
            

Casimir energy with a Robin boundary: the
multiple-reflection cylinder-kernel expansion
To cite this article: Z H Liu and S A Fulling 2006 New J. Phys. 8 234

 

View the article online for updates and enhancements.

Related content
Systematics of the relationship between
vacuum energy calculations and heat-
kernel coefficients
S A Fulling

-

The Dirichlet-to-Robin transform
J D Bondurant and S A Fulling

-

Robin boundaries and quantum graphs
S A Fulling

-

Recent citations
TIME-DEPENDENT ROBIN BOUNDARY
CONDITIONS IN THE DYNAMICAL
CASIMIR EFFECT
C. FARINA et al

-

Surface vacuum energy in cutoff models:
pressure anomaly and distributional
gravitational limit
Ricardo Estrada et al

-

Simple model for the dynamical Casimir
effect for a static mirror with time-
dependent properties
Hector O. Silva and C. Farina

-

This content was downloaded from IP address 128.194.86.35 on 22/09/2018 at 01:58

https://doi.org/10.1088/1367-2630/8/10/234
http://iopscience.iop.org/article/10.1088/0305-4470/36/24/320
http://iopscience.iop.org/article/10.1088/0305-4470/36/24/320
http://iopscience.iop.org/article/10.1088/0305-4470/36/24/320
http://iopscience.iop.org/article/10.1088/0305-4470/38/7/007
http://iopscience.iop.org/article/10.1088/0305-4470/39/21/S31
http://dx.doi.org/10.1142/S2010194512007428
http://dx.doi.org/10.1142/S2010194512007428
http://dx.doi.org/10.1142/S2010194512007428
http://iopscience.iop.org/1751-8121/45/45/455402
http://iopscience.iop.org/1751-8121/45/45/455402
http://iopscience.iop.org/1751-8121/45/45/455402
http://dx.doi.org/10.1103/PhysRevD.84.045003
http://dx.doi.org/10.1103/PhysRevD.84.045003
http://dx.doi.org/10.1103/PhysRevD.84.045003
http://oas.iop.org/5c/iopscience.iop.org/494591827/Middle/IOPP/IOPs-Mid-NJP-pdf/IOPs-Mid-NJP-pdf.jpg/1?


T h e  o p e n – a c c e s s  j o u r n a l  f o r  p h y s i c s

New Journal of Physics

Casimir energy with a Robin boundary:
the multiple-reflection cylinder-kernel expansion

Z H Liu1 and S A Fulling2,3

1 Department of Physics, Texas A&M University, College Station,
TX 77843-4242, USA
2 Departments of Mathematics and Physics, Texas A&M University,
College Station, TX 77843-3368, USA
E-mail: zliu@physics.tamu.edu and fulling@math.tamu.edu

New Journal of Physics 8 (2006) 234
Received 1 May 2006
Published 20 October 2006
Online at http://www.njp.org/
doi:10.1088/1367-2630/8/10/234

Abstract. We compute the vacuum energy of a massless scalar field obeying
a Robin boundary condition ((∂/∂x)ϕ = βϕ) on one plate and the Dirichlet
boundary condition (ϕ = 0) on a parallel plate. The Casimir energy density for
general dimension is obtained as a function of a (the plate separation) and β by
studying the cylinder kernel (alias an exponential ultraviolet cutoff); we construct
an infinite-series solution as a sum over classical paths and observe that the
method of construction has broader applications. The total Casimir energy is
finite after subtraction of divergences associated with the individual plates, which
do not affect the force between the plates. The series for the total energy is an
alternative to the integral formula of Romeo and Saharian, with which it agrees
numerically.
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1. Introduction

The scalar Casimir effect for parallel plates with Robin boundary conditions has been studied
thoroughly by Romeo and Saharian [1] (see also [2]–[4]). Our re-examination of that problem
here has several (loosely related) points of novelty. (i) Instead of zeta-function or dimensional
regularization, we employ an explicit exponential cutoff on the normal-mode frequencies, which
is implemented by calculating with an elliptic Green function associated with the system—the
cylinder kernel [5]–[9]. (ii) Instead of dealing directly with the eigenvalues and eigenfunctions of
the system, we take the dual approach of constructing the Green function as a sum over classical
paths, which in this problem means following the repeated reflections of rays from the plates.
The method for incorporating Robin boundary behaviour into this scheme was presented in [10].
(iii) We calculate a local energy density and study carefully its relation to the renormalized total
energy, calculated in the same regularization scheme. Please note that the constant denoted by β

here (see (2.5)) is called −1/β in [1].
We start the discussion by comparing the cylinder kernel with the better-known heat kernel.

Consider the Laplacian operator in a bounded region � of d-dimensional Euclidean space, with
some self-adjoint boundary condition, and let φn(x) and ω2

n be the corresponding eigenfunctions
and eigenvalues. (In this section the spatial integrations are understood to be over �.) The local
heat kernel is defined by

K(t, x, y) =
∞∑

n=1

φn(x)φ∗
n(y)e−tω2

n . (1.1)

The global heat kernel is the trace over the local one,

K(t) = Tr K =
∫

K(t, x, x) ddx =
∞∑

n=1

e−tω2
n . (1.2)
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The local cylinder kernel is defined by

T(t, x, y) =
∞∑

n=1

φn(x)φ∗
n(y)e−tωn. (1.3)

Then the global cylinder kernel is

T(t) = Tr T =
∫

T(t, x, x) ddx =
∞∑

n=1

e−tωn. (1.4)

The local heat kernel and cylinder kernel can be viewed as the Green functions of certain
differential-equation problems: the heat kernel solves the heat equation in the sense that

u(t, x) =
∫

K(t, x, y)f(y) ddy (1.5)

is the unique solution of the initial-value problem

∂u

∂t
− ∇2u = 0, u(0, x) = f(x). (1.6)

It has a well-known asymptotic expansion of the form

K(t) =
∞∑
s=0

bst
− d

2 + s
2 . (1.7)

The cylinder kernel can be characterized similarly:

u(t, x) =
∫

T(t, x, y)f(y) ddy (1.8)

is the unique bounded solution of the problem

∂2u

∂t2
+ ∇2u = 0, u(0, x) = f(x). (1.9)

The counterpart of (1.7) for T is [8, 11, 12]

T(t) =
∞∑
s=0

est
−d+s +

∞∑
s=d+1,s−d odd

fst
−d+s ln t. (1.10)

Both (1.7) and (1.10), as well as equation (1.13) later, come in both local and global versions.
The heat-kernel expansion has been a powerful tool to investigate the divergence structure

of the vacuum energy, but it does not contain the nonlocal geometrical information needed
to compute the finite part. The cylinder-kernel coefficients in (1.10) do incorporate that
information. Formally, we can relate the total Casimir energy to the global cylinder kernel by
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taking the t-derivative,

e = 1

2

∞∑
n=1

ωn = −1

2
lim
t→0

∂

∂t
Tr T = −1

2
lim
t→0

∂

∂t

∫
T(t, x, x) ddx, (1.11)

and the simplest definition of the vacuum energy density is

T00(x) = 1

2

∞∑
n=1

ωnφn(x)φ∗
n(x) = −1

2
lim
t→0

∂

∂t
T(t, x, x). (1.12)

(Other definitions differ from (1.12) by total divergences, so that classically they yield the
same total energy when surface energies are taken into account [2, 3, 8, 13]. Definition (1.12)
corresponds to ξ = 1/4 in a standard notation. The other definitions (other choices of ξ) will not
be treated in this paper. Note that E is independent of ξ.)

In reality, the definitions of Casimir energy and vacuum energy density in (1.11) and (1.12)
contain divergent terms. But the coefficients of the divergent terms are simple, local objects that
can be absorbed by renormalization, or at least cancelled when calculating forces between rigid
bodies. The finite Casimir energy is given by the term of order t in (1.10)

E = − 1
2ed+1. (1.13)

We will discuss the structure of the divergent terms in detail in later sections, since it depends
on the dimension.

The paper is organized as follows. In section 2, we set up the notation and show how to
construct the integral kernels for a slab with a Robin boundary. In section 3, we calculate the
energy density, and in section 4 the total energy. Some implications and motivations are discussed
in section 5, and some fine points in appendices.

2. Notation and main theorem

The cylinder kernel of the free massless scalar field in Rd is

T(t, x, y) = C(d )t(t2 + |x − y|2)−(d+1)/2, (2.1)

where

C(d ) = π−(d+1)/2	

(
d + 1

2

)
. (2.2)

The cylinder kernel (2.1) is the Green function of the equation (1.9) when � is the free
space Rd with no boundary. Our initial considerations apply to Green functions for more general
problems than (1.9). We know from the method of images that the Green function associated
with a Dirichlet problem (u(t, 0) = 0) in a half-space (0, ∞) × Rd−1 is

GD(t, x, x⊥, y, y⊥) = G(t, x, x⊥, y, y⊥) − G(t, −x, x⊥, y, y⊥) (2.3)
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and the Green function associated with a Neumann problem (∂/∂xu(t, 0) = 0) in the half-space
is

GN(t, x, x⊥, y, y⊥) = G(t, x, x⊥, y, y⊥) + G(t, −x, x⊥, y, y⊥). (2.4)

But when it comes to the Robin problem

∂

∂x
u(t, 0) = βu(t, 0) (β > 0), (2.5)

the elementary method of images no longer applies. In ([10] theorem 2), it was shown that one
can still construct the Green function for the Robin problem from the Green function for all of
Rd , G, by adding an integral correction to the Green function for the corresponding Neumann
problem

GR(t, x, x⊥, y, y⊥) = G(t, x, x⊥, y, y⊥) + G(t, −x, x⊥, y, y⊥)

−2β

∫ ∞

0
e−βεG(t, −x − ε, x⊥, y, y⊥) dε. (2.6)

All this leads us to the more general problem of how to construct the Green function for
a slab, � = (0, a) × Rd−1, or even (a1, a2) × Rd−1, with any kind of boundary conditions. It is
helpful to define four families of operators D, N, R and R̃ this way:

DaG(t, x, x⊥, y, y⊥) = −G(t, 2a − x, x⊥, y, y⊥), (2.7)

NaG(t, x, x⊥, y, y⊥) = G(t, 2a − x, x⊥, y, y⊥), (2.8)

RaG(t, x, x⊥, y, y⊥) = G(t, 2a − x, x⊥, y, y⊥) − 2β

∫ ∞

0
e−βεG(t, 2a − x − ε, x⊥, y, y⊥) dε.

(2.9)

R̃aG(t, x, x⊥, y, y⊥) = G(t, 2a − x, x⊥, y, y⊥) + 2γ

∫ ∞

0
e−γεG(t, 2a − x + ε, x⊥, y, y⊥) dε.

(2.10)

The functions

GD(t, x, x⊥, y, y⊥) = (1 + Da)G(t, x, x⊥, y, y⊥), (2.11)

GN(t, x, x⊥, y, y⊥) = (1 + Na)G(t, x, x⊥, y, y⊥), (2.12)

GR(t, x, x⊥, y, y⊥) = (1 + Ra)G(t, x, x⊥, y, y⊥), (2.13)

respectively satisfy Dirichlet, Neumann and Robin boundary conditions at x = a. Furthermore,
GD and GN are Green functions (in particular, they have the correct Dirac-delta boundary
behaviour as t → 0) both in the region to the left of a and in the region to the right of a,
whereas GR has that property to the right of a.
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A Robin condition at a right-hand boundary, to be physically similar to equation (2.5), must
be of the form

∂

∂x
u(t, 0) = −γu(t, 0) (γ > 0). (2.14)

(The inward normal derivative must have the positive sign.) Then

GR̃(t, x, x⊥, y, y⊥) = (1 + R̃a)G(t, x, x⊥, y, y⊥) (2.15)

is the correct Green function for the region left of a.

Theorem 1. Let T(t, x, x⊥, y, y⊥) be the cylinder kernel on all of Rd; then the corresponding
cylinder kernel of the slab (0, a) × Rd−1 with Robin boundary condition equation (2.5) at x = 0
and Dirichlet boundary condition at x = L is

TRD(t, x, x⊥, y, y⊥) =
∞∑

n=0

(DaR0)
nT +

∞∑
n=1

(R0Da)
nT +

∞∑
n=0

(DaR0)
nDaT +

∞∑
n=1

(R0Da)
n−1R0T.

(2.16)
Here

(DaR0)
nT(x, y) = (−1)nT(x − 2na, y) + (−1)n+1(2β)

∫ ∞

0
L1

n−1(2βε)e−βεT(x − ε − 2na, y) dε,

(2.17)

(R0Da)
nT(x, y) = (−1)nT(x + 2na, y) + (−1)n+1(2β)

∫ ∞

0
L1

n−1(2βε)e−βεT(x + ε + 2na, y) dε,

(2.18)

(DaR0)
nDaT(x, y) = (−1)n+1T(−x + 2(n + 1)a, y)

+(−1)n(2β)

∫ ∞

0
L1

n−1(2βε)e−βεT(−x + ε + 2(n + 1)a, y) dε, (2.19)

(R0Da)
n−1R0T(x, y) = (−1)n+1T(−x − 2(n − 1)a, y)

+(−1)n(2β)

∫ ∞

0
L1

n−1(2βε)e−βεT(−x − ε − 2(n − 1)a, y) dε, (2.20)

where

L1
n−1(x) =

n∑
j=1

(
n

j

)
(−x)j−1

(j − 1)!
(2.21)

is a Laguerre polynomial ([14], chapter 22) ([15], sections 7.4 and 8.97). Two notational
abbreviations have been adopted: the variables (t, x⊥, y⊥) are suppressed because they undergo
no alteration, and it is understood that the integral terms are to be omitted whenever n = 0.

We provide the proof of theorem 1 in appendix A; it is parallel to the construction of the
wave kernel in ([10] section 5). We now comment on the structure of the formula, which is
a sum over classical paths from (x, x⊥) to (y, y⊥), including integrations over time delays at
the Robin boundary. The terms can be thought of as wave pulses in a generalized sense. Terms
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(2.17) experience an even number of reflections, starting at the left; terms (2.18) experience an
even number of reflections, starting at the right. When y = x these terms are constant and are
equal in pairs (i.e., DaR0T(x, x) and R0DaT(x, x) are identical, etc, because (2.1) is a function
of |x − y|); these classical paths are periodic orbits (when y⊥ = x⊥ also) and will contribute the
spatially uniform Casimir energy associated with the finiteness of L. Terms (2.19) experience
an odd number of reflections, starting at the right; terms (2.20) experience an odd number of
reflections, starting at the left. When (y, y⊥) = (x, x⊥) these paths are bounce orbits (closed but
not periodic) that contribute the localized vacuum energy of interaction of a quantum field with
the boundaries.

Because of the simplicity of the slab geometry, the series solution equation (2.16) is exact,
in principle; no stationary-phase approximations, for instance, have been needed. In practice, it
may become necessary to truncate the sum, considering only short paths.

Clearly the construction is more general than stated in theorem 1. (i) It applies to other Green
functions, such as the wave kernel [10] and heat kernel [16]. (ii) Setting β = 0 in the theorem’s
formulae yields TND , the cylinder kernel for Neumann condition at x = 0 and Dirichlet condition
at x = a. (iii) For Neumann condition at x = a, TRN is given by the same formulae with the
factors (−1) omitted. (iv) Formulae (2.7)–(2.15) have been formulated to allow one to get
the analogue of (2.16) for any standard boundary conditions by replacing R0 and Da by the
corresponding operators. Except in the case TRR̃ , the analogues of (2.17)–(2.20) follow easily.
(v) We believe that the same method can be applied in principle to nonflat boundaries and
nonconstant β; of course, the result in such a case cannot be any more accurate than whatever
classical-path or multiple-reflection approximation is used for the underlying Green functions
G and GD or GN .

3. Vacuum energy densities of a Robin–Dirichlet slab and a single plate

In this section we calculate the vacuum energy density of a slab with Robin boundary at x = 0
and Dirichlet boundary at x = a for general spatial dimension d. We also consider the density
for a scalar field satisfying a Robin or Dirichlet boundary condition for an isolated plate. The
single-plate effects completely account for the singular behaviour of the density in the slab.

3.1. Vacuum energy density for two parallel plates

An infinite summation for the energy density follows from theorem 1, the definition of vacuum
energy density in (1.12), and the formula (2.1) for T . According to (2.16) the cylinder kernel is
a sum of four types of terms,

(DaR0)
nT = (−1)nC(d )t

(t2 + (2na)2)
d+1

2

+
∫ ∞

0
L1

n−1(2βε)e−βε (−1)n+1(2β)C(d )t

(t2 + (2na + ε)2)
d+1

2

dε (n � 0), (3.1)

(R0Da)
nT = (−1)nC(d )t

(t2 + (2na)2)
d+1

2

+
∫ ∞

0
L1

n−1(2βε)e−βε (−1)n+1(2β)C(d )t

(t2 + (2na + ε)2)
d+1

2

dε (n � 1), (3.2)

New Journal of Physics 8 (2006) 234 (http://www.njp.org/)

http://www.njp.org/


8 Institute of Physics �DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

(DaR0)
nDaT = (−1)n+1C(d )t

(t2 + (2na + 2a − 2x)2)
d+1

2

+
∫ ∞

0
L1

n−1(2βε)e−βε (−1)n(2β)C(d )t

(t2 + (2na + 2a + ε − 2x)2)
d+1

2

dε (n � 0), (3.3)

(R0Da)
n−1R0T = (−1)n+1C(d )t

(t2 + (2na − 2a + 2x)2)
d+1

2

+
∫ ∞

0
L1

n−1(2βε)e−βε (−1)n(2β)C(d )t

(t2 + (2na − 2a + ε + 2x)2)
d+1

2

dε (n � 1). (3.4)

On the other hand, in the classical-path interpretation the sum can be reorganized by number of
reflections as

TRD(t, x, x⊥, y, y⊥) = T + (R0T + DaT ) + (R0DaT + DaR0T ) + · · · . (3.5)

We now implement the local version of equation (1.13). The first term in equation (3.5), T ,
corresponds to a path that experiences no reflection at all; the contribution of this term to the
vacuum energy density is

− 1

2
lim
t→0

∂

∂t
T = −1

2
lim
t→0

∂

∂t

C(d )

td
= C(d )

2

d

td+1

∣∣∣∣
t→0

. (3.6)

This is the anticipated leading divergent term. It is the universal, x-independent formal vacuum
energy of infinite empty flat space; speculations about ‘dark energy’aside, it is universally agreed
that this term should be discarded.

The second and third terms, DLT and R0T , experience only one reflection on the boundary;
they respectively contribute

− 1

2
lim
t→0

∂

∂t
DaT = C(d )

2

1

(2a − 2x)d+1
(3.7)

and

−1

2
lim
t→0

∂

∂t
R0T = −C(d )

2

1

(2x)d+1
+

∫ ∞

0
e−βε βC(d )

(ε + 2x)d+1
dε . (3.8)

These two terms are ‘dangerous’since we can see that the energy density contributed by DaT goes
(nonintegrably) to infinity at the Dirichlet boundary (x → a) and the energy density contributed
by R0T diverges similarly at the Robin boundary (x → 0).

Next we write down the contributions to vacuum energy density from paths that are reflected
at least twice on the boundary, calculated through equation (1.12)

(DaR0)
nT : (−1)n+1 C(d )

2(2na)d+1
+ (−1)n

∫ ∞

0
L1

n−1(2βε)e−βε βC(d )

(2na + ε)d+1
dε (n � 1), (3.9)
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(R0Da)
nT : (−1)n+1 C(d )

2(2na)d+1
+ (−1)n

∫ ∞

0
L1

n−1(2βε)e−βε βC(d )

(2na + ε)d+1
dε (n � 1), (3.10)

(DaR0)
nDaT : (−1)n C(d )

2(2na + 2a − 2x)d+1

+(−1)n+1

∫ ∞

0
L1

n−1(2βε)e−βε βC(d )

(2na + 2a + ε − 2x)d+1
dε (n � 1), (3.11)

(R0Da)
n−1R0T : (−1)n C(d )

2(2na − 2a + 2x)d+1

+(−1)n+1

∫ ∞

0
L1

n−1(2βε)e−βε βC(d )

(2na − 2a + ε + 2x)d+1
dε (n � 2). (3.12)

The total vacuum energy density is the sum of (3.7) through (3.12). The contributions from
(DaR0)

nT and (R0Da)
nT are independent of x; they correspond to the periodic orbits. The

contributions from (DaR0)
nDLT and (R0Da)

n−1R0T are x-dependent; they correspond to the
bounce orbits. All these terms with at least two reflections are integrable. Thus, apart from
the universal divergent term T , the dangerous single-reflection terms (3.7) and (3.8) are the only
terms that could be called divergent (and at this local stage they are still pointwise finite). They
can be related to the situation of a single plate, as we now verify.

3.2. Vacuum energy density for a single plate

Consider a single plate with Dirichlet boundary condition at x = a and a single plate with Robin
boundary condition at x = 0. The corresponding cylinder kernels can be constructed on the basis
of equation (2.11) and (2.13)—in other words, by considering closed paths with at most one
reflection. Namely,

TD(t, x, x⊥, y, y⊥) = T + DaT (3.13)

and

TR(t, x, x⊥, y, y⊥) = T + R0T. (3.14)

Each cylinder kernel again contains the trivial term T , which we discard. The corresponding
vacuum energy densities are then

T00(x, x⊥) = −1

2
lim
t→0

∂

∂t
DaT = C(d )

2

1

(2a − 2x)d+1
, (3.15)

T00(x, x⊥) = −1

2
lim
t→0

∂

∂t
R0T = −C(d )

2

1

(2x)d+1
+

∫ ∞

0
e−βε βC(d )

(ε + 2x)d+1
dε. (3.16)

For x inside the slab, these are precisely the ‘dangerous’ terms of the slab case, equations (3.7)
and (3.8).
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4. Total vacuum energy of a slab with Robin and Dirichlet boundary conditions

In this section we consider the total vacuum energy (per unit (d − 1)-dimensional area) of a slab
with Robin boundary at x = 0 and Dirichlet boundary at x = a for general spatial dimension d.
Within the cylinder-kernel analysis there are two approaches that could be taken. Firstly, one can
attempt to integrate the local energy density given by (3.7)–(3.12), arguing away part or all of
the divergent integrals of the dangerous terms. It is clear from subsection 3.2 that the singular
behaviour of those terms is identical to that of the separate single-plate systems. Therefore, one
can formally subtract the two single-plate energies to obtain the finite (per unit area in x⊥) Casimir
energy associated with the interaction of the two plates. Secondly, one can integrate T(t, x, x)

(before or after taking its t derivative)with t strictly positive to define a regularized total energy,
then take t to 0 and appeal to ‘renormalization’ to discard divergent terms (those proportional
to negative powers of t or to ln t). This is the global version of (1.13). The first method will be
followed here, the second in appendix B.

Integrating equations (3.7) and (3.8) over (0, a), we formally obtain the contributions of
the two dangerous terms, DaT and R0T , to the total energy as

− 1

2
lim
t→0

∂

∂t

∫ a

0
DaT dx =

∫ a

0

C(d )

2

1

(2a − 2x)d+1
dx = C(d )

4d

1

(2a − 2x)d

∣∣∣∣
a

0

, (4.1)

− 1

2
lim
t→0

∂

∂t

∫ a

0
R0T dx =

∫ a

0

[
−C(d )

2

1

(2x)d+1
+

∫ ∞

0
e−βε βC(d )

(ε + 2x)d+1
dε

]
dx. (4.2)

The first is clearly divergent as x → a, and the second is similarly divergent as x → 0. But the
divergence due to the Dirichlet plate at x = a is cancelled by subtracting the vacuum energy of
a single plate in the region (−∞, a) × Rd−1:

− 1

2
lim
t→0

∂

∂t

(∫ a

0
DaT dx −

∫ a

−∞
DaT dx

)
= 1

2
lim
t→0

∂

∂t

∫ 0

−∞
DaT dx = −C(d )

4d

1

(2a)d
. (4.3)

In the same way, for the Robin plate at x = 0 we subtract the vacuum energy of a single plate in
the region (0, ∞) × Rd−1:

−1

2
lim
t→0

∂

∂t

(∫ a

0
R0T dx −

∫ ∞

0
R0T dx

)
= 1

2
lim
t→0

∂

∂t

∫ ∞

a

R0T dx

= C(d )

4d

1

(2a)d
−

∫ ∞

0
e−βε βC(d )

2d(ε + 2a)d
dε. (4.4)

For general n � 1, no divergent terms are involved. (DaR0)
nT and (R0Da)

nT each contribute to
the total energy

(−1)n+1 C(d )

2d+2nd+1ad
+ (−1)n

∫ ∞

0
L1

n−1(2βε)e−βε βaC(d )

(2na + ε)d+1
dε. (4.5)

New Journal of Physics 8 (2006) 234 (http://www.njp.org/)

http://www.njp.org/


11 Institute of Physics �DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

(DaR0)
nDaT contributes

(−1)n C(d )

4d

[
1

(2na)d
− 1

(2na + 2a)d

]

+ (−1)n+1 βC(d )

2d

∫ ∞

0
L1

n−1(2βε)e−βε

[
1

(ε + 2na)d
− 1

(ε + 2na + 2a)d

]
dε.

(4.6)

For general n � 2, (R0Da)
n−1R0T contributes

(−1)n C(d )

4d

[
1

(2na − 2a)d
− 1

(2na)d

]

+(−1)n+1 βC(d )

2d

∫ ∞

0
L1

n−1(2βε)e−βε

[
1

(ε + 2na − 2a)d
− 1

(ε + 2na)d

]
dε.

(4.7)

Now we sum up all the terms to obtain the finite total energy

E =
∞∑

n=1

(−1)n+1C(d )

2d+1nd+1ad
−

∫ ∞

0
e−βε 2βaC(d )

(ε + 2a)d+1
dε −

∫ ∞

0
e−βε βC(d )

2d(ε + 4a)d
dε −

∞∑
n=2

(−1)n

×
∫ ∞

0
L1

n−1(2βε)e−βε

[
βC(d )

2d(ε + 2na − 2a)d
− βC(d )

2d(ε + 2na + 2a)d
− 2βaC(d )

(2na + ε)d+1

]
dε.

(4.8)

Because we take ξ = 1/4, there is no additional surface contribution as in [1].
The first term in E can be expressed by the Riemann η-function:

ED = C(d )

2d+1ad
η(d + 1); (4.9)

it is the known result for one Neumann and one Dirichlet plate. The integrals in (4.8) can be
evaluated in terms of the incomplete gamma function ([14], section 6.5), ([15], section 8.35).
The resulting infinite summation presumably can not be converted to a closed form. However,
the terms starting with n = 4 are relatively small and almost cancel each other, so the expression
truncated to n � 3 is a good approximation for the total energy. (The proof of this assertion
is in appendix C.) Explicitly, the total energy for d = 3 as a function of b = βa (through order
n = 3) is

ERD = 7π2

11520a3
+

1

π2a3
[ − b3e2b	(−2, 2b) + 3b3e4b	(−2, 4b) + b3e6b	(−2, 6b)

− (19b3/6)e8b	(−2, 8b) − 12b4e4b	(−3, 4b) − 72b4e6b	(−3, 6b)

+ 56b4e8b	(−3, 8b) + 864b5e6b	(−4, 6b) − 256b5e8b	(−4, 8b)

− 2880b6e6b	(−5, 6b)]. (4.10)

(Again, the b of Romeo and Saharian [1] is the negative reciprocal of our b.)
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Figure 1. Total integrated Casimir energy per unit area multiplied by a3, for d = 3
and 0 � b = βa � 5. The graph of E(a) itself for fixed β �= 0 or +∞ would have
a minimum somewhere to the right of a = 1.237/β and a singularity at the origin.

Note that at β = 0 the Robin boundary becomes a Neumann boundary and one recovers

a3ERD|β→0 = a3END = 7π2

11520
= 0.00599. (4.11)

When β → ∞, the Robin boundary becomes a Dirichlet boundary, so we expect to recover the
familiar result

a3ERD|β→∞ = a3EDD = − π2

1440
= −0.00685. (4.12)

The graph of a3ERD as a function of b = βa is given in figure 1, which (together with numerical
calculations for larger b) confirms equations (4.11) and (4.12). (All computations and graphics
were done with Mathematica.) The crossover from positive to negative energy occurs near
b = 1.237, or −1/b ≈ −0.81, in agreement with [1]. That reference states that this value marks
a change from repulsive to attractive Casimir force, but that is incorrect: The zero of the force
function −(∂/∂a)ERD occurs at some larger value of a.

5. Conclusion

In Casimir theory—and in the general study of partial differential equations and the spectral
theory of differential operators—the Robin boundary condition is of theoretical interest as the
simplest step beyond the standard Dirichlet and Neumann problems for any particular geometrical
configuration. The Robin condition also has physical applications: it arises naturally in place of
the Neumann condition for half of the modes of the electromagnetic field in the presence of
a curved boundary, it mocks up in a simple way the effect of a boundary between two media,
and it may have cosmological significance in the brane-world scenario ([17, 18] and references
therein).

Our numerical results agree with those of Romeo and Saharian [1] to the extent that they have
been compared. Because we use different notations to express the Robin boundary condition,
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Figure 2. Total integrated Casimir energy per unit area multiplied by a3, for d = 3
and −10 � −1/b = −1/βa � 0. This graph should be compared with figure 3
of [1], where −1/b is called b2 . The zero of the total energy is at −1/b ≈ −0.81.

the counterpart of b2 in their notation is our −1/b. For a more direct comparison, we plot in
figure 2 the total energy ERD with respect to −1/b. The result matches ([1], figure 3) very well,
including the location of the zero.

The formula in [1] for the total energy is a rather complicated integral. Ours is an infinite
sum whose terms fall off fairly rapidly, so reasonable accuracy can be attained by truncating the
series. At least in the case where only one of the boundaries is Robin, the individual terms in
the series can be evaluated in terms of known special functions, the Laguerre polynomials. The
scope of this paper has not allowed us to tackle the case of two Robin boundaries in such detail,
nor to study in much depth the questions of how the signs of the energy and the force depend
on the parameters. Finally, we have restricted attention to positive Robin constants; the negative
case is of more dubious physical significance, and the construction of the cylinder kernel in that
case requires different mathematics [10].

We have taken pains to calculate the local energy density (albeit for only the easiest choice
of the conformal coupling parameter, ξ = 1/4) and to conduct the calculation of the total energy
in the same framework. It has been known for many years [19] that vacuum energy densities in
flat space are pointwise finite (apart from the ubiquitous zero-point energy of every quantized
field) but (in general) nonintegrable near boundaries. The Robin condition introduces a new
(less singular) divergent term in addition to those familiar from the more elementary conditions.
Direct calculations of total energy lead immediately to formal divergences. When an ultraviolet
cutoff (in particular, the cylinder-kernel approach) is used, the divergent terms depend on the
cutoff parameter t polynomially or logarithmically, and these terms have a close relation to
the divergent integrals of the energy density [8]. In odd dimensions the divergences associated
with the Robin constant include one of the logarithmic class. ‘Analytic’ regularization schemes
(dimensional and zeta functions) automatically remove the polynomial terms. However, it is
not clear that this nonchalance is physically justified. The energy density serves as a source in
the gravitational field equation, so its singular behaviour at boundaries cannot just be ignored
[9, 19]. Also, the traditional approach to Casimir forces, while plausible for predicting attractions
between rigid bodies, has been strongly criticized when applied to deformations of bodies
[20]–[23]. It may be that the divergent terms in the vacuum energy (or the related divergent
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integrals of the energy density) can be absorbed into terms in the equations of motion representing
the mechanical response of the materials in the bodies, but there is generally no justification for
simply setting those terms to zero. In the end a successful physical analysis of a particular
system of experimental relevance must be based on a more realistic and complete model, but in
the meantime a clear understanding of the (relatively tractable) vacuum-energy calculations is
needed in order to diagnose the problems and to determine the limits of validity of the theory.

In the parallel-plate problem we have shown that the only divergent terms are directly
associated with the individual plates. Therefore, they are not functions of the plate separation
and do not contribute to the force between the plates. (This was, of course, known already, but
our treatment of the total energy in the same framework as the energy density removes a certain
mysticism from the renormalization and promises to elucidate the physics in more complicated
situations in the future.) Within the remaining finite energy equation (4.8), the Neumann term
equation (4.9) is a Casimir energy in the strictest sense: it is associated with the discretization
of modes and with periodic orbits of the underlying classical system. The β-dependent terms,
on the other hand, include contributions from equation (4.6) and (4.7) associated with closed
but nonperiodic orbits (those with an odd number of reflections). Unless there is a nonobvious
cancellation, these terms do contribute to the force. (We thank an anonymous referee for pointing
out this fact.)

The construction of the cylinder kernel as a multiple-scattering expansion is a powerful
method for calculating local spectral and vacuum effects, which demands further development.
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Appendix A. Proof of theorem 1

A.1. Proof of equation (2.16)

After rearrangement the proposed series is

TRD(x, y)=T +
∞∑

n=0

(R0Da)
nR0T +

∞∑
n=0

(DaR0)
nDaT +

∞∑
n=0

(DaR0)
nDaR0T +

∞∑
n=1

(R0Da)
n−1R0DaT

= (1 + R0)

∞∑
n=0

(DaR0)
nT + (1 + R0)

∞∑
n=0

(DaR0)
nDaT

= (1 + Da)

∞∑
n=0

(R0Da)
nT + (1 + Da)

∞∑
n=0

(R0Da)
nR0T. (A.1)

Because of the falloff of T as a function of x (see (2.1)) the series converges (absolutely).
Therefore, it is easy to see that it satisfies the cylinder equation (1.9) inside the slab and the
proper boundary condition at t = 0. Finally, by virtue of (2.11) and (2.13), it satisfies both the
Dirichlet condition at x = L and the Robin condition at x = 0.
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A.2. Proof of (2.17), etc

When n = 1,

DaR0T(x, y) = −T(x − 2a, y) + (2β)

∫ ∞

0
e−βεT(x − ε − 2a, y) dε, (A.2)

so (2.17) is satisfied when n = 1. Suppose that when n = m (2.17) is satisfied

(DaR0)
mT(x, y) = (−1)mT(x − 2ma, y)

+ (−1)m+1(2β)

∫ ∞

0
L1

m−1(2βε)e−βεT(x − ε − 2ma, y) dε. (A.3)

Then when n = m + 1,

(DaR0)
m+1T(x, y) = (−1)m+1T(x − 2ma − 2a, y) + (−1)m+2(2β)

×
[∫ ∞

0
(1 + L1

m−1(2βε))e−βεT(x − ε − 2ma − 2a, y) dε −
∫ ∞

0
L1

m−1(2βε)e−βε dε

×
∫ ∞

0
e−βηT(x − ε − η − 2ma − 2a, y) dη

]
. (A.4)

Let θ = ε + η; then∫ ∞

0
L1

m−1(2βε)e−βε dε

∫ ∞

0
e−βηT(x − ε − η − 2ma − 2a, y) dη

=
∫ ∞

0
L1

m−1(2βε) dε

∫ ∞

0
e−βθT(x − θ − 2ma − 2a, y) dθ

= −
∫ ∞

0

m∑
j=1

(
m

j

)
(−2βθ)j−1

j!
e−βθT(x − θ − 2ma − 2a, y) dθ. (A.5)

Thus

(DaR0)
m+1T(x, y) = (−1)m+1T(x − 2ma − 2a, y) + (−1)m+2(2β)

×
∫ ∞

0


1 + L1

m−1(2βε) +
m∑

j=1

(
m

j

)
(−2βθ)j−1

j!


 e−βεT(x − ε − 2ma − 2a, y) dε

= (−1)m+1T(x − 2ma − 2a, y) + (−1)m+2(2β)

×
∫ ∞

0
L1

m+1−1(2βε)e−βεT(x − ε − 2ma − 2a, y) dε. (A.6)

That means that equation (2.17) is satisfied also when n = m + 1. The formulae (2.18)–(2.20)
can be proved by induction in the same way.

Appendix B. Boundary divergences in the total energy

Here, we analyse the total energy by the global approach. That is, we integrate TRD(t, x, x) to get
the global cylinder kernel TRD(t) before taking its t derivative and examining the limit t → 0.
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We concentrate on the case d = 3 (hence C(d ) = π−2), and we discard from the outset the
universal divergent term T of equation (3.6).

B.1. Regularized energy for a single plate

For the infinite space to the right of a Robin plate at x = 0 the integrated cylinder kernel is, from
(3.12),

R0T(t) =
∫ ∞

0
R0T(t, x, x) dx =

∫ ∞

0

1

π2

t

(t2 + (2x)2)2
dx

−
∫ ∞

0
e−βε dε

∫ ∞

0

2β

π2

t

(t2 + (2x + ε)2)2
dx

= 1

4π2t2

[
2tx

t2 + 4x2
+ arctan

2x

t

]∞

0

− β

2π2t2

∫ ∞

0
e−βε dε

[
t(2x + ε)

t2 + (2x + ε)2
+ arctan

2x + ε

t

]∞

0

. (B.1)

For later comparison with the case of two plates, it is convenient to keep the lower-limit and
upper-limit contributions separate.

From the upper limit at ∞ one gets (for β �= 0)

1

4π2t2

π

2
− β

2π2t2

∫ ∞

0
e−βε π

2
dε = +

1

8πt2
− 1

4πt2
= − 1

8πt2
. (B.2)

The discontinuity at β = 0 is only apparent, because we shall now see that the contribution from
the ε integral is cancelled by a like term from the lower limit.

From the lower limit 0 one gets

β

2π2t2

∫ ∞

0
e−βε dε

[ tε

t2 + ε2
+ arctan

ε

t

]
= β

2π2t

[
sin βt

(π

2
− Si βt

)
− cos βt Ci βt

]

+
1

2π2t2

[
cos βt

(π

2
− Si βt

)
+ sin βt Ci βt

]
. (B.3)

The sine integral function Si and cosine integral function Ci have Taylor expansions

Si(z) =
∞∑

k=0

(−1)kz2k+1

(2k + 1)!(2k + 1)
, (B.4)

Ci(z) = γ + ln z +
∞∑

k=1

(−1)kz2k

(2k)!(2k)
, (B.5)

where γ is Euler’s constant. Therefore, the expansion of (B.3) at small t is

1

4πt2
− β

2π2t
+

β2

8π2
+

β3

6π2
t ln(βt) +

(3γ − 4)β3

18π2
t + O(t2). (B.6)
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The total regularized energy from (B.2) and (B.6) is

ER(t) = +
1

8πt3
− β

4π2t2
− β3

12π2
ln(βt) − (3γ − 1)β3

36π2
+ O(t1). (B.7)

Similarly, the integrated cylinder kernel to the left of an isolated Dirichlet plate at x = a is

DaT(t) =
∫ a

−∞
DaT(t, x, x)dx = − t

π2

∫ a

−∞

dx

(t2 + (2a − 2x)2)2
= − t

π2

∫ ∞

0

du

(t2 + 4u2)2

= − 1

4π2t2

[
2tu

(t2 + 4u2)
+ arctan

2u

t

]∞

0

= − 1

8πt2
, (B.8)

which corresponds to a regularized energy

ED(t) = − 1

8πt3
. (B.9)

B.2. Regularized energy for the slab

We must integrate the terms (3.1)–(3.4) from 0 to a. Recall that only the terms DaT and R0T

contain divergences. In all the other terms the denominator of the integrand remains nonzero
even when both t and ε are zero, and therefore one can differentiate and pass to the limit
t → 0 before integrating; that is, their contributions are precisely those already presented in
(4.5)–(4.7).

For the divergent terms we could recycle the calculations equations (B.1) and (B.8), replacing
the upper limit ∞ with a. However, the difference would be the negatives of the integrals from
a to ∞, and to them the same argument as above applies: these are perfectly finite contributions
to the energy, even when t = 0, and they have already been computed in (4.3)–(4.4).

All that remains to be considered is the sum of the regularized energies equation (B.7) and
equation (B.9). (Recall that we have already discarded the ubiquitous t−4 term.) The terms of order
t−3 cancel, but this is an artefact of our model, since Dirichlet and Neumann plates have divergent
surface energies that are equal and opposite. According to the prescription equation (1.13), we
should discard all the terms in the series that diverge as t → 0. In the present case, because there
is a logarithmic term in equation (B.7), we encounter the well known scale ambiguity: because
the numerical factor inside the argument of the logarithm is arbitrary, the ‘finite part’ of ER ,
hence that of ERD , is defined only up to an arbitrary numerical multiple of β3. Ignoring ER

entirely in calculating ERD yields the prescription of section 4. The ambiguous β3 term does not
depend on a and hence does not affect the force between the plates. It does, of course, depend
on β; one must feel some trepidation in ignoring it (or even the power-law divergent terms) in
situations where β is allowed to vary.

Appendix C. Why we can discard terms with n � 4

The expression of the total energy in equation (4.8) is an infinite summation, but we shall prove
for case d = 3 that all terms after n = 3 are quite small, so it is reasonable to discard them. Note
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that when d = 3, C(d ) = 1/π2 and hence the β-dependent part of the remainder is

R3 =
∞∑

n=4

(−1)n

π2

∫ ∞

0
L1

n−1(2βε)e−βεfn(2βε)d(βε), (C.1)

where

fn(2βε) = (2β)3

6(2βε + 4(n − 1)βa)3
− (2β)3

6(2βε + 4(n + 1)βa)3
− 2a(2β)4

(2βε + 4nβa)4
. (C.2)

Let 2βε = x; then these equations can be written as

R3 =
∞∑

n=4

(−1)n

2π2

∫ ∞

0
L1

n−1(x)e−x/2fn(x) dx (C.3)

and

fn(x) = (2β)3

6(x + 4(n − 1)βa)3
− (2β)3

6(x + 4(n + 1)βa)3
− 2a(2β)4

(x + 4nβa)4
. (C.4)

It is straightforward to show that fn(x) is a decreasing function and fn(x) � 0 for any x � 0, so

fn(x) � fn(0) = 1

a3

(
1

6(2n − 2)3
− 1

6(2n + 2)3
− 2

(2n)4

)
. (C.5)

From a mean value theorem for integrals one has
∫ ∞

0
L1

n−1(x)e−x/2fn(x) dx = fn(0)

∫ η

0
L1

n−1(x)e−x/2 dx, where 0 < η < ∞. (C.6)

It follows that

|R3| � 1

2π2

η∑
n=4

fn(0)

∣∣∣∣
∫ η

0
L1

n−1(x)e−x/2 dx

∣∣∣∣ . (C.7)

From (8.971.2) and (8.971.5) in [15], we get the integral
∫ η

0
L1

n−1(x)e−x/2 dx +
∫ η

0
L1

n−2(x)e−x/2 dx = −2e−x/2L0
n−1(x)|η0. (C.8)

Telescoping this recursion, we get∫ η

0
L1

n−1(x)e−x/2 dx + (−1)n−2

∫ η

0
L1

0(x)e−x/2 dx

=
n∑

m=2

(−1)n−m

(∫ η

0
L1

m−1(x)e−x/2 dx +
∫ η

0
L1

m−2(x)e−x/2 dx

)

=
n∑

m=2

(−1)n−m
(−2 e−x/2L0

m−1(x)
∣∣η
0

)
. (C.9)
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But L1
0(x) = 1, so

∣∣∣∣
∫ η

0
L1

n−1(x)e−x/2 dx

∣∣∣∣ � 2
n∑

m=1

∣∣e−x/2L0
m−1(x)

∣∣η
0

∣∣ � 2
n∑

m=1

(|e−x/2L0
m−1(η)| + |L0

m−1(0)|). (C.10)

From ([14], (22.14.13)),

|e−η/2L0
m−1(η)| � 1, (C.11)

hence ∣∣∣∣
∫ η

0
L1

n−1(x)e−x/2 dx

∣∣∣∣ � 4n. (C.12)

Now we continue (C.7)

|R3| � 1

2π2

∞∑
n=4

4nfn(0) = 2

π2a3

∞∑
n=4

n

(
1

6(2n − 2)3
− 1

6(2n + 2)3
− 2

(2n)4

)

= 1

4π2a3

∞∑
n=4

n
10n4 − 9n2 + 3

3n4(n − 1)3(n + 1)3
� 1

4π2a3

∞∑
n=4

10n

3(n − 1)3(n + 1)3

= 1.5 × 10−4 1

a3
, (C.13)

which is roughly 2% of |EDD| = π2/1440a3. (The actual error in our numerical calculations is
at most 0.1%.)
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