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Uncertainty inequalities as entanglement criteria for negative partial-transpose states
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In this Letter, we show that the fulfillment of uncertainty relations is a sufficient criterion for
a quantum-mechanically permissible state. We specifically construct two pseudo-spin observables
for an arbitrary non-positive Hermitian matrix whose uncertainty relation is violated. This method
enables us to systematically derive separability conditions for all negative partial-transpose states
in experimentally accessible forms. In particular, generalized entanglement criteria are derived from
the Schrödinger-Robertson inequalities for bipartite continuous-variable states.
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Quantum mechanics sets a bound on the product of
uncertainties of two non-commuting observables at the
fundamental level. This uncertainty principle must be
fulfilled as a necessary condition for a quantum physical
state [1]. In the present Letter, we want to take a deeper
view of the role of uncertainty relations by asking: Can
the satisfaction of uncertainty relations be regarded as a
sufficient condition for a legitimate quantum state?

Our question can be possibly rephrased in many differ-
ent forms the answers to which may each provide us with
valuable insight to quantum physics. One of them is: Can
there be any non-positive Hermitian operator that satis-
fies all uncertainty relations? In fact, this fundamental
issue was addressed by a number of people for decades,
e.g., in [2], particularly in the phase-space framework of
quantum mechanics [3]. Notably, it has been claimed
that there is a certain non-positive Hermitian operator
that fulfills the uncertainty relations. No one, however,
ever presented a conclusive argument, as all considered
only a restricted class of uncertainty relations involving
the canonical variables in the lowest order. In this Let-
ter, we demonstrate that the satisfaction of uncertainty
relations for all pairs of noncommuting observables is in-
deed sufficient to represent a quantum physical state. In
particular, given an arbitrary non-positive Hermitian ma-
trix, we explicitly construct two pseudo-spin observables
whose uncertainty relation is violated.

Besides its fundamental importance, our explicit con-
struction has an immediate application as entanglement
criteria for the whole class of negative partial-transpose
(NPT) states in arbitrary dimensions. When a given
state ρ is separable, it is written as a convex sum of prod-

uct states, ρ = Σipiρ
(i)
1 ⊗ ρ

(i)
2 · · · ⊗ ρ

(i)
N , where the state

ρ
(i)
j refers to the subsystem j. Under partial transposi-

tion (PT) for a set of subsystems, a separable state still
remains positive, therefore it describes a certain physical
state [4]. A number of entanglement criteria have been
derived based on PT, and remarkably, all the known cri-
teria for continuous variables (CVs) belong to this cat-
egory [5, 6, 7, 8, 9, 10]. In particular, the uncertainty

relations under PT were employed as the necessary con-
dition for separability [6, 7, 8, 9, 11]. Up to now, however,
it was not clear to what extent the uncertainty-relation-
based approach can detect entangled states. Moreover,
given a general mixed entangled state, it is nontrivial to
identify the inequality that can be violated by the state.

In this respect, our construction remarkably shows that
the uncertainty-relation-based approach is in fact suffi-

cient to detect bipartite entanglement for the whole class
of NPT states. More importantly, it enables us to system-

atically derive entanglement conditions for a given NPT
state in experimentally accessible forms. We also show
that a weaker form of our nonlinear inequality is equiv-
alent to a well-known entanglement witness formalism
[12], providing the witness operator with a physical inter-
pretation as such. We specifically address the generaliza-
tion of separability conditions based on the Schrödinger-
Robertson inequalities for CVs [13], which recovers as
special cases the previously known criteria, and illustrate
their utility in detecting entangled states generated via
beam splitter.

Let us start by introducing uncertainty relations.
Given two non-commuting observables, {A,B}, the
widely-known Heisenberg uncertainty relation (HUR)
reads ∆A∆B ≥ 1

2 |〈[A,B]〉|. Less known is the more gen-
eralized Schrödinger-Robertson (SR) inequality [13],

〈(∆A)2〉〈(∆B)2〉 ≥
1

4
|〈[A,B]〉|2 +

1

4
〈∆A∆B〉2S , (1)

where the covariance 〈∆A∆B〉S is defined in a symmetric
form, 〈∆A∆B〉S ≡ 〈∆A∆B + ∆B∆A〉. Clearly, the SR
inequality generally provides a stronger bound on the
product of uncertainties than the HUR [8].

First, we consider the simplest case of 2-dim systems,
which provides us with a valuable insight to the current
issue. A general 2 × 2 Hermitian matrix ρ is given in a
form

ρ =

(

a c

c∗ b

)

, (2)
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(a, b: real, c ≡ cr + ici: complex). For this matrix to
represent a physical state, two conditions must be met:
(i) Tr{ρ} = a + b = 1 and (ii) Det [ρ] = ab − |c|2 ≥ 0.
Throughout the present paper, we assume that the trace
condition is met, Tr{ρ} = 1, which can be relaxed later.
Then, the only remaining condition is (ii), which turns
out to be just a SR-inequality in Eq. (1): Take the
angular momentum operators Si = h̄

2σi, where σi is
the Pauli spin operator (i = x, y, z). Then, one ob-

tains (∆Sx)
2(∆Sy)

2 = h̄4

16 (1− 4c2r)(1− 4c2i ), 〈[Sx, Sy]〉 =

i h̄
2

2 (a−b), and 〈∆Sx∆Sy〉S = 2h̄2crci. On inserting these
results to Eq. (1), one immediately finds ab − |c|2 ≥ 0,
the condition (ii). Here, the use of the SR inequality is
important as one would instead have ab−|c|2+4c2rc

2
i ≥ 0

through the HUR [14, 15].
Therefore, we have the proposition that the physical

realizability for 2-dim systems is equivalent to the satis-
faction of the single SR inequality between Sx and Sy.
At this point, it is worthwhile to observe that the two
Hermitian operators Sx and Sy are represented using the
basis states, |0〉 and |1〉, as Sx = h̄

2 (|0〉〈1|+ |1〉〈0|) and

Sy = h̄
2i (|0〉〈1| − |1〉〈0|), which will be used below to con-

struct two pseudo-spin observables to our end.
Now, let us turn our attention to a general Hermitian

matrix ρ of arbitrary dimension N with Tr{ρ} = 1. In
general, ρ has the real eigenvalues λi and the correspond-
ing eigenstates |λi〉 (i = 1, · · · , N), i.e. ρ|λi〉 = λi|λi〉,
with the orthonormality condition 〈λi|λj〉 = δij . Due
to the trace condition, Tr{ρ} = Σiλi = 1, there always
exists at least one positive eigenvalue for ρ.
Let us define two pseudo-spin observables H1 and H2

in the Hilbert space spanned by two eigenstates |λ1〉 and
|λ2〉 as

H1 = α1|λ1〉〈λ2|+ α∗
1|λ2〉〈λ1|

H2 = α2|λ1〉〈λ2|+ α∗
2|λ2〉〈λ1|, (3)

where α1 and α2 are complex constants. Denoting
x ≡ Re(α1α

∗
2) and y ≡ Im(α1α

∗
2), the commuta-

tor [H1, H2] = 2iy (|λ1〉〈λ1| − |λ2〉〈λ2|) and the an-
ticommutator {H1, H2} = 2x (|λ1〉〈λ1|+ |λ2〉〈λ2|) fol-
low together with H2

i = |αi|
2 (|λ1〉〈λ1|+ |λ2〉〈λ2|) (i =

1, 2). As ρ is diagonal in the eigenstate basis, ρ =
diag{λ1, λ2, · · · , λN}, it is straightforward to show

〈(∆Hi)
2〉 = 〈H2

i 〉 = |αi|
2(λ1 + λ2)

〈[H1, H2]〉 = 2iy(λ1 − λ2)

〈∆H1∆H2〉S = 2x(λ1 + λ2). (4)

The SR inequality is now reduced to

4y2λ1λ2 ≥ 0. (5)

The above inequality is clearly violated if λ1λ2 < 0, that
is, the case that one eigenvalue is positive and the other
negative. Therefore, we deduce the fact that the satisfac-
tion of all SR inequalities is sufficient and necessary to

endorse a Hermitian matrix of unit trace as a legitimate
quantum state.
Note that one could relax the unit-trace condition to

any positive trace if the normalization of the matrix were
allowed. Furthermore, in Eq. (4), we observe another in-
teresting point for a non-positive Hermitian matrix. If
two or more eigenvalues are negative, there exists an ob-
servable, Hi (i = 1, 2), whose variance becomes negative.
This is of course a clear signature of being unphysical, as
all physical observables must have nonnegative variances.
Therefore, for a general trace-class Hermitian operator,

the satisfaction of all uncertainty relations together with

the positivity of variances is sufficient and necessary as

a legitimate quantum state.

Aside from its fundamental importance, our explicit
construction of the two observables in Eq. (3) can have
some practical applications. One of them is the deriva-
tion of entanglement condition on demand for an NPT
state in arbitrary dimensions. Given a certain N -partite
state ρ, one may wish to determine whether the sys-
tem possesses bipartite entanglement between two par-
ties, one party S1 composed of the subsystems 1, · · · , j
and the other S2 of the subsystems j+1, · · · , N . Suppose
that the state is biseparable as ρ = Σipiρ

i
S1

⊗ ρiS2
. Then

by taking transposition only on S2, the density opera-
tor transforms as ρPT = Σipiρ

i
S1

⊗ (ρiS2
)T, which is still

positive definite. In other words, a separable state still
remains physical under PT. All the uncertainty relations
must therefore be fulfilled as

〈(∆H1)
2〉PT〈(∆H2)

2〉PT

≥
1

4
|〈[H1, H2]〉PT|

2 +
1

4
〈∆H1∆H2〉

2
S,PT, (6)

where the subscript PT denotes the quantum average
over ρPT as 〈Ô〉PT ≡ Tr{ÔρPT} (Ô: arbitrary opera-
tor). The inequality (6) must be satisfied by a separable
state for any arbitrary operators H1 and H2, and it thus
becomes a separability condition in general [8].
Note that PT preserves the trace and the hermicity

of the density operator. Then, for a general entangled
state that has some negative eigenvalues under PT, there
always exists at least one uncertainty relation that is vi-

olated by the NPT state. This means that uncertainty-
relation-based approach to detection of bipartite entan-
glement is sufficient for the whole class of NPT states.
Furthermore, our construction in Eq. (3) enables us to
derive an uncertainty inequality as separability condition
for a given NPT state as follows.
Given an NPT state ρ, one first obtains the eigenval-

ues and the corresponding eigenstates for the PT den-
sity operator. Then take any two eigenstates for λ1 > 0
and λ2 < 0, and construct the two observables as H1 =
1
2 (|λ1〉〈λ2|+ |λ2〉〈λ1|) and H2 = 1

2i (|λ1〉〈λ2| − |λ2〉〈λ1|).
Then, the SR inequality in Eq. (6) is violated by the
given state. Eq. (6) can be further expressed in terms of
quantum averages of a normal density operator using the
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general relation Tr{ÔρPT} = Tr{ÔPTρ}, or

Tr{|ij〉〈i′j′|ρPT} = Tr{|ij′〉〈i′j|ρ}, (7)

where |i〉 and |i′〉 are the basis states for party S1, and
|j〉 and |j′〉 the ones for party S2. The inequality (6) can
then be expressed in terms of the observables measured
with respect to the given state ρ, instead of ρPT.
As an illustration, let us consider a class of tri-

partite mixed state ρGHZ = p|GHZ〉〈GHZ| + 1−p
8 I,

where |GHZ〉 = 1√
2
(|000〉+ |111〉). With respect to

bipartition {AB,C}, the density operator under PT
has two different eigenvalues, λ+ = 1+3p

8 (degener-

ate) and λ− = 1−5p
8 , thus becomes an NPT state

for p > 1
5 . Taking two eigenstates for ρPT

GHZ, |λ±〉 =
1√
2
(|001〉 ± |110〉), one obtains two observables H1 =

1
2 (|λ+〉〈λ−|+ |λ−〉〈λ+|) = 1

2 (|001〉〈001| − |110〉〈110|)
and H2 = 1

2i (|λ+〉〈λ−| − |λ−〉〈λ+|) =
1
2i (|110〉〈001| − |001〉〈110|). Then, using the method
outlined above, the separability condition is obtained as

(4Az −B2
z )(4Az − C2

xy) ≥ 16D2
xy +B2

zC
2
xy, (8)

where Az ≡ 〈I + σ1zσ2z − σ1zσ3z − σ2zσ3z〉, Bz ≡ 〈σ1z +
σ2z − σ3z − σ1zσ2zσ3z〉, Cxy ≡ 〈σ1xσ2xσ3y + σ1xσ2yσ3x +
σ1yσ2xσ3x − σ1yσ2yσ3y〉, and Dxy ≡ 〈σ1xσ2xσ3x −
σ1xσ2yσ3y−σ1yσ2xσ3y−σ1yσ2yσ3x〉. The inequalities for
the other two bipartitions are obtained simply by taking
permutations, and all those separability conditions are
violated by the state ρGHZ for p > 1

5 , thereby character-
izing to some extent its tripartite entanglement.
The above method holds valid for any NPT states in

arbitrary dimensions. One can also derive a weaker form
of separability condition as

〈H2
1 〉PT〈H

2
2 〉PT ≥

1

4
|〈[H1, H2]〉PT|

2. (9)

The inequality in (9) is weaker than the one in (6), as
〈(∆Hi)

2〉PT ≤ 〈H2
i 〉PT (i = 1, 2): If the inequality (9) is

violated, so is the inequality (6), but the converse is not
always true [16]. It is now straightforward to show that
the inequality in (9) is reduced to Tr{W1ρ}Tr{W2ρ} ≥ 0,
where Wi = |λi〉〈λi|

PT. Since λ1 is taken as a positive
eigenvalue for ρPT, it is further reduced to Tr{W2ρ} ≥ 0,
which is none other than the formalism of the entangle-
ment witness [12]. In other words, the class of entan-
glement witness operator based on the PT of the entan-
gled state |λ2〉 can be given a physical interpretation as
a weaker form of uncertainty inequality.
Note that it is always more advantageous to use the

nonlinear form of the inequality (6) than the linear en-
tanglement witness [12], as the former can be more ro-
bust against experimental noises in practice. Moreover,
one can also show that any pair of two orthogonal vectors
with the condition 〈λ1|ρ|λ1〉 > 0 and 〈λ2|ρ|λ2〉 < 0, not
necessarily eigenvectors as used so far, can be employed

in constructing two pseudo spin observables in Eq. (3).
As a consequence, a richer class of separability inequali-
ties may be derived for a given NPT state, which will be
addressed elsewhere.
In principle, the above method can also be applied

to CVs which can include both finite- and infinite-
dimensional systems. For finite-dimensional CV states,
e.g., the single-photon entangled state 1√

2
(|0〉|1〉+ |1〉|0〉)

[10], our method can generally work as a practical
tool to derive the separability condition. For infinite-
dimensional CV states, however, except for symmet-
ric states, e.g. EPR state, the computation of the
eigenstates may be less tractable than finite-dimensional
systems. From another perspective, nevertheless, one
can establish an alternative approach still relying on
the uncertainty principle. For instance, using a gen-
eral form of two-mode state |λ〉 = ΣC′

mna
†m
1 a

†n
2 |0, 0〉

and |0〉〈0|i =: e−a
†
i
ai : (i = 1, 2, :: denotes normal-

ordering), two general observables H1 and H2 can
be expressed in terms of the dyadic |λ1〉〈λ2| =

Σ (−1)k+k
′

k!k′ ! CmnDpqa
†(m+k)
1 an+k

1 a
†(q+k′)
2 a

p+k′

2 and its con-

jugate |λ2〉〈λ1|. Using the relation 〈a†m1 an1a
†p
2 a

q
2〉ρPT =

〈a†m1 an1a
†q
2 a

p
2〉ρ [5, 7], one can derive the separability con-

ditions via the uncertainty relation of H1 and H2. Re-
markably, the satisfaction of them for arbitrary Cmn and
Dpq is sufficient and necessary for the separability of two-
mode NPT states.
Instead of pursuing a full generalization, left for future

work, we demonstrate here that even a little generaliza-
tion can work out a wide class of important inequalities
for CVs. We illustrate the utility of those inequalities by
detecting two-mode entanglement generated via a beam-
splitter. It is known that a single-mode nonclassical state
is sufficient to generate an entangled state via 50:50 beam
splitter with the other input in vacuum state [17], how-
ever, the entanglement detection at the output is another
nontrivial issue to resolve. In fact, it was also conjectured
that the whole class of entangled states via beam-splitter
is NPT, which is, though, not yet rigorously proved [18].
In this respect, the uncertainty-relation-based approach
is very relevant to such class of entangled states.

Let us first define X
(m)
i ≡ a

†m
i + ami and Y

(m)
i ≡

−i(a†mi −ami ) for two modes i = 1, 2, and take two Hermi-

tian operators, H1 = X
(m)
1 +X

(n)
2 and H2 = Y

(m)
1 +Y

(n)
2 .

The separability condition then follows from the SR in-
equality, as

∆2H1∆
2H̃2 ≥

〈

C
(m)
1 + C

(n)
2

〉2

+ 〈∆H1∆H̃2〉
2
S , (10)

where H̃2 ≡ Y
(m)
1 −Y

(n)
2 , and C

(m)
i ≡ [ami , a

†m
i ] (i = 1, 2).

For m = n = 1, a weaker form of the above inequality,
i.e., the HUR version ignoring the last term in (10), is
reduced to the one derived by Mancini et al. [19] which is
known to be stronger than the ones by Duan et al. [20].
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For another class of inequalities, take H1 = a
†m
1 a

†n
2 +

am1 an2 and H2 = −i(a†m1 a
†n
2 − am1 an2 ). Then, one obtains

(

∆2Xmn + 〈C
(m)
1 C

(n)
2 〉

)(

∆2Ymn + 〈C
(m)
1 C

(n)
2 〉

)

≥
〈[

am1 an2 , a
†m
1 a

†n
2

]〉2

+ 〈∆Xmn∆Ymn〉
2
S , (11)

whereXmn ≡ a
†m
1 an2+am1 a

†n
2 , Ymn ≡ −i(a†m1 an2−am1 a

†n
2 ).

For m = n = 1, the HUR version of (11) is reduced to
the one in [6, 7], and the SR version to the one in [8].
Furthermore, for general m and n, the sum form of HUR
version, which is generally weaker than the product form
[7], is reduced to the class of inequalities in [10].
The above inequalities in (10) and (11) can success-

fully detect general two-mode entanglement out of a
beam-splitter. Using the inequality (10), one can de-
tect entanglement generated by the whole class of non-
classical states with arbitrary-order amplitude squeezing
[21], 〈: (∆(ame−iφ + a†meiφ))2 :〉 < 0. m = 1 case
refers to the normal quadrature squeezing and m = 2
to the amplitude-squared squeezing [22]. On the other
hand, the inequality (11) detects entanglement by the
class of arbitrary-order nonclassical photon statistics,
〈: (∆a†mam)2 :〉 < 0 (m = 1: sub-Poissonian). An
efficient experimental scheme was proposed to measure
general correlation functions of arbitrary orders in [23],
which may be suitable for the test of above inequalities.
Finally, let us briefly discuss how the entanglement

detection based on the uncertainty relations can be
connected to the formalism by Shchukin and Vogel
[5]. For a positive Hermitian operator ρ, the condition
Tr{F̂ †F̂ ρ} ≥ 0 must be met for an arbitrary operator F̂ .
Shchukin and Vogel have derived a hierachy of sufficient
and necessary conditions for the positivity under PT by
considering a general form of F̂ . A practical difficulty,
though, would be to single out an adequate condition vi-
olated by a given state among all of them. On the other
hand, we showed that only a special class of the operator
F̂ = c1∆H1+c2∆H2 is sufficient to detect non-positivity,
for which Tr{F̂ †F̂ ρ} ≥ 0 is reduced to the SR inequal-
ity (1) by requiring positiveness for any ci’s (i = 1, 2).
Remarkably, our ”state-specific” method, which is pow-
erful particularly for finite-dimensional systems, directly
relates a single separability condition to any given state
in a more physically intuitive term, uncertainty principle.
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