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Self Calibrated Wireless Distributed 
Environmental Sensory Networks
Barak Fishbain1 & Erick Moreno-Centeno2

Recent advances in sensory and communication technologies have made Wireless Distributed 
Environmental Sensory Networks (WDESN) technically and economically feasible. WDESNs present an 
unprecedented tool for studying many environmental processes in a new way. However, the WDESNs’ 
calibration process is a major obstacle in them becoming the common practice. Here, we present a 
new, robust and efficient method for aggregating measurements acquired by an uncalibrated WDESN, 
and producing accurate estimates of the observed environmental variable’s true levels rendering the 
network as self-calibrated. The suggested method presents novelty both in group-decision-making and 
in environmental sensing as it offers a most valuable tool for distributed environmental monitoring 
data aggregation. Applying the method on an extensive real-life air-pollution dataset showed markedly 
more accurate results than the common practice and the state-of-the-art.

Problem Statement. The increasing availability of sensors and communication technologies have both 
facilitated1,2 and catalysed3,4 the development of Wireless Distributed Environmental Sensor Networks (WDESNs) 
that consist of low-cost Micro Sensing Units (MSUs). WDESNs present an unparalleled means for studying envi-
ronmental processes such as air-pollution5–8, water quality9,10, smart cities11,12 and wildlife ecosystems13,14. These 
networks may consist of many sensing nodes and may be deployed over large geographical areas, rendering the 
calibration process of the nodes as a major obstacle in them becoming the common practice.

Here we present a new, robust and efficient method for aggregating measurements acquired by an uncalibrated 
WDESN, and producing accurate estimates of the observed environmental variable’s true levels. To accomplish 
that we introduce a new group-decision-making method – consensus aggregation of incomplete ratings. The 
suggested methodology produces accurate results without requiring the MSUs, constituting the WDESN, to be 
calibrated. Thus, after the aggregation process, the herein proposed methodology renders the network to be self 
calibrated.

Without loss of generality, let us consider now a WDESN with K sensory nodes that measure the same physical 
phenomenon. The same physical phenomenon can be, naturally measured when the MSUs are collocated5–7. Even 
when the sensors are not collocated measuring the same phenomenon can be achieved when it is uniform in all 
measuring points7. With that, due to the inherent MSUs’ limitations, collocating is currently the common prac-
tice5–8. MSU k ∈  K measures pollutant’s levels, at a given frequency, generating a time series, ak. The goal then is to 
find a consensus time series, r, that agrees the most with all the MSUs’ acquired time series, a a a{ , , , }K1 2 . The 
agreement of r with each acquired time series, say ak, is measured by a distance function, d(ak, r), that fulfills a set 
of axioms15–17. Examples for d() are the L1 and L2 norms, and the Kemeny & Snell16 and Cook & Kress15 axiomatic 
distances. Thus, given all the MSUs’ acquired time series, a a a{ , , , }K1 2 , the consensus time series r is the one 
that has the minimum sum of distances to all acquired MSUs’ time series:
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Problem (1) in known as the group-decision-making problem15–21. The group-decision-making problem has 
been widely-studied and has many applications, such as: voting18, jury decisions19, consumer opinion aggrega-
tion20, and project selection21. In general terms, the group-decision problem is defined as follows: a group of K 
entities or individuals (referees) collectively evaluate n objects. In our context, the evaluations are cardinal evalua-
tions each MSU (referee) assigns to each object (location-time pair) it evaluates. The problem then is to aggregate 
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the referees’ evaluations into a consensus evaluation of each and every object. Note that the referee evaluations as 
well as the consensus evaluation are allowed to contain ties.

For an environmental field campaign that is carried over a time window, T, an MSU’s time series, ak, is con-
sidered complete if for all time periods t ∈  T, the MSU gives a valid measurement; otherwise we say that the MSU 
provides an incomplete time series. The latter might happen when MSUs become faulty or switch locations. The 
latter scenario of sensors switching locations was described by Mead et al.5, Moltchanov et al.7 and Lerner et al.8. 
Regardless of the incompleteness of the MSUs’ time series, we require that the consensus time series is complete. 
All previous group-decision work has considered the specific case of complete evaluations15–17. Here we introduce 
and solve the incomplete group decision making problem. To this end we (i) introduce a set of natural axioms 
that must be satisfied by a distance, d(), between incomplete ratings (time series); (ii) prove the uniqueness and 
existence of a distance, herein called the normalized projected Cook-Kress distance - dNPCK, which satisfies these 
axioms; and (iii) provide an efficient and practical method for finding the optimal rating (time series) r* for prob-
lem (1) when using dNPCK as the distance function. While we present the new axiomatic distance in the context of 
WDESNs, it can be used for data fusion in many complete or incomplete group-decision-making application in 
general and in distributed sensing applications in particular. In our WDESN context, and specifically when pre-
senting the study below, we use the term time series when referring to a vector of measurements (provided by an 
MSU or the consensus time series provided by the aggregation process), while when presenting the methodology, 
we use the term rating in order to emphasize that our proposed methodology is general and applies to aggregating 
any set of ratings (i.e., vectors consisting of cardinal evaluations).

Air Quality Wireless Distributed Sensor Networks. Air-Pollution (AP) is known to increase risks for 
a wide range of diseases, such as respiratory and heart diseases. Recent data indicate that in 2010, 223,000 deaths 
from lung cancer worldwide resulted from air pollution22. This number is expected to grow as studies indicate that 
in recent years exposure levels have increased worldwide with a significant raise in rapidly industrialising coun-
tries with large populations23. Studying AP and its impact on health, requires accurate exposure assessments. AP 
related exposure metrics, typically used in environmental epidemiology studies, are based either on short term 
sampling24 or on pollutant measurements by regulatory standard Air Quality Monitoring (AQM) stations over 
extended time periods25. AQM stations provide accurate measurements but suffer from limited deployment due 
to their bulkiness, high costs, and their frequent maintenance and calibration requirements. The limited deploy-
ment tampers the AQM network’s ability to adequately capture air pollutant spatial concentrations because these 
concentrations are highly variable. In contrast, intensive sampling campaigns use a large number of AP sensors, 
deployed at high densities, but are limited to relatively short time periods22. Consequently, accurate exposure 
assessment and the study of AP-health associations are still challenging tasks26.

Since AP-MSUs cost significantly less than AQM stations, MSUs can be spread more densely and thus provide 
data with higher spatial resolution. However, MSUs are error-prone, may become faulty, have limited coherence 
over time and are inaccurate when compared to AQM stations5–8. Early studies that evaluated MSUs’ capabilities 
in a controlled lab environment27,28 stressed the need for a calibration process in order to sustain reliable meas-
urements. Field deployments of such MSUs, measuring ambient O3 levels by metal-oxide sensors6, and measuring 
CO, NO and NO2 by electrochemical5 or metal-oxide29 probes, have shown that calibration processes applicable 
for controlled lab environments do not work in the field, when the calibrated data is compared to data collected 
at a collocated standard AQM station6,7 (even after an initial field calibration has been applied6). Thus, the field 
calibration process is a critical hurdle that one must overcome, in order to make WDESN a viable tool for AP 
exposure assessment. Having said that, the suggested method is applicable to many WDESN applications, even 
though the examples here focus on AP-WDESNs.

Methods
In this section the set of axioms that a distance metric between incomplete ratings must fulfil so that, when using 
this distance within problem (1), the obtained consensus rating appropriately minimizes the disagreement of the 
judges (MSUs’ measurements in our context) is presented. In doing so, our aim is to have a distance that is appro-
priate to aggregate the measurements obtained by uncalibrated MSUs.

Each sensor presents two types of errors - normal measurement error and calibration error. The former is 
typically considered to be additive, normally distributed with zero mean and constant standard deviation over 
time30–32. The later is assumed to be independent from other sensors’ errors; and roughly stable throughout the 
measurement collection process/timeframe. The mean calibration error is assumed to be zero, though no assump-
tion is made on the shape of the distribution. Finally the calibration error is considered to be additive. In case 
of multiplicative error, the algorithm can deal with this in two ways: (1) The algorithm can be applied as is and 
still obtain meaningful results to the extent that the multiplicative error is significantly smaller w.r.t. the readings 
themselves. (2) Otherwise, one can take the logarithm of each measurement and apply the (unchanged) algorithm 
to this re-scaled data because this data re-scaling effectively transforms a multiplicative error to an additive error 
(since log(ab) =  log(a) +  log(b)).

The essence of the proposed method is that, due to the calibration error, given any one of the MSU’s the dif-
ference between any pair of its measurements is significantly more reliable than the absolute value of the meas-
urements themselves. As such, these differences among the same MSU measurements will be the focus of the 
following definitions, the axioms proposed, and the resulting distance. Specifically, the main aim of our method 
is to extract as much information as possible from the reliable measurement differences, and then, with that 
information in hand, solve the bias problem as a second step (this will be most evident in the solution procedure 
described at the end of this section).
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Notation and Definitions. Let us consider two arbitrary incomplete ratings, a and b, in a universe V of n 
objects; each rating evaluating the objects in  ⊆ V  and ⊆ V , respectively. Hereafter, we represent a rating as 
a vector of the form a =  (a1, a2, … , an), where ai is the score (a cardinal evaluation) of object i if object i is evalu-
ated in a and ai is undefined otherwise. We also assume without loss of generality that the possible scores are 
contained in some pre-specified interval  u[ , ]; this assumption is without loss of generality, as the MSU’s have a 
limited measurement range ≡ − R u . Given two arbitrary incomplete ratings a and b, the following concepts 
are defined.

Definition 1. Given a rating a and a subset S of the object universe V, the projection of a on S, denoted as a|S, is the 
rating of the objects in S that preserves the scores specified by a to the objects in S (similarly, the objects in S that were 
not evaluated by a, will remain un-evaluated in a|S).

The following three definitions are natural extensions for incomplete ratings of the corresponding definitions 
given for complete ratings by Cook & Kress15:

Definition 2. Rating a is said to be adjacent to rating b if  |(ai −  aj) −  (bi −  bj)| ≤  1 for every pair of objects i and j in 
the set ∩A B. That is, if for every pair of objects their score difference in rating a is either the same as in rating b or 
differs by exactly one unit.

Definition 3. Rating a is said to be adjacent of degree k to rating b if a is adjacent to b and

| | − − − | = < | = .i j such that a a b b i i k( , ) ( ) ( ) 1,i j i j

That is, if the number of object pairs in the set ∩A B for which their score difference differs by one unit is k.

Definition 4. Rating b is between ratings a and c if, for every pair of objects i and j in the set ∩ ∩A B C, either ai 
−  aj ≤  bi −  bj ≤  ci −  cj or ai −  aj ≥  bi −  bj ≥  ci −  cj.

Definition 5. Ratings a and b are opposite ratings on A B∩ , if (1) a rates ∩ /2A B  objects ( ∩⌈ ⌉/2A B  if 
∩A B  is odd) with the highest possible score, while b rates those objects with the lowest possible score, and (2) a 

rates the remaining objects with the lowest possible score, while b rates those remaining objects with the highest pos-
sible score. (Intuitively, two opposite ratings are ratings in total disagreement when considering only the objects 
evaluated by both ratings).

Axioms. The objective is to design a distance such that, when used within problem (1), the obtained consen-
sus rating minimizes the disagreement of the judges (uncalibrated MSUs in our context). Following is a set of 
axioms that a distance metric between incomplete ratings must satisfy so that our objective is achieved. Remark: 
when designing these axioms, we have in mind that, (i) given any MSU, the difference between any pair of its 
measurements is significantly more reliable than the absolute value of its measurements themselves; and (ii) an 
MSU providing a large amount of measurements for a particular location is not necessarily more reliable/accurate 
than an MSU providing a comparatively smaller amount of measurements.

Axiom 1 (Relevance) =
∩ ∩

a b a bd d( , ) ( , )( ) ( )A B A B
Axiom 2 (Nonnegativity) d(a, b) ≥  0
Axiom 3 (Commutativity) d(a, b) =  d(b, a)
Axiom 4  (Incomplete Ratings Triangular Inequality) 

A B C A B C A B C A B C
+

∩ ∩ ∩ ∩ ∩ ∩ ∩ ∩
a b b cd d( , ) ( , )( ) ( ) ( ) ( )

 

A B C A B C
≥
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a cd ( , )( ) ( )

 , and equality holds if and only if 
∩ ∩

b ( )A B C
 is between 

∩ ∩
a ( )A B C

 and 

A B C∩ ∩
c ( )

Axiom 5  (Proportionality) The distance between any two adjacent ratings is proportional to the degree of 
adjacency

Axiom 6  (Normalization) d(a, b) ≤  1; and d(a, b) =  1 if and only if 
A B∩

b ( )
 and 

∩
a ( )A B

 are opposite ratings

It is important to note that Axioms 2 to 4 for incomplete ratings are natural extensions of Cook & Kress’ 
non-negativity, commutativity and triangular inequality axioms for complete ratings. Indeed, these two sets of 
axioms are identical when restricted to complete ratings. Similarly, Axioms 5 and 6 are a natural extension of 
Cook & Kress’ proportionality axiom; the only minor difference is that Cook & Kress’ axiom fixes the proportion-
ality constant to ‘1’; while our normalization Axiom 6 (as shown later), sets the proportionality constant to the 
reciprocal of ⋅ ⋅ 






 ⋅








∩ ∩R2
2 2

A B A B . This minor difference is critical in the context of aggregating incomplete 

ratings. Specifically, normalization guarantees that when solving problem (1) all of the incomplete ratings are 
given the same importance regardless of the number of objects that each evaluated—this is critical since larger 
amounts of data/measurements does not necessarily mean higher accuracy.

Normalized Projected Cook-Kress Distance. Having this set of axioms, we now define the Normalized 
Projected Cook-Kress (dNPCK) distance. To do this we use the Cook & Kress distance (dCK) for complete ratings. 
From our above discussion, it follows that dCK satisfies the nonnegativity, commutativity, triangular inequality, 
and proportionality axioms (i.e. Axioms 2 to 5) when focusing on complete ratings15. Cook & Kress’ distance is
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The Normalized Projected Cook-Kress (NPCK) distance is given by:
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The following sequence of results will allow us to prove that the dNPCK distance is the unique distance satisfying 
Axioms 1 to 6 simultaneously.

Lemma 6. Given a set V of n objects and a rating interval  u[ , ] (evaluation range is = − R u ), the maximum 
Cook & Kress distance, dCK(• , • ), between any two (complete) ratings is ⋅ ⋅ 


 ⋅



R2 n n

2 2
. Moreover, this maximum 

distance is attained by any two opposite ratings.

Proof Sketch. The lemma can be restated as follows: “Any pair of opposite (complete) ratings is a global maximizer of 
problem (4) with an optimal objective value of ⋅ ⋅ 


 ⋅



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(4)a b
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Using Eq. (2) and since a and b must be complete ratings within the interval  u[ , ], problem (4) can be 
re-written as

∑∑| − − − |
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It can be shown that, when a and b are assigned values so that they are opposite ratings, (i) one obtains a local 
maximum of the problem (all feasible directions are non-increasing), and (ii) the objective value of such assign-
ment is equal to ⋅ ⋅ 


 ⋅



R2 n n

2 2
. Since the above optimization problem is convex, every local maximum is a global 

maximum and thus the result follows. ◻

Lemma 7. The NPCK distance satisfies Axioms 1 to 6.

Proof. The NPCK distance, dNPCK, satisfies Axiom 1 directly from its definition, Eq. (3). The fact that dNPCK satisfies 
Axioms 2, 3 and 5 follows from Eq. (3) and dCK satisfying Cook & Kress’ non-negativity, commutativity and propor-
tionality axioms.

dNPCK satisfying Axiom 4 follows from Eq. (3); the fact that 
A B C∩ ∩

a ( )
, 
A B C∩ ∩

b ( )
, and 

A B C∩ ∩
c ( )

 are complete 
ratings on the set A B C∩ ∩( ); and dCK satisfying Cook & Kress’ triangular inequality axiom.

Finally, from Lemma 6 and Eq. (3), dNPCK satisfies Axiom 6. ◻

Corollary 8. Axioms 1 to 6 are consistent.

Theorem 9. The dNPCK distance is the unique distance satisfying Axioms 1 to 6 simultaneously.

Proof. The fact that dNPCK satisfies axioms 1 to 6 was established in Lemma 7. Thus, we only need to show that no 
other distance satisfies axioms 1 to 6 simultaneously. Let d be a generic distance satisfying axioms 1 to 6. We prove the 
theorem by showing that, for any two ratings a and b, d(a, b) =  dNPCK(a, b). We divide our analysis in the following 
two cases:

Case 1: Both a and b are complete ratings (i.e., A B∩ = V).
For complete ratings, Axiom 1 is a tautology and, as argued above, axioms 2 to 5 are identical to all of Cook 

& Kress’ axioms except for the proportionality constant. Therefore, for complete ratings, Axioms 2 to 5 uniquely 
determine dCK except for a proportionality constant. Consequently, since d(a, b) satisfies Axioms 1 to 5 we con-
clude that, for complete ratings,

α= ⋅a b a bd d( , ) ( , ) (5)CK

for some constant α that may depend only on |V| and R.
Also, from Eq. (3) and since ∩ = VA B , we have that
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In view of eqs (5) and (6), in order to conclude that d(a, b) =  dNPCK(a, b) for complete ratings, we only need to 
prove that

α =
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This result follows since both d(a, b) and dNPCK(a, b) attain their extreme values (zero and one) at lots of 
rating pairs. Specifically, given any two opposite ratings, say a′  and b′ , axiom 6 stipulates that d(a′ , b′ ) =  dNP-

CK(a′ , b′ ) =  1. Similarly, given any rating, say a′ , eqs (5) and (6) and the definition of dCK (Eq. (2)) imply that 
d(a′ , a′ ) =  dNPCK(a′ , a′ ) =  0.

Case 2: At least one of a or b is an incomplete rating.
The following equalities show that d(a, b) =  dNPCK(a, b) for any two ratings a and b under the assumptions of 

this case:

∩ ∩

∩ ∩
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=

=

a b a b

a b

a b

d d

d

d
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The first and last equalities follow from Axiom 1, while the second equality follows from our analysis of case 1 
and the fact that 

∩
a ( )A B

 and 
A B∩

b ( )
 are complete ratings over the set A B∩ . ◻

Finding the Consensus Rating. The NPCK distance generalizes the distance between complete ratings 
proposed by Cook & Kress15. Hochbaum and Levin33 showed that this complete-rating aggregation problem  is a 
special case of their own separation-deviation model, and thus efficiently solvable. Similarly, given all the MSUs’ 
acquired time series, a a a{ , , , }K1 2 , the incomplete-rating aggregation problem (Eq. (1)) using the NPCK dis-
tance is a special case of the separation-deviation problem and can be reformulated as:

   
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= − = … = …z r r i n j nsubject to for 1, , ; 1, , (8)ij i j

≤ ≤ = … r u i nfor 1, , (9)i

Problem (7) is a special case of the convex dual of the minimum cost network flow problem, and thus it can be 
solved in 

ε
− ( )( )O n log u3  time34, where n is the number of objects (in our context, number of time points when 

the measurements were taken), and ε is the desired accuracy.
Finally, recall that our aim when designing the distance function was to extract as much information as possi-

ble from the reliable measurement differences (in contrast to the unreliable absolute measurements). Indeed in 
Problem (7) the bias of each MSU is completely ignored; specifically, Problem (7) can be interpreted as finding the 
vector r, whose pairwise differences, z, are as close as possible to the given MSU’s pairwise measurement differ-
ences −a a( )i

k
j
k . This is precisely what we aimed for because the MSU’s are uncalibrated and thus the MSU’s 

pairwise measurement differences are significantly more reliable than the absolute values of the measurements. 
Now, note that given any optimal solution to Problem (7), say r*, the vector r′  =  r* +  c, for any given scalar con-
stant c, has exactly the same pairwise differences, z*, and thus is also an optimal solution to Problem (7). As such, 
the last step of our MSU aggregation method, is to calibrate our aggregated/consensus “measurements”, r*. In 
particular, we need to find the best calibration constant, c, to calibrate our consensus measurement vector r* 
(keeping fixed all of its pairwise differences, z*). This is achieved by solving the problem

∑∑ + −
= ∈

⁎r c amin ( )
(10)c k

K

i
i i

k

1 k

≤ ≤ = …

⁎r u i nfor 1, , (11)i

We note that Problem (10) is efficiently solvable by a simple binary search procedure over c. Indeed it can be 
shown that the objective functions of problems (7) and (10) can be combined in a single objective function by 
adding them and multiplying the objective function of Problem (7) by a large constant so that it is lexicographi-
cally more important than that of Problem (10). Moreover, the resulting combined optimization problem would 
still be a special case of the separation deviation problem and thus efficiently solvable.
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The end result after the integration process (i.e., solving problems (7) and (10)) is a set of aggregated and cali-
brated measurements +⁎ ⁎r ci  for i =  1, … , n from the WDESN.

Results
Experimental Setup. The suggested methodology was applied on six longitudinal air-quality field cam-
paigns. All campaigns were held in the city of Haifa, located at the eastern Mediterranean sea at the north of Israel 
(~595,000 residents in Haifa and its satellite cities). The city is built on and around the Carmel Ridge, from the 
shore at the foot of the ridge to its top at ~400 [m] above sea level (a.s.l.). Ambient levels of nitrogen dioxide (NO2) 
and ozone (O3) were acquired by metal-oxide (MO) sensors (Elm, by Perkin-Elmer, USA) and nitrogen oxide 
(NO) and carbon monoxide (CO) by electrochemical (EC) based MSUs (model AQMesh, produced by GeoTech, 
UK). EC and MO are currently the only available technologies for measuring gaseous pollutants with MSUs5–9. In 
all campaigns an array of MSUs was placed next to a standard AQM station. Three different AQM stations were 
involved in the research reporting pollutants ambient levels. “Igud” AQM station, which is located at the Haifa 
District Municipalities Association for the Environment (HDMAE) headquarters, at the heart of the Haifa bay 
heavy industrial area (~30 [m] a.s.l., Lat:32.789379, Lon:35.040452); “Tel-Hai” HDMAE AQM station, located 

Campaign Measured Pollutants Sensor Platform Sensors # AQM Dates

1 O3 MO 407, 414, 415, 416, 418, 
420, 422, 423, 424 Igud 27/12/2012–04/04/2013

2 O3 MO 414, 420, 422, 619, 624, 
625, 626 Tel-Hai 16/12/2013–19/02/2014

3 O3, NO2 MO 414, 422, 624, 626 Tel-Hai 29/04/2014–28/05/2014

4 O3, NO2 MO 418, 620, 621 Tel-Hai 09/06/2014–10/07/2014

5 NO, CO EC 135, 136, 468 Atzmaut 03/02/2015–26/02/2015

6 NO, CO EC 220, 465, 471 Atzmaut 03/02/2015–26/02/2015

Table 1.  Field Campaigns.

Figure 1. O3 time series acquired by an AQM and collocated MSUs. First, Igud field campaign, Figures (a–c), 
(a) 407, 414, 415 and AQM; (b) 416, 418, 420 and AQM; (c) 422, 423, 424 and AQM. Second, Tel-Hai Field 
Campaign, Figures (d,e). (d) 414, 420, 422 and AQM; (e) 619, 624, 625, 626 and AQM.



www.nature.com/scientificreports/

7Scientific RepoRts | 6:24382 | DOI: 10.1038/srep24382

at a Haifa residential neighbourhood on the Carmel Ridge (~200 [m] a.s.l., Lat:32.787293, Lon:35.021072); and 
“Atzmaut” AQM station (~8 [m] a.s.l., Lat:32.81644, Lon:35.00167), which is operated by the Israeli ministry of 
environmental protection and is dedicated to measure transportation related pollutants, i.e., NO and CO. The 
campaigns details are reported in Table 1.

To illustrate the acquired data, Fig. 1 depicts ozone time series acquired in Igud and Tel-Hai in the first and 
second campaigns. The AQMs’ complete data is plotted alongside the incomplete time series acquired by 9 (ID 
numbers 407, 414, 415, 416, 418, 420, 422, 423 & 424) and 7 (numbers 414, 420, 422, 619, 624, 625 & 626) col-
located MSUs at the Igud and Tel-Hai stations respectively. Note that, at different dates, MSUs 414, 420, and 422 
switched locations between Igud and Tel-Hai—irrespectively of the common MSUs, the data for each campaign 
was aggregated independently of that of the other campaign.

Consensus time series Evaluation. For each campaign and each pollutant three consensus time series 
were obtained by solving problem (1) with the three different distance metrics—L1, L2 and dNPCK. Table 2 presents 
the coefficients of determination, R2, between each of the three consensuses and the AQM measurements. This 
table also details the confidence intervals (CI) of the standard deviations of consensus measurements grouped by 
the AQM measurements. Thus, how disperse are the consensus measurements for each time the AQM reported 

Campaign Pollutant Count

R2 Std CI

L1 L2 NPCK L1 L2 NPCK

1 O3 3,439 0.7039 0.7209 0.8556 1.2850 1.2883 0.8410

2 O3 1,038 0.7071 0.7922 0.7922 0.9323 0.9628 0.9357

3
NO2 1,298 2 · 10−5 2 · 10−5 2 · 10−5 2.6715 2.6896 2.5783

O3 1,299 0.8730 0.86693 0.88768 3.192 3.0301 3.1271

4
NO2 1,420 0.0025 0.0002 0.0032 2.999 13.014 2.9756

O3 1,431 0.7931 0.8428 0.8402 1.4507 1.6261 1.6478

5
CO 2,001 0.1256 0.0851 0.1205 3.7435 3.0432 3.7111

NO 1,904 0.98088 0.9814 0.9824 5.0644 5.3579 5.0349

6
CO 2,001 0.1446 0.1279 0.2113 3.8027 3.9326 3.7678

CO 1,766 0.9462 0.9428 0.9421 7.9352 7.9078 7.8121

Table 2.  R2and Std-CI of the consensus time series with respect to the AQM measurements.

Figure 2. Consensus time series Vs. AQM measurements (Metal-Oxide MSUs). Igud Field Campaign, 
Figures (a–c), Tel-Hai Field Campaign, Figures (d–f). L1 (a,c); L2 (b,d); and NPCK (c,f).
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the same value. The CI is calculated as the standard error multiplied by the critical two-tailed value of z for 
α =  0.0535. Note that the consensus time series obtained when using the NPCK distance when solving problem 
(1) present, most of the times, higher R2 and lower CI values as compared to those obtained when using either 
the L1 and L2 distances. Specifically, the NPCK has shown higher R2 and lower CI for both NO2 campaigns and 
for three, out of the four O3 campaigns. In addition, when the NPCK does not present the best results, it is not far 
behind presenting almost the same score. Therefore, we conclude that the consensus measurements/time series 
obtained when using dNPCK, is the best fit for estimating the real AQM measurements/time series based on the 
consensus of all MSUs.

To illustrate the notions above visually, Fig. 2 plots three consensus time series against the AQM time series 
obtained for first two campaigns. Each point in the graphs corresponds to a specific time, its x-coordinate is the 
“measurement” of the consensus time series at that time and its y coordinate is the measurement taken by the 
AQM at that time. For the Igud campaign, comparing Fig. 2a,b with Fig. 2c, it is evident that the linear relation 
between the AQM measurements and the consensus time series is stronger for the NPCK as the measurements 
spread around the linear line is smaller; this exact same result holds for the Tel-Hai campaign (as evident when 
comparing Fig. 2d,e with Fig. 2f). Supporting the quantitive analysis above.

Robustness Analysis. The robustness of the suggested scheme is presented next. For this purpose, two time 
series (#135 and #136), acquired in the second campaign in conjunction with the data of Fig. 1d,e were added 
into the aggregation process. These two time series were acquired using EC ozone MSUs (AQMesh of GeoTech, 
UK). While EC MSUs have been previously used for ozone measurements, this technology suffers heavily from 

Figure 3. GT135, GT136 and the AQM O3 measurements throughout campaign 2 (Dec 16th, 2013 and Feb. 
19th, 2014). 

414 420 422 619 624 625 626 135 136

Correlation 0.8710 0.8869 0.9257 0.9147 0.9175 0.9290 0.8903 0.4779 0.5496

MSE 0.6827 0.5434 0.4180 0.3656 0.3926 0.3243 0.7325 1.5021 0.5862

Table 3.  Second Field Campaign MSUs’ characteristics.

Figure 4. Consensus time series Vs. AQM measurements (Electro-Chemical and Metal-Oxide). (a) L1,  
(b) L2 and (c) NPCK.
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interferences5,6 and thus, produces measurements that are less accurate than those obtained by using metal-oxide 
ozone MSUs (which was the type of MSUs used to obtain the data in Fig. 1d,e). Figure 3 presents the Tel-Hai 
AQM station’s complete time series alongside the incomplete time series measurements acquired from the GT135 
and GT136 MSUs. Table 3 depicts the correlation coefficient and the Mean Squared Error (MSE) between the 
AQM measurements and all sensors that took part in this campaign (see Table 1) and the two added time series 
(Fig. 3). Note that the last two MSUs added to the process, GT135 and GT136, have a significantly lower correla-
tion and higher MSE then the rest of the MSUs.

Figure 4 is analogous to Fig. 2 and plots, against Tel-Hai’s AQM, the consensus “measurements” aggregat-
ing both metal-oxide and electro-chemical MSUs when using the L1, L2 and dNPCK metrics within problem (1). 
Figure 4 also presents the coefficients of determination, R2, between the three consensuses and the AQM meas-
urements. Similarly to the results when using only metal-oxide MSUs, the correlation coefficient of consensus 
measurements obtained with dNPCK is by far the largest one. Therefore, we again conclude that the consensus 
measurements/time series obtained when using dNPCK, is the best fit for estimating the real AQM measurements/
time series based on the consensus of all MSUs.

Discussion
This paper introduces a scheme for the aggregation of incomplete ratings into a group consensus decision mak-
ing. The core of the method is the herein-developed axiomatic Normalized Projected Cook-Kress (NPCK) dis-
tance. The NPCK distance is derived from a set of axioms any distance between incomplete ratings should fulfil 
so the consensus rating aggregates the given ratings. The consensus rating is the rating that minimizes the sum of 
all distances from the different ratings. The NPCK approach is an extension of Cook and Kress complete rating 
aggregation problem, making it suitable to many new applications. An efficient algorithm for finding the consen-
sus rating is also provided.

Wireless Distributed Environmental Sensory Networks (WDESN) have become technically and economically 
feasible. However, WDESNs may consist of many sensors and thus, the calibration process is a major obstacle. The 
suggested NPCK distance presents a new, robust and efficient method for aggregating measurements acquired 
by an uncalibrated, inexpensive and error-prone WDESN, and producing accurate estimates of the observed 
environmental variable’s true levels. Given a set of collocated Micro Sensing Units (MSUs), the NPCK incomplete 
ratings scheme is applied, where each measurement (defined by time and location) is considered as a referee 
evaluation. These time series can be incomplete as sensors might become faulty or shift locations. Based on a set 
of collocated measurements (in time and in space) a consensus measurement is derived using the NPCK scheme.

The methods have been applied to a wide set of pollutants measurements (i.e., ozone, nitrogen oxide, nitrogen 
dioxide and carbon monoxide) acquired by all available MSU technologies (metal oxide and electrochemical). 
When compared to a standard regulatory Air Quality Monitoring (AQM) station, the suggested methodology 
has shown markedly more accurate results than the common practice and the state-of-the-art, without requiring 
the Micro Sensing Units (MSUs), constituting the WDESN, to be calibrated, rendering the network to be self cali-
brated. To achieve this, some assumptions on the error behaviour are made (i.e., additive, zero mean error). While 
these assumptions are commonly accepted, we have also presented a simple logarithmic data re-scaling technique 
which enables the method to handle multiplicative errors. Therefore, generalising the suggested scheme even 
further.

This research has addressed the challenging problem of data aggregation, where only measurements of a single 
pollutant are aggregated. The interplay between gases in the atmosphere36–38, for some gases (e.g., NO2 and O3) 
is known and may allow for the aggregation of data acquired from an heterogeneous set of sensors. Finally, the 
availability of the code, with the accurate results, present a great potential for making the NCPK the tool of choice 
for aggregating measurements acquired by uncalibrated WDESNs.
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