MATLAB (R2010b) on a single core of a 2.8 GHz

workstation with 24 GByte of RAM. The MATLAB codes of our implementation can be
downloaded from http://www.uni-graz.at/~clason/codes/l1nonlinfit.zip. To keep
the presentation concise, all tables are collected in Appendix B.

4.1. Inverse potential problem

This example is concerned with determining the potential u ∈ L2(Ω) in (1.1) from noisy
measurements of the state y ∈ H1(Ω) in the domain Ω. The discretized operator Sh maps
uh ∈ Uh = P0 to yh ∈ Yh = P1 which satisfies

〈∇yh,∇vh〉L2 + 〈uhyh, vh〉L2 = 〈 f , vh〉L2 for all vh ∈ Yh.

For the automatic parameter choice using the balancing principle, we have set the weight
σ to 1.03 and the initial guess α0 to 1.

One-dimensional example. Here, we take Ω = [−1, 1], f (x) = 1 and

u†(x) = 2− |x| ≥ 1.

A typical realization of noisy data is displayed in Fig. 1a for r = 0.3 and Fig. 1b for
r = 0.6. The fixed-point iteration (3.8) converged after 3 (4) iterations for r = 0.3 (r = 0.6),
and yielded the values 4.33× 10−3 (9.39× 10−3) for the regularization parameter α. The
respective reconstructions uα, shown in Figs. 1c and 1d, are nearly indistinguishable from
the true solution u†. To measure the accuracy of the solution uα quantitatively, we compute
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Figure 1: Results for 1d inverse potential problem. Left: r = 0.3, right: r = 0.6.

the L2-error e = ‖uα − u†‖L2 , which is 8.65× 10−4 for r = 0.3 and 3.32× 10−3 for r = 0.6.
For comparison, we also show the solution by the L2 data fitting problem (solved by a
standard Newton method), where the parameter α has been chosen to give the smallest L2

error. We observe that the L2 reconstructions are clearly inacceptable compared to their L1

counterparts, which illustrates the importance of the correct choice of noise model, and
especially the suitability of L1 fitting for impulsive noise.

The performance of the balancing principle is further illustrated in Table 1 (see Ap-
pendix B), where we compare the balancing parameter αb with the “optimal”, sampling-
based parameter αo for different noise levels. This parameter is obtained by sampling each
interval [0.1αb, αb] and [αb, 10αb] uniformly with 50 parameters and taking as αo the one
with smallest L2-error eo ≡ ‖uαo − u†‖L2 . We observe that both the regularization parame-
ters and the reconstruction errors obtained from the two approaches are comparable. This
shows the feasibility of the balancing principle for choosing an appropriate regularization
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parameter in nonlinear L1 models. Table 1 also illustrates the fundamentally different
nature of impulsive noise and L1 fitting compared with Gaussian models, since the L2-error
does not depend linearly on the noise level or the percentage r of corrupted data. This
can be attributed to the fact that the structure properties of the noise (e.g., clustering of
corrupted data points, which is increasingly likely for r ≥ 0.5) is more important than the
noise percentage itself.

Next we study the convergence behavior of the path-following SSN method. First, the
convergence behavior in the smoothing parameter β is illustrated in Table 2 by showing for
each step in the continuation procedure the value of β, the required number of SSN itera-
tions and the L2-error e. The required number of SSN iterations is relatively independent of
the value of β provided it is sufficiently large. Then the semi-smoothness of the optimality
system (OSβ) is gradually lost after the β value drops below 1.00× 10−7, and more and
more iterations are required for the Krylov method to solve the Newton system (3.4) to the
prescribed accuracy. Nonetheless, the reconstruction already represents a very reasonable
approximation (in terms of the L2-error e) at β = 1.19× 10−7. Second, we illustrate the
superlinear convergence of the SSN method by solving the optimality system (3.1) with
fixed r = 0.3, α = 4.00× 10−3 and β = 1.00× 10−1. Table 3 shows the number of elements
that changed between active and inactive sets and the residual norm ‖F(uk)‖L2 after the
kth iteration for several problem sizes N. The superlinear convergence as well as the mesh
independence can be observed.

Finally, we demonstrate the scalability of the proposed approach. Table 4 summarizes
the computing time for one run of the path-following SSN method and for the full fixed
point iteration. Since the computing time depends on the α value, we present the results
with the final value of α as obtained from the fixed-point iteration (3.8). The presented
results are the mean and standard deviation over ten noise realizations. We observe that
both the fixed point iteration and the path-following SSN method scale very well with
the problem size N, which corroborates the mesh independence of the SSN method [18].
We point out that the computational cost of calculating the balancing parameter is only
two to three times that of solving the L1 model with one fixed regularization parameter.
Therefore, the balancing principle is also computationally inexpensive.

Two-dimensional example. Here, we take Ω = [−1, 1]2, f (x1, x2) = 1 and

u†(x1, x2) = 1 + cos(πx1) cos(πx2)χ{|(x1,x2)|∞<1/2} ≥ 1,

see Fig. 2c. The exact and noisy data (with r = 0.3) are given in Figs. 2a and 2b, respectively.
The fixed point algorithm (3.8) converged within two iterations to the value αb = 1.06×
10−2. The solution (with an L2-error e = 5.28× 10−3), shown in Fig. 2d, accurately captures
the shape as well as the magnitude of the potential u†, and thus represents a good
approximation. The reconstruction by the L2 model is again far from the true solution, and
thus not shown here.

4.2. Inverse Robin coefficient problem

This example, meant to illustrate coefficient recovery from boundary data, concerns recon-
structing the Robin coefficient u ∈ L2(Γi) in (1.2) from noisy measurements of the Dirichlet
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(a) exact data (b) noisy data (r = 0.3)

(c) true solution (d) L1 reconstruction (α = 1.06× 10−2)

Figure 2: Results for the 2d inverse potential problem with r = 0.3 (δ = 2.24× 10−1).

trace of y ∈ H1(Ω) on the boundary Γc. The discretization Sh of the forward operator S
thus maps uh ∈ Uh = P0(Γi) to the restriction of yh ∈ Yh = P1 to the nodes on Γc, where yh
satisfies

〈∇yh,∇vh〉L2 + 〈uhyh, vh〉L2(Γi)
= 〈 f , vh〉L2(Γc)

for all vh ∈ Yh.

Here, we take the domain Ω = [0, 1]2, inaccessible boundary Γi = {(x1, x2) ∈ ∂Ω : x1 = 1}
and accessible (contact) boundary Γc = ∂Ω \ Γi. Further, we set f (x1, x2) = −4 + x1 and

u†(x2) = 1 + x2 ≥ 1.

For the automatic parameter choice using the balancing principle, we have set the weight
σ to 1.03 and the initial guess α0 to 1 as before.

The noisy data for r = 0.3 and r = 0.6 are displayed in Figs. 3a and 3b, respectively.
The fixed point algorithm (3.8) converged after two iterations in both cases, giving a value
9.77× 10−2 (r = 0.3) and 2.12× 10−1 (r = 0.6) for the regularization parameter α. The
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Figure 3: Results for the inverse Robin coefficient problem. Left: r = 0.3, right: r = 0.6.

corresponding reconstructions uα, with respective L2-error 3.13× 10−3 and 1.05× 10−2,
are shown in Figs. 3c and 3d. Overall, the approximate solutions agree well with the
true coefficient, except around the two end points, where the reconstructions suffer from
pronounced boundary effect, especially in case of r = 0.6. Again, the reconstruction by the
L2 model (with optimal choice of α) is not acceptable, and is thus not shown. A comparison
of the balancing principle with the optimal choice based on sampling is given in Table 5.
The results by these two approaches are very close to each other. From the table, we also
observe the non-monotonicity of the error as a function of r, where the reconstruction error
e shows a noticeable jump after r = 0.5.
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4.3. Inverse diffusion coefficient problem

Finally, we consider the problem of determining the diffusion coefficient u ∈ H1(Ω) in
(1.3) from noisy measurements of the solution y ∈ H1

0(Ω). Here we take Uh = P1 and
Yh = P1 ∩H1

0(Ω) and consider the discrete operator Sh as mapping uh ∈ Uh to yh ∈ Yh
satisfying

〈uh∇yh,∇vh〉L2 = 〈 f , vh〉L2 for all vh ∈ Yh.

To accelerate the convergence of the Krylov solver, we precondition the Newton system
with the inverse Helmholtz operator (−∆ + I)−1, i.e., the gradient α(−∆u + u)−∇y · ∇p
is replaced by

αu− (−∆ + I)−1(∇y · ∇p),

and similarly the action of the Hessian on δu is computed as

αu− (−∆ + I)−1(∇δy · ∇p +∇y · ∇δp).

For the automatic parameter choice using the balancing principle, we have set the weight
σ to 1.001 and the initial guess α0 to 0.1. As noted, the different weight is chosen according
to the stronger smoothness assumption on u (H1 instead of L2 regularization).

One-dimensional example. Here, we take the domain Ω = [0, 1] and f (x) = 1. The
exact solution u† is given by

u†(x) =
1
2
+ x2(1− x)4 ≥ 1

2
.

Noisy data with r = 0.3 and r = 0.6 and the reconstructions (α = 3.85× 10−4, L2-error
2.77× 10−5 and α = 6.90× 10−4, L2-error 3.86× 10−5) are shown in Fig. 4. In both cases,
the fixed point iteration (3.8) converged within two iterations. The convergence of the
path-following method and the SSN method are similar to the inverse potential problem.
A comparison of the balancing principle with the optimal choice based on sampling is
given in Table 6. The results by these two approaches are very close to each other. From
the table, we also observe the non-monotonicity of the error as a function of r, where the
reconstruction error e remains almost constant for r ≤ 0.5 and then increases quickly. Again
the proposed SSN method scales very well with the problem size, as shown in Table 7.

Two-dimensional example. Here, we take Ω = [0, 1]2, f (x1, x2) = 1 and

u†(x1, x2) =
1
2
+ x2

1x2
2 ≥

1
2

.

see Fig. 5c. The exact and noisy data (r = 0.3) are given in Figs. 5a and 5b, respectively.
The fixed point algorithm converged in seven iterations to the value α = 5.14× 10−5. The
reconstruction, shown in Fig. 5d, agrees well with the true solution (the L2-error being
5.63× 10−3). The less accurate approximation around the corner might be attributed to the
fact that the true solution does not satisfy the homogeneous Neumann conditions imposed
by the Newton step. Again, we remark that the L2 reconstruction (not presented) is far
from the true solution.
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Figure 4: Results for the 1d inverse diffusion coefficient problem. Left: r = 0.3, right:
r = 0.6.

5. Conclusion

In this paper we have presented a path-following semi-smooth Newton method for the
efficient numerical solution of nonlinear parameter identification problems with impulsive
noise. The method is based on a Huber-type smoothing of the L1 fitting functional,
and its superlinear convergence is proved and demonstrated numerically. Furthermore,
mesh independence of the method can be observed. Several model examples for elliptic
differential equation illustrate the efficiency of this approach.

The balancing principle is shown to be an effective parameter choice method, which
required little a priori information such as the noise level, while adding only a small
amount of computational overhead over the solution of one single minimization problem.

The presented approach can be extended in several directions. As noted in Remark 1.1,
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(a) exact data (b) noisy data (r = 0.3)

(c) true solution (d) L1 reconstruction (α = 5.14× 10−5)

Figure 5: Results for the 2d inverse diffusion coefficient problem with r = 0.3 (δ = 3.06×
10−2).

including constraints on the solution would be a natural progression. The extension to
time-dependent problems would be straightforward, but pose interesting challenges for
the efficient implementation.

Acknowledgments

The work of the first author was supported by the Austrian Science Fund (FWF) under
grant SFB F32 (SFB “Mathematical Optimization and Applications in Biomedical Sciences”),
and that of the second author was supported by Award No. KUS-C1-016-04, made by King
Abdullah University of Science and Technology (KAUST).

20



A. Verification of properties for model problems

For completeness, we collect in this section some results which verify the continuity and
differentiability properties (A1)–(A4) for our model problems. Throughout, we shall denote
by C a generic constant, which is independent of u ∈ U.

A.1. Elliptic potential problem

For this model problem, S maps u ∈ X = L2(Ω) to the solution y ∈ Y = H1(Ω) of (1.1),
and we take U = {u ∈ L∞(Ω) : u ≥ c} for some fixed c > 0. The verification of properties
(A1)–(A4) is analogous to [23]. We therefore only give, for the sake of completeness, the
explicit form of the derivatives required for the solution of the Newton system (3.4) using
a Krylov subspace method.

For given u ∈ L2(Ω), F(u) is computed by the following steps:
1: Solve for y ∈ H1(Ω) in

〈∇y,∇v〉L2 + 〈uy, v〉L2 = 〈 f , v〉L2 for all v ∈ H1(Ω).

2: Solve for p ∈ H1(Ω) in

〈∇p,∇v〉L2 + 〈up, v〉L2 = −〈signβ(y− yδ), v〉L2 for all v ∈ H1(Ω).

3: Set F(u) = αu + yp.
For given δu ∈ L2(Ω), the application of DN F(u) on δu is computed by:

1: Solve for δy ∈ H1(Ω) in

〈∇δy,∇v〉L2 + 〈uδy, v〉L2 = − 〈yδu, v〉L2 for all v ∈ H1(Ω).

2: Solve for δp ∈ H1(Ω) in

〈∇δp,∇v〉L2 + 〈up, v〉L2 = −〈 1
β χIδy + pδu, v〉L2 for all v ∈ H1(Ω).

3: Set DN F(u) = αδu + pδy + yδp.

A.2. Robin coefficient problem

Here, S maps u ∈ X = L2(Γi) to y|Γc ∈ Y = H
1
2 (Γc), where y is the solution to (1.2). Set

U = {u ∈ L∞(Γi) : u ≥ c} for some fixed c > 0. We shall denote the mapping of u ∈ U to
the solution y ∈ H1(Ω) of (1.2) by y(u). The following a priori estimate follows directly
from the Lax-Milgram theorem.

Lemma A.1. For any u ∈ U, problem (1.2) has a unique solution y ∈ H1(Ω) which satisfies

‖y‖H1 ≤ C‖ f ‖
H−

1
2 (Γc)

.

Since f ∈ H−
1
2 (Γc) is fixed, the uniform boundedness of S follows from the continuity

of the trace operator. We next address the complete continuity of S.
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Lemma A.2. Let {un} ⊂ U be a sequence converging weakly in L2(Γi) to u∗ ∈ U. Then

S(un)→ S(u∗) in L2(Γc).

Proof. For un ∈ U, set yn = y(un) ∈ H1(Ω). By the a priori estimate from Lemma A.1,
the sequence {yn} is uniformly bounded in H1 and has a convergent subsequence, also
denoted by {yn}, such that there exists y∗ ∈ H1(Ω) with

yn −⇀ y∗ in H1(Ω).

The trace theorem and the Sobolev embedding theorem [1] imply

yn → y∗ in Lp(Γc)

for any p < +∞. In particular, we will take p = 4. Then we have

| 〈un(yn − y∗), v〉L2(Γi)
| ≤ ‖un‖L2(Γi)‖yn − y∗‖L4(Γi)

‖v‖L4(Γi)
→ 0

by the weak convergence of {un} in L2(Γi) and the strong convergence of {yn} in L4(Γi).
Therefore, we have

lim
n→∞
〈unyn, v〉L2(Γi)

= lim
n→∞

(
〈un(yn − y∗), v〉L2(Γi)

+ 〈uny∗, v〉L2(Γi)

)
= 〈u∗y∗, v〉L2(Γi)

.

Now passing to the limit in the weak formulation indicates that y∗ satisfies

〈∇y∗,∇v〉L2 + 〈u∗y∗, v〉L2(Γi)
= 〈 f , v〉L2(Γc)

for all v ∈ H1(Ω),

i.e., y∗ = y(u∗). Since every subsequence has itself a subsequence converging weakly in
H1 to y(u∗), the whole sequence converges weakly. The continuity of S : u 7→ y(u)|Γc then
follows from the trace theorem and Sobolev embedding theorem for p = 2.

The above two statements imply that property (A1) holds. We next address the remaining
properties.

Lemma A.3. The mapping u 7→ y(u) is twice Fréchet differentiable from U to H1(Ω), and for
every u ∈ U and all directions h1, h2 ∈ L2(Γi), the derivatives are given by

(i) y′(u)h1 ∈ H1(Ω) is the solution z of

〈∇z,∇v〉L2 + 〈uz, v〉L2(Γi)
= − 〈h1y(u), v〉L2(Γi)

for all v ∈ H1(Ω),

and the following estimate holds

‖y′(u)h1‖H1 ≤ C‖h1‖L2(Γi).

(ii) y′′(u)(h1, h2) ∈ H1(Ω) is the solution z of

〈∇z,∇v〉L2 + 〈uz, v〉L2(Γi)
= −

〈
h1y′(u)h2, v

〉
L2(Γi)

−
〈

h2y′(u)h1, v
〉

L2(Γi)
for all v ∈ H1(Ω),

and the following estimate holds

‖y′′(u)(h1, h2)‖H1 ≤ C‖h1‖L2(Γi)‖h2‖L2(Γi).
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Proof. The characterization of the derivatives follows from direct calculation. It remains
to show boundedness and continuity. By setting v = y′(u)h1 in the weak formulation,
Hölder’s inequality, the trace theorem and the a priori estimate in Lemma A.1, we have∥∥y′(u)h1

∥∥2
H1 ≤ C

∥∥y′(u)h1
∥∥

L4(Γi)
‖h1‖L2(Γi)

‖y(u)‖L4(Γi)

≤ C
∥∥y′(u)h1

∥∥
H1(Ω) ‖h1‖L2(Γi)

‖y(u)‖H1(Ω)

≤ C
∥∥y′(u)h1

∥∥
H1(Ω) ‖h1‖L2(Γi)

,

from which the first estimate follows. Analogously we deduce that

‖y(u + h1)− y(u)‖H1 ≤ C ‖h1‖L2(Γi)
.

Next let w = y(u + h1)− y(u)− y′(u)h1, which satisfies

〈∇w,∇v〉L2 + 〈uw, v〉L2(Γi)
= − 〈h1(y(u + h1)− y(u)), v〉L2(Γi)

for all v ∈ H1(Ω).

By repeating the proof of the preceding estimate, we deduce that

‖w‖H1 ≤ C ‖h1‖L2(Γi)
‖y(u + h1)− y(u)‖H1 ,

from which it follows directly that y′(u)h1 defined above is indeed the Fréchet derivative
of y(u) at u. By arguing similarly and using the first assertion, the second assertion
follows.

Together with the linearity of the trace operator, we obtain S′(u)h1 = y′(u)h1|Γc ∈ H
1
2 (Γc)

and S′′(u)(h1, h2) = y′′(u)(h1, h2)|Γc ∈ H
1
2 (Γc), and thus property (A2). Finally, properties

(A3) and (A4) follow directly from the estimates in Lemma A.3 and the trace theorem [1].
We again give the necessary steps in a Krylov subspace method for the solution to (3.4).

For given u ∈ L2(Γi), F(u) is computed by the following steps:
1: Solve for y ∈ H1(Ω) in

〈∇y,∇v〉L2 + 〈uy, v〉L2(Γi)
= 〈 f , v〉L2(Γc)

for all v ∈ H1(Ω).

2: Solve for p ∈ H1(Ω) in

〈∇p,∇v〉L2 + 〈up, v〉L2(Γi)
= −〈signβ(y|Γc − yδ), v〉L2(Γc) for all v ∈ H1(Ω).

3: Set F(u) = αu + y|Γi p|Γi .
For given δu ∈ L2(Γi), the application of DN F(u) on δu is computed by:

1: Solve for δy ∈ H1(Ω) in

〈∇δy,∇v〉L2 + 〈uδy, v〉L2(Γi)
= − 〈yδu, v〉L2(Γi)

for all v ∈ H1(Ω).

2: Solve for δp ∈ H1(Ω) in

〈∇δp,∇v〉L2 + 〈up, v〉L2(Γi)
= −〈 1

β χI (δy|Γc), v〉L2(Γc)−〈pδu, v〉L2(Γi)
for all v ∈ H1(Ω).

3: Set DN F(u) = αδu + p|Γi(δy)|Γi + y|Γi(δp)|Γi .
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A.3. Diffusion coefficient problem

In this model problem, the operator S maps u ∈ X = H1(Ω) to the solution y ∈ Y =

W1,q
0 (Ω), for some q > 2, of (1.3), and the admissible set is U = {u ∈ H1(Ω) : λ ≤ u ≤ λ−1}

for some fixed λ ∈ (0, 1). The following estimate is an immediate consequence of Theorem
1 in [24], where Q > 2 is a constant depending only on λ and Ω.

Lemma A.4. There exists a number Q > 2 depending only on λ and Ω, such that for any u ∈ U
and q ∈ (2, Q), problem (1.3) has a unique solution y ∈W1,q

0 (Ω) which satisfies

‖y‖W1,q ≤ C‖ f ‖Lq .

From this, the uniform boundedness of S follows since f ∈ Lq(Ω) is fixed. We next
address the complete continuity of S.

Lemma A.5. Let {un} ⊂ U be a sequence converging weakly in H1(Ω) to u∗ ∈ U, then

S(un)→ S(u∗) in L2(Ω).

Proof. For un ∈ U, set yn = S(un) ∈ W1,q
0 (Ω). By the a priori estimate from Lemma A.4,

the sequence {yn} is uniformly bounded in W1,q and has a convergent subsequence also
denoted by {yn}, such that there exists y∗ ∈W1,q

0 (Ω) with

yn −⇀ y∗ in W1,q(Ω).

The Rellich-Kondrachov embedding theorem [1, Th. 6.3] implies

un → u∗ in Lp(Ω)

for any p < +∞. In particular, we will take p such that 1
2 +

1
p +

1
q = 1. Then we have

|〈(un − u∗)∇yn,∇v〉L2 | ≤ ‖un − u∗‖Lp‖∇yn‖Lq‖∇v‖L2 → 0

by the weak convergence of {yn} in W1,q(Ω) and the strong convergence of {un} in Lp(Ω).
Therefore, we have

lim
n→∞
〈un∇yn,∇v〉L2 = lim

n→∞

(
〈(un − u∗)∇yn,∇v〉L2 + 〈u∗∇yn,∇v〉L2

)
= 〈u∗∇y∗,∇v〉L2 .

Now passing to the limit in the weak formulation indicates that y∗ satisfies

〈u∗∇y∗,∇v〉L2 = 〈 f , v〉L2 for all v ∈ H1
0(Ω),

i.e., y∗ = S(u∗). Since every subsequence has itself a subsequence converging weakly
in W1,q to S(u∗), the whole sequence converges weakly. Applying again the Rellich-
Kondrachov embedding theorem [1] for p = 2 completes the proof of the lemma.

The above two statements imply that property (A1) holds. The next statement yields the
remaining properties (A2), (A3) and (A4).

Lemma A.6. The operator S : U →W1,q
0 (Ω) is twice Fréchet differentiable, and for every u ∈ U

and all admissible directions h1, h2 ∈ H1(Ω), the derivatives are given by
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(i) S′(u)h1 ∈W1,q
0 (Ω) is the solution z of

〈u∇z,∇v〉L2 = − 〈h1∇S(u),∇v〉L2 for all v ∈ H1
0(Ω),

and the following estimate holds ∥∥S′(u)h1
∥∥

W1,q ≤ C‖h1‖H1 .

(ii) S′′(u)(h1, h2) ∈W1,q
0 (Ω) is the solution z of

〈u∇z,∇v〉L2 = −
〈

h1∇S′(u)h2 + h2∇S′(u)h1,∇v
〉

L2 for all v ∈ H1
0(Ω),

and the following estimate holds∥∥S′′(u)(h1, h2)
∥∥

W1,q ≤ C‖h1‖H1‖h2‖H1 .

Proof. Again, the characterization of the derivatives are obtained by direct calculation. Set
y = S(u) ∈W1,q

0 (Ω). By Lemma A.4 and Hölder’s inequality, we get

‖S′(u)h1‖W1,q ≤ C‖h1∇y‖Lq ≤ ‖h1‖Lp‖∇y‖Lq′

≤ C‖h1‖H1‖∇y‖Lq′ ≤ C‖h1‖H1 ,

with q′ ∈ (q, Q) and 1
q = 1

p +
1
q′ , where we have used the Sobolev embedding theorem and

the estimate in Lemma A.4. Analogously, we deduce that

‖S(u + h1)− S(u)‖W1,q̃ ≤ C‖h1‖H1 .

where the exponent q̃ satisfies q̃ ∈ (q, Q). Next let w = S(u + h1)− S(u)− S′(u)h1, which
satisfies

〈u∇w,∇v〉L2 = − 〈h1∇(S(u + h1)− S(u)),∇v〉L2 for all v ∈ H1
0(Ω),

Repeating the proof of the preceding estimate, we derive

‖w‖W1,p ≤ C‖h1‖H1‖S(u + h1)− S(u)‖W1,q̃ .

Combining these estimates yields the first assertion, i.e. S′(u)h1 defined above is indeed
the Fréchet derivative of the forward operator S(u) : H1 → W1,p

0 (Ω), and it satisfies the
desired estimate. Similarly, the second assertion follows from Lemma A.4 and the first
assertion.

We finally address the steps required in a Krylov subspace method for the solution to
(3.4). For given u ∈ H1(Ω), F(u) is computed by the following steps:

1: Solve for y ∈ H1
0(Ω) in

〈u∇y,∇v〉L2 = 〈 f , v〉L2 for all v ∈ H1
0(Ω).

2: Solve for p ∈ H1
0(Ω) in

〈u∇p,∇v〉L2 = 〈signβ(y− yδ), v〉L2 for all v ∈ H1
0(Ω).
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3: Set F(u) = α(−∆u + u)−∇y · ∇p.
For given δu ∈ H1(Ω), the application of DN F(u) on δu is computed by:

1: Solve for δy ∈ H1
0(Ω) in

〈u∇δy,∇v〉L2 = 〈δu∇y,∇v〉L2 for all v ∈ H1
0(Ω).

2: Solve for δp ∈ H1
0(Ω) in

〈u∇δp,∇v〉L2 = −〈 1
β χIδy, v〉L2 + 〈δu∇p,∇v〉L2 for all v ∈ H1

0(Ω).

3: Set DN F(u) = α(−∆δu + δu)−∇δy · ∇p−∇y · ∇δp.

B. Tables

r δ αo αb eo eb

0.1 6.46e-2 4.65e-3 1.66e-3 2.64e-4 5.90e-4
0.2 1.13e-1 5.53e-3 2.91e-3 3.49e-4 4.11e-4
0.3 1.68e-1 4.17e-3 4.32e-3 4.60e-4 5.06e-4
0.4 2.26e-1 3.82e-3 5.81e-3 6.26e-4 8.97e-4
0.5 2.94e-1 3.34e-3 7.56e-3 3.54e-3 5.40e-3
0.6 3.19e-1 6.72e-3 8.20e-3 1.31e-2 2.05e-2
0.7 3.86e-1 1.35e-2 9.93e-3 8.47e-3 8.95e-3
0.8 4.38e-1 6.40e-3 1.13e-2 9.27e-3 1.89e-2
0.9 4.85e-1 1.51e-2 1.28e-2 2.04e-1 2.04e-1

Table 1: Comparison of the balanc-
ing principle (αb, eb) with
the sampling-based opti-
mal choice (αo, eo) for the
1d inverse potential prob-
lem.

Table 2: Convergence of path-following method. For each step k, the parameter β(k), num-
ber it(k) of SSN iterations and L2-error e(k) are shown.

β(k) 1.00e0 5.00e-1 2.50e-1 1.25e-1 6.25e-2 3.12e-2 1.56e-2 7.81e-3 3.91e-3 1.95e-3

it(k) 6 4 4 3 3 3 3 3 3 3

e(k) 1.83e-1 1.33e-1 1.08e-1 8.77e-2 7.17e-2 5.99e-2 4.63e-2 3.43e-2 2.63e-2 2.11e-2

β(k) 9.77e-4 4.88e-4 2.44e-4 1.22e-4 6.10e-5 3.05e-5 1.53e-5 7.63e-6 3.81e-6 1.91e-6

it(k) 3 3 3 3 3 3 3 3 3 4

e(k) 1.70e-2 1.33e-2 1.03e-2 8.06e-3 6.29e-3 4.90e-3 3.80e-3 2.94e-3 2.31e-3 1.85e-3

β(k) 9.54e-7 4.77e-7 2.38e-7 1.19e-7 5.96e-8 2.98e-8 1.49e-8 7.45e-9 3.73e-9 1.86e-9

it(k) 4 5 5 9 14 20 20 20 20 20

e(k) 1.51e-3 1.28e-3 1.12e-3 1.00e-3 9.32e-4 9.08e-4 8.90e-4 8.66e-4 8.65e-4 8.66e-4
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Table 3: Convergence behavior of the SSN method (for fixed α, β) for the 1d inverse potential
problem. Shown are the problem size N, the number n(k) of elements that changed
between active and inactive sets and residual norm r(k) ≡ ‖F(u)‖L2 after each
iteration k.

N k 1 2 3 4 5

101

n(k) 88 0 0 0 0

r(k) 4.40e-2 1.51e-2 8.62e-4 6.58e-6 2.86e-10

1001

n(k) 791 6 5 0 0

r(k) 1.23e-1 1.78e-2 2.30e-3 3.53e-5 9.99e-9

10001

n(k) 7803 91 16 1 0

r(k) 1.21e-1 1.67e-2 1.68e-3 1.90e-5 2.47e-9

Table 4: Computing times (in seconds) for SSN method (ts) and fixed-point iteration (tb) and
L2-error e for the 1d inverse potential problem. Shown are the problem size N, the
mean ({ts, tb, e}m) and standard deviation ({ts, tb, e}s) over ten noise realizations.

N 100 200 400 800 1600 3200 6400 12800

ts,m 1.25 1.75 5.28 12.09 19.40 29.66 55.33 107.87

ts,s 0.48 0.45 3.31 4.57 7.22 4.45 11.44 25.92

tb,m 7.12 9.63 14.42 39.04 54.19 80.30 131.72 234.00

tb,s 3.42 6.21 7.63 17.14 16.79 17.25 38.08 75.21

em 8.98e-1 1.51e+0 2.88e-3 9.17e-4 6.22e-4 3.52e-4 2.76e-4 2.78e-4
es 2.46e+0 3.16e+0 2.05e-3 5.76e-4 6.83e-4 9.36e-5 4.29e-5 6.93e-5

r δ αo αb eo eb

0.1 1.31e+0 1.40e-1 3.38e-2 1.15e-5 4.10e-5
0.2 2.19e+0 1.07e-1 5.62e-2 4.03e-6 1.46e-5
0.3 3.41e+0 2.45e-1 8.76e-2 8.63e-4 1.22e-3
0.4 5.30e+0 6.27e-1 1.36e-1 2.64e-3 5.40e-3
0.5 6.00e+0 5.01e-1 1.54e-1 4.10e-4 1.53e-3
0.6 7.31e+0 4.41e-1 1.88e-1 3.72e-2 6.30e-2
0.7 9.13e+0 3.40e-1 2.35e-1 6.07e-3 6.36e-3
0.8 9.79e+0 2.53e-1 2.53e-1 6.59e-2 6.59e-2
0.9 1.16e+1 6.00e-1 3.16e-1 3.02e-1 3.37e-1

Table 5: Comparison of the bal-
ancing principle (αb, eb)
with the sampling-based
optimal choice (αo, eo) for
the inverse Robin coeffi-
cient problem.
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r δ αo αb eo eb

0.1 2.08e-2 9.20e-5 1.52e-4 2.34e-5 2.71e-5
0.2 3.81e-2 1.43e-4 2.77e-4 2.17e-5 2.28e-5
0.3 5.82e-2 3.41e-4 3.99e-4 2.68e-5 3.98e-5
0.4 8.54e-2 2.11e-4 5.71e-4 2.59e-5 3.84e-5
0.5 9.45e-2 3.83e-4 5.98e-4 3.56e-5 4.28e-5
0.6 1.22e-1 1.28e-3 7.45e-4 2.82e-4 3.60e-4
0.7 1.42e-1 2.04e-3 8.35e-4 8.01e-4 1.31e-3
0.8 1.55e-1 1.66e-3 8.71e-4 4.82e-4 6.52e-4
0.9 1.80e-1 4.33e-3 9.42e-4 2.11e-3 6.49e-3

Table 6: Comparison of the balanc-
ing principle (αb, eb) with
the sampling-based opti-
mal choice (αo, eo) for the
1d inverse diffusion coeffi-
cient problem.

Table 7: Computing times (in seconds) for the SSN method (ts) and fixed point iteration
(tb) and L2-error e for the 1d inverse diffusion coefficient problem. Shown are the
problem size N, the mean ({ts, tb, e}m) and standard deviation ({ts, tb, e}s) over ten
noise realizations.

N 100 200 400 800 1600 3200 6400 12800

ts,m 0.70 2.19 6.49 11.46 25.48 55.34 82.38 167.71

ts,s 0.46 1.65 0.91 2.80 5.34 17.19 23.07 31.01

tb,m 4.12 8.68 19.27 27.59 52.45 97.32 154.46 332.96

tb,s 2.51 3.71 2.20 6.28 9.14 21.96 22.59 39.17

em 2.17e-1 8.03e-2 4.94e-5 3.20e-5 2.89e-5 3.33e-5 3.39e-5 3.08e-5
es 2.05e-1 1.53e-1 2.66e-5 5.86e-6 4.89e-6 6.74e-6 5.42e-6 3.25e-6
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[7] T. F. Chan and S. Esedoḡlu, Aspects of total variation regularized L1 function approxima-
tion, SIAM J. Appl. Math., 65 (2005), pp. 1817–1837.

[8] X. Chen, Z. Nashed, and L. Qi, Smoothing methods and semismooth methods for nondif-
ferentiable operator equations, SIAM J. Numer. Anal., 38 (2000), pp. 1200–1216.

[9] Z. Chen and J. Zou, An augmented Lagrangian method for identifying discontinuous
parameters in elliptic systems, SIAM J. Control Optim., 37 (1999), pp. 892–910.

[10] F. H. Clarke, Optimization and Nonsmooth Analysis, Classics Appl. Math. 5, SIAM,
Philadelphia, second ed., 1990.

[11] C. Clason, B. Jin, and K. Kunisch, A duality-based splitting method for `1-TV image
restoration with automatic regularization parameter choice, SIAM J. Sci. Comput., 32 (2010),
pp. 1484–1505.

[12] , A semismooth Newton method for L1 data fitting with automatic choice of regularization
parameters and noise calibration, SIAM J. Imaging Sci., 3 (2010), pp. 199–231.

[13] Y. Dong, M. Hintermüller, and M. Neri, An efficient primal-dual method for `1tv image
restoration, SIAM J. Imaging Sci., 2 (2009), pp. 1168–1189.

[14] V. Duval, J.-F. Aujol, and Y. Gousseau, The TVL1 model: a geometric point of view,
Multiscale Model. Simul., 8 (2009), pp. 154–189.

[15] I. Ekeland and R. Témam, Convex Analysis and Variational Problems, Classics Appl.
Math. 28, SIAM, Philadelphia, 1999.

[16] L. C. Evans and R. F. Gariepy, Measure Theory and Fine Properties of Functions, Studies
in Advanced Mathematics, CRC Press, Boca Raton, 1992.

[17] M. Hintermüller, K. Ito, and K. Kunisch, The primal-dual active set strategy as a
semismooth Newton method, SIAM J. Optim., 13 (2002), pp. 865–888 (2003).

[18] M. Hintermüller and M. Ulbrich, A mesh-independence result for semismooth Newton
methods, Math. Program., 101 (2004), pp. 151–184.

[19] P. J. Huber, Robust Statistics, John Wiley & Sons Inc., New York, 1981.

[20] K. Ito and K. Kunisch, Lagrange Multiplier Approach to Variational Problems and Appli-
cations, Adv. Des. Control 15, SIAM, Philadelphia, 2008.

[21] B. Jin and J. Zou, Numerical estimation of the Robin coefficient in a stationary diffusion
equation, IMA J. Numer. Anal., 30 (2010), pp. 677–701.

[22] T. Kärkkäinen, K. Kunisch, and K. Majava, Denoising of smooth images using L1-fitting,
Computing, 74 (2005), pp. 353–376.

29



[23] A. Kröner and B. Vexler, A priori error estimates for elliptic optimal control problems
with a bilinear state equation, J. Comput. Appl. Math., 230 (2009), pp. 781–802.

[24] N. G. Meyers, An Lp-estimate for the gradient of solutions of second order elliptic divergence
equations, Ann. Scuola Norm. Sup. Pisa (3), 17 (1963), pp. 189–206.

[25] L. Q. Qi and J. Sun, A nonsmooth version of Newton’s method, Math. Programming, 58

(1993), pp. 353–367.

[26] S. Stojanovic, Optimal damping control and nonlinear elliptic systems, SIAM J. Control
Optim., 29 (1991), pp. 594–608.

[27] F. Tröltzsch, Optimal Control of Partial Differential Equations: Theory, Methods and
Applications, American Mathematical Society, Providence, 2010.

[28] M. Yamamoto and J. Zou, Simultaneous reconstruction of the initial temperature and heat
radiative coefficient, Inverse Problems, 17 (2001), pp. 1181–1202.

[29] J. Yang, Y. Zhang, and W. Yin, An efficient tvl1 algorithm for deblurring multichannel
images corrupted by impulsive noise, SIAM J. Sci. Comput., 31 (2009), pp. 2842–2865.

[30] W. W.-G. Yeh, Review of parameter identification procedures in groundwater hydrology: the
inverse problem, Water Resource Research, 22 (1986), pp. 95–108.

[31] W. Yin, D. Goldfarb, and S. Osher, The total variation regularized L1 model for multiscale
decomposition, Multiscale Model. Simul., 6 (2007), pp. 190–211.

30


	Introduction
	Inverse potential problems
	Inverse Robin coefficient problem
	Inverse diffusion coefficient problem

	Optimality system
	Solution by semi-smooth Newton method
	Approximation
	Semi-smooth Newton method
	Parameter choice

	Numerical examples
	Inverse potential problem
	Inverse Robin coefficient problem
	Inverse diffusion coefficient problem

	Conclusion
	Verification of properties for model problems
	Elliptic potential problem
	Robin coefficient problem
	Diffusion coefficient problem

	Tables

