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Abstract

The covariant field equations of ten-dimensional super D-branes are obtained by considering
fundamental strings whose ends lie in the superworldsurface of the D-brane. By considering in
a similar fashion Dp-branes ending on D(p+ 2)-branes we derive equations describing D-branes
with dual potentials, as well as the vector potentials.
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1 Introduction

In a recent paper [1], an open supermembrane ending on an M-fivebrane was studied. The world-
volume of the M-fivebrane was taken to be a supersubmanifold, M , of the eleven-dimensional
target superspace,M . The supermembrane action is an integral over a bosonic three dimensional
worldvolume Σ, with its boundary ∂Σ embedded in the supermanifold M , such that

∂Σ ⊂M ⊂M (1)

It was shown that the κ-symmetry of the total action implies (1) the eleven-dimensional su-
pergravity equations, (2) a constraint on the embedding of M in M and (3) a constraint on
a modified super 3-form field strength, H, on the superfivebrane worldvolume. The superem-
bedding constraint and the H-constraint completely determine the superfivebrane equations of
motion, although the H-constraint can be derived from the embedding constraint in this case.

In this paper, this result is extended to the following configurations of branes:

1. Fundamental type II strings ending on D-branes

2. Type II Dp-branes ending on D(p + 2)-branes

The target space is (10|32) dimensional type IIA or type IIB superspaces. We use the notation
(D|D′), where D is the real bosonic dimension and D′ is the real fermionic dimension of a
supermanifold. The embedded supermanifoldM has dimension (2|16) in case (1) and (p+1|16)
for case (2).

In all cases we find that the κ-symmetry of the total system implies the ten-dimensional type IIA
or type IIB supergravity equations and a constraint on the embedding of M in M . In addition,
in case (1) we find a constraint on a modified super 2-form field strength on M defined as

F = dA−B , (2)

where A is the super 1-form potential on M , and B is the pullback of the target space NS-
NS super 2-form M . We will use the same letter to denote the target space and worldsurface
superforms, since it should be clear from the context whether a pullback is required. The
superembedding constraint and the F-constraint determine completely the dynamics of the D-
brane on which the fundamental string ends. At the linearised level, these constraints are shown
to be precisely the dimensional reduction of the ten-dimensional Maxwell superspace constraints.

In case (2) the construction leads naturally to the introduction of a p-form potential on M in
addition to the usual one-form potential. The field strength forms corresponding to these poten-
tials are esentially dual to one another, so that the dual versions of D-branes are automatically
generated by this method. Again, constraints on the field strengths are derived and imply the
equations of motion for the D(p+2)-brane when the embedding condition is taken into account.

In the case of M-fivebrane, the 3-formH was introduced in [2, 3] for convenience in describing the
field equations and it was shown that the H-constraint is a consequence of the superembedding
condition [3, 4]. In [2], it was observed that the analogue of the H-constraint arises in the
description of various superbranes and, in particular, the super D-branes naturally accomodate
an F-constraint, where F is a modified two-form field strength. It was also noted in [2] that for
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certain superbranes, e.g. the D8-brane, the F-constraint is needed to put the theory on-shell
[5].

In the approach presented in [1], both the superembedding condition and the H-constraint
arise naturally from the requirement of κ-symmetry. Similarly, here we will show that both
the superembedding condition and the F-constraint arise naturally from the considerations of
κ-symmetry of suitable open branes ending on D-branes.

2 Fundamental Type II Strings Ending on D-Branes

In this section, we consider the fundamental type II strings in ten dimensions with boundary
on a Dp-brane. The string worldsheet is bosonic. We will take its boundary, however, to lie
in a bosonic submanifold of a supermanifold M of dimension (p + 1|16), which in turn is a
submanifold of a target space M of dimension (10|32). We use the notations and conventions of
[2]. In particular, we denote by zM = (xm, θµ) the local coordinates on M , and by A = (a, α)
the target tangent space indices. We use the ununderlined version of these indices to label
the corresponding quantities on the worldsurface. The embedded submanifold M , with local
coordinates zM = (xm, θµ), is given as zM (z).

We shall consider type IIA and type IIB superspaces. The fermionic coordinates consist of two
Majorana-Weyl spinors. In type IIA superspace, these spinors carry opposite chiralities which
can be combined into a single 32 component Majorana spinor, while in type IIB superspace
they are of the same chirality. We will use the fermionic index α in both cases, though in type
IIB superspace it is understood to be a composite index of Majorana-Weyl spinor index and an
SO(2) doublet index, acted on by a direct product of chirally projected Γ-matrices and SO(2)
matrices. Further details of our notation and conventions are given in the Appendix.

2.1 Constraints from κ-Symmetry of the Open String

We consider the following action for the total system of a type II open string ending on a D-brane
(with the target metric taken to be in the the Einstein frame),

S = −
∫

Σ
d2ξ

(√−g + ǫijBij

)

+

∫

∂Σ
dτA, (3)

where ξi (i = 0, 1) are the coordinates of the string worldsheet Σ, τ is the coordinate on the
boundary ∂Σ. We will take both ends of the string to lie on a Dp-brane supermanifold M of
dimension (p+1|16). 1. A is the pullback to ∂Σ of a super one-form defined on M . The induced
metric gij , and the pullbacks Bij , A are defined as:

Bij = Ej
BEi

ABAB ,

A = Eτ
CAC ,

gij = Ei
aEj

bηab , (4)

1In general, the end points may lie on two different Dp-branes or one end-point of a semi-infinite open string
may lie on a Dp-brane while the other end is feely moving. It is sufficent to consider the case where both end-
points are ending on a single Dp-brane for the purpose of deriving the constraints that govern the dynamics of
the Dp-brane. It is straightforward to generalize the discussion for the other two cases.
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where ηab is the Minkowski metric in ten dimensions, and

Ei
A = ∂iz

MEM
A ,

Eτ
A = ∂τz

MEM
A , (5)

where EM
A is the target space supervielbein and EM

A is the worldsurface supervielbein. We
note the useful relation

dξiEi
A|∂Σ = dτEτ

AEA
A|∂Σ . (6)

where EA
A is the embedding matrix which plays an important rôle in the description of the

model. It is defined by
EA

A = EA
M∂Mz

MEM
A, (7)

We consider a κ-symmetry transformation of the form

δκz
a = 0 ,

δκz
α = 1

2 κ
γ(ξ)(1 + Γ)γ

α , (8)

on the string worldsheet Σ, where

(Γ)α
β =

1

2
√−g ǫ

ij (γijP )α
β , (9)

where

P =

{

Γ11 (IIA)
σ3 (IIB)

(10)

Note that the Γ11 acts on a 32 component Majorana index, while σ3 acts on the SO(2) doublet
index of the two 16-component Majorana-Weyl spinors of same chirality.

The boundary κ-transformations will be taken to be of the form as in [1], namely

δκz
a = 0 ,

δκz
α = 1

2κ
γ(σ)

(

1 + Γ(p+1)

)

γ

α on ∂Σ , (11)

where the matrix Γ(p+1) is defined by

Eα
αEα

γ = 1
2

(

1 + Γ(p+1)

)

α

γ . (12)

The matrix Eα
γ is obtained from EA

A which is the inverse of EA
A. For more details, see [3, 4].

The vanishing of the terms on Σ imposes constraints on the torsion super two-form T , and the
super three-form H = dB, such that they are consistent with the equations of motion of the
ten-dimensional type II supergravities [6].

The constraints which follow from κ-symmetry on Σ are

Tαβ
a = −i(Γa)αβ ,

Tαb
c = δb

c χα , (13)

and

Hαβ γ = 0 ,

Hαβa = i(ΓaQ)αβ ,

Hαab =
(

ΓabQχ
)

α
(14)
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where

Q =

{

Γ11 (IIA)
σ1 (IIB)

(15)

and χα is a spinor superfield proportional to the dilaton superfield of the supergravity back-
ground.

The remaining variations are on the boundary. Proceeding exactly as in [1], we learn that they
vanish provided that the following two constraints are satisfied:

Eα
a = 0, (16)

FαB = 0 . (17)

Here,
F = dA−B , (18)

is the modified 2-form superfield strength which satisfies the Bianchi identity

dF = −H . (19)

There will also be a mixture of Dirichlet and Neumann boundary conditions from the require-
ment that the action be stationary when the string field equations hold. These can be derived
straightforwardly as in the case of the open supermembrane which has been discussed in detail
in [1].

2.2 Solution of the Linearised Constraints

In this section, we shall analyse the embedding condition (16) and the the F-constraints (17) in
order to extract the equation of motion for the D-brane worldvolume fields. To determine the
field content, it is sufficient to study the linearised constraints in flat target space limit.

The supervielbein for the flat target superspace is,

Ea = dxa − i

2
dθα(Γa)αβθ

β

Eα = dθα . (20)

Let us choose the physical gauge,

xa =

{

xa

xa
′
(x, θ)

θα =

{

θα

θα
′
(x, θ)

(21)

and take the embedding to be infinitesimal so that EA
M∂M can be replaced by DA = (∂a,Dα)

where Dα is the flat superspace covariant derivative on the worldsurface, provided that the
embedding constraint holds. In this limit the embedding matrix is:

Ea
b →

{

δa
b

∂aX
b′

Eα
b →

{

0
DαX

a′ − i(Γa′)αβ′θβ
′

Ea
β →

{

0
∂aθ

β′

Eα
β →

{

δα
β

Dαθ
β′ (22)
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where

Xa′ := xa
′

+
i

2
θα(Γa′)αβ′θβ

′

. (23)

Using this in the embedding condition (16) we find, at the linearised level,

DαX
a′ = i(Γa′)αβ′θβ

′

. (24)

The Bianchi identity (19) in component form is,

D[AFBC] + T[AB
EF|E|C] = −1

3EC
CEB

BEA
AHABC . (25)

Linearising this equation using (22), we find that the ABC = (αβγ) component of this identity
is satisfied automatically, while the (abγ), (abc) and (αβc) components give

DγFab = −2i ∂[aθ
α′

(Γb]Q)γα′ (26)

∂[cFab] = 0 , (27)

(γb)αβFbc = i (ΓcQ)αβ + (Γa′Q)αβ ∂cX
a′ + 2D(αθ

β′

(ΓcQ)β)β′ (28)

Our strategy is to interpret these equations, together with (24), as the dimensional reduction of
the (N = 1) ten-dimensional super Maxwell system to (p+1) dimensions. The relation between
F and the non-covariant F = dA follows from (18). In component form, (18) reads

FAB = FAB − EB
BEA

ABAB . (29)

These relations are:

Fab = Fab , (30)

Fαβ = Fαβ , (31)

Faα = Faα − i(ΓaQ)αβ′ θβ
′

. (32)

Using (17), the constraints (26), (27) and (30)-(32) can be summarized as

Fαβ = 0 , (33)

Faα = i(ΓaQ)αβ′ θβ
′

, (34)

DγFab = −2i ∂[aθ
α′

(Γb]Q)γα′ (35)

∂[cFab] = 0 . (36)

It is now easy to combine these and (24) to obtain ten dimensional master constraints. To do
this, we first define a ten dimensional vector superfield Aa, and a spinor superfield λ:2

Aa, iXa′ → Aa ,

θα
′ → λα , (37)

where the index α now labels a sixteen component Majorana-Weyl spinor in ten dimensions.
With these definitions, the constraints (24) and (34) combine to

Faα = (σa)αβ λ
β , (38)

2 A is imaginary due to our choice (13) of the torsion.
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where the σ matrices are the ten dimensional chirally projected γ- matrices. This constraint, to-
gether with (28), (33), (35), and (36) are precisely the superspace constraints of ten dimensional
super Maxwell system that satisfy the ten dimensional Bianchi identity dF = 0. In particular,
the constraint (28) is the dimensional reduction of the ten dimensional Bianchi identity

D(αFβ)c +
i

2
(σb)αβ Fbc = 0 , (39)

for c = c. The other component of this equation, i.e. for c = c′, is also satisfied, thanks to the
supersymmetry algebra,

{Dα,Dβ} = i (σa)αβ∂a. (40)

In doing these calculations, we have used the properties of the Γ-matrices, given in the Appendix,
to set the first term on the right hand side of (28) equal to zero.

We conclude that the linearised versions of our two master constraints (17) and (16) describe
precisely the dimensional reduction of the ten-dimensional super Maxwell system to Dp-brane
worldvolume. We expect [2, 5] that the full constraints (16) and (17) imply the full field equations
that follow from the super D-brane actions of [7, 8, 9, 10, 11].

3 Dp-brane ending on a D(p+ 2)-brane

In this section we study an open Dp-brane ending on a D(p+2)-brane and show that it naturally
gives rise to a dual potential on the worldsurface of the (p+ 2)-brane M .

3.1 The Action and κ-symmetry Constraints

The action for a type II κ symmetric D-brane has been constructed in [7, 8, 9, 10, 11]. κ

symmetry implies constraints for the target superspace torsion, the NS-NS three form field
strength and the RR field strength. For an open Dp-brane ending on a D(p + 2)-brane, we
propose the action (here we take the target metric to bein the string frame)

S =

∫

Σ

(

−e−φ
√

−det (gij + Fij) + CeF +mωp+1

)

+

∫

∂Σ
Ap , (41)

where
F = dA−B , (42)

and ωp+1(A, dA) is the Chern-Simons form present for even p in a massive IIA background, with
m being the mass parameter. We define this form by the relation

dωp+1(A, dA) = (edA)p+2 . (43)

In (42), B represents the pullback of the target space super two-form to the bosonic Dp-brane
worldvolume. The potential Ap is identified with the pullback onto the bosonic boundary ∂Σ of
a p-form potential living on the D(p + 2)-brane superworldvolume. Furthermore, it is assumed
that the pullback of the field strength F2 = dA1 − B defined on the superworldvolume of the
D(p+2)-brane onto ∂Σ coincides with F for the Dp-brane restricted to the (bosonic) boundary.
Thus we have both a one-form potential A1 and the dual p-form potential Ap on the (p+2)-brane.
For simplicity, we will use in the following the same symbol F to denote both the two-form field
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strengths on the Dp-brane and on the D(p+2)-brane. It should be clear from the context which
one is being referred to.

For later reference, we record here the definitions of the target space RR field strengths:

G = dC − CH +meB , (44)

where
H = dB . (45)

We also record the Bianchi identity
dG = GH , (46)

Note that the m-dependent terms have cancelled. We use the superspace conventions of [12]
according to which the exterior derivative acts from the right.

The field strenghts F , G,H are invariant under the gauge transformations

δA = λ , δB = dλ , δC = −mλeB , (47)

where λ is a target space super one-form gauge parameter. The field strength G is also invariant
under the gauge transformation

δA = 0 , δB = 0 , δC = eB dµ . (48)

where µ is a target space superform of appropriate rank.

Since the gauge variation of the Chern-Simons form has the form

δωp+1 = λ edA + dX1
p , (49)

for some p-form X1
p (λ,A, dA) defined by this equation, the action (41) is invariant under the

gauge transformations (47) and (48), provided that Ap transforms as

δAp = −mX1
p − µ edA . (50)

Next, we turn to the discussion of κ-symmetry. One can verify that, under a κ-symmetry
transformation, the vanishing of the variations on Σ impose constraints on the supertorsion T ,
the NS-NS field strength H and the RR field strengths G [7, 8, 9, 10, 11] such that they are
consistent with the field equations of the type II supergravities.

The remaining variations are on the boundary, and they take the form

δS =

∫

∂Σ
iκFp+1, (51)

where the modified field strengths Fp+1 for the worldvolume potentials Ap are

Fp+1 := dAp + (CeF )p+1 +mωp+1 , (52)

They satisfy the Bianchi identity

dFp+1 = (GeF )p+2 . (53)

Observe that the m-dependent terms have cancelled. Using iκF = 0, the vanishing of (51)
implies that

FαB1···Bp
= 0 . (54)

In addition, we must have the usual embedding constraint

Eα
a = 0 , (55)

by similar argument to the one given in the preceeding discussion of string ending on branes.
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3.2 An Example: The D2-brane ending on a D4-brane

To illustrate the general formalism introduced above we consider an open D2-brane ending on
a D4-brane. According to the results of the preceeding section there will be two potentials, the
usual one-form potential A1, and the dual two-form potential A2, on the D4-brane. The Bianchi
identities are (although the mass papameter m does not arise in the Bianchi identities (46) and
(53), we will nonetheless set it to zero for simplicity)

dF = −H , (56)

and
dF3 = G4 +G2F . (57)

In addition we are required to take all the components of both F and F3 to be zero, except for
those which have solely vectorial indices.

In the case of the D4-brane the embedding constraint is enough to force the equations of motion
[2, 5] which are usually written in terms of the one-form potential A1. However, there is also
a dual GS version in which one replaces A1 with a two-form A2. Since in the superembedding
formalism the brane is on-shell due to the basic constraint (55) it follows that we should be able
to construct either, or indeed both, versions, and the open brane set-up naturally gives both
potentials.

To analyse the above Bianchi identities we set

Eα
α = uα

α + hα
β′

uβ′
α , (58)

and
Ea

a = ua
a , (59)

where u denotes an element of Spin(1, 9), in either the spin representation or the vector repre-
sentation according to the indices. The basic constraint (55) implies that

Eα
αEβ

βTαβ
c = Tαβ

cEc
c , (60)

from which one finds that [5]

hα
β′ → hαi

β′j = iδi
j(γab)α

β′

hab ,

Tαiβj
c = −iηij

(

(γb)αβmb
c + Cαβm

c
)

. (61)

Here we have introduced the two-step notation for the spinor indices on M . The index α,
running from 1 to 16, is rewritten as the pair αi, where α is a five-dimensional spinor index
(running from 1 to 4) and i is an Sp(4) index, also running from 1 to 4. The m-tensors are given
by [5]

mab = (1− 2y1)ηab + 8(h2)ab ,

ma = −iǫabcdehbchde , (62)

where y1 and y2 denote the two invariants

y1 = tr h2 ,

y2 = tr h4 . (63)
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It is straightforward to check the Bianchi identities for the F ’s using this information. If we take
the target space to be flat for simplicity, the only non-vanishing components of the RR tensors
G4 and G2 are

Gαβcd = −i(Γcd)αβ , (64)

and
Gαβ = −i(Γ11)αβ , (65)

while the non-vanishing component of the NS tensor H is

Hαβc = −i(ΓcΓ11)αβ . (66)

The dimension zero component of the F Bianchi (56) is found to be satisfied if [5]

ma
cFcb = 4hab , (67)

which can be rewritten as

Fab =
4

(1 + 4y21 − 16y2)
((1 + 2y1)hab − 8(h3)ab) . (68)

In obtaining this result, it is useful to note the identity X5 = 1
2X

3trX2− 1
8X(trX2)2+ 1

4XtrX4,
which holds for any 5× 5 matrix X. One also finds that the dimension zero component of the
F3 Bianchi identity (57) is satisfied if

F̃ab =
4

(1 + 4y21 − 16y2)
((1− 2y1)hab + 8(h3)ab) , (69)

where F̃ab is the dual of Fabc,

F̃ab = − 1

3!
ǫabcdeFcde . (70)

It is in fact enough to show that the dimension zero components of these identities are satisfied
to show that that the complete identities are. Furthermore, we know from [2, 5] and from
the string discussion that the worldsurface multiplet for a D4-brane with a one-form potential
satisfying the standard constraints is on-shell. It is easy to confirm that this is still the case here
by considering the linearised limit in which it becomes clear that Fabc is the dual of Fab. Since
the three-form field strength is not a new independent field the version we have derived here is
also on-shell.

4 Comments

In this paper we have shown that the equations describing various branes in superspace can be
derived by considering the κ-symmetry of an open brane of appropriate dimension ending on
the brane of interest. It is remarkable that the κ-symmetry considerations for open superbarens,
within the framework of superembeding approach, give rise to dual formulations of D-branes
automatically. Traditional methods to derive the dual D-brane actions have been considered
in [14]. Here, we find that the potential dual to the usual Born-Infeld vector is furnished in
a natural fashion by a suitable p-form that lives on the boundary of an open D-brane which
supports its own Maxwell field.

The results presented here, in our opinion, also furnish further evidence for the power of su-
perembedding approach to a geometrical and elegant description of all superbranes. Indeed,
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this approach should be applicable to the description of type IIA/B solitonic fivebranes and
type I strings/fivebranes as well. It would also be interesting to consider a limit of the model
considered here to extract an action for self-dual string in six dimensions. Yet another possible
application would be a description of longer superembedding chains or brane networks. Results
in this direction will be reported elsewhere [15].

The formalism described here is a hybrid one involving bosonic worldsurface of the first brane
but the superworldsurface of the brane to be investigated. One may envisage an approach in
which the open brane worldsurface is also elevated into a superspace. This would make the
target space and worldsurface supersymmetry manifest and moreover in this approach the geo-
metrical meaning of κ-symmetry as odd diffeomorphisms of the superworldsuface would become
more transparent. Indeed a purely superspace description of open superbranes ending on other
superbranes is possible, as we will be shown elsewhere [15].
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Appendix

Here we collect the properties of the various Γ matrices in diverse dimensions.

For type IIA, we use the conjugation matrices,

Cαβ =

{−iσ2 × C × η , p = 0, 4, 8
1× C × η , p = 2, 6

(71)

and the Γ-matrices

(Γa)α
β =

{

σ1 × γa × 1
σ3 × 1× γa

′
p = 0, 4, 8

(Γa)α
β =

{

σ3 × γa × 1
σ1 × 1× γa

′
p = 2, 6

(72)

where γa and γa
′
are the γ-matrices, while C and η are the charge conjugation matrices of

SO(p, 1) and SO(9 − p), respectively. The matrices γa and η are symmetric for p = 0, 2, 8 and
antisymmetric for p = 4, 6, while the matrices C and γa

′
are symmetric for p = 0, 6, 8 and

antisymmetric for p = 2, 4.

The chirality matrix Γ11 = Γ0Γ1 · · ·Γ9 is given by

(Γ11)α
β = (σ2 × 1× 1)α

β . (73)

A 32 component Majorana spinor ψ in ten dimensions decomposes as

ψα =

(

ψα

ψα′

)

(74)
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where α = 1, ..., 16 labes the fermionic coordinates of the worldvolume, and α′ = 1, ..., 16 labels
the fermionic transverse directions. The σ- matrix factors of the Γ-matrices act on the doublet
(74). Thus, we have for example,

Γa
αβ′ = 0 , Γa

α′β′ = −Cαβηij , Γa′

αβ′ = Cαβγ
a′

ij (75)

where i = 1, ..., 9 − p label the vector representation of the transverse SO(9− p).

In the case of type IIB Γ-matrices, we suppress the ten dimensional SO(2) doublet index,
and consider the chirally projected 16 × 16 Γ-matrices. The unprimed spinor index labelling
the fermionic worldvolume coordinates, and the primed spinor indices labelling the transverse
fermionic directions are defined by using the projection operators

P± = 1
2 (1± σ3) , (76)

acting on the SO(2) indices I, J = 1, 2, as follows:

ψα = (P+ψ)
α

ψα′ = (P−ψ)
α′

. (77)

Now we can construct the ten dimensional Γ-matrices as:

p = 9 : Γ
a
αβ = γaαβ P+

p = 7 : Γ
a
αβ =

{

σa
αβ̇

P+

Cαβ P−

p = 5 : Γ
a
αβ =

{

γaαβ ηij P+

δβα γ
a′

ij P−

p = 3 : Γ
a
αβ =

{

σa
αβ̇

δ
j
i P+

Cαβ γ
a′

ij P−

p = 1 : Γ
a
αβ =

{

γaαβ δ
j
i P+

Cαβ γ
a′

ij P−
(78)

where γαβ and σ
αβ̇

are the chirally projected γ-matrices appropriate to (p+1)-dimensions. For
p = 9, there is no transverse direction, and consequently a = a = 0, 1, ..., 9. In the case of p = 7,
the two transverse coordinates have been combined into a single complex coordinate. Further
details can be found in [5].
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