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Abstract

In this paper, we study domain decomposition preconditioners for multiscale
flows in high contrast media. Our problems are motivated by porous media
applications where low conductivity regions play an important role in determin-
ing flow patterns. We consider flow equations governed by elliptic equations
in heterogeneous media with large contrast between high and low conductivity
regions. This contrast brings an additional small scale (in addition to small
spatial scales) into the problem expressed as the ratio between low and high
conductivity values. Using weighted coarse interpolation, we show that the
condition number of the preconditioned systems using domain decomposition
methods is independent of the contrast. For this purpose, Poincaré inequalities
for weighted norms are proved in the paper. The results are further generalized
by employing extension theorems from homogenization theory. Our numerical
observations confirm the theoretical results.

1 Introduction

Subsurface flows are often affected by heterogeneities in a wide range of length
scales. Moreover, the media properties often vary significantly that introduces
an additional level of complexity. A high contrast in the media properties brings
an additional small scale into the problem expressed as the ratio between low
and high conductivity values. For example, it is very common to have several
orders of magnitude of variations in the permeability field in natural porous
formations. In addition, low conductivity regions can have complex geometry
that can introduce connected barriers at very small scales in the flow.

In this paper, we study efficient techniques for solving flows in highly het-
erogeneous formations. It is common to use upscaled or multiscale models to
solve flow and transport processes on the coarse grid [1, 2, 4, 5, 6, 7, 8, 11, 23].
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These approaches approximate the effects of the fine-scale features and attempt
to capture these effects on a coarse grid via localized basis functions. In many
cases, multiscale approaches can not provide an accurate approximation of the
solution and one needs to solve for the fine-scale solution. The solution of the
fine-scale equation is typically prohibitively expensive because of the small scales
and high contrast in the conductivity field. For this reason, some type of pre-
conditioning is needed to reduce the number of iterations required for solving
the fine-scale system of equations.

In this paper we investigate domain decomposition preconditioners for flows
in heterogeneous porous media. Domain decomposition methods use the so-
lutions of several local coarse problems in constructing preconditioners for the
fine-scale system. The number of iterations required by domain decomposition
preconditioners is typically affected by the contrast in the media properties.
Our main objective is to analyze the dependence of the domain decomposi-
tion preconditioners on the media properties. In particular we will concentrate
on developing tools that allow identifying the media properties where domain
decomposition methods provide good results (low number of iterations) indepen-
dent of the contrast of the media. It is known that if high and low conductivity
regions can be encompassed within coarse grid blocks such that the variation of
the conductivity within each coarse region is bounded, domain decomposition
preconditioners result to a system with the condition number independent of
the contrast (e.g., [20, 25]). Because of complex geometry of fine-scale features,
it is often impossible to separate low and high conductivity regions into different
coarse grid blocks. Indeed, low conductivity regions can have small sizes in the
shape of narrow channels. Encompassing these regions into coarse grids can sig-
nificantly increase the number of coarse-grid blocks and make the computations
expensive.

When the conductivity field varies significantly within each coarse-grid block,
analysis of domain decomposition methods is a challenging task. In a recent pi-
oneering work [15, 16], it has been shown that using domain decomposition
methods, one can precondition the fine-scale system such that the condition
number of the resulting system is independent of the contrast when high con-
ductivity inclusions are embedded into the media of bounded conductivity. The
approach presented in [15] is not applicable to the problems when low con-
trast inclusions are present in the high contrast media that we study in this
paper. The heterogeneities considered in our paper require a careful analysis
of domain decomposition preconditioners. In our analysis, we define a coarse-
scale interpolation using weighted averages. We show weighted H1 stability and
weighted L2 approximation this coarse quasi-interpolation operator. Our analy-
sis requires special Poincaré estimates to bound the weighted L2 estimates. We
study the heterogeneities when the low conductivity regions are embedded into
high conductivity flow regions. Because low conductivity regions can change
flow patterns significantly (e.g., can block the flow), the study of their effects is
important in the fine-scale simulations [19, 4, 17].

We study two level additive Schwartz preconditioners with several coarse
solvers. We analyze theoretically and numerically the performance of domain
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decomposition methods in situations similar to the ones encountered in sub-
surface applications. In the overlapping setting, since we would like to treat
heterogeneous media, we concentrate on the case of generous and big overlap.
In this case the size of the overlap is of the order of the size of the coarse triangu-
lation parameter. As mention before, we employ weighted averages to construct
a coarse-scale interpolation. The estimation of the energy of the local functions
requires Poincaré inequalities for weighted averages that is an important part
of the proof. We prove this inequality for a wide range of heterogeneities.

We also study the behavior of overlapping domain decomposition precondi-
tioners for the Schur complement problem. The Schur complement is obtained
after eliminating the subdomain interior degrees of freedoms. It is known that
nonoverlapping preconditioners are well suited for piecewise constant coefficients
([20, 25]) with respect to the nonoverlaping decomposition used to construct the
method. However, the analysis of these methods in the cases with significant
conductivity variations within and between adjacent coarse-grid blocks is not
straightforward and is still an active research topic. Instead of a nonoverlap-
ping preconditioner, we use an overlapping two level additive method for the
Schur complement problem ([3, 26]). Using this framework, we discuss how one
can reduce the number of low conductivity inclusions using extension theorems
[14, 9, 10]. These theorems are often used in homogenization theory [14]. This
reduction can be regarded as a partial homogenization because it homogenizes
many inclusions such that the resulting media has fewer inclusions where our
new Poincaré estimates can be applied.

For the coarse solvers, we consider various choices for basis functions - piece-
wise linear basis, multiscale finite element basis functions, and energy minimiz-
ing basis functions. We find that multiscale finite element basis functions and
energy minimizing basis functions result to a fewer iterations. This has been
observed in previous findings, e.g., [15]. From the proof, it becomes evident
that the coarse basis functions with minimum energy are needed to minimize
the number of iterations.

Numerical results are presented to show that the condition number of the
preconditioned system is independent of the contrast. We test our approaches on
a number of examples where the low conductivity regions have various complex
geometries. In all cases, we observe that the condition number of the precon-
ditioned system is independent of the contrast. Both domain decomposition
preconditioners are studied numerically.

The paper is organized as follows. In the next section, we formulate the
problem. Section 3 is devoted to the motivation and summary of the results.
In Section 4, we present overlapping methods and their analysis. Section 5
is devoted to overlapping methods for Schur complement. In this section, we
also discuss how to reduce the number of low conductivity inclusions by partial
homogenization. We make some comments on the use of domain decomposition
preconditioners in two-phase flow setting in Section 6. The numerical results
are presented in Section 7.
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2 Problem Setting

Let D ⊂ R2 (or R3) be a polygonal domain which is the union of a disjoint
polygonal subregions {Di}N

i=1. We consider the following problem. Find u∗ ∈
H1

0 (D) such that

a(u∗, v) = f(v) for all v ∈ H1
0 (D). (1)

Here the bilinear for a and the linear functional f are defined by

a(u, v) =
∫

D

κ(x)∇u(x)∇v(x)dx for all u, v ∈ H1
0 (D) (2)

and
f(v) =

∫

D

f(x)v(x)dx for all v ∈ H1
0 (D).

We assume that the decomposition {Di}N
i=1 form a quasiuniform triangula-

tion of D with parameter H = maxi diam(Di). This coarse triangulation will
be also denoted by T H . Let T h be a fine triangulation which is a refinement of
T H .

We denote by V h(D) the usual finite element discretization of piecewise lin-
ear continuous functions with respect to the fine triangulation T h. Denote also
by V h

0 (D) the subset of V h(D) with vanishing values on ∂D. Similar notations,
V h(Ω) and V h

0 (Ω), are used for subdomains Ω ⊂ D.

The Galerkin formulation of (1) is to find u∗ ∈ V h
0 (D) such that

a(u∗, v) = f(v) for all v ∈ V h
0 (D), (3)

or in matrix form
Au∗ = b (4)

where for all u, v ∈ V h(D) we have

uT Av =
∫

D

κ∇u∇v and vT b =
∫

D

fv.

Let A(i) be the local matrices corresponding to the bilinear form (2), i.e., for
all u, v ∈ V h(Di) we have

uT A(i)iv =
∫

Di

κ∇u∇v. (5)

3 Motivation and summary of results

Our motivation stems from flow problems that occur in heterogeneous porous
formations. In flow problems, the high conductivity (permeability) regions play
an important role. These high conductivity channels are the main carriers of the
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fluid. The high conductivity regions are often “polluted” by low permeability
layers (shale layers) as schematically depicted in Figure 1. Low conductivity
layers can occur in oil reservoirs and can introduce low permeability barriers
at different scales. These low conductivity regions can have complicated con-
nectivity. Because of complex geometry of shale layers, it is often impossible
to separate them into coarse grid blocks without significantly increasing the
computational effort. In this paper, our objective is to show that domain de-
composition based preconditioners result to systems with a condition number
independent of the contrast of the media.

Previous approaches concerning overlapping domain decomposition address
the cases where the permeability fields are nearly homogeneous within each
coarse-grid block (e.g., [20, 25]) or high conductivity regions constitute discon-
nected regions within a coarse-grid block [15, 16]. Our proof differs from the one
presented in [15] and uses weighted averages to construct a coarse-scale quasi-
interpolation. To verify a stable decomposition, Poincaré estimates are proved
for the weighted L2 norms in the form

∫
κ(x)v2 ≤ C

∫
κ(x)|∇v|2, where C is

independent of the contrast in κ(x). Based this new type of Poincaré inequality,
we are able to show that domain decomposition based preconditioners result to
a system that has condition number independent of the contrast of the media.
We note that in previous approaches [15, 16] standard volume averages are used
for the coarse-scale approximants and there is no need for special Poincaré esti-
mates. We highlight the difference between our case and the case presented in
[15, 16] after the proof of Lemma 8.

We recall that the behavior of domain decomposition methods for (4) with
respect to the parameters of the fine and coarse triangulation is well known
(e.g., [20, 25]). We also note that only the case of generous or big overlap
δ is considered here. The presence of fine-scale features makes difficult the
analysis of small overlap methods in our setting. In Lemma 10 we prove the
condition number for the two level preconditioner is of order O((H/δ)2)) and
is independent of the contrast. Here we consider the case of a high contrast
coefficient with a finite number of (low conductivity inclusions) in each coarse
block. The analysis presented here can be extended to the case where some of
the inclusions touch or cross the boundary of the coarse block.

We consider an overlapping method to precondition the Schur complement
problem. We also are able to show that number of iterations is independent of
the contrast. This is done for the same type of coefficients considered in the
overlapping case. Then, we try to classify the types of heterogeneities that yield
energies equivalent to a piecewise constant energy or any other given energy
where this (or any similar) preconditioner performs well. In the analysis, we
also employ extension theorems to reduce the number of low contrast inclu-
sions. As for coarse-scale solvers, we consider various choices for coarse basis
functions - piecewise linear basis, multiscale finite element basis functions, and
energy minimizing basis functions. We find that multiscale finite element ba-
sis functions and energy minimizing basis functions result to a fewer iterations.
The latter is also evident from the proof.
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Figure 1:

4 Overlapping methods

4.1 Notation

We denote by {D′
i}N

i=1 the overlapping decomposition obtained from the original
nonoverlapping decomposition {Di}N

i=1 by enlarging each subdomain Di to

D′
i = Di ∪ {x ∈ D, dist(x, Di) < δ}, i = 1, . . . , N,

where dist is some distance function and let V i
0 (D′

i) be the set of finite element
functions with support in D′

i. We also denote by RT
i : V i

0 (D′
i) → V h the exten-

sion by zero operator.

Now we introduce a coarse triangulation T H and coarse vertex based basis
functions {Φi}Nc

i=1. In the general setting of domain decomposition solvers this
coarse level triangulation may be independent of the subdomain partition of
the original domain D. In order to simplify the analysis we assume that the
coarse triangulation coincides with the nonoverlapping decomposition. We also
assume that the coarse basis functions satisfy:

1. |Φi| ¹ 1, i = 1, . . . , Nc.

2.
∑Nc

i=1 Φi = 1 .

Define
V0 = span{Φi}Nc

i=1 (6)

where Φi, i = 1, . . . , M , are coarse-scale finite element basis functions. We use
a two level additive preconditioner of the form

B−1 = R0A
−1
0 R0 +

N∑

i=1

RT
i A−1

i Ri (7)
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a) b)

Figure 2: Domain configuration in Lemma 1.

where the local matrices are defined by

vAiw = a(v, w) for all v, w ∈ V i
0 (D′

i), i = 1, . . . , N, (8)

and the coarse matrix A0 = R0ART
0 with RT

0 : V h → R0 being the projection
onto the coarse space V0.

Throughout, a ¹ b means that a ≤ Cb where the constant C is independent
of the mesh size and contrast. In the analysis, Ωη denote the regions with
high conductivity coefficients (of order η assuming η is large) and Ω1 denote the
regions with the bounded conductivity (of order 1), unless otherwise is specified.

4.2 Some technical tools

Lemma 1 Let κ be defined by

κ(x) =
{

1, x ∈ Ω1,
η, x ∈ Ωη,

where Ω1 and the inclusion Ωη are Lipschitz domains; see Figure 2 a). Then,
for every v ∈ H1(Ω) such that

∫
Ω

κv = 0 we have
∫

Ω

κv2 ¹ H2

∫

Ω

κ|∇v|2.

Proof. From the usual Poincaré inequality we have
∫

Ω1

|v − v1|2 ¹ H2
1

∫

Ω1

|∇v|2

where v1 = 1
|Ω1|

∫
Ω1

v. This implies
∫

Ω1

v2 ¹ H2
1

∫

Ω1

|∇v|2 + |Ω1|v2
1. (9)

Analogously ∫

Ωη

v2 ¹ H2
η

∫

Ωη

|∇v|2 + |Ωη|v2
η (10)
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where vη = 1
|Ωη|

∫
Ωη

v. Then

∫

Ω

κv2 =
∫

Ω1

v2 + η

∫

Ωη

v2

¹ H2
1

∫

Ω1

|∇v|2 + H2
ηη

∫

Ωη

|∇v|2 + |Ω1|v2
1 + η|Ωη|v2

η. (11)

Now we bound the last two terms in (11). We note that
∫

Ω

kv = |Ω1|v1 + η|Ωη|vη = 0 and then v1 = −η
|Ωη|
|Ω1|vη. (12)

Let Γ = ∂Ω1 and c =
1
|Γ|

∫

Γ

v. Using a Poincaré type inequality, see [25, Lemma

A.17], we can show that

(v1 − vη)2 =

(
1
|Ω1|

∫

Ω1

v − 1
|Ωη|

∫

Ωη

v

)2

¹
(

1
|Ω1|

∫

Ω1

v − c

)2

+

(
1
|Ωη|

∫

Ωη

v − c

)2

¹
(

1
|Ω1| 12

‖v − c‖L2(Ω1)

)2

+

(
1

|Ωη| 12
‖v − c‖2

)2

¹ H2

|Ω1|
∫

Ω1

|∇v|2 +
H2

|Ωη|
∫

Ωη

|∇v|2 (13)

which together with (12) give

(
1 + η

|Ωη|
|Ω1|

)2

v2
η = (v1 − vη)2 ¹ H2

1

|Ω1|
∫

Ω1

|∇v|2 +
H2

η

|Ωη|
∫

Ωη

|∇v|2.

Then

η|Ωη|v2
η ¹

ηH2
1
|Ωη|
|Ω1|(

1 + η
|Ωη|
|Ω1|

)2

∫

Ω1

|∇v|2 +
ηH2

η(
1 + η

|Ωη|
|Ω1|

)2

∫

Ωη

|∇v|2. (14)

Using (14) and (12)

|Ω1|v2
1 =

η|Ωη|
|Ω1| (η|Ωη|v2

η)

¹
η2H2

1
|Ωη|2
|Ω1|2(

1 + η
|Ωη|
|Ω1|

)2

∫

Ω1

|∇v|2 +
η2H2

η
|Ωη|
|Ω1|(

1 + η
|Ωη|
|Ω1|

)2

∫

Ωη

|∇v|2. (15)
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With (14) and (15) we get

|Ω1|v2
1 + η|Ωη|v2

η

¹
η
|Ωη|
|Ω1| + η2 |Ωη|2

|Ω1|2(
1 + η

|Ωη|
|Ω1|

)2 H2
1

∫

Ω1

|∇v|2 +
1 + η

|Ωη|
|Ω1|(

1 + η
|Ωη|
|Ω1|

)2 ηH2
η

∫

Ωη

|∇v|2

≤ H2
1

∫

Ω1

|∇v|2 + ηH2
η

∫

Ωη

|∇v|2. (16)

Putting (16) into (11) we get,
∫

Ω

κv2 ¹ 2H2
1

∫

Ω1

|∇v|2 + 2H2
ηη

∫

Ωη

|∇v|2. (17)

Remark 2 We note that Lemma 1 holds for any inclusion Ωη that has Poincaré
property (such that (10) and (9) hold). This also holds true for the case of Figure
2 b).

Remark 3 In Lemma 1, the coefficient κ is piecewise constant. The result can
be easily extended to piecewise smooth coefficients such that the coefficients are
of order η or 1 in respective regions.

Remark 4 We note that Lemma 1 holds if one interchanges high- and low-
conductivity regions. Proof remains the same in this case.

Figure 3: Domain configuration in Lemma 5.

Lemma 5 Let κ be defined by

κ(x) =
{

ηi, x ∈ Ωi,
η0, x ∈ Ω0 = Ω \ ∪M

j=1Ωi,

where Ωi, i = 0, . . . ,M are Lipschitz domains; see Figure 3. Assume also that

ηi|Ωi| ¹ η0|Ω0|, i = 1, . . . , M.



10

Then, for every v ∈ H1(Ω) such that
∫
Ω

κv = 0 we have
∫

Ω

κv2 ¹ MH2

∫

Ω

κ|∇v|2.

Proof. From the usual Poincaré inequality we have
∫

Ω0

|v − v0|2 ¹ H2

∫

Ω0

|∇v|2

where v0 = 1
|Ω0|

∫
Ω0

v. This implies
∫

Ω0

v2 ¹ H2

∫

Ω0

|∇v|2 + |Ω0|v2
0. (18)

Analogously, for i = 1, . . . , M ,
∫

Ωi

v2 ¹ H2
i

∫

Ωi

|∇v|2 + |Ωi|v2
i (19)

where vi = 1
|Ωi|

∫
∂Ωi

v, i = 1, . . . , M . Then

∫

Ω

κv2 =
M∑

i=0

ηi

∫

Ωi

v2 ¹
M∑

i=0

ηiH
2
i

∫

Ωi

|∇v|2 +
M∑

i=0

ηi|Ωi|v2
i . (20)

Now we bound the last sum in (20). We note that
∫

Ω

kv =
M∑

i=0

ηi|Ωi|vi = 0 and then η0|Ω0|v0 = −
M∑

i=1

ηi|Ωi|vi. (21)

Let Γi = ∂Ωi and ci =
1
|Γi|

∫

Γi

v, i = 1, . . . ,M . Using a Poincaré inequality

and the same argument to get (13) in the proof of Lemma 1 we obtain

(v0 − vi)2 ¹ H2

|Ω0|
∫

Ω0

|∇v|2 +
H2

|Ωi|
∫

Ωi

|∇v|2 (22)

which together with (21) and a discrete Cauchy inequality give
(

η0|Ω0|+
M∑

i=1

ηi|Ωi|
)2

v2
0 =

(
M∑

i=1

(v0 − vi)ηi|Ωi|
)2

=

(
M∑

i=1

(v0 − vi)
√

ηi|Ωi|
√

ηi|Ωi|
)2

¹
(

M∑

i=1

ηi|Ωi|
)

M∑

i=1

(v0 − vi)2ηi|Ωi|

¹
(

M∑

i=1

ηi|Ωi|
)

M∑

i=1

ηi|Ωi|
(

H2
0

|Ω0|
∫

Ω0

|∇v|2 +
H2

i

|Ωi|
∫

Ωi

|∇v|2
)

.
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Then
(

β0 +
M∑

i=1

βi

)
v2
0 ¹

(
M∑

i=1

βi

)
H2

0

|Ω0|
∫

Ω0

|∇v|2 +
M∑

i=1

βi
H2

i

|Ωi|
∫

Ωi

|∇v|2

where, in order to simplify the notation, we defined

βi = ηi|Ωi|, i = 0, 1, . . . , M. (23)

We can bound

η0|Ω0|v2
0 ¹

∑M
i=1 βi

β0 +
∑M

i=1 βi

η0H
2
0

∫

Ω0

|∇v|2

+
M∑

i=1

η0|Ω0|
ηi|Ωi| βi

(
β0 +

∑M
i=1 βi

)2 ηiH
2
i

∫

Ωi

|∇v|2 (24)

≤ η0H
2
0

∫

Ω0

|∇v|2 +
M∑

i=1

ηiH
2
i

∫

Ωi

|∇v|2 (25)

where we have used that ∑M
i=1 βi

β0 +
∑M

i=1 βi

< 1

and that
η0|Ω0|
ηi|Ωi| βi

β0 +
∑M

i=1 βi

=
β0

β0 +
∑M

i=1 βi

< 1.

On the other hand,

ηj |Ωj |v2
j ≤ ηj |Ωj |v2

0 + ηj |Ωj |(vj − v0)2. (26)

Using (24) we have

ηj |Ωj |v2
0 ¹

∑M
i=1 βi

β0 +
∑M

i=1 βi

ηj |Ωj |
|Ω0| H2

∫

Ω0

|∇v|2

+
M∑

i=1

ηj |Ωj |
ηi|Ωi| βi

β0 +
∑M

i=1 βi

ηiH
2
i

∫

Ωi

|∇v|2

≤ η0H
2
0

∫

Ω0

|∇v|2 +
M∑

i=1

ηiH
2
i

∫

Ωi

|∇v|2 (27)

where we have used the assumption ηi|Ωi|
|Ω0| ¹ η0, i = 1, 2, . . . , M and

ηj |Ωj |
ηi|Ωi| βi

β0 +
∑M

i=1 βi

=
βj

β +
∑M

i=1 βi

< 1.
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Now, using (22) we can bound

ηj |Ωj |(vj − v0)2 ¹ ηj |Ωj | H
2

|Ω0|
∫

Ω0

|∇v|2 + ηjH
2
j

∫

Ωj

|∇v|2

¹ η0H
2

∫

Ω0

|∇v|2 + ηjH
2
j

∫

Ωj

|∇v|2. (28)

With (27) and (28) in (26) we get

ηj |Ωj |v2
j ¹ η0H

2
0

∫

Ω0

|∇v|2 +
M∑

i=1

ηiH
2
i

∫

Ωi

|∇v|2. (29)

Finally, putting (29) and (25) in (20) we get,

∫

Ω

κv2 ¹ Mη0H
2
0

∫

Ω0

|∇v|2 + M

M∑

i=1

ηiH
2
i

∫

Ωi

|∇v|2 (30)

¹ MH2

∫

Ω

κ|∇v|2. (31)

Remark 6 We note that Lemma 5 holds for any inclusions Ωi, i = 1, . . . ,M
that has Poincaré property (such that (19) and (18) hold). This also holds true
for the case where some inclusions cross the boundary ∂Ω.

Remark 7 In Lemma 5, κ is assumed to be piecewise constants. These results
can be extended to piecewise smooth coefficients such that the functions in each
region Ωi are of the form ηigi(x) where |gi| ¹ 1.

We need some estimates on the following quasi-interpolation operator. De-
fine I0 : V h → V H by

I0v =
Nc∑

i=1

viΦi where vi =
1∫

ωi
κ

∫

ωi

κv. (32)

Here ωi is the support of Φi (the union of coarse blocks with the node xi). For
each coarse block K define ωK = ∪i∈Kωi.

Lemma 8 Let the coefficient κ be such that its restriction to wK satisfy the
assumption of Lemma 5 for all coarse block K. Then for all v ∈ V h we have

∫

K

κ|v − I0v|2 ≤ CH2

∫

ωK

κ|∇v|2 (33)

and ∫

K

κ|∇I0v|2 ≤ C

∫

ωK

κ|∇v|2. (34)
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Proof. Recall that for each coarse basis functions we have ‖Φi‖∞ ¹ 1. We also
have for vi defined in (32),

|vi| ≤ 1
(
∫

ωi
κ)

1
2

(∫

ωi

κv2

) 1
2

and
∫

K

κ|I0v|2 ≤
4∑

i=1

(
1∫

ωi
κ

∫

ωi

κv2

)∫

K

κ|Φi|2

≤
4∑

i=1

(
1∫

ωi
κ

∫

ωi

κv2

)∫

K

κ

≤ C

∫

ωK

kv2.

Using this we obtain
∫

K

κ|v − I0v|2 ≤ 2
∫

K

κ|v|2 + 2
∫

K

κ|I0v|2 ≤ C

∫

ωK

κv2.

Then, if we put v̂ = v − 1∫
ωK

κ

∫

ωK

v we obtain

∫

K

κ|v̂ − I0v̂|2 ≤ C

∫

ωK

κv̂2 ≤ CH2

∫

ωK

κ|∇v|2

where we have used Lemma 5 with Ω = wK . Now we prove (34). Using again
Lemma 5 we obtain

∫

K

κ|∇I0v|2 =
∫

K

κ|∇I0v̂|2 (35)

≤
4∑

i=1

(
1∫

ωi
κ

∫

ωK

κv̂2

) ∫

K

κ|∇Φi|2 (36)

≤
4∑

i=1

(
1∫

ωi
κ

∫

ωK

κv̂2

)
H−2

K

∫

K

κ (37)

¹ CH−2
K

∫

ωK

kv̂2 (38)

¹ C

∫

ωK

k|∇v|2. (39)

This finishes the proof.

Now, we highlight the differences between our analysis and the analysis pre-
sented in [15, 16]; see also [25, 20]. In the analysis presented in [15], the authors
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use standard volume averaging for vi. Thus, in the analysis, only standard
Poincaré estimates are needed. In our analysis because of the weighted average
definition of vi in (32), we need to employ special Poincaré estimates. Note that
the analysis of the cases considered here can not be carried out following the
analysis presented in [15, 16].

Remark 9 One can choose the basis Φi such that
∫

K
κ|∇Φi|2dx is minimized

(as suggested in [15, 16]), e.g., multiscale finite element basis functions or energy
minimizing basis functions. It is evident from (35) that this will reduce the
constant in (35) that directly affects the condition number; see Lemma 10 and
Corollary 12 below.

4.3 Analysis

The analysis presented in this section is valid for coefficients that in each wK

are as in in Lemma 5 (with Ω = wK). The analysis is also valid for more general
coefficients; see Remark 7 and also Lemma 1 and Remarks 2, 3 and 4.

Lemma 10 Let κ as in Lemma 5. For all v ∈ V h, there exists a decomposition
v =

∑N
i=1 vi, with vi ∈ V i

0 (Ω′i), i = 0, 1, 2, . . . , such that

a0(v0, v0) +
N∑

i=1

a(vi, vi) ¹ C2
0a(v, v).

where C2
0 ¹

(
H
δ

)2
.

Proof. Define v0 := I0vh where I0 is a coarse interpolation of Lemma 8 and

vi = χi(v − v0)

where {χi} is a partition of unity subordinated to the overlapping partition
{D′

i} and |∇χi| ≤ 1
δ , i = 1, . . . , N . First we bound the energy of vi.

a(vi, vi) =
∫

D′
i

κ|∇(χi(v − v0))|2

¹
∫

D′
i

κχ2
i |∇(v − v0)|2 +

∫

D′
i

κ|∇χ2
i ||v − v0|2

≤
∫

D′
i

κ|∇(v − v0)|2 +
1
δ2

∫

D′i\Di

κ|v − v0|2

¹
∫

D′
i

κ|∇v|2 +
∫

D′i

κ|∇v0|2 +
1
δ2

∫

D′i\Di

κ|v − v0|2. (40)

Now we bound the last two terms of (40).
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The second term in (40) can be bounded using (34) of Lemma 8 as follows
∫

D′
i

κ|∇v0|2 ≤
∑

K∩Di 6=∅

∫

K

κ|∇v0|2 ≤ C
∑

K∩Di 6=∅

∫

ωK

κ|∇v|2

where ωK = ∪{K ′ : K ∩K
′ 6= ∅}.

To bound the third term of (40) observe that in the case of generous overlap,
i.e., H

δ ³ C, we have using (33) in Lemma 8

1
δ2

∫

D′
i\Di

κ|v − v0|2 ≤ 1
δ2

∑

K∩Di 6=∅

∫

K

κ|v − v0|2 (41)

≤ C

(
H

δ

)2 ∑

K∩Di 6=∅

∫

ωK

κ|∇v|2.

The bound for the energy a(v0, v0) follow from Lemma 8.

Remark 11 In the proof of Lemma 10 we use the simple estimate (41). We
avoid the use of bounds similar to those in [25, Lemma 3.10] (valid for bounded
coefficients) or [15, Lemma 3.4] (valid when and special partition robustness
indicator is bounded). Such bounds would improve the final condition number
of the method.

We have the following bound form the condition number. See [25, 20].

Corollary 12 Under the assumptions of Lemma 10 the condition number of
the preconditioned operator B−1A with B−1 defined in (7) is of order

cond(B−1A) ≤ C

(
H

δ

)2

with C independent of the contrast η.

With a generous overlap δ = cH, we get cond(B−1A) ≤ C.

Remark 13 From Lemma 5 we see that the constant of Corollary 12 depends
on the number of inclusions. In the next section, we discuss how one can reduce
the number of inclusions based on extension theorems.

5 Overlapping methods for the Schur comple-
ment

In this section, we present analysis of overlapping methods for Schur comple-
ment; see [3] and references therein. These methods employ harmonic extensions
and allow us to use extension theorems (e.g., [14, 9, 10]) to reduce the num-
ber of low conductivity inclusions. This reduction can be regarded as a partial
homogenization.
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5.1 Schur complement problem

We define the local interfaces Γi = ∂Di ∩ D, i = 1, . . . , N and the interface
Γ =

⋃N
i=1 Γi. Given u ∈ V h

0 (D) we classify its degrees of freedom in

• uΓ, the interface degrees of freedom, those that lies on Γ, and

• uI , the interior degrees of freedom, those in the interior of any Di and
outside Γ.

The 2× 2 block structure of (4) is then
[

AII AIΓ

AT
IΓ AΓΓ

] [
uI

uΓ

]
=

[
bI

bΓ

]

with analogous block structure of the local matrices A(i), i = 1, . . . , N defined
in (5), [

A
(i)
II A

(i)
IΓ

A
(i)T
IΓ A

(i)
ΓΓ

]
.

For each i, 1 ≤ i ≤ N , we can consider V h
0 (Di) as a subset of the whole

finite element space V h
0 (D). We also define

V h
0 (Γ) =

{
v ∈ V h

0 (D) : v(x) = 0 for all vertex x 6∈ Γ
}

.

Recall that κ is the coefficient of the elliptic bilinear form a defined in (2). Given
u ∈ V h

0 (D) define Pκu ∈ V h
0 (Γ) as the a−orthogonal projection onto V h

0 (Γ), is
completely local and determined by

a(Pκu, z) = a(u, z) for all z ∈ V h
0 (Γ). (42)

We also define the κ−harmonic extension Hκu ∈ V h(Γ) by 1We define the set
of κ−harmonic extensions by

V h(Γ) =
{
v ∈ V h

0 (D) : v = HκvΓ

}

and the sets of local κ−harmonic extensions by

V h(Γi) =
{
v ∈ V h(Di) : a(v, z) = 0 for all z ∈ V h

0 (Di)
}

, i = 1, . . . , N. (43)

Let u∗ be the finite element solution of problem (3) then, Pκu∗ is obtained
from

a(Pκu∗, z) = f(z) for all z ∈ V h
0 (Γ) (44)

which correspond to the solution of one Dirichlet problems per subdomain Di.
This computation can be done in parallel.

The component Hκ can be computed by solving the Schur complement prob-
lem

a(Hκu,Hκv) = f(Hκv) for all v ∈ V h(Γ). (45)
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The matrix form of (45) is given by

SuΓ = b̃ (46)

where
S = AΓΓ −AT

IΓA−1
II AIΓ and b̃ = bΓ −AT

IΓA−1
II bI .

We note that applying A−1
II corresponds to the solution of N uncoupled Dirichlet

problems in each subdomain.
Define the local Schur complement bilinear form si by

si(u, v) = ai(H(i)
κ u,H(i)v

κ ) for all u, v ∈ V h(Γi), i = 1, . . . , N ;

where Hi
κ is the local κ−harmonic extension. The matrix form of the local

Schur complement is given by

S(i) = A
(i)
ΓΓ −A

(i)T
IΓ (A(i)

II )−1A
(i)
IΓ i = 1, . . . , N.

Then we can write

S =
N∑

i=1

RiS
(i)RT

i (47)

where, for i = 1, . . . , N , Ri : V h(Di)∩V h
0 (D) → V h

0 (D) is the extension by zero
operator with a matrix which has only zeros and ones as entries.

Remark 14 We will solve the Schur complement system (45) or (46) using a
preconditioned conjugate gradient method with two level Schwartz precondition-
ers. To apply S we can use (47) which requires the solution of a local Dirichlet
problem per subdomain.

5.2 Preconditioner matrix form

Consider an overlapping decomposition {D′
i}N ′

i=1. We assume that this decom-
position is aligned with the coarse triangulation, i.e, each D′

i is the unions of
coarse blocks. Put Γ̃i = Γ ∩D′

i Define the local spaces Vi(Γ′i), i = 1, . . . , N ′ as
in (43) with D′

i instead of Di. Let S̃i be the Schur complement of Ai defined in
(8) with respect to Γ′i.

We use the following two level additive Schwartz preconditioners

M−1 = R0S
−1
0 R0 +

N ′∑

i=1

RT
i S̃−1

i Ri (48)

where S0 = (R0SRT
0 )−1 is the matrix form of S on the coarse space V0 define

in (6) and RT
0 is the projection on V0.

Remark 15 Each application of M−1 requires solving a coarse problem and a
local problem per subdomain.
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5.3 Preconditioner: condition number

In Lemma 16 we concentrate on the dependence of the method on the hetero-
geneous coefficients.

Lemma 16 Let κ be defined as in Lemma 10. For all v ∈ V h, there exists a
decomposition v =

∑N
i vi, with vi ∈ V i

0 (Γ′i), i = 0, 1, 2, . . . , such that

s0(v0, v0) +
N∑

i=1

s(vi, vi) ¹ C2
0s(v, v)

where C2
0 is independent of the contrast η.

Proof. Define v0 := I0Hκvh where I0 is a coarse interpolation of Lemma 8 and

vi = χi(v − v0) on Γ′i,

where {χi} is a partition of unity subordinated to the overlapping partition
{D′

i} with |χi| ≤ 1
H , i = 1, . . . , N ′. First we bound the energy of vi.

s(vi, vi) =
∫

D′
i

κ|∇Hκ(χi(v − v0))|2 ≤
∫

D′i

κ|∇χiHκ(v − v0)|2

¹
∫

D′
i

κχ2
i |∇Hκ(v − v0)|2 +

∫

D′
i

κ|∇χi|2|Hκ(v − v0)|2

≤
∫

D′
i

κ|∇Hκ(v − v0)|2 +
1

H2

∫

D′
i\Di

κ|Hκ(v − v0)|2

¹
∫

D′
i

κ|∇Hκv|2 +
∫

D′
i

κ|∇Hκv0|2 +
1

H2

∫

D′i\Di

κ|Hκ(v − v0)|2. (49)

Now we bound the last two terms of (49).

The second term in (49) can be bounded using (34) of Lemma 8 as follows
∫

D′i

κ|∇Hκv0|2 ≤
∑

K∩Di 6=∅

∫

K

κ|∇v0|2 ≤ C
∑

K∩Di 6=∅

∫

ωK

κ|∇Hκv|2

where ωK = ∪{K ′ : K ∩K
′ 6= ∅}.

To bound the third term of (49) observe that, (33) in Lemma 8

1
H2

∫

D′i\Di

κ|Hκ(v − v0)|2 ≤ 1
H2

∑

K∩Di 6=∅

∫

K

κ|Hκv − v0|2

≤ C
∑

K∩Di 6=∅

∫

ωK

κ|∇Hκv|2.

The bound for the energy s(v0, v0) follows from Lemma 8.
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Corollary 17 Under the assumption of Lemma 16, the condition number of
the preconditioned operator M−1S with M−1 defined in (48) is bounded, i.e.,
cond(M−1S) ≤ C with C independent of the contrast η.

5.4 Reducing the number of inclusions – partial energy
homogenization

Previous analysis assumes that the number of inclusions is finite. The number
of inclusions directly affects the number of iterations in domain decomposition
methods as it is evident from Lemma 5. In many applications, the number of
inclusions can be very large introducing a small scale into the problem. One can
reduce the number of inclusions by using extension theorems (e.g., [14, 9, 10]).
These theorems are often used in homogenization. This reduction can be re-
garded as a partial homogenization because it homogenizes many inclusions such
that the resulting media have fewer inclusions and have an equivalent energy
as the original media. This type of homogenization is possible within the Schur
complement framework. We note that a difference from the homogenization is
that the equivalent energy is sought for arbitrary boundary conditions here.

Next, we briefly describe it. Assume the domain Ω contains many inclusions
with lower conductivity and denote these regions by Ω1. As before Ω = Ωη

⋃
Ω1

where Ω1 denotes the union of domains that have conductivity 1. We call the
media E¹ type if for any function v ∈ H1(Ωη), there exists an extension ve such
that ∫

Ω

|∇ve|2 ¹
∫

Ωη

|∇v|2.

This holds for any inclusion Ω1 where Ωη is a connected region [14]. It also
holds for inclusions that are periodic or randomly distributed ([10, 27]).

Next, we demonstrate how the extension theorem can be used to prove the
energy equivalence. First, we show that if the domain is type E¹ then

∫

Ω

κ∗|∇Hκ∗µ|2 ¹
∫

Ω

κ|∇Hκµ|2 ¹
∫

Ω

κ∗|∇Hκ∗µ|2 for all µ ∈ H1/2(∂Ω),

where κ∗ = η is the homogenized coefficient. For the upper bound, we have
∫

Ω

κ|∇Hκµ|2 ¹
∫

Ω

κ|∇Hκ∗µ|2 ¹
∫

Ω

κ∗|∇Hκ∗µ|2.

For the first inequality, we have used the fact that the energy is the lowest for
the harmonic extension, while for the second inequality, we have used the fact
that κ ¹ κ∗. For the lower bound, we have

∫

Ω

κ∗|∇Hκ∗µ|2 ¹
∫

Ω

κ∗|∇ve|2 ¹
∫

Ωη

κ∗|∇Hκµ|2 ¹
∫

Ω

κ|∇Hκµ|2

where ve is the function that is equal to v = Hκµ in Ωη and its E¹ extension in
Ω1. For the second inequality, we have used the extension estimate formulated
earlier.
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Next, we present the result for more general case (see Fig. 4). In particular,
we assume that Ω′ ⊂ Ω contains inclusions that can be homogenized using the
extension theorem, while the rest of the domain Ω − Ω′ remains unchanged.
By homogenizing a part of the region, we can lower the number of inclusions
significantly, in general.

The estimate for the upper bound is the same as before:
∫

Ω

κ∗|∇Hκ∗µ|2 ¹
∫

Ω

κ|∇Hκµ|2 ¹
∫

Ω

κ∗|∇Hκ∗µ|2.

For the lower bound, we first use the variational principle and replace Hκ∗µ by
ve and then divide the integral into two parts

∫

Ω

κ∗|∇Hκ∗µ|2 ¹
∫

Ω′
κ∗|∇ve|2 +

∫

Ω−Ω′
κ∗|∇ve|2

where ve = v = Hκµ in Ωη

⋂
Ω and E¹ type extension in (Ω1

⋂
Ω′)

⋂
Ω. Then

∫

Ω′
κ∗|∇ve|2 ¹

∫

Ω′
⋂

Ωη

κ∗|∇ve|2 =
∫

Ω′
⋂

Ωη

κ|∇v|2 ¹
∫

Ω′
κ|∇v|2.

Further we note that
∫

Ω−Ω′
κ∗|∇ve|2 =

∫

Ω−Ω′
κ∗|∇v|2.

Remark 18 The equivalence of energies can be easily used in Lemma 16. We
can replace k by k∗. Then, the condition number of the preconditioned Schur
complement M−1S with preconditioner M−1 defined in (48) will depend only
on the number of inclusions of κ∗.
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6 A comment on multi-phase flow equations

In this section, we comment on the use of domain decomposition methods in
multi-phase flow. Two-phase flow equations described by

div(λ(S)κ∇p) = f, (50)

in the absence of gravity and capillary effects. The total mobility λ(S) is given
by λ(S) = λw(S) + λo(S) and f is a source term. Here, λw(S) = krw(S)/µw

and λo(S) = kro(S)/µo where µo and µw are viscosities of oil and water phases,
correspondingly, and krw(S) and kro(S) are relative permeabilities of oil and
water phases, correspondingly. The transport equation is governed by

∂S

∂t
+ div(F ) = 0, (51)

where F = vfw(S), with fw(S), the fractional flow of water, given by fw =
λw/(λw + λo), and the total velocity v by:

v = vw + vo = −λ(S)κ∇p. (52)

The equation (50) is solved repeatedly for different λ(S). Typically, κ(x)
has a high contrast as discussed earlier. If λ(S) is bounded, it can be easily
shown that the preconditioners discussed earlier for λ = 1 can be used for
preconditioning the discrete system corresponding to (50). More precisely, one
can show that the condition number of the preconditioned system is independent
of the contrast in κ.

7 Numerical experiments

In this section, we present representative numerical results for the overlapping
methods. Various heterogeneities are considered in the simulations. We show
that the condition number of the resulting preconditioned system is independent
of the contrast as our theory shows.

We take D = [0, 1] × [0, 1] divided in 10 × 10 subdomains. Inside each
subdomain we use a fine scale triangulation with h = 1/100. We consider three
types of coefficients

1. High conductivity background with low conductivity inclusions.

2. High conductivity background with low conductivity channels.

3. Mixture of piecewise Gaussian permeability fields (generated using trun-
cated Karhunen-Loève [18] expansions) with highly varying means and
synthetic inclusions.

We solve the equation −div(κ∇u) = 0 with u(x1, x2) = x1 on ∂D. We run
the Preconditioned Conjugate Gradient (PCG) until the `2 norm of the residual
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is reduced by a factor of 106. We will present the number of iterations until
the convergence of the PCG because this quantity is a main factor in deter-
mining the efficiency of the preconditioner. We have also tested our methods
for −div(κ∇u) = f in D and u = 0 on ∂D and observed similar results, i.e.,
preconditioned system is independent of the contrast.

We note that for the Type 3 coefficients and our choice of the coarse-grid
blocks there are a few coarse blocks where the assumption on the form of the
coefficient κ may not hold; however, we still observe good performance of the
preconditioner for this case. More detailed numerical studies for various hetero-
geneities that arise in petroleum applications will be presented elsewhere.

Figure 5: Type 1 coefficients and a coarse triangulation. Red designates the
regions where the coefficient is η and blue designates the regions where the
coefficient is 1. The numerical results are presented in Table 1. Note that the
coarse triangulation is not aligned with the inclusions.

For our first numerical example, we consider the coefficients as indicated in
Type 1, see Figure 5. We test different values for the contrast. In Table 1 we
show the iteration count for the two level additive methods for (4) and (46).
We tested different coarse basis: piecewise linear, multiscale basis and energy
minimizing functions. Note that the coarse triangulation is not aligned with the
inclusions in the numerical test. We observe from this table that the condition
number of the resulting preconditioned system is independent of the contrast.
We observe slight improvement when multiscale and energy minimizing basis
functions are used for the coarse-scale approximation.

We repeat the numerical experiment for the Type 2 coefficients as plotted
in Figure 6. The results are shown in Table 2. We note that the coarse mesh is
again not aligned with the boundaries of low conductivity regions. As before,
we observe that the condition number of the resulting preconditioned system is
independent of the contrast. We observe slight improvement when multiscale
basis functions are used for the coarse-scale approximation.

We finally test the two level additive preconditioners with the Type 3 coeffi-
cients as depicted in Figure 7. The permeability field is created using three inde-
pendent realizations of log-Gaussian fields generated via truncated Karhunen-
Loève [18]. In the upper part, a realization of a log-Gaussian field with cor-



23

η Linear MS EMF
1 13 13(12) 18(16)
10 18 15(13) 21(18)
100 21 17(14) 22(19)
1000 21 18(15) 22(19)
10000 21 18(15) 23(19)
100000 21 18(15) 23(19)
1000000 22 18(15) 23(19)

Table 1: Number of iteration until convergence of the PCG for different values
of the contrast η with Type 1 coefficients; see Figure 5. We solve (4) (resp.
(46)) with preconditioner B−1 in (7) (resp. M−1 in (48)). Different coarse
problems: piecewise linear (Linear), multiscale (MS) and energy minimizing
functions (EM). Here we have H = 1/10, h = 1/100 and δ = H.

Figure 6: Coefficient and coarse triangulation. Red designates the regions where
the coefficient is η and blue designates the regions where the coefficient is 1.
Numerical results are presented in Table 2.

relation lengths L1 = L2 = 0.1 and zero mean is used. In the middle part, a
realization of a log-Gaussian field with correlation lengths L1 = 0.4 and L2 = 0.1
and mean 7 + η (that is varied) is used. In the lower part of the domain, a re-
alization of a log-Gaussian field with correlation lengths L1 = 0.3 and L2 = 0.1
and zero mean is used. Further, we include low contrast inclusions in the middle
part (high contrast part) of the domain as depicted in Figure 7. We have tested
our methods with inclusions of various shapes and geometries. Here, we only
restrict ourselves to one of such cases. Numerical results presented in Table 3
demonstrate that the condition number of the resulting preconditioned system
is independent of the contrast as predicted by the theory.
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η ↓ Linear MS EM
1 13 13(12) 18(16)
10 19 15(17) 18(18)
100 22 16(23) 20(20)
1000 21 17(28) 19(22)
10000 22 17(28) 19(22)
100000 22 17(28) 19(22)

Table 2: Number of iteration for different values of the contrast η with Type 2
coefficient. See Figure 6. Here we have H = 1/10 and h = 1/100.

Figure 7: Mixture of log-Gaussian permeabilities with different means. Numer-
ical results are presented in in Table 3.

Remark 19 (Nonoverlapping methods) In Table 4 we present numerical
results for nonoverlapping domain decomposition methods for the Schur com-
plement problem. We use a two level additive method; see [25, 20]. These
numerical results show that the condition number of the resulting preconditioned
system for the Type 3 coefficient is nearly independent of the contrast. How-
ever, we observe that the number of iterations in the nonoverlapping case is
larger than that in the overlapping case. The condition number for this method
if of order (1 + log(H/h))2 when using special coarse solvers [20, 25] in the
case of piecewise constant coefficients. The construction of the preconditioner
relies on the fact that the coefficients are scaled uniformly in each coarse block
(i.e., they are either high or bounded). The extension of these results to the case
of highly variable coefficients is not straightforward and will be object of future
work.

8 Conclusions

In this paper we study preconditioners for multiscale elliptic problems with
highly variable coefficients. We analyze theoretically and numerically two level
additive Schwartz preconditioners with several coarse solvers. Our objective is
to show that the condition number of preconditioned systems is independent of
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η Linear MS EMF
1 32 27(27) 22(23)
2 35 29(29) 28(28)
3 37 31(32) 30(31)
4 39 33(33) 33(34)
5 41 35(35) 35(35)
6 33 28(37) 37(38)
7 34 29(29) 40(40)

Table 3: Number of iteration for different values of the mean of the middle part
of the Type 3 coefficient which is a mixture of log-Gaussian permeabilities with
different means. See Figure 7 for the coefficient with η = 0. Here we have
H = 1/10 and h = 1/100.

η MS EMF
1 80 69
2 85 80
3 87 102
4 129 131
5 123 154
6 140 182
7 157 217

Table 4: Number of iteration for different values of the mean of the middle part
of the Type 3 which is a mixture of log-Gaussian permeabilities with different
means. See Figure 7 for the coefficient with η = 0. We solve (46) with a two
level additive nonoverlapping method; see [20]. Here we have H = 1/10 and
h = 1/100.

the contrast in the media properties. In the overlapping setting, we concentrate
on the case of a generous overlap. In our analysis, we define a coarse-scale
approximation using weighted averages. The weighted averages are important
to show L2 approximation in the analysis. Our analysis requires special Poincaré
estimates to bound the weighted L2 estimates. We study the heterogeneities
when the low conductivity regions are embedded into high conductivity regions.
We also study overlapping methods for Schur complement methods. These
methods employ harmonic extensions and allow us to use extension theorems
to reduce the number of low conductivity inclusions. In the paper, we present
numerical results that confirm our theoretical results.
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