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ABSTRACT

We construct an N = 1 supersymmetric three-family flipped SU(5) model
from type IIA orientifolds on T 6/(Z2 × Z2) with D6-branes intersecting at general
angles. The model is constrained by the requirement that Ramond-Ramond tadpoles
cancel, the supersymmetry conditions, and that the gauge boson coupled to the U(1)X
factor does not get a string-scale mass via a generalised Green-Schwarz mechanism.
The model is further constrained by requiring cancellation of K-theory charges. The
spectrum contains a complete grand unified and electroweak Higgs sector, however
the latter in a non-minimal number of copies. In addition, it contains extra matter
both in bi-fundamental and vector-like representations as well as two copies of matter
in the symmetric representation of SU(5).
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1 Introduction

One of the main goals of string phenomenology is to derive standard model physics in
a convincing way and to embed the latter into a unified description of gravitational
and gauge forces.

In the intersecting D-branes approach in type II string theory [1, 2, 3, 4], grav-
ity is mediated in the entire 10-dimensional bulk by the exchange of closed strings.
On the other hand, the gauge and matter fields are localized respectively on the
D-brane, and at pairwise D-brane intersections, and correspond to open string exci-
tations. One of the outstanding issues is the breaking of supersymmetry. There are at
least two scenarios of how supersymmetry breaking can be realized: In the first case,
the various open string sectors break supersymmetry while the closed string sector
may preserve supersymmetry. In order to solve the hierarchy problem this scenario
normally requires the existence of large extra dimensions, transverse to the D-branes
of the standard model [5, 6, 7]. In the second scenario, all open string sectors pre-
serve N = 1 supersymmetry, and all D-branes together with the orientifold planes,
are mutually supersymmetric. Then the closed string sector breaks supersymmetry,
which manifests itself as soft supersymmetry-breaking terms in the effective action
of the open string matter fields. The spontaneous supersymmetry breaking can be
achieved by internal background fluxes of closed string field strengths < Gijk > 6= 0
[8, 9, 10].

In this latter case, one in general has to introduce in addition to D6-branes
orientifold O6-planes, which can be regarded as branes of negative RR-charge and
tension. For a general Calabi-Yau compact space these orientifold planes wrap spe-
cial Lagrangian 3-cycles calibrated with respect to the real part of the holomorphic
3-form Ω3 of the Calabi-Yau compact space. In order to preserve N = 1 supersymme-
try all the D6-branes must be calibrated by the 3-form Ω3. Calibrated geometries lead
to volume mininization in homology. Adopting this philosophy for solving the gauge
hierarchy problem and other instabilities of non-supersymmetric models from inter-
secting branes, we recently constructed a three-generation N = 1 supersymmetric
flipped SU(5) model [11], whose gauge symmetry included SU(5)×U(1)X symmetry,
from type IIA orientifolds on T 6/(Z2 × Z2) with intersecting D6-branes. For other
examples of Grand Unified Models as well as for a complete set of references in the
field, the reader should consult [12, 13].

The flipped SU(5) × U(1)X model [14, 15] is a well motivated example of a
Grand Unified Theory (GUT), and had been extensively studied in the closed string
era of the heterotic compactifications [16, 17]. From the theoretical point of view
this motivation was coming from the fact that its symmetry breaking requires only
10 and 10 Higgs representations at the grand unification scale, as well as 5 and
5̄ Higgs representations at the electroweak scale, which were consistent with the
representations of SU(5) allowed by the unitarity condition with gauge group at level
1 [18, 19] 1. From the phenomenological point of view flipped SU(5)×U(1)X [14, 15]

1Thus attempts to embed conventional grand unified theory (GUT) groups such as SU(5) or
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has a number of attractive features in its own right [20]. For example, it has a
very elegant missing-partner mechanism for suppressing proton decay via dimension-
5 operators [15], and is probably the simplest GUT to survive experimental limits
on proton decay [21]. These considerations motivated the derivation of a number of
flipped SU(5) models from constructions using fermions on the world sheet [16, 17].
Also, non-supersymmetric flipped SU(5) models have been produced in [22] using
D6-branes wrapping toroidal 3-cycles and when the wrapping space is the T 6/Z3

orbifold.
The wrapping numbers of the various stacks in [11] were constrained by the

requirement of RR-tadpole cancellation as well as the supersymmetry conditions.
Tadpole cancellation ensures the absence of non-abelian anomalies in the emergent
low-energy quantum field theory. A generalised Green-Schwarz mechanism ensures
that the gauge bosons associated with all anomalous U(1)s acquire string-scale masses
[23], but the gauge bosons of some non-anomalous U(1)s can also acquire string-scale
masses [24]; in all such cases the U(1) group survives as a global symmetry. Thus
we had also to ensure the flipped U(1)X group remained a gauge symmetry by re-
quiring that its gauge boson did not get such a mass. The gauge symmetry of the
model included a USp(2) ∼= SU(2) factor associated with the presence of filler branes
(D-branes that wrap 3-cycles which are invariant under the orientifold action). The
low energy spectrum of the model we constructed was free from any SU(2) global
gauge anomalies (associated with the fourth non-trivial homotopy group of SU(2):
π4(SU(2)) = Z2) since the number of the corresponding fermion doublets was even
[25] 2. The model however, suffered from a number of serious phenomenological draw-
backs. Among them, the global U(1) symmetries of the model, that arise after the G-S
anomaly cancellation mechanism, did forbid some of the Yukawa couplings required
for mass generation, as well as the couplings responsible for the elegant solution of
the doublet-triplet splitting problem in flipped SU(5) [11]. The model also included a
lot of exotic matter both in bi-fundamental and vector-like representations, as well as
two copies of matter in the symmetric representation of SU(5). Furthermore, three
adjoint (24-plets) (N = 1) chiral multiplets were also present.

It has been argued by a number of authors [26, 27, 28, 29], that for the D-
branes to consistently wrap the 3-cycles of the compact space, additional conditions
on their wrapping numbers have to be satisfied beyond those described above, which
stem from the K-theory interpretation of D-branes. In particular, it has been argued
that often it is K-theory which fully classifies the RR-charges of D-branes and not the
ordinary homology theory 3. This approach was also motivated by the work in [32] in
which the non-BPS D-branes were constructed as bound states of brane-anti-brane

SO(10) in heterotic string required more complicated compactifications, but none of these has been
completely satisfactory. Constructions with the minimal option to embed just the standard model
gauge group, were plagued with at least extra unwanted U(1) factors.

2This was the case since the number of intersections of the filler branes to the other stacks of
D6-branes was even.

3For some computations of the K-theory groups, that make use of Bott’s periodicity theorem and
Atiyah’s real K-theory [30], for D-branes on top of orientifold planes see [31].
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pairs. These constructions were interpreted in terms of K-theory in [27]. The model
constructed in [11] did not satisfy all the additional constraints from K-theory derived
in [29] for the particular orientifold background.

It is the purpose of this Letter, to incorporate these additional constraints,
which ensure that discrete K-theory charge cancels, into the search for building a
viable flipped SU(5) model. Interestingly, as we shall see in the main body of the
paper, although the new model constructed, which is compatible with the above
consistency requirements, does contains a lot of extra matter, it does not contain
exotic matter other then two copies in the symmetric (15) representation of SU(5)
in the spectrum on the sector of D6-branes at generic angles (i.e. those that wrap 3-
cycles not invariant under the anti-holomorphic involution). However, the model still
possesses exotic matter from the intersections of filler branes with the other stacks
of D6-branes, which is charged under both the flipped SU(5) and filler branes gauge
symmetries.

The material of this Letter is organized as follows. In section 2, we provide
the consistency as well as the other conditions described above for the T 6/(Z2 × Z2)
orientifold which are used for the construction of our model. In section 3, after a short
introduction to basic flipped SU(5) phenomenology we present the model, which is
a consistent solution of all the constraints we described above including those from
K-theory. Finally, section 4 is used for our conclusions.

2 Definitions and Conditions for Intersecting Brane

Models on a T6/(Z2 × Z2) Orientifold

2.1 Basic Configuration

Consider type IIA theory on the T6/(Z2 × Z2) orientifold, where the orbifold group
Z2 × Z2 generators θ, ω act on the complex coordinates (z1, z2, z3) of T

6 as

θ : (z1, z2, z3) → (−z1,−z2, z3)

ω : (z1, z2, z3) → (z1,−z2,−z3) (1)

This T 6/(Z2 × Z2) structure was first introduced in [9] and further studied in [12] 4,
and we will use the same notations here. We implement an orientifold projection ΩR,
where Ω is the world-sheet parity, and R acts as

R : (z1, z2, z3) → (z1, z2, z3) (2)

With the wrapping numbers (ni, mi) along the canonical basis of homology
one-cycles [ai] and [bi] the complete cycle on a T2 is given by ni[ai] + mi[bi]. Note
that a tilted complex structure is allowed by setting [a′i] ≡ [ai] +

1
2
[bi] so we rewrite

4See also [33].
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the expression of the one-cycle by ni[a′i] + 2−βili[bi] where li = mi, βi = 0 if the ith
torus is not tilted and li = 2mi + ni, βi = 1 if it is tilted.

Therefore the homology three cycle [Πa] for a stack a of D6-brane and its
orientifold image [Π′

a] can be written as

[Πa] =
3∏

i=1

(ni
a[ai] + 2−βilia[bi]), [Πa′ ] =

3∏

i=1

(ni
a[ai]− 2−βilia[bi]) (3)

and the O6-plane associated with the four orientifold projections ΩR, ΩRθ, ΩRω,
and ΩRθω is

[ΠO6] = [ΠΩR] + [ΠΩRω] + [ΠΩRθω] + [ΠΩRθ]

= 23[a1][a2][a3]− 23−β2−β3[a1][b2][b3]

−23−β1−β3[b1][a2][b3]− 23−β1−β2[b1][b2][a3] (4)

It is convenient for model building purposes to use a set of parameters introduced in
[12]

Aa = −n1
an

2
an

3
a, Ba = n1

al
2
al

3
a, Ca = l1an

2
al

3
a, Da = l1al

2
an

3
a

Ãa = −l1al
2
al

3
a, B̃a = l1an

2
an

3
a, C̃a = n1

al
2
an

3
a, D̃a = n1

an
2
al

3
a (5)

2.2 The Spectrum

Chiral matter particles are formed from open strings with two ends attaching on
different stacks. The multiplicity (M) of the corresponding bi-fundamental repre-
sentation is given by the intesection numbers (Iab) between different stacks of branes
by using Graßmann algebra [ai][bj ] = −[bj ][ai] = δij and [ai][aj ] = −[bj ][bi] = 0.
It should be noted that the initial U(Na) gauge group supported by a stack of Na

identical D6-branes is broken down by the Z2×Z2 symmetry to a subgroup U(Na/2)
[9]. In Table 1 we exhibit the generic chiral spectrum for the T 6/(Z2×Z2) orientifold
for D6-branes at generic angles [12]. A zero intersection number between two branes
implies that the branes are parallel on at least one torus. At such kind of intersection
additional non-chiral (vector-like) multiplet pairs from ab+ ba, ab′+ b′a, and aa′+a′a
sectors can arise [34]. The multiplicity of these non-chiral multiplet pairs is given by
the remainder of the intersection product, neglecting the null sector. For example, if
(n1

al
1
b − n1

b l
1
a) = 0 in Iab = [Πa][Πb] = 2−k

∏3
i=1(n

i
al

i
b − ni

bl
i
a),

M

[(
Na

2
,
Nb

2

)
+

(
Na

2
,
Nb

2

)]
=

3∏

i=2

(ni
al

i
b − ni

bl
i
a) (6)

where we have assumed that, k ≡ β1 + β2 + β3 = 0, i.e. all tori are untilted.
Strings stretching between a brane in stack a and its mirror image a′ yield chiral

matter in the antisymmetric and symmetric representations of the group U(Na/2)
with multiplicities

M((Aa)L) =
1

2
IaO6, M((Aa + Sa)L) =

1

2
(Iaa′ −

1

2
IaO6) (7)
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so that the net total of antisymmetric and symmetric representations are those in
Table 1. Also

Iaa′ = [Πa][Πa′ ] = −23−k

3∏

i=1

ni
al

i
a (8)

IaO6 = [Πa][ΠO6] = 23−k(Ãa + B̃a + C̃a + D̃a) (9)

This distinction is critical, as we require independent use of the paired multiplets
such as (10, 10) which are masked in the corresponding expressions given in Table 1.

Sector Representation

aa U(Na/2) vector multiplet and 3 adjoint chiral multiplets

ab+ ba M(Na

2
, Nb

2
) = Iab = 2−k

∏3
i=1(n

i
al

i
b − ni

bl
i
a)

ab′ + b′a M(Na

2
, Nb

2
) = Iab′ = −2−k

∏3
i=1(n

i
al

i
b + ni

bl
i
a)

aa′ + a′a M(Antia) =
1
2
(Iaa′ +

1
2
IaO6) = −21−k[(2Aa − 1)Ãa − B̃a − C̃a − D̃a]

M(Syma) =
1
2
(Iaa′ −

1
2
IaO6) = −21−k[(2Aa + 1)Ãa + B̃a + C̃a + D̃a]

Table 1: General chiral spectrum on D6-branes at generic angles, for T 6/(Z2 × Z2)
orientifold.

2.3 Consistency and Supersymmetry Conditions

The Ramond-Ramond tadpole cancellation needs to be satisfied by requiring the total
homology cycle charge of D6-branes and O6-planes to vanish, namely we require

∑

a

Na[Πa] +
∑

a

Na[Πa′ ]− 4[ΠO6] = 0 (10)

By introducing the filler branes wrapping cycles along the four O6-planes, we can
rewrite the above equation in terms of the parameters defined in (5) as

−2kN (ΩR) +
∑

a

NaAa = −2kN (ΩRω) +
∑

a

NaBa =

−2kN (ΩRθω) +
∑

a

NaCa = −2kN (ΩRθ) +
∑

a

NaDa = −16 (11)

Although the total non-Abelian anomaly cancels automatically when the RR-
tadpole conditions are satisfied, additional mixed anomalies like the mixed gravita-
tional anomalies which generate massive fields are not trivially zero [9]. These anoma-
lies are cancelled by a generalized Green-Schwarz (G-S) mechanism which involves
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untwisted Ramond-Ramond forms. The couplings of the four untwisted Ramond-
Ramond forms Bi

2 to the U(1) field strength Fa of each stack a are

NaB̃a

∫

M4

B1
2 ∧ trFa, NaC̃a

∫

M4

B2
2 ∧ trFa

NaD̃a

∫

M4

B3
2 ∧ trFa, NaÃa

∫

M4

B4
2 ∧ trFa (12)

These couplings determine the linear combinations of U(1) gauge bosons that acquire
string scale masses via the G-S mechanism. In flipped SU(5) × U(1)X , the symme-
try U(1)X must remain an unbroken gauge symmetry so that it may remix to help
generate the standard model hypercharge after the breaking of SU(5). Therefore, we
must ensure that the gauge boson of the flipped U(1)X group does not receive such a
mass. The U(1)X is a linear combination (to be identified in section 3.2) of the U(1)s
from each stack :

U(1)X =
∑

a

caU(1)a (13)

The corresponding field strength must be orthogonal to those that acquire G-S mass.
Thus we demand :

∑

a

caNaB̃a = 0,
∑

a

caNaC̃a = 0

∑

a

caNaD̃a = 0,
∑

a

caNaÃa = 0 (14)

The condition to preserve N = 1 supersymmetry in four dimensions is that
the rotation angle of any D-brane with respect to the orientifold plane is an element
of SU(3) [1, 9]. Considering the angles between each brane and the R-invariant axis
of ith torus θia, we require θ1a + θ2a + θ3a = 0 mod 2π. This means sin(θ1a + θ2a + θ3a) = 0
and cos(θ1a + θ2a + θ3a) = 1 > 0. We define

tan θia =
2−βiliaR

i
2

ni
aR

i
1

(15)

where Ri
2 and Ri

1 are the radii of the ith torus. The above supersymmetry conditions
can be recast in terms of the parameters defined in (5) as follows [12]:

xAÃa + xBB̃a + xCC̃a + xDD̃a = 0

Aa/xA +Ba/xB + Ca/xC +Da/xD < 0 (16)

where xA, xB, xC , xD are complex structure parameters composed of Ri
2 and Ri

1, all
of which share the same sign [12]. In what follows we consider the case k = 0.
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2.4 The K-Theory Constraints

In the previous section, the consistency conditions for having a model free of RR
tadpoles were stated. These conditions essentially translate into constraints on the
allowed homology cycles. However, as we discussed in the introduction it has been
argued that it is K-theory which fully classifies the RR-charges of D-branes and not
the ordinary homology theory [26, 27, 28, 29, 35]. Because of this, there are additional
consistency constraints related to cancellation of the K-theory charges [28, 29]. These
additional constraints are not visible through homology. In this Letter, we improve
upon our earlier work [11] with a model that satisfies these K-theory constraints as
well as all the other conditions for the T 6/(Z2 × Z2) orientifold described in section
2.3.

In type I superstring theory there exist non-BPS D-branes carrying non-trivial
K-theory Z2 charges. To avoid this anomaly it is required that in compact spaces
these non-BPS branes must exist in an even number [28]. If we consider a type I non-

BPS D7-brane (D̂7-brane), we may regard it as a pair of D7-brane and its world-sheet

parity image D7-brane in type IIB theory, i.e. D̂7 = D7 + D7/Ω . There are three

different kinds of non-BPS (D̂7)-branes, denoted as D̂7i, where i = 1, 2, 3 labels the

two-torus where the D̂7 does not wrap. By construction there are three pairs D7i,
D7i in type IIB theory [29]. These D7-brane pairs, as well as other D-brane pairs
in type IIB theory, can be explicitly expressed by the homology 3-cycles in type IIA
theory as listed in Table 2 5.

It is reasonable to take the branes in Table 2 as a basis of a magnetized model
(obviously they are in terms of the homology one-cycles). We can see that a general
D6-brane three-cycle in type IIA theory is composed of these brane pairs, i.e., a
general D6-brane is a linear combination of these brane pairs, which is why we should
take the K-theory constraints into account since the numbers of the pairs given by
wrapping numbers are not trivially even.

We do not have to worry about the K-theory charge contributed by D5 and
D9-branes since the RR-tadpole conditions in (11) guarantee the even numbers if we
choose the number of the filler branes to be even, which is not difficult to achieve.
The real problem comes from D3 and D7-branes, though they do not contribute to
the standard RR charges. The K-theory conditions for a Z2 × Z2 orientifold were

5In type IIB picture D5i stands for a D5-brane wrapping the ith two torus.
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derived in [29] and are given by
∑

a

Nal
1
al

2
al

3
a =

∑

a

NaÃa = 0 mod 4

∑

a

Nal
1
an

2
an

3
a =

∑

a

NaB̃a = 0 mod 4

∑

a

Nan
1
al

2
an

3
a =

∑

a

NaC̃a = 0 mod 4

∑

a

Nan
1
an

2
al

3
a =

∑

a

NaD̃a = 0 mod 4 (17)

These constraints turn out to be more clear if the additional three D5-branes
or D9-brane are introduced as “probes” [28]. These branes wrap cycles along the
O6-planes so they satisfy supersymmetry automatically and form USp groups. The
sum of intersection numbers between these probe branes and the general D6-branes
should be even (mod 4 in our case) in order to cancel the global gauge anomaly [25].
For example, ∑

a

Na[ΠD51 ][Πa] =
∑

a

Nal
1
an

2
an

3
a = 0 mod 4 (18)

which is exactly the same as the second equation in (17). Though we add these extra
branes to detect the K-theory charges, they are still exterior to our original model
and do not contribute to the determined RR-tadpole cancellation configuration.

D3-brane ΠD3 = ([b1])([b2])([b3]) ΠD3 = (−[b1])(−[b2])(−[b3])

ΠD51= ([a1])([b2])([b3]) ΠD51
= ([a1])(−[b2])(−[b3])

D5-brane ΠD52= ([b1])([a2])([b3]) ΠD52
= (−[b1])([a2])(−[b3])

ΠD53= ([b1])([b2])([a3]) ΠD53
= (−[b1])(−[b2])([a3])

ΠD71= ([b1])([a2])([a3]) ΠD71
= (−[b1])([a2])([a3])

D7-brane ΠD72= ([a1])([b2])([a3]) ΠD72
= ([a1])(−[b2])([a3])

ΠD73= ([a1])([a2])([b3]) ΠD73
= ([a1])([a2])(−[b3])

D9-brane ΠD9 = ([a1])([a2])([a3]) ΠD9 = ([a1])([a2])([a3])

Table 2: Brane pairs of Type IIB theory without B-field and their corresponding
homology classes of 3-cycles in type IIA picture.

3 Model Building for a Flipped SU(5) GUT

3.1 Basic Flipped SU(5) Phenomenology

In a flipped SU(5) × U(1)X [14, 15] unified model, the electric charge generator Q
is only partially embedded in SU(5), i.e., Q = T3 −

1
5
Y ′ + 2

5
Ỹ , where Y ′ is the U(1)

8



internal SU(5) and Ỹ is the external U(1)X factor. Essentially, this means that
the photon is ‘shared’ between SU(5) and U(1)X . The Standard Model (SM) plus
right handed neutrino states reside within the representations 5̄, 10, and 1 of SU(5),
which are collectively equivalent to a spinor 16 of SO(10). The quark and lepton
assignments are flipped by uc

L ↔ dcL and νc
L ↔ ecL relative to a conventional SU(5)

GUT embedding:

f̄
5̄,−3

2

=




uc
1

uc
2

uc
3

e
νe




L

; F
10, 1

2

=

((
u
d

)

L

dcL νc
L

)
; l

1, 5
2

= ecL (19)

In particular this results in the 10 containing a neutral component with the quantum
numbers of νc

L. We can break spontaneously the GUT symmetry by using a 10
and 10 of superheavy Higgs where the neutral components provide a large vacuum
expectation value, 〈νc

H〉= 〈ν̄c
H〉,

H
10, 1

2

= {QH , d
c
H , ν

c
H} ; H̄

10,−1

2

= {QH̄ , d
c
H̄ , ν

c
H̄} . (20)

The electroweak spontaneous breaking is generated by the Higgs doublets H2 and H̄2̄

h5,−1 = {H2, H3} ; h̄5̄,1 =
{
H̄2̄, H̄3̄

}
(21)

Flipped SU(5) model building has two very nice features which are generally not
found in typical unified models: (i) a natural solution to the doublet (H2)-triplet(H3)
splitting problem of the electroweak Higgs pentaplets h, h̄ through the trilinear cou-
pling of the Higgs fields: H10 ·H10 · h5 → 〈νc

H〉 d
c
HH3, and (ii) an automatic see-saw

mechanism that provide heavy right-handed neutrino mass through the coupling to
singlet fields φ, F10 · H̄10

· φ →
〈
νc
H̄

〉
νcφ.

The generic superpotential W for a flipped SU(5) model will be of the form :

λ1FFh+ λ2F f̄h̄+ λ3f̄ l
ch + λ4FH̄φ+ λ5HHh+ λ6H̄H̄h̄ + · · · ∈ W (22)

the first three terms provide masses for the quarks and leptons, the fourth is respon-
sible for the heavy right-handed neutrino mass and the last two terms are responsible
for the doublet-triplet splitting mechanism [15].

3.2 Model Building

This model is similar to the one given in [11], however the K-theory constraints are
satisfied. In this Letter, we present an example with 6+1 stacks of branes. The
first stack has the same set of wrapping numbers as in our previous model [11]. We
also have a stack with N (ΩR) = 8 filler branes which give rise to a USp(8) gauge
group. The gauge symmetry of the (6+1)-stack model, whose wrapping numbers are

9



presented in Table 3, is U(5)× U(1)5 × USp(8), and the structure parameters of the
wrapping space are

xA = 1, xB = 2, xC = 10, xD = 1 (23)

The intersection numbers are listed in Table 4, and the resulting spectrum in Table
5.

The singlet (under the SU(5) symmetry) representation ecL, now comes from
the bi-fundamentals, namely from the intersection (cf) and we choose the 5 and 5
Higgs pentaplets from a non-chiral interesection (ab′). There is less exotic matter in
this model, though we still have two copies of 15 which is unavoidable since we need
10 in the Higgs sector. Matter charged under both the SU(5)× U(1)X and USp(8)
gauge symmetries is also present, as is evident from Table 4.

The U(1)X is

U(1)X =
1

2
(U(1)a − 5U(1)b + 5U(1)c + 5U(1)d − 5U(1)e − 5U(1)f) (24)

while the other anomaly-free and massless combinations U(1)Y is

U(1)Y = U(1)b − U(1)c + U(1)d − U(1)e (25)

The remaining four global U(1)s from the Green-Schwarz mechanism are given
respectively by

U(1)1 = −10U(1)a + 2U(1)b + 2U(1)c − 2U(1)d − 2U(1)e − 2U(1)f

U(1)2 = −2U(1)b − 2U(1)c

U(1)3 = 8U(1)b + 8U(1)c + 4U(1)d + 4U(1)e

U(1)4 = 20U(1)a + 8U(1)b + 8U(1)c + 4U(1)f (26)

stack Na (n1, l1) (n2, l2) (n3, l3) A B C D Ã B̃ C̃ D̃

a N = 10 ( 0,-1) (-1,-1) (-1,-2) 0 0 -2 -1 2 -1 0 0
b N = 2 (-1,-1) (-1, 1) ( 1, 4) -1 -4 4 -1 4 1 -1 4
c N = 2 (-1,-1) (-1, 1) ( 1, 4) -1 -4 4 -1 4 1 -1 4
d N = 2 (-1, 1) ( 1, 0) (-1,-2) -1 0 -2 0 0 -1 0 2
e N = 2 (-1, 1) ( 1, 0) (-1,-2) -1 0 -2 0 0 -1 0 2
f N = 2 ( 0, 1) ( 1, 1) (-1,-2) 0 0 -2 -1 2 -1 0 0

filler N (ΩR) = 8 ( 1, 0) ( 1, 0) ( 1, 0) -1 0 0 0 0 0 0 0

Table 3: Wrapping numbers and their consistent parameters.
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stk N A S b b′ c c′ d d′ e e′ f f ′ f1

a 10 2 -2 -4 0(6) -4 0(6) 0(1) 4 0(1) 4 0(0) 0(8) 2
b 2 32 0 - - 0(0) 32 4 0(6) 4 0(6) 4 0(6) 4
c 2 32 0 - - - - 4 0(6) 4 0(6) 4 0(6) 4
d 2 2 -2 - - - - - - 0(0) 0(8) 0(1) 4 0
e 2 2 -2 - - - - - - - - 0(1) 4 0
f 2 2 -2 - - - - - - - - - - 2

Table 4: List of intersection numbers. The number in parenthesis indicates the mul-
tiplicity of non-chiral pairs.

Rep. Multi. U(1)aU(1)bU(1)cU(1)dU(1)eU(1)f 2U(1)X U(1)1U(1)2U(1)3U(1)4 U(1)Y

(10, 1) 3 2 0 0 0 0 0 2 -20 0 0 40 0
(5̄a, 1b) 3 -1 1 0 0 0 0 -6 12 -2 8 -12 1
(1c, 1̄f) 3 0 0 1 0 0 -1 10 4 -2 8 4 -1

(10, 1) 1 2 0 0 0 0 0 2 -20 0 0 40 0
(10, 1) 1 -2 0 0 0 0 0 -2 20 0 0 -40 0
(5a, 1b)

⋆ 1 1 1 0 0 0 0 -4 -8 -2 8 28 1
(5̄a, 1̄b)

⋆ 1 -1 -1 0 0 0 0 4 8 2 -8 -28 -1
(1b, 1c) 4 0 1 1 0 0 0 0 4 -4 16 16 0

(15, 1) 2 -2 0 0 0 0 0 -2 20 0 0 -40 0
(10, 1) 1 -2 0 0 0 0 0 -2 20 0 0 -40 0
(5̄a, 1b) 1 -1 1 0 0 0 0 -6 12 -2 8 -12 1
(5̄a, 1c) 4 -1 0 1 0 0 0 4 12 -2 8 -12 -1
(5a, 1d) 4 1 0 0 1 0 0 6 -12 0 4 20 1
(5a, 1e) 4 1 0 0 0 1 0 -4 -12 0 4 20 -1
(1b, 1c) 28 0 1 1 0 0 0 0 4 -4 16 16 0
(1b, 1̄d) 4 0 1 0 -1 0 0 -10 4 -2 4 8 0
(1b, 1̄e) 4 0 1 0 0 -1 0 0 4 -2 4 8 2
(1b, 1̄f) 4 0 1 0 0 0 -1 0 4 -2 8 4 1
(1c, 1̄d) 4 0 0 1 -1 0 0 0 4 -2 4 8 -2
(1c, 1̄e) 4 0 0 1 0 -1 0 10 4 -2 4 8 0
(1c, 1̄f) 1 0 0 1 0 0 -1 10 4 -2 8 4 -1
(1d, 1f) 4 0 0 0 1 0 1 0 -4 0 4 4 1
(1e, 1f) 4 0 0 0 0 1 1 -10 -4 0 4 4 -1
(1̄, 1̄) 2 0 0 0 -2 0 0 -10 4 0 -8 0 -2
(1̄, 1̄) 2 0 0 0 0 -2 0 10 4 0 -8 0 2
(1̄, 1̄) 2 0 0 0 0 0 -2 10 4 0 0 -8 0

(5a, 1b)
⋆ 5 1 1 0 0 0 0 -4 -8 -2 8 28 1

(5̄a, 1̄b)
⋆ 5 -1 -1 0 0 0 0 4 8 2 -8 -28 -1

Additional non-chiral Matter
USp(8) Matter

Table 5: The spectrum of U(5) × U(1)5 × USp(8), or SU(5) × U(1)X × U(1)Y ×
USp(8), with the four global U(1)s from the Green-Schwarz mechanism. The ⋆′d
representations stem from vector-like non-chiral pairs.
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4 Conclusions

In this Letter we have constructed a particular N = 1 supersymmetric three-family
model whose gauge symmetry includes SU(5)×U(1)X , from type IIA orientifolds on
T 6/(Z2 × Z2) with D6-branes intersecting at general angles. The model satisfies all
the consistency requirements of string theory and in addition the constraints arising
from the K-theory interpretation of D-branes.

The spectrum contains a complete grand unified theory and electroweak Higgs
sector, the latter however, in a non-minimal number of copies. In addition, it contains
extra matter both in bi-fundamental and vector-like representations as well as two
copies of matter in the symmetric representation of SU(5). Chiral matter charged
under both the SU(5) × U(1)X and USp(8) gauge symmetries is also present, as
is evident from Table 4. Furthermore, three adjoint (N = 1) chiral multiplets are
provided from the aa sector [9].

The global symmetries, that arise after the G-S anomaly cancellation mecha-
nism, forbid some of the Yukawa couplings required for mass generation, for instance
terms like FFh. However, by the same token the term HHh is also forbidden. We
note that such a term is essential for the doublet-triplet splitting solution mecha-
nism in flipped SU(5). On the other hand, the global U(1) symmetries do not forbid
the coupling F f̄ h̄, responsible for the up-type (t, c, u) quark mass terms. Neutrino
Yukawas (FH̄φ), and the coupling f̄ lch are also absent at the trilinear level, due to
the global U(1) symmetries. Nevertheless, it should not escape our notice that while
these global U(1) symmetries are exact to all orders in perturbation theory, they
can be broken explicitly by non-perturbative instanton effects [36], thus providing us
with the possibility of recovering the appropriate superpotential couplings. Another
interesting approach toward generating these absent Yukawa couplings may entail the
introduction of type IIB flux compactifications [10]. This exceeds the scope of our
current Letter, but shall be further investigated in an upcoming publication.

An additional important avenue for future research is avoidance of the chiral
supermultiplets in the adjoint representation from the aa sector. These multiplets are
associated with the moduli space of deformations of special Lagrangian submanifolds
and their number is equal to the first Betti number of the 3-cycle that the stack
a of D6-branes wrap [37]. Mechanisms for blocking these problematic particles for
phenomenology include constructing 3-cycles of the wrapping space with zero first
Betti-number (such as S3 or RP 3 6) or other rigid 3-cycles, as has been recently
discussed in [38]. Alternatively, it may be possible to simply give masses to these
particles at very high energies. These issues however, are also beyond the scope of
this Letter and shall be investigated in a future publication.

6Such Lagrangian manifolds are additionally interesting because they are stable and volume
minimizing under Hamiltonian deformations [39].
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and T. Ott, Nucl. Phys. B616 (2001) 3, hep-th/0107138
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hagen, M. Cvetič, P. Langacker and G. Shiu, hep-th/0502005

[14] S. M. Barr Phys. Lett. B112 (1982) 219; J. P. Derendinger, J. E. Kim and D. V.
Nanopoulos Phys. Lett. B139 (1984), 170

14

http://arxiv.org/abs/hep-th/9606139
http://arxiv.org/abs/hep-th/9503030
http://arxiv.org/abs/hep-th/0007024
http://arxiv.org/abs/hep-th/0206038
http://arxiv.org/abs/hep-th/0210083
http://arxiv.org/abs/hep-th/0107138
http://arxiv.org/abs/hep-th/0011073
http://arxiv.org/abs/hep-ph/0011132
http://arxiv.org/abs/hep-th/0205074
http://arxiv.org/abs/hep-th/0108131
http://arxiv.org/abs/hep-th/0208103
http://arxiv.org/abs/hep-th/0210219
http://arxiv.org/abs/hep-th/0212112
http://arxiv.org/abs/hep-th/0201037
http://arxiv.org/abs/hep-th/0209200
http://arxiv.org/abs/hep-th/0406092
http://arxiv.org/abs/hep-th/0311241
http://arxiv.org/abs/hep-th/0107166
http://arxiv.org/abs/hep-ph/0205252
http://arxiv.org/abs/hep-th/0206115
http://arxiv.org/abs/hep-th/0501041
http://arxiv.org/abs/hep-th/0501182
http://arxiv.org/abs/hep-th/0212177
http://arxiv.org/abs/hep-th/0401156
http://arxiv.org/abs/hep-th/0502005


[15] I. Antoniadis, J. R. Ellis, J. S. Hagelin and D. V. Nanopoulos, Phys. Lett. B194
(1987) 231

[16] I. Antoniadis, J. R. Ellis, J. S. Hagelin and D. V. Nanopoulos, Phys. Lett. B
205 (1988) 459; Phys. Lett. B 208 (1988) 209; Phys. Lett. B213 (1988) 562,
Addendum; Phys. Lett. B231 (1989) 65.

[17] J. L. Lopez, D. V. Nanopoulos and K. Yuan, Nucl. Phys. B399 (1993) 654

[18] P. Goddard and D. Olive, Intern. J. Mod. Phys. A1 (1986) 303

[19] H. Dreiner, J. L. Lopez, D. V. Nanopoulos and D. R. Reiss, Phys. Lett. B216
(1989) 283; J. R. Ellis, J. L. Lopez and D. V. Nanopoulos, Phys. Lett. B245
(1990) 375

[20] For a review see: D. V. Nanopoulos, hep-ph/0211128

[21] J. R. Ellis, D. V. Nanopoulos and J. W. Walker, Phys. Lett. B550 (2002) 99,
hep-ph/0205336

[22] J. R. Ellis, P. Kanti, D. V. Nanopoulos, Nucl. Phys. B647 (2002) 235,
hep-th/0206087
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