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We propose a method for extrating an errorless seret key in a ontinuous-variable quantum

key distribution protool, whih is based on Gaussian modulation of oherent states and homodyne

detetion. The ruial feature is an eight-dimensional reoniliation method, based on the algebrai

properties of otonions. Sine the protool does not use any postseletion, it an be proven seure

against arbitrary olletive attaks, by using well-established theorems on the optimality of Gaussian

attaks. By using this new oding sheme with an appropriate signal to noise ratio, the distane for

seure ontinuous-variable quantum key distribution an be signi�antly extended.

I. INTRODUCTION

A major pratial appliation of quantum information

siene is quantum key distribution (QKD) [1℄, whih

allows two distant parties to ommuniate with abso-

lute privay, even in the presene of an eavesdropper.

Most QKD protools enode information on disrete vari-

ables suh as the phase or the polarization of single pho-

tons and are urrently faing tehnologial hallenges,

espeially the limited performanes of photodetetors in

terms of speed and e�ieny in the single photon regime.

A way to relieve this onstraint is to enode information

on ontinuous variables suh as the quadratures of oher-

ent states [2℄ whih are easily generated and measured

with remarkable preision by standard optial teleom-

muniation omponents. In suh a protool, Alie draws

two random values XA, PA with a Gaussian distribu-

tion N (0, VA) and sends a oherent state entered on

(XA, PA) to Bob. Bob then randomly hooses one of the

two quadratures and measures it with a homodyne de-

tetion. After the measurement, he informs Alie of his

hoie of quadrature. Alie and Bob then share orre-

lated ontinuous variables from whih a seret key an

in priniple be extrated, provided that the orrelation

between the shared data is high enough. This ondition

is the equivalent of the maximal error rate allowed for

the BB84 protool for example [3℄.

Currently, the main bottlenek of ontinuous-variable

protools lies in the lassial post-proessing of informa-

tion, more preisely in the reoniliation step whih is

onerned with extrating all the available information

from the orrelated random variables shared by the le-

gitimate parties at the end of the quantum part of the

protool. This lassial step must not be underestimated

sine an imperfet reoniliation limits both the rate and

the range of the protool.

Two di�erent approahes have been used so far to ex-

trat binary information from Gaussian variables. Slie

reoniliation [4, 5℄ onsists in quantizing ontinuous

variables and then orreting errors on these disrete

variables. It allows in priniple to transmit more than

1 bit per pulse, and to extrat all the information avail-

able, but only if the quantization takes plae in R
d
with

d ≫ 1, whih results in an unaeptable inrease of om-

plexity in pratie. Therefore the present protools use

d = 1, resulting in �nite e�ieny, whih limits the range

to about 30 km. The seond approah uses the sign of

the ontinuous variable to enode a bit, and it has the

advantage of simpliity. It an also be e�ient, at least

in the ase where the signal to noise ratio is low enough,

so that less than 1 bit per pulse an be expeted. But

sine the Gaussian distribution is entered around 0 and
most of the data have a small absolute value, it beomes

di�ult to disriminate the sign when the noise is im-

portant. As a onsequene, it has been proposed to use

post-seletion [6, 7, 8, 9, 10, 11℄ to get rid of the "low

amplitude" data, and keep only the more meaningful

"large amplitude" data. However, this approah has a

major drawbak: sine the optimal attak against suh

a post-seleted protool is unknown, the seret rate an

be alulated only for ertain types of "restrited" at-

taks [7, 11℄. So the seurity is signi�antly weaker than

the initial "non post-seleted" Gaussian-modulated pro-

tool, where one an use the optimality of Gaussian at-

taks [12, 13℄ in order to prove that the protool is seure

against arbitrary general olletive attaks.

Here we are interested in the problem of extending

ontinuous-variable QKD over longer distanes without

post-seletion, but with proven seurity. The main idea is

as follows : whereas Gaussian random values are entered

around 0, this is not the ase for the norm of a Gaussian

random vetor. Suh a vetor lies indeed on a shell whih

gets thinner as the dimension of the spae inreases (see

Fig. 1). Thus, if one performs a lever rotation (see Fig.

2) before enoding the key in the sign of the oordinates,

one automatially gets rid of the small absolute value

oordinates without post-seletion. Whereas this e�et

gets stronger and stronger for large dimensions, we will

show that we are intrinsially limited to performing suh

rotations in R
8
. As we will show below, this is related

http://arxiv.org/abs/0712.3823v2
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Figure 1: (Color online) Probability distributions

χ(1), χ(2), χ(4), χ(8) of the radius of a Gaussian vetor

of dimension 1, 2, 4 and 8. When the dimension goes to

in�nity, the distribution gets loser to a Dira distribution.

b)
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x1 x1 x1
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Figure 2: (Color online) Consider two suessive statesX1, X2

sent by Alie: the states really sent orrespond to X1 >
0, X2 > 0. Figures a), b) and ) show the four possible states

Bob needs to disriminate after Alie has sent him some side

information over the lassial authentiated hannel. a) or-

responds to slie reoniliation [4, 5℄: the four states are well

separated but the Gaussian symmetry is broken, b) orre-

sponds to the ase where the information is enoded on the

sign of the Gaussian value [7℄: the symmetry of the problem is

preserved but some states are very lose and thus di�ult to

disriminate, ) orresponds to the approah presented in this

paper where the states are well separated and the symmetry

is preserved.

to the algebrai struture of otonions. For our purpose,

working in R
8
is already a signi�ant improvement sine

it allows to exhange seure seret keys over more than 50

km, without post-seletion, and with a reasonable om-

plexity for the reoniliation protool.

The paper is organized as follows: Setion II presents

the link between the reoniliation and the seurity of the

protool, Se. III desribes the reoniliation in the ase

of disrete variables QKD protools, Se. IV shows how

to generalize this approah to Gaussian variables proto-

ols, and Se. V presents a realisti reoniliation proto-

ol for ontinuous-variable QKD, whose performane is

analyzed in Se. VI.

II. RECONCILIATION AND SECURITY

Let x and y be the lassial random variables assoi-

ated with the measured quantities of the legitimate par-

ties Alie and Bob, and let E be the quantum state in

possession of the eavesdropper. It has been shown [12, 13℄

that the theoretial seret key rateK obtained using one-

way reoniliation is bounded from below by

K ≥ I(x : y)− S(x : E) ≡ K
th

.

Here I(x : y) and S(x : E) refer, respetively, to the

Shannon mutual information [14℄ between lassial ran-

dom values x and y and to the quantum mutual infor-

mation [15℄ between x and the quantum state E. Reall
that S(x : E) an also be seen as the Holevo quantity

assoiated to the quantum measurements performed by

Eve. The above bound orresponds to the ase where

Alie and Bob are "lassial" whereas Eve is "quantum",

whih means that Eve is allowed to use a quantum mem-

ory and a quantum omputer to perform her attak. This

seret key rate is valid for one-way reoniliation: the

lassial ommuniation between Alie and Bob is there-

fore restrited to be unidiretional, and not interative.

For the protool desribed above, the quantum mutual

information between Bob and Eve is smaller than be-

tween Alie and Eve. As a onsequene, one will use

reverse reoniliation [2℄: the �nal key is extrated from

Bob's data, and Bob sends extra information to Alie on

the authentiated lassial hannel to help her orret her

"errors". The seret key rateK
th

is seure against olle-

tive attaks. Note that it is onjetured that, as it is the

ase for disrete variables protools [16℄, oherent attaks

are not more powerful than olletive attaks [12, 13, 17℄,

whih would imply thatK
th

is the seure key rate against

the most general attaks allowed by quantum mehanis.

An important property of the ontinuous-variable

QKD is that for a reasonably low exess noise (whih is

the noise not diretly aused by the losses), K
th

remains

stritly positive for any value of the transmission meaning

that there is not any theoretial limitation to the range

of this protool. However K
th

is relevant only in the ase

where one has aess to a perfet reoniliation sheme,

allowing Alie and Bob to extrat all the information

available in their orrelated data. How should K
th

be

modi�ed in the ase of a real-world imperfet reonilia-

tion sheme? In order to extrat a seret from their data,

Alie and Bob have aess to a lassial authentiated

hannel and have agreed on a partiular ode CN whose

size N is suh that log2(N) ≤ I(x; y). The priniple of

the reoniliation protool is the following: Alie hooses

randomly an element U ∈ CN and sends some informa-

tion α to Bob who should be able to e�iently reover

U from the knowledge of y and α, i.e., H(U |y, α) = 0,
the onditional entropy of U given y and α is null, or

equivalently I(U : y, α) = H(U). In this ase, Alie and

Bob have extrated a ommon string U from their data,

whih they will be able to turn into a seret key thanks to

privay ampli�ation, but they have also given the extra
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information α to the eavesdropper. As a onsequene,

the e�etive key rate after the reoniliation beomes:

K ≥ H(U)− S(U : E,α) ≡ K
real

.

Unfortunately, one always has K
real

< K
th

and K
real

reahes 0 for a �nite hannel transmission. In other

words, the range of the protool is limited beause of

the imperfet reoniliation. It should be noted that this

is one of the main di�erenes with disrete variables pro-

tools whih are limited by tehnology, and more parti-

ularly by the dark ounts of the photodetetors. A real

di�ulty lies in the estimation of S(U : E,α). One spei-
�ity of QKD is that it allows Alie and Bob to estimate

an upper bound of S(x : E) by omparing a subset of

their data. However it is generally impossible to dedue

S(U : E,α) from it. One exeption is when U and α are

independent, in whih ase the following lemma applies.

Lemma 1. Let A and B be two lassial random val-

ues, let E be a random quantum state. If A and B are

independent, then S(A : E,B) ≤ S(A,B : E).

Proof. The hain rule for mutual quantum information

reads:

S(A,B : E) = S(B : E) + S(A : E|B) ≥ S(A : E|B)

where the inequality results from the non-negativity of

mutual quantum information. Then, by de�nition of on-

ditional mutual information,

S(A : E|B) = S(A|B)− S(A|E,B) = S(A)− S(A|E,B)

= S(A : E,B)

where the seond equality follows from independene of

A and B.

In the reoniliation protool, U is hosen randomly by

Alie, independently of x, meaning that S(x, U : E) =
S(x : E). Then, sine α is a funtion of x and U , the
data-proessing inequality gives S(U, α : E) ≤ S(x : E).
In addition, in the ase where α is independent of U ,
lemma (1) gives: S(U : E,α) ≤ S(x : E).

If one de�nes the e�ieny of reoniliation β = H(U)
I(x:y) ,

one obtains �nally

K
real

≥ βI(x : y)− S(x : E),

whih is the usual expression of the seret key rate taking

into aount the imperfet reoniliation protool.

III. RECONCILIATION OF BINARY

VARIABLES

Reoniliation is a means for Alie and Bob to extrat

available ommon information from their orrelated data.

In the ase when the data onsists of binary strings, it

is very similar to the problem of hannel oding where

the goal is for Alie to send information to Bob through

a noisy hannel. Channel oding is solved by appropri-

ately hoosing subsets of binary strings: odes. When

Alie restrits her messages to ode words, Bob an re-

over them with high probability if the ode size is not

too large, given the hannel noise. More preisely, Shan-

non's theorem [18℄ states that the size of the ode |C| is
bounded by the mutual information between Alie and

Bob: log2(|C|) ≤ I(x : y). The problem of hannel od-

ing has been extensively studied during the past 60 years,

but only reently were disovered odes almost ahieving

Shannon's limit while being e�iently deoded thanks to

iterative algorithms: turboodes [19℄ and Low Density

Parity Chek (LDPC) odes [20℄.

The main di�erene between reoniliation and han-

nel oding is that in the ase of reoniliation, Alie does

not hoose what she sends and thus annot restrit her

messages to ode words of a given ode. However, if one

wants to take advantage of the ode formalism, know-

ing what she sent, Alie an desribe to Bob a ode for

whih her word is a ode word. Thus if Bob an guess

what odeword Alie sent, they will e�etively share a

ommon sequene of bits. This is the method used for

disrete QKD protools. Indeed, given a linear ode C
and its parity hek matrix H , the group F

n
2 = {0, 1}n of

possible states sent by Alie an be seen as the produt

of ode words and syndromes: if Alie sends x to Bob,

she an tell him the syndrome of x whih is H · x thus

de�ning a oset ode ontaining x. This oset ode is the
ensemble: {y ∈ F

n
2 |H · y = x}. An equivalent solution is

for Alie to randomly hoose a ode word U from a given

ode and to send U ⊕ x = α to Bob where ⊕ represents

the addition in the group F
n
2 . Bob then omputes y ⊕ α

whih allows him to retrieve U if the ode is well adapted

to the hannel between Alie and Bob. This oset oding

sheme was initially suggested by Wyner [21℄.

In a way, the side information (information sent by Al-

ie over the lassial authentiated hannel) orresponds

to a hange of oordinates allowing one to transform the

initial reoniliation problem into the well-known prob-

lem of hannel oding.

Two properties are essential for this approah to work:

�rst, the probability distribution of the states sent by

Alie is uniform over F
n
2 ; seond, the total spae is a

partition of the osets of a linear ode. Thus, any word

an be seen as a unique odeword for a unique oset ode

and telling whih oset ode ontains the word gives zero

information about the odeword. The question is then

whether or not it is possible to generalize this approah

to ontinuous variables.
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IV. RECONCILIATION OF GAUSSIAN

VARIABLES

A. Gaussian modulation

One of the main di�erenes between disrete and on-

tinuous QKD protools is the probability distribution

of Alie's variables: the uniform distribution on F
n
2 is

hanged into a nonuniform Gaussian distribution on R
n
.

This is rather unfortunate sine the uniformity of the

distribution on F
n
2 is an essential assumption in order to

prove that the side information (e.g., the syndrome) Alie

sends to Bob on the publi hannel does not give any rel-

evant information to Eve about the ode word hosen by

Alie. An interesting property of the Gaussian distribu-

tion N (0,1n) on R
n
whose ovariane matrix is the iden-

tity is that it has a spherial symmetry in R
n
. In other

words, if the vetor x follows suh a distribution, then the

normalized random vetor

x
|x| has a uniform distribution

on the unit sphere Sn−1
of R

n
. Thus, spherial odes,

odes for whih all odewords lie on a sphere entered

on 0, an play the same role for ontinuous-variable pro-

tools as binary odes for disrete protools. Some very

good odes are known for binary hannels: LDPC odes

and turboodes both almost ahieve the Shannon limit

and an be e�iently deoded thanks to iterative deod-

ing algorithms. Are there odes with similar qualities

among the spherial odes? The answer is almost. There

is indeed a anonial way to onvert binary odes into

binary spherial odes and this an be ahieved thanks

to the following mapping of F
n
2 onto an isomorphi image

in the n-dimensional sphere:

F
n
2 → Sn−1 ⊂ R

n, (b1, . . . , bn) 7→
(

(−1)b1√
n

, . . . ,
(−1)bn√

n

)

.

Then, as LDPC odes and turboodes an both be op-

timized for binary symmetri hannels, they an also be

optimized for a binary phase shift keying (BPSK) modu-

lation, where the bit 0 (1) is enoded into the amplitude

+A (−A), and where the hannel noise is onsidered to

be additive white Gaussian noise (AWGN). Thus, one has

aess to a family of very good odes (in the sense that

they are very lose to the Shannon limit) for whih very

e�ient iterative deoding algorithms are available. It is

important to note that there are atually two di�erent

Shannon limits onsidered here depending on the modu-

lation, BPSK or Gaussian modulation, but these limits

beome asymptotially lose when the signal-to-noise ra-

tio (SNR) is small. Thus, at low SNR, a binary ode

optimized for a BPSK modulation an almost ahieve

the Shannon limit for a Gaussian modulation.

A remark is in order : the use of binary odes as de-

sribed above limits the rate of the ode to less than 1
bit per hannel use, whereas one of the interests of a

Gaussian modulation is preisely to get rid of this limit.

Atually, one ould use nonbinary spherial odes, but

their deoding is more ompliated and thus slows down

the reoniliation protool. In addition, this is not really

needed, sine in the high loss senario whih interests us

most here, the seret key rate is always muh less than 1

bit per hannel use. Consequently the use of binary odes

turns into an advantage, sine they an be deoded very

e�iently. In the low-loss ase however, that is for short

distanes, one an hope to distill more than 1 bit per

hannel use, and the "usual" approah [22℄ will be more

suitable than the one desribed in the present artile (see

also disussion in Se. VI).

Now that we have a probabilisti spae with a uniform

probability distribution and a family of odes for this

spae, we need to see if the total spae is a partition of

a ode and of its "generalized oset odes". First, the

anonial hyperube of R
n
(whih is the image of F

n
2 by

the isomorphism de�ned above) is desribed as a parti-

tion of a linear ode and its osets. The question that

remains to be solved is whether or not the unit sphere is

a partition of suh hyperubes. Another way to see this

problem is the following: given a random point in Sn−1
,

is there a hyperube insribed in the sphere for whih

this point is a vertex. Surely there are suh hyperubes,

many in fat. Atually, the manifold of these hyperubes

is a [(n − 1)(n − 2)/2]-dimensional manifold (this is the

dimension of the subgroup of orthogonal group On that

transports the anonial hyperube onto the ensemble of

hyperubes ontaining the point in question).

Yet another way to express the problem is the follow-

ing: given two points x, y ∈ Sn−1
, is it possible to �nd

an orthogonal transformation mapping x to y? One an

immediately think of transformations suh as the re�e-

tion aross the mediator hyperplane of x and y. Unfor-

tunately, suh an orthogonal transformation gives some

information about x and y as soon as n > 2 (this is

linked to the phenomenon of onentration of measure

for spheres in dimensions n > 2), and therefore annot

be used by Alie as legitimate side information, whih

should be independent from the key in order to ful�ll the

hypothesis of Lemma 1.

A orret solution would then be to randomly hoose

an orthogonal transformation with uniform probability

in the ensemble of orthogonal transformations mapping

x to y. This an be done in the following way: one �rst

draws a random orthogonal transformation mapping x to

some random x′
. Then one omposes this transformation

with the re�etion aross the mediator hyperplane of x′

and y. Although theoretially orret, this proedure is

not doable in pratie for n ≫ 1 sine generating a ran-

dom orthogonal transformation on R
n
is a omputational

demanding task requiring to draw an n×n Gaussian ran-

dom matrix and to alulate its QR deomposition (i.e.,

its deomposition into an orthogonal and a triangular

matrix) whih is an operation of omplexity O(n3).

A pratial solution involves the following: for eah

word x ∈ Sn−1
sent by Alie, for eah ode word

U ∈ Sn−1
hosen by Alie (not neessarily a binary ode-

word), there should exist an ontinuous appliation M
of the variables x and U suh that M(x, U) ∈ On and
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M(x, U) · x = U . Then if Alie gives M(x, U) to Bob,

one has the ontinuous equivalent of U⊕x in the disrete

protool. The following theorem shows that the existene

of suh an appliation M restrits the possible values of

n to be 1, 2, 4 or 8.

Theorem 2. If there exists a ontinuous appliation

M : Sn−1 × Sn−1 → On, (x, y) 7→ M(x, y)

suh that M(x, y) · x = y for all x, y ∈ Sn−1
, then n =

1, 2, 4 or 8.

The proof of this theorem uses a result from Adams

[23℄, whih quanti�es the number of independent vetor

�elds on the unit sphere of R
n
:

Theorem 3. Independent vetor �elds on Sn−1
(J.F.

Adams, 1962). For n = a · 2b with a odd and b = c+ 4d,
one de�nes ρn = 2c + 8d. Then the maximal number of

linearly independent vetor �elds on Sn−1
is ρn − 1.

In partiular, the only spheres for whih there exist

(n − 1) independent vetor �elds are the unit sphere of

R, R
2
, R

4
and R

8
, whih an respetively be seen as

the units of the real numbers, the omplex numbers, the

quaternions and the otonions.

Proof of Theorem 2. The idea of the proof is to use the

existene of suh a ontinuous funtion M to exhibit a

family of (n− 1) independent vetor �elds on Sn−1
.

Let (e1, e2, . . . , en) be the anonial orthonormal basis

of R
n
. For 1 ≤ i ≤ n, let ui(x) = M(en, x) · ei. One has:

un(x) = x and

(ui(x)|uj(x)) = eTi M(en, x)
TM(en, x)ej

= δi,j sine M(en, x) ∈ On

Then, for x ∈ Sn−1
, u1(x), u2(x), . . . , un−1(x) are (n−

1) independent vetor �elds on Sn−1
and �nally n =

1, 2, 4 or 8.

V. ROTATIONS ON S
1
, S

3
AND S

7

Now that we have proved that suh an appliation M
an only exist in R, R

2
, R

4
and R

8
, we need to answer

three more questions: does it exist? Can Alie ompute it

e�iently? Does it leak any information about the ode-

word to Eve? Note that the trivial ase of R for whih the

unit sphere is {−1, 1} orresponds to the method where

one enodes a bit in the sign of the Gaussian variable [7℄.

A. Existene

Let us start with the easiest ase: R
2
. The existene

of suh an appliation M verifyingM(x, y) ·x = y for the
unit irle is obvious: it is simply the rotation entered

in O of angle Arg(y)−Arg(x) where Arg(x) denotes the
angle between x and the x-axis. An alternative way to

see M is M(x, y) = yx−1
where x and y are identi�ed

with omplex numbers of modulus 1. The same is true

for dimensions 4 and 8 where S3
and S7

an respetively

be identi�ed with the quaternion units and the otonion

units, and for whih a valid division exists.

B. Computation of M(x, y)

For n = 2, 4 and 8, there exists a (nonunique) fam-

ily of n orthogonal matries An = (A1, . . . , An) of R
n×n

suh that A1 = 1n, and for i, j > 1, {Ai, Aj} = −2δi,j1n

where {A,B} is the antiommutator of A and B. An

example of these families is expliitly given in the Ap-

pendix. The following lemma shows how to use suh a

family to onstrut a ontinuous funtion M with the

properties desribed above.

Lemma 4. M(x, y) =
∑

i=1...n

αi(x, y)Ai with αi(x, y) =

(Aix|y) is a ontinuous map from Sn−1 × Sn−1
to O(n)

suh that M(x, y)x = y.

Proof. First, beause of the antiommutation property,

one an easily hek that the family (A1x,A2x, . . . , Anx)
is an orthonormal basis of R

n
for any x ∈ Sn−1

. Then,

for any x, y ∈ Sn−1
, (α1(x, y), . . . , αn(x, y)) are the o-

ordinates of y in the basis (A1x,A2x, . . . , Anx). This

proves that M(x, y)x = y. Finally, the orthogonality of

M(x, y) follows from some simple linear algebra.

Then α = (α1, . . . , αn) is su�ient to desribe M(x, y)
and the omputation of αi an be done e�iently sine

the matries Ai are just permutation matries with a

hange of sign for some oordinates. In the QKD proto-

ol, Alie hooses randomly u in a �nite ode and gives

the value of α(x, u) to Bob, who is then able to om-

pute M(x, u)y whih is a noisy version of u. One should
note that the �nal noise is just a "rotated" version of

the noise Bob has on x: in partiular, both noises are

Gaussian with the same variane.

C. No leakage of information

In order to prove that α = M(x, u) does not give any
information about u, one needs to show that u and α are

independent, in other words that: Pr(u = ui|M(x, u) =
α) = Pr(u = ui) =

1
N

if one onsiders the spherial ode

CN = {u1, . . . , uN}. This is true beause x and u have

uniform distributions (on Sn−1
and CN respetively) and

beause the funtion:

fu : Rn → R
n, x 7→ fu(x) = α, with αi = (u|Aix)

has a onstant Jaobian equal to 1 for eah u ∈ CN . To
see this, one should note that the lines of the Jaobian

matrix of fu are the AT
i u whih form an orthonormal

basis of R
n
.
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VI. APPLICATION TO THE

CONTINUOUS-VARIABLE QKD

Now that we have explained how e�ient reonili-

ation of orrelated Gaussian variables an be ahieved

with rotations in R
8
, let us look at the impliations for

the ontinuous-variable QKD.

At the end of the quantum part of the ontinuous-

variable QKD protool, Alie and Bob share orrelated

random values and their orrelation depends on the vari-

ane of the modulation of the oherent states and on

the properties of the quantum hannel. The hannel an

safely be assumed to be Gaussian sine it orresponds to

the ase of the optimal attak for Eve. This means that it

an be entirely haraterized by its transmission and ex-

ess noise. Both these parameters are aessible to Alie

and Bob through an estimation step prior to the reon-

iliation [16℄. One these parameters are known, one an

alulate the signal-to-noise ratio (SNR) of the transmis-

sion, whih is the ratio between the variane of the sig-

nal (the variane of the Gaussian modulation of oherent

states in our ase) and the variane of the noise (noise in-

dued by losses as well as exess noise). The SNR quanti-

�es the mutual information between Alie and Bob when

a Gaussian modulation is sent over a Gaussian hannel:

I(A : B) =
1

2
log2(1 + SNR).

Note also that the e�ieny of the reoniliation only de-

pends on the orrelation between Alie's and Bob's data,

that is, on the SNR. Thus, for a given transmission and

exess noise, the seret key rate is a funtion of the SNR,

whih an be optimized by hanging the variane of the

modulation of the oherent states.

It is not easy to know exatly how the e�ieny of

reoniliation depends on the SNR. However, eah re-

oniliation tehnique performs better for a ertain range

of SNR: slie reoniliation is usually used for a SNR

around 3 [22℄ while rotations in R
8
are optimal for a low

SNR, typially around 0.5.

Figure 3 shows the performane of rotations in R
8
om-

pared to slie reoniliation for the experimental parame-

ters of the QKD system developed at Institut d'Optique.

Both approahes ahieve omparable reoniliation e�-

ienies (around 90%) but for di�erent SNR. One an

observe two distint regimes: for low loss, i.e., short dis-

tane, slie reoniliation is better but only rotations in

R
8
allow QKD over longer distanes (over 50 km with

the urrent experimental parameters).

Conerning the omplexity of the reoniliation, one

should be aware that almost all the omputing time is de-

voted to deoding the e�ient binary odes, either LDPC

odes or turboodes. Compared to this deoding, the ro-

tation in R
8
takes a negligible amount of time. Thus, the

omplexity of the reoniliation presented here is smaller

than the one of slie reoniliation sine the latter uses

several odes (one ode per slie).

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0  10  20  30  40  50  60

S
ec

re
t 

k
ey

 r
at

e 
(b

it
/p

u
ls

e)

Distance (km)

Slice reconciliation (β=90%  snr=3.25)
Rotation in R

8
 (β=89%  snr=0.5)

Figure 3: (Color online) Performane of slie reoniliation

vs rotation in R
8
. Experimental parameters: exess noise

referred to the hannel input ξ = 0.005, e�ieny of Bob's

detetor η = 0.606 and eletroni noise at Bob's side Velec =
0.041 [22℄. The reoniliation based on rotations in R

8
uses a

LDPC ode of rate 0.26 [24℄

VII. CONCLUSION

We presented a protool for the reoniliation of orre-

lated Gaussian variables. Currently, the main bottlenek

of ontinuous-variable QKD lies in the impossibility for

Alie and Bob to extrat e�iently all the information

available, this di�ulty resulting in both a limited range

and a limited rate for the key distribution. The method

desribed in this artile is partiularly well adapted for

low signal-to-noise ratios, whih is the situation enoun-

tered when one wants to perform QKD over long dis-

tanes. By taking into aount the urrent experimental

parameters of the QKD link developed at the Institut

d'Optique [22℄, one shows that this new reoniliation al-

lows QKD over more than 50 km. Moreover, ontrary

to other protools that have been proposed to inrease

the range of ontinuous-variable QKD, this protool does

not require any post-seletion. Hene, the seurity proofs

based on the optimality of Gaussian attaks [12, 13℄ re-

main valid, meaning that the protool is seure against

general olletive attaks.
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Appendix: EXAMPLES OF FAMILIES A2, A4 AND

A8

1. Notations

Let us introdue the following 4 2× 2 matries:

K0 =

(

1 0
0 1

)

,K1 =

(

0 1
1 0

)

,K2 =

(

0 −1
1 0

)

and K3 =
(

1 0
0 −1

)

and the tensor produt Ki1,..,il = Ki1 ⊗ ..⊗Kil.

2. Examples

Family A2: {K0,K2}

A1 =

(

1 0
0 1

)

, A2 =

(

0 −1
1 0

)

Family A4: {K00,K32,K20,K12}

A1 =







1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1






, A2 =







0 −1 0 0
1 0 0 0
0 0 0 1
0 0 −1 0






,

A3 =







0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0






, A4 =







0 0 0 −1
0 0 1 0
0 −1 0 0
1 0 0 0







FamilyA8: {K000,K332,K320,K312,K200,K102,K123,K121}

A1 =























1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1























,

A2 =























0 −1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 −1 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 −1 0 0 0
0 0 0 0 0 0 0 −1
0 0 0 0 0 0 1 0























,

A3 =























0 0 −1 0 0 0 0 0
0 0 0 −1 0 0 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 −1 0 0 0
0 0 0 0 0 −1 0 0























,

A4 =























0 0 0 −1 0 0 0 0
0 0 1 0 0 0 0 0
0 −1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 −1 0
0 0 0 0 0 1 0 0
0 0 0 0 −1 0 0 0























,

A5 =























0 0 0 0 −1 0 0 0
0 0 0 0 0 −1 0 0
0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 −1
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0























,

A6 =























0 0 0 0 0 −1 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 −1
0 0 0 0 0 0 1 0
0 −1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 −1 0 0 0 0
0 0 1 0 0 0 0 0























,

A7 =























0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0
0 0 0 0 0 −1 0 0
0 0 −1 0 0 0 0 0
0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0























,

A8 =























0 0 0 0 0 0 0 −1
0 0 0 0 0 0 −1 0
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0
0 0 0 −1 0 0 0 0
0 0 −1 0 0 0 0 0
0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
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