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IFT57 stabilizes the assembled intraflagellar transport complex
and mediates transport of motility-related flagellar cargo
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ABSTRACT

Intraflagellar transport (IFT) is essential for the assembly and
maintenance of flagella and cilia. Recent biochemical studies have
shown that IFT complex B (IFT-B) is comprised of two subcomplexes,
IFT-B1 and IFT-B2. The IFT-B2 subunit IFT57 lies at the interface
between IFT-B1 and IFT-B2. Here, using a Chlamydomonas
reinhardtii mutant for IFT57, we tested whether IFT57 is required for
IFT-B complex assembly by bridging IFT-B1 and IFT-B2 together. In
the ifts7-1 mutant, levels of IFT57 and other IFT-B proteins were
greatly reduced at the whole-cell level. However, strikingly, in the
protease-free flagellar compartment, while the level of IFT57 was
reduced, the levels of other IFT particle proteins were not
concomitantly reduced but were present at the wild-type level. The
IFT movement of the IFT57-deficient IFT particles was also
unchanged. Moreover, IFT57 depletion disrupted the flagellar
waveform, leading to cell swimming defects. Analysis of the mutant
flagellar protein composition showed that certain axonemal proteins
were altered. Taken together, these findings suggest that IFT57 does
not play an essential structural role in the IFT particle complex but
rather functions to prevent it from degradation. Additionally, IFT57 is
involved in transporting specific motility-related proteins.

KEY WORDS: Cilia, Flagella, IFT particles, IFT complex, Flagellar
assembly, IFT57, Flagellar motility

INTRODUCTION

Eukaryotic cilia and flagella project from the surface of almost all
interphase cells where they perform a variety of signaling and
motility-based functions (Ishikawa and Marshall, 2011). The
assembly and function of the cilium rely on intraflagellar transport
(IFT), which is a bi-directional traffic of linear trains of IFT particles
along the axoneme (Pigino et al., 2009). Ciliary defects, including
those caused by IFT deficiencies, are linked to ciliopathies, such as
polycystic kidney disease (PKD) and Bardet-Biedl syndrome
(BBS) (Badano et al., 2006).

The IFT particle is comprised of two biochemical separable
complexes, IFT-A and IFT-B, which contain six and 16 subunits,
respectively (Ishikawa and Marshall, 2011). Research in the past
decade has made great advances into determining the architecture
of the IFT complexes, especially the IFT-B complex (Behal et al.,
2012; Taschner et al., 2016; Katoh et al., 2016). The IFT-B
complex contains a salt-resistant core complex and several
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peripheral proteins (Lucker et al., 2005). An earlier yeast two-
hybrid assay shows that the peripheral proteins IFT57 and IFT20
directly interact (Baker et al., 2003), providing the first clue that
the peripheral proteins may not just loosely stick onto the IFT-B
core complex, but rather form complexes. Indeed, two very recent
comprehensive mappings of interactions among all IFT-B subunits
demonstrate that all peripheral proteins [IFT20, IFT54 (also known
as TRAF3IP1), DYF-3 (also known as Cluap1), IFT57, IFT80 and
IFT172] form a distinct biochemical complex which is now called
IFT-B2. The core complex, containing IFT22, IFT25 (also known
as HSPBI11), IFT27, [FT46, IFT52 (also known as BLDI),
IFT56 (also known as TTC26 and DYF-13), IFT70 (also known as
DYF-1), IFT74, IFT81 and IFT88, is renamed as IFT-B1 (Katoh
et al., 2016; Taschner et al., 2016).

Several subunits play prominent roles in IFT-B assembly. [FT52
is the backbone for the IFT-B1 subcomplex IFT88-IFT70-IFT52—
IFT46 (Taschner et al., 2011; Richey and Qin, 2012). IFT52 is also
essential for the overall stability of IFT-B1 because it mediates the
binding of the subcomplex IFT88—IFT70-IFT52-IFT46 with the
other subcomplex IFT81-IFT74-1FT27-IFT25-IFT22 (Taschner
et al.,, 2014, 2011). Recently, the Lorentzen and the Nakayama
laboratories, using expressed Chlamydomonas reinhardtii, and
human or mouse proteins, respectively, have biochemically mapped
the subunits at the interface between IFT-B1 and IFT-B2 (Taschner
et al., 2016; Katoh et al., 2016). IFT57 and DYF-3 in IFT-B2, and
IFT52 and IFT88 in IFT-B1 are the proteins that bridge the two
subcomplexes together to form a complete IFT-B complex.
Consistent with this, in Chlamydomonas, the IFT-B complex
completely fails to assemble in the iff52 mutant, while IFT-B2
proteins dissociate from the IFT-B1 complex in the if88 mutant
(Richey and Qin, 2012). The essential role of DYF-3 in IFT-B
assembly has also been verified by the cultured Cluap !~~~ MEF cell
line (Katoh et al., 2016). Currently, among the four interface
subunits, only the impact of IFT57 on the in vivo assembly of the
IFT-B complex has not been examined.

It is unknown whether individual subunits of IFT57 and DYF-3
are sufficient for the interaction with IFT88—IFT52, the interface of
IFT-B1. The Nakayama group, through the use of visible
immunoprecipitation (VIP) assays, has shown that IFT57 and
DYF-3 are important for mediating the binding between the two
IFT-B subcomplexes (Katoh et al., 2016). However, since IFT57
and DYF-3 could only be purified as a single complex, whether
individual subunits or both are necessary for the interaction with
IFT88—IFTS52 still needs to be determined (Taschner et al., 2016).
Moreover, the work from the Lorentzen group uses purified proteins
from E. coli (Taschner et al., 2016), while the interaction mapped by
Nakayama and colleagues has been analyzed through exploration of
an artificial overexpression system (Katoh et al., 2016). Ideally, the
role of IFT proteins in IFT complex assembly should be addressed
in an organism with a functional IFT.
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In most ciliated organisms, the heterotrimeric kinesin-2 motor drives
the anterograde transport of IFT particles carrying cargo proteins to the
flagellar tip, and the cytoplasmic dynein-1b returns particles carrying
turnover products to the base (Cole et al., 1998; Pazour et al., 1999,
1998; Porter et al., 1999; Rosenbaum and Witman, 2002). Since the
IFT particle relies on the proper association of multi-subunits, the loss
of'any one of the IFT particle proteins could have a disastrous effect on
the structure of the IFT particle, leading to defects in ciliary assembly
and function. Obviously, the subunits in the interface between I[FT-B1
and IFT-B2, IFT52, IFT88, DYF-3 and IFT57, are likely to be critical
for the integrity of the IFT-B complex. On the other hand, several IFT
particle proteins have been shown to directly bind to specific flagellar
precursors. For example, IFT46 directly interacts with ODA16 (also
known as DAW1), which facilitates the outer arm dynein transport
(Hou et al., 2007; Gao et al, 2010; Ahmed et al., 2008). By
dimerization, IFT74 and IFT81 cooperatively transport tubulin for cilia
assembly (Kubo et al., 2016; Bhogaraju et al., 2013a). IFT56 appears
to transport a set of proteins involved in motility (Ishikawa etal., 2014).
Consistent with being an IFT particle protein, IFT57 has been shown to
be essential for ciliogenesis in several model organisms, including
Caenorhabditis elegans (Haycraft et al., 2003; Perkins et al., 1986),
zebrafish (Cao et al., 2010) and mice (Houde et al., 2006). However,
the exact role of IFT57 in the IFT-B complex assembly and cargo
transportation is unknown.

In this study, we isolated a mutant containing a hypomorphic
allele of IFT57 in Chlamydomonas and analyzed the specific
contributions of IFT57 to flagellar assembly and function. The
mutant expresses a significantly reduced amount of IFTS7.
Concomitantly, the amounts of some other IFT-B core proteins
also decrease dramatically. Surprisingly, although IFT57 lies at the
interface between IFT-B1 and IFT-B2 (Katoh et al., 2016; Taschner
et al., 2016), the depletion of IFT57 affects neither the assembly of
IFT-B nor the flagellar entry of IFT particles. We also show that,
even though a percentage of the ift57 mutant cells assemble flagella,
these flagella have motility defects and display abnormal
waveforms. Analysis of the mutant flagellar protein composition
shows certain axonemal proteins are drastically changed, suggesting
that IFT57 is involved in transporting a specific set of motility-
related cargoes.

RESULTS

The ift57-1 mutant expresses a trace amount of IFT57 due to
an insertion in the 5'UTR of the IFT57 gene

We generated Chlamydomonas mutants by random insertional
mutagenesis and first screened for phototaxis-defective mutants.
Flagellar assembly mutants were found by microscopic observation
(Yanagisawa et al., 2014). We further screened a set of mutants with
severe flagellar assembly defects by immunoblotting whole-cell
extracts with a strong IFT-B antibody anti-IFT46 (Hou et al., 2007).
One strain 2P40 was found expressing a highly reduced level of
IFT46 and contained a complete hygromycin-resistant gene cassette
in the 5’UTR of the IFT57 loci (Fig. 1A). We renamed the mutant
2P40 as ift57-1 after backcrossing three times. Since the coding
sequence of IFT57 remained intact, we next evaluated the effect of
the insertion by measuring the protein and mRNA abundance of
IFT57 in ift57-1 cells. The mutant cells expressed ~5% of wild-type
amount of IFT57 at both the protein (Fig. 1B,C) and mRNA level
(Fig. 1D). Therefore, the insertion at the 5'UTR did not completely
abolish the expression of [FT757, but rather reduced its
transcriptional efficiency or the stability of its transcripts.
Transforming a 7.2-kb genomic fragment containing the IFT57
gene into the ifi57-1 genome, led to a recovery of /FT57 expression
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at both the protein and mRNA level (Fig. 1B-D). Moreover,
accompanying the expression of [FT57, the flagellar defects
associated with if#57-1 were also rescued (Fig. 2B,C).

Depletion of IFT57 reduces the stability of IFT-B1

The effects of the IFT-B2 protein IFT57 depletion on other IFT
particle proteins were examined by immunoblotting assays.
Previously characterized IFT-B1 mutants, ift52, ift46 and ifi88,
were included for comparison. Similar to IFT-B1 mutants, if#57-1
had a normal to slightly elevated cellular level of the [FT complex A
protein IFT122 but substantially reduced levels of complex Bl
proteins, IFT46, IFT74 and IFT81 (Fig. 1E). However, despite the
fact that [IFTS57 and IFT20 are in the same [FT-B2 subcomplex and
directly interact biochemically (Katoh et al., 2016; Taschner et al.,
2016), the levels of IFT20 were not reduced but rather increased in
ift57-1 cells (Fig. 1E). Since the IFT20 level was not adversely
affected by the depletion of the IFT-B complex, the biochemical
stability of IFT20 is independent of the presence of either the IFT-
B1 or IFT-B2 subcomplexes.

We then measured mRNA levels and turnover rates of IFT
proteins in ift57-1 to determine whether the reduction in the cellular
levels of IFT-B1 proteins were caused by transcriptional inhibition
or increased protein degradation. The quantitative real-time PCR
(qPCR) results showed that the transcriptional levels of /774 (IFT-
Bl), IFT88 (IFT-Bl) and [FTI40 (IFT-A) in ift57-1 were
comparable to those in wild-type cells (Fig. 1F). Apparently, the
depletion of /FT57 mRNA did not affect the gene transcriptions of
IFT particle proteins. Then, we conducted a time-course
cycloheximide treatment to measure the degradation rate of
IFT46, which is critical for the stability of IFT-B (Richey and
Qin, 2012; Hou et al., 2007), in ift57-1. Similar to previous results,
IFT46 was very stable in wild-type cells (Fig. 1G), showed a slight
decrease in stability in the /88 mutant and a dramatic decrease in
the ifi52 mutant (Richey and Qin, 2012). In the ift57-1 mutant,
IFT46 exhibited a decreased stability, indicating that IFT57 is
important for preventing degradation of IFT complex B proteins.
Moreover, when ift57-1 mutant cells reached the stationary growth
phase, the IFT-B complex was quickly degraded (Fig. S1). These
results are in agreement with IFT57 as an integral component of the
IFT-B complex, and IFT57 depletion results in the destabilized IFT-
B complex (Fig. 1G).

The flagellar assembly is compromised when IFT57 is
depleted

As the depletion of IFT57 caused a reduction of IFT particles, we
asked how the flagellar assembly is affected in if#57-1 mutant cells.
Unlike wild-type cc125 cells, which contained individual cells with
two long flagella (means.d., length=10.55£1.11 um) (Fig. 2A—C),
~80% of ift57-1 total cell population were clusters of four or eight
cells encased in mother cell walls (Fig. 2A,B). Close microscopic
analyses revealed that at least some cells trapped inside the mother
cell walls assembled short flagella (Fig. 2A). The release of
daughter cells from mother cell walls depends on a proteolytic
enzyme secreted by the flagella of the daughter cells (Kubo et al.,
2009). Apparently, ift57-1 flagella were incapable of secreting a
sufficient amount of the enzyme to digest mother cell walls.
Moreover, most of the small percentage of liberated individual cells
in the ift57-1 culture were bald, and only a few cells had assembled
flagella (2.3%). Occasionally, a cell with near full-length flagella
could be observed (Fig. 2A—C). Obviously, the flagellar assembly
of ift57-1 was greatly compromised. These results are consistent
with IFT57 being critical for ciliogenesis in other ciliated organisms
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Fig. 1. Characterization of the ift57-1 mutant. (A) A hygromycin-resistant gene aph7’ was inserted into the 5’'UTR after nucleotide 91 of the IFT57 gene. (B) The
IFT57 expression at the protein level was reduced in the ift57-1 mutant. Whole-cell lysates from the wild-type cc725 and the mutant ift57-1 cells were probed with
antibodies against IFT57 and IFT46. The B-subunit of ATP synthase (AtpB) was used to show equal loadings. (C,D) The ift57-1 mutant cells had ~5% of wild-type
amount of IFT57 at the protein (C) and mRNA level (D). IFT57 was recovered to ~50% of wild-type level in the ift67-1-rescue strain. The relative IFT57 abundances
were plotted based on the intensity of the bands on immunoblots. The mRNA of IFT57 was measured by qPCR. Data were collected from three independent
experiments. (E) The levels of the IFT-B proteins were severely reduced in ift57-1. Whole-cell lysates from cc125 cells, ift57-1 cells and cells mutant for three
known IFT-B mutants (bld1/ift52, ift46 and ift88) were probed with antibodies against IFT complex proteins. (F) IFT genes (IFT74, IFT140 and IFT88) were
expressed at similar levels in cc125 and ift57-1 cells. The graph was generated from three independent gPCR results. (G) The stability of IFT46 was reduced in
ift57-1 cells. A 12-h time-course treatment with cycloheximide was used to examine degradation rates of existing proteins. Whole-cell extracts were probed with
anti-IFT46 antibody. AtpB was used to ensure equal loadings. In all panels, the error bars represent s.d. ***P<0.001; ns, not significant.

(Perkins et al., 1986; Haycraft et al., 2003; Houde et al., 2006; Cao
et al., 2010).

Autotrophic condition promotes flagellar assembly and IFT
particle protein expression

There are two common media for Chlamydomonas culture, TAP
and M1. The main difference between them is the TAP provides
carbon nutrients, while the M1 does not. Consequently, the cell
growth in M1 medium is entirely dependent on photosynthesis.
Chlamydomonas cells grow much faster in TAP medium. However,
the cells, especially the flagellar-defective mutants, flagellate much
better when cultured in M1 medium. Therefore, M1 medium is often
used to encourage flagellar assembly. When ift57-1 cells were
grown in M1 medium, cell clumps seen in TAP medium largely
disappeared (Fig. 3A). Moreover, ~75% of cells assembled relative
long flagella (=6 um). Obviously, when the ift57-1 cells were
cultured autotrophically in M1 medium the flagellar assembly was
much less adversely affected.

Immunoblotting results showed that both the wild-type and the
ift57-1 mutant cells clearly expressed a higher amount of IFT
particle proteins when the cells were cultured in M1 compared to in
TAP medium (Fig. 3B). Therefore, the autotrophic culture condition
increased the cellular concentrations of IFT particle proteins in
general, which led to the improved flagellar assembly of ift57-1 cells
cultured in M1 medium.

We then asked whether if257-1 cells with long flagella contain
more IFT particles than those with short or no flagella. Because only

the cells bearing long flagella swam effectively towards light while
the ones with short or no flagella could not (Fig. 3C,D), we were
able to separate the two types of cells by photoaccumulation.
Immunoblotting analysis revealed that cells with longer flagella
indeed had a higher IFFT57 expression, while the ones with shorter
or no flagella had a much lower amount of IFT57 (Fig. 3E). Taken
together, these results clearly demonstrate that in ift57-1 cells the
IFT57 expression positively correlates with the status of flagellar
assembly.

IFT particle proteins localize to the basal body in ift57-1
mutant cells

To examine whether the IFT-B complex still localized to the basal
body in ift57-1 cells, we checked the cellular distribution of a few
IFT proteins by indirect immunofluorescence staining (Fig. 4). The
anterograde motor subunit FLA10 was used as a basal body marker
(Deane et al., 2001; Cole et al., 1998; Richey and Qin, 2012). We
chose the cells cultured in TAP medium and that had tiny or no
flagella for staining. These cells presumably had very little IF'T57
expression (Fig. 1B,C). Results showed that in both wild-type and
the if57-1 mutant cells, the IFT-A protein IFT139 colocalized with
FLA10 at the basal body. Thus, the IFT-A complex was not affected
by the depletion of IFT57. In contrast, changes were noticed for
IFT-B proteins. In cc125 cells, all three IFT-B proteins colocalized
with IFT122 (IFT-A) and FLA10. In the mutant ifi57-1, IFT46
(IFT-B1) was clearly localized to the basal body. IFT81 (IFT-B1)
and IFT172 (IFT-B2) were also consistently found at the basal body.
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Fig. 2. IFT57 depletion causes flagellar assembly defects. (A) /ft57-1 mutant cells displayed a range of flagellar assembly defects. The control wild-type cc125
cells were rarely seen in clusters, and over 90% of cells had full-length flagella. When ift57-1 were cultured in TAP medium, most cells were seen in clumps.
Hatched individual cells assembled no or short flagella. Tiny flagella were occasionally seen on cells trapped inside mother cell walls (highlighted by black
arrowheads). Scale bar: 10 um. (B) 300 randomly picked cells or cell clumps from each strain were analyzed. The graph shows the percentage of cells or cell
clumps that: (1) assembled long flagella (>6 pm); (2) assembled short-length flagella (<6 pm); (3) were bald; or (4) were in aggregates. One representative resultis
shown here. Similar results were observed in multiple repeats. (C) 50 flagellated cells from each culture were randomly selected for length measurement. The
meanzs.d. flagellar length of ift57-1 mutant cells (5.25+3.15 pm) was shorter than that of wild-type cells (10.55+1.11 ym). The defect was partially recovered in the

rescue strain ift57-1-rescue (9.58+1.34 um).

However, the labeling of IFT81 (IFT-B1) was more dispersed,
similar to the background dots in wild-type cells. In contrast,
although only a small proportion of IFT172 reached the basal body,
most IFT172 did not disperse throughout the cell but rather
accumulated just beneath the basal body. This cellular distribution
pattern of IFT172 was also observed in other IFT-B mutants
(Fig. S2). Overall, the localization of IFT particle proteins as well as
the IFT motor FLA10 appeared to be normal.

CrDYF-3 is an IFT particle protein of Chlamydomonas and co-
purifies with IFT57

IFT57, together with Chlamydomonas DYF-3 (denoted CrDYF-3),
plays a crucial role in IFT-B1 and IFT-B2 connection through
contacts with IFT52-IFT88 (Taschner et al., 2016; Katoh et al.,
2016). To understand the relationship between these two subunits,
polyclonal anti-CrDYF-3 antisera was employed to detect the
endogenous CrDYF-3 on western blots. The antibody recognized a
single band, which is slightly smaller than IFT57 of flagellar
extracts (Fig. SA).

The flagellar entry of IFT particles solely depends on the
anterograde motor kinesin-II (Kozminski et al., 1995). The mutant
flal0-1 harbors a point mutation in the kinesin-II motor subunit
FLA10, and is functionally normal in flagellar assembly at the
permissive temperature (18°C) but has no anterograde IFT at the
non-permissive temperature (32°C) (Walther et al., 1994; Cole et al.,
1998). Similar to IFT particle subunits IFT139 and IFT74, the
amount of CrDYF-3 was significantly decreased in the flagella of
the flal0-1 mutant at 32°C (Fig. 5B). This result revealed that, like
other IFT proteins, the entrance of CrDYF-3 into flagella is FLA10
dependent.
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We then utilized sucrose density gradient centrifugation to
determine the sedimentation pattern of CrDYF-3 (Fig. 5C,D). On
the gradient, CrDYF-3 co-eluted with IFT57 in the 16S fractions.
The corresponding band from the Coomassie-Blue-stained gel
(Fig. 5D) was analyzed by mass spectrometry. Only two proteins,
IFT57 and CrDYF-3, were identified from the band (data not
shown), confirming the identity of CrDYF-3. Moreover, we noticed
that IFT-B1 and IFT-B2, the two subcomplexes of IFT-B, did not
completely co-sediment on the gradients (Fig. 5C). IFT-BI
subcomplex proteins IFT81 and IFT70 co-eluted in fractions 8
and 9, while IFT-B2 subunits IFT57 and CrDYF-3 were
concentrated in fractions 9 and 10. Therefore, IFT-B1 and IFT-B2
were biochemically separated on the gradients. These results
suggest that the association and disassociation between IFT-Bl
and IFT-B2 could be subjected to regulation in vivo.

The purification of recombinant CrDYF-3 protein alone is
difficult since the protein appears to be structurally unstable and is
prone to form aggregates. DYF-3 becomes soluble only when it co-
expressed with IFT57 (Taschner et al., 2016). Indeed, a few attempts
to purify the soluble CrDYF-3 protein alone from E. coli were
unsuccessful. However, when we mixed two crude E. coli extracts
that contained the expressed tagged CrDYF-3 and IFT57 proteins,
respectively, we were able to co-purify CrDYF-3 and IFTS7
(Fig. SE). This result supports the hypothesis that CrDYF-3 and
IFT57 directly interact.

IFT57 depletion does not affect the flagellar entry of IFT
particles and the assembly of IFT-B complex

To address how the depletion of IFT57 affects the distribution of
IFT particles to flagella, we checked the levels of IFT57 as well as

()
Y
C
ey
()
w
ko]
Y
Y=
(®)
‘©
c
—
>
(®)
-


http://jcs.biologists.org/lookup/doi/10.1242/jcs.199117.supplemental

RESEARCH ARTICLE Journal of Cell Science (2017) 130, 879-891 doi:10.1242/jcs. 199117

A B
TAP M1
9 00125 ift57-1-1 #5712 ccl25 ifto7-1-1 ift57-1-2
E 140 [ aggregation IFT57 e - =
5 120 8 bald R -_— —
2100 [ short flagella (<6um) [FT48
3 80 Slong flagella (>6pm)  IFT74 e J—
2 ig IFT122 e e, L e .l
D
£ 20 APB  —  —
8 o0 : B -
9 2 N R o TAP M
o PP I cc125 ift57-1-1 ift57-1-2 cc125 _ift57-1-1_ift57-1-2
ISR QR FT57 100 004 016 396 036 054
o & N
» IFT46 1.00 0.25 0.11 212 0.71 0.82
IFT74 1.00 0.35 0.24 2.76 1.09 1.28
C IFT122  1.00 2.87 3.30 3.42 5.35 655
0 min 20 min
:\'l/
=\)<
D E
120 bef hototaxi ft hototaxi
§ 100 mmbald erore pnototaxis arter phototaxis
< 5 B short flagella (<6ym) cof25  ift57-1 Sitel  Sited  Site3
[} Mlong flagella (>6pum)
o 60 — L
_g 4 IFT57 R —— Y ' -IFT57
Q
[8)
3 20 -—— w ®
0
Site1  Site3  Site4 - AtpS AtpB

Fig. 3. Autotrophic condition promotes flagellar assembly in ift57-1 cells. (A) The flagella were less abnormal in ift57-1 mutant cells grown in M1 than in cells
grown in TAP medium. Data were collected from three independent experiments (total =300, individual cells plus cell clumps per experiment). Error bars
represent s.d. (B) Immunoblots of whole-cell lysates from cells cultured in TAP or M1 medium probed with antibodies against IFT particle proteins as indicated.
Lanes between the ‘TAP’ and ‘M1’ samples are molecular mass markers. The samples ‘ift57-1-1" and ‘ift57-1-2" are two independent samples of whole-cell
extracts of ift57-1 cells. The table shows the relative protein abundances based on the intensity of the bands on immunoblots. The values for the bands in the lane
‘cc125 TAP’ were set as 1.00. AtpB bands were used to normalize the variations caused by loadings. (C) By using the photoaccumulation assay, the wild-type
cc125 or the mutant ift57-1 cells were separated into two groups; one that swam to light (1 and 3), and the other group that failed to swim towards the light
source (2 and 4). (D) Cells taken from sites 1, 3 and 4 (n=300) were observed under the microscope. The graph shows the percentage of cells that were bald, had
short flagella or had long flagella. Site 2 was devoid of cells because of strong phototaxis effects. The result from one experiment is shown here. Similar results
were obtained from three repeats. (E) Immunoblots of whole-cell lysates showed cells from site 3 expressed a higher level of IFT57 than those from site

4. Antibody against AtpB was used to ensure equal loadings. Similar results were observed in three repeats. *, nonspecific bands on anti-IFT57 immunoblots.

several subunits of IFT-A and IFT-B in isolated ifi57-1 flagella
(Fig. 6A,B). Ifi57-1 flagella showed a reduced level of IFT57
compared to wild-type. Two complexes, the IFT-A and BBSome
(an IFT cargo complex that carries specific cargoes in and out of
cilia), remained at wild-type levels. Strikingly, the flagellar
content of IFT-B2 proteins CrDYF-3 and IFT172 as well as that
of the IFT-B1 subunits IFT46, IFT56 and IFT81 was not reduced.
This result revealed that, in ift57-1 mutant flagella, IFT57 was at a
sub-stoichiometric level relative to the rest of the IFT-B proteins
(Fig. 6A,B). The IFT-B complex assembly appeared to be normal
in ift57-1 cells (Fig. 6C). We also examined the movement of IFT
trains in §ft57-1 mutant flagella with total internal reflection
fluorescence (TIRF) microscopy followed by kymograph analysis
(Engel et al., 2009a,b; Lechtreck et al., 2009). A fusion between
GFP and the non-motor subunit of the IFT anterograde motor
FLA10-kinesin-II, denoted KAP—-GFP, underwent a prominent
anterograde IFT with similar speeds to that seen in wild-type

(Fig. 6D.E; Movies 8 and 9), indicating that the IFT movement is
likely unaffected in ift57-1 flagella. Therefore, despite the fact that
IFT57 sits at the interface between the IFT-B1 and IFT-B2
complexes (Katoh et al., 2016; Taschner et al., 2016), these results
collectively show that IFTS57 is not essential for the assembly of
IFT-B nor is it required for the flagellar entry of IFT particles.
Because CrDYF-3 presented at the wild-type level in ift57-1
mutant flagella, we postulated that CrDYF-3, the other interface
subunit of IFT-B2, is sufficient to mediate the binding between
IFT-B1 and IFT-B2.

IFT57 is required for establishing normal flagellar waveforms

While performing the photoaccumulation experiments, we noticed
that within the population of if#57-1 cells that failed to swim towards
the light source, ~50% percent of cells assembled flagella longer
than 6 um (Fig. 3D). We thought that their failure to swim towards
the light may be due to motility defects. We checked the swimming
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A cc125

Fig. 4. Effects of IFT57 reduction on cellular localization of IFT-B proteins. Immunofluorescent stainings of the wild-type cc125 (A) and the mutant ift57-1 (B)
cells. Antibodies against IFT proteins, IFT139 (A), IFT122 (A), IFT172 (B), IFT81 (B), IFT46 (B), and FLA10, were used in the stainings. All analyzed cells showed
consistent localization patterns as depicted in A1, B1, A2, B2, A4 and B4. The IFT172 accumulation beneath the basal body (depicted as in B3 and B5) was often
detected in ift57-1 mutant cells (49 out of 61), while it was rarely seen in cc125 (2 out of 25). Scale bars: 10 pm.

patterns of wild-type and if#5 7-1 cells. Most wild-type cells swam in
a relatively continuous smooth path (Fig. 7A1; Movie 1). However,
the trajectories of ift57-1 cells revealed that they either frequently
stopped or exhibited a spiral pattern, leading to a decreased forward
motion (Fig. 7A2—A4; Movies 2 and 3). These movements were not
seen in wild-type cells. In different batches of ift57-1 cells, the
severity of swimming defects was variable (Fig. 7A). The
swimming paths of wild-type cells were always consistent,
indicating that their flagella were well equipped to tolerate
fluctuating environmental changes.

To closely watch flagellar waveforms, we recorded single-cell
movements in wild-type and ift57-1 cells. Consistent with previous
reports, wild-type cells swam forward using an asymmetrical
flagellar waveform (Fig. 7B1; Movie 4). One beating cycle of wild-
type flagella consisted of a recovery stroke (Fig. 7B1, frames 1-6)
followed by a power stroke (Fig. 7B1, frames 7-12). However, the
waveform was abnormal, and the beatings of the two flagella of
ift57-1 cells were uncoordinated (Fig. 7B2,B3; Movies 5-7). The
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abnormal waveform caused the cells to restlessly tumble at the same
spot, move around in circles or take spiral paths (Fig. 7A). In the
ift57-1-rescue strain, both the swimming path and the flagellar
waveform were normal (data not shown).

The level of the inner dynein arm 11 subunit IC97 is greatly
reduced in ift57-1 mutant flagella

We checked levels of several motility-related axonemal proteins in
whole flagellar samples by immunoblotting. While the levels of the
inner dynein arm I1 subunits IC138 (Bower et al., 2009) and IC140
(Perrone et al., 1998; Yang and Sale, 1998), microtubule doublet
inner junction protein FAP20 (Yanagisawa et al., 2014), outer
dynein arm components LC1 and IC69 (King, 2012), radial spoke
protein RSP3 (Yang et al., 2006), and axonemal protein MBO2
(Tam and Lefebvre, 2002) were near wild-type levels, the amount of
1C97 (Wirschell et al., 2009) was significantly reduced in the ift57-1
mutant flagella (Fig. 8). The IC97 expression in the if57-/ mutant at
the whole-cell level was normal (data not shown). Thus, the
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Fig. 5. CrDYF-3 is an IFT-B2 protein in Chlamydomonas. (A) The size of
CrDYF-3 was slightly smaller than that of IFT57 based on two immunoblots of a
single membrane. The membrane was first probed with anti-CrDYF-3 (a rabbit
antibody), and then with anti-IFT57 (a mouse monoclonal antibody). (B)
Immunoblots of flagellar extracts showed that CrDYF-3 disappeared along with
IFT139 and IFT74 from fla10-1 flagella at 32°C. Axonemal protein IC69 was
used as an equal loading control. (C) CrDYF-3 co-eluted with IFT57 on sucrose
density gradients. Immunoblots of gradient fractions show the sedimentation
peaks of the IFT-A protein IFT139, and IFT-B proteins IFT81, IFT70, IFT57 and
CrDYF-3. Arrowheads highlight the peak fractions of each labeled protein. (D) The
upper panelis a Coomassie-Blue-stained gel of gradient fractions showing protein
bands for IFT particle proteins. Gray arrowheads highlight the fractions containing
IFT-A and IFT-B, respectively. The lower panel shows the positions of IFT57 and
CrDYF-3 along with a few other IFT-B proteins. (E) CrDYF-3 interacts with IFT57.
MBP-tagged IFT57 and GST-tagged CrDYF-3 were expressed in E.coliand used
for in vitro binding assay. The left panel (Coomassie-Blue-stained gel) shows that
immobilized MBP-IFT57 pulled down CrDYF-3 protein. Immunoblots probed with
antibodies against IFT57 and CrDYF-3 on the right panel show that immobilized
GST-CrDYF-3 retained IFT57 protein. The Coomassie-Blue-stained gel at the
bottom was used to show the proteins used in the input for the pulldown analysis.

reduction in the level of IC97 in ifi57-1 flagella was not due to
inhibition of expression but caused by a low efficiency in flagellar
entry, retention on the axoneme or both.

To further access the effect of depletion of IFT57 on flagellar
composition, we separated the flagellar proteins of cc125 and ift57-
1 cells by electrophoresis (Fig. S3). On Coomassie-Blue-stained
gels, one specific band at ~25 kDa consistently appeared in the
ift57-1 sample. In contrast, it was completely invisible or was just
faintly visible in the wild-type sample. Furthermore, a few
additional proteins showed altered amounts. The identities of
these proteins are still unknown.

DISCUSSION

Here, we report how IFT57 functions in flagellar assembly and
motility in Chlamydomonas. The hypomorphic mutant ift57-1
expressed a greatly reduced amount of IFT57 and was poorly
flagellated (Figs 1 and 2). At the whole-cell level, the levels of
IFT57 along with other IFT-B proteins were highly reduced,
indicating that IFT57 is important to maintain the stability of the
IFT-B complex (Fig. 1). Strikingly, although the flagellar level of
IFT57 was reduced, the levels of other IFT proteins were not
concomitantly affected by the depletion of IFT57 (Fig. 6). In ift57-1
flagella, the levels of all tested IFT particle proteins, except [FT57,
were not reduced. Additionally, the anterograde IFT motility in
flagellated if#57-1 cells was also comparable to that in wild-type
cells (Fig. 6D,E). Therefore, although IFT57 is important for
flagellation because it acts to maintain the cellular amount of IFT
particles, it is not essential for the IFT complex assembly or for the
flagellar entry of IFT particles. Another noted defect in ift57-1 cells
is that they have defective flagellar waveforms and/or beating
coordination (Fig. 7). Several flagellar proteins, including the
intermediate chain of I1 dynein IC97 were drastically altered in
ift57-1 flagella (Fig. 8; Fig. S3), suggesting that IFT57 is involved in
the transport of a specific set of motility-related cargoes.

Here, we show that the IFT57-depleted Chlamydomonas cells
had severely reduced and unstable IFT-B1 proteins (Fig. 1E,G).
Therefore, although being an IFT-B2 subunit, IFT57 is very
important for the stability of [FT-B1. A previous report shows that
IFT57 works as a linkage between IFT172 and IFT20 in IFT-B2
(Katoh et al., 2016). Interestingly, our work finds that the depletion
of IFT57 does not affect the expression of IFT172 and IFT20
(Fig. 1E; Fig. S2). These two proteins are likely biochemically
stable.

In this study, two lines of evidence demonstrate that IFT57 is not
essential for the assembly of the IFT-B complex. Firstly, the IFT-B
complex from ift57-1 whole-cell extracts still sedimented at about
16S, demonstrating that IFT-B is relatively intact (Fig. 6C).
Secondly, the low cellular pool of IFT-B proteins did not lead to
a low flagellar level of IFT-B proteins. Instead, although the level of
IFT57 was significantly reduced, all other IFT-B proteins were
at wild-type levels or an even higher level in ift57-1 flagella
(Fig. 6A,B). Moreover, the IFT-B complex assembled in ift57-1
mutant flagella was apparently functional since it underwent IFT
movement at the wild-type velocity (Fig. 6D,E). These results
strongly support that the IFT-B complex assembles and functions
normally in the absence of IFT57. Taken together, we conclude that
IFT57 is important for maintaining the stability of IFT-B, but is likely
dispensable for the IFT-B complex formation and IFT motility.

The recent work from both the Lorentzen and the Nakayama
laboratories concludes that IFT57 and/or DYF-3 (IFT-B2), and
IFTS52 and IFT88 (IFT-B1) are essential for linking IFT-B1 and
IFT-B2 together (Taschner et al., 2016; Katoh et al., 2016).
However, they disagree on how IFT57 functions. By using purified
E. coli-expressed purified Chlamydomonas proteins, Lorentzen and
colleagues show that IFT57 and DYF-3 directly interact to form a
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dimer, which is essential for binding to IFT52 or IFT88 (Taschner
et al.,, 2016). However, they cannot tell which one of the two
proteins, or both, is sufficient for binding to IFT52 or IFT88 since it
is technically difficult to purify individual proteins. On the other
hand, using overexpressed human or mouse IFT proteins in
mammalian culture cells the Nakayama group shows that IFT57
and DYF-3 do not interact directly. They rely on IFT20 to bridge
them together (Katoh et al., 2016). In this study, we have confirmed
that recombinant E. coli-expressed Chlamydomonas IFT57 and
CrDYF-3 can be co-purified, supporting the idea that these two
proteins form a dimer (Fig. 5D,E). Moreover, we have shown that, in
ift57-1 mutant flagella, the levels of IFT57 were significantly
reduced, while those of CrDYF-3 and other IFT-B proteins
remained at the wild-type level (Fig. 6A,B). Clearly, in ift57-1
mutant flagella IFT57 was at a much lower level relative to
CrDYF-3. Because CrDYF-3 presented at a molar ratio relative
to other IFT-B proteins when IFT57 was depleted (Fig. 6A,B), we
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Mean anterograde KAP-GFP speed (um/s)

Fig. 6. IFT57 is not essential for IFT
complex B assembly, its entry to flagella or
its motility inside flagella. (A) Immunoblots
of isolated flagella from cc 125 and ift57-1 cells
showed that although the level of IFT57 was
dramatically reduced in ift57-1 flagella, the
levels of other IFT proteins and BBS4, one
subunit of BBSome, were comparable to those
in cc125 cells. Ponceau-stained tubulin was
used as the equal loading control.

(B) Quantitative analysis of IFT protein levels
in cc125and ift57-1. The graph was generated
from four independent experiments.

= cc125 3 ift57-1

IFT81 IFT20 CDYF-3IFT172 IFT57  (C) Immunoblots showed that the
sedimentation peaks of both IFT-A (IFT122)
and IFT-B (IFT46 and IFT81) proteins were the
same on sucrose density gradients from the
control cw92 and the mutant ift57-1 whole-cell
extracts. FLA10 (at 10S) and Rubisco (at 19S)
were used as references to ensure the
gradients were prepared identically. Peaks of

IFT122 (A) Rubisco (at 19S) are indicated with

IFT46 (B) arrowheads. (D) Kymographs revealed the
motility of KAP—GFP in flagella of cc125 and

IFT81(B) ift57-1 cells. (E) The mean speed of KAP-GFP

FLA10 showed the anterograde IFT movement in
ift57-1 was normal. In all panels, the error bars
represent s.d.

IFT122 (A)

IFT46 (B)

IFT81 (B)

FLA10
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propose that CrDYF-3 alone is sufficient to mediate the integration
of IFT-B1 and IFT-B2. On the other hand, CrDYF-3 and IFT57
have similar predicted 3D structures (Taschner et al., 2016). It is
possible that although both CrDYF-3 and IFT57 sit at the interface
between IFT-B1 and IFT-B2, ecither one of them is sufficient to
bridge IFT-B1 and IFT-B2 together. The binding of IFT57 onto the
complex might also stabilize the structure of IFT-B since the IFT57-
deficient-IFT-B complex was unstable, and prone to degradation in
the cell body (Fig. 1G). This notion is supported by the fact that
when the IFT57-deficient IFT-B complex enters flagella, it could
accumulate inside the flagellar compartment (Fig. 6A,B) since the
flagellum contains few proteases (Pazour et al., 2005).

In this study, we noticed that the flagellated if#57-1 cells, even the
ones with relatively long flagella, showed certain degrees of motility
defects (Figs 3C,D and 7A). Further flagellar waveform analysis
revealed that in if#57-1 mutant cells, the beatings of the two flagella
were uncoordinated (Fig. 7B). IFT57 and IFT20 have been
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B3

Fig. 7. IFT57 is essential for normal flagellar motility. (A) Cell swimming paths were recorded by imaging cells with 2 s exposures in the dark-field view. A2, A3
and A4 are representative recordings of swimming paths of ift57-1 from three batches of cells; A1 shows a cc125 cell. Enlarged dotted regions are for detailed
viewing of individual swimming paths. Scale bars: 100 pm. (B) One beating cycle of wild-type cell flagella consists of a recovery stroke (B1 frames 1-6) followed
by a power stroke (B1 frames 7—12). The waveform of ift57-1 was abnormal (B2) or uncoordinated (B3). These continuous frames were taken from high-speed

recordings (600 fps) of cc125 and ift57-1 cells under microscopes.

previously proposed to facilitate the dissociation between the
anterograde motor kinesin-II and IFT particles when they reach the
flagellar tip (Krock and Perkins, 2008). However, upon examining
the motility of the anterograde motor subunit KAP—-GFP in ift57-1
mutant flagella (Fig. 6D,E), we observed no retrograde tracks,
indicating that kinesin-II dissociates from IFT particles at the correct
time normally. Moreover, the anterograde IFT speed was not
affected at all. Therefore, the IFT movement is normal in ift57-1
mutant flagella. However, the IFT57-deficient IFT particles,
although they underwent IFT movement, may have a reduced
efficiency in transporting specific sets of flagellar motility
components. In ift57-1 flagella, the level of the intermediate chain
of Il dynein IC97 decreased dramatically (Fig. 8). IC97 is a
regulatory subunit of I1 and required for I1-dynein-mediated control
of microtubule sliding in vitro (Wirschell et al., 2009). The low level
of IC97 in ift57-1 flagella is likely responsible for the flagellar
waveform defects.

IFT particles deliver different types of structural and functional
cargoes in and out of the flagellum. IFT proteins use their cargo-
binding sites to transport flagellar precursors for assembly and
function (Bhogaraju et al., 2013a,b; Eguether et al., 2014; Ishikawa
etal.,2014; Hou et al., 2007; Ahmed et al., 2008; Kubo et al., 2016;
Lechtreck, 2015; Wren et al., 2013; Lechtreck et al., 2009;
Mukhopadhyay et al., 2010). The Il dynein complex is pre-
assembled in the cytoplasm as a 20S complex including IC140,
IC138, 1C97 and other subunits, and then delivered to flagella by
IFT with assistance of the adaptor IDA3 (Viswanadha et al., 2014).
Although IC97 is a subunit of the I1 dynein complex, it is not a
structural component of I1, nor is it required for I1 dynein axonemal
assembly (Wirschell et al., 2009). It could be that IFT57 directly
binds to IC97. Alternatively, the structural change in IFT particles
caused by IFT57 depletion might reduce its efficiency in
transporting IC97 into flagella. Moreover, a few unknown
proteins also changed their levels in the flagella (Fig. S3). These
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Fig. 8. The level of the axonemal protein IC97 is decreased in ift57-1
flagella. (A) Immunoblots of isolated flagella were probed with the indicated
antibodies. Among all examined axonemal proteins, only the level of IC97 was
decreased in ift57-1 flagella. (B) The relative IC97 protein abundances in the
flagellar extracts of cc125 and ift57-1. The graph shows the intensity of the
bands on immunoblots from three independent results.

changes may block IC97 binding onto the axoneme, causing it to be
depleted from flagella. Future research is needed to address which of
the above hypothetic scenarios is correct.

MATERIALS AND METHODS

Strains and culture conditions

The mutant ift57-1, the rescue strain ift57-1-rescue, and ift57-1 fla3-1b::
KAP-GFP were made in this study. All other strains were obtained from the
Chlamydomonas Center (http:/chlamycollection.org/). Strains were
maintained on Tris-acetate-phosphate (TAP) plates. Cells were cultured in
either TAP or M1 liquid medium with constant aeration in a plant growth
chamber (Conviron, Manitoba, Canada) at 21°C with continuous light. M1
medium was used to culture cells in experiments for Figs 3C,D,E, 6D,E, and
7A. TAP medium was used for experiments shown in Figs 1, 2, 4, 5B,C,D,
6A,B,C, 7B, 8, Figs S1, S2, and S3. The medium used for experiments
shown in Fig. 3A and B are labeled on the figure.

Ift57-1 mutant isolation and mutation mapping

The mutant 2P40 was selected from a set of flagellar assembly mutants
containing a hygromycin-resistant pHyg3 insertion. The insertion site was
mapped using a long-and-accurate (LA) PCR in vitro cloning kit from
Takara (Japan) with modifications. Briefly, enzymes (Pstl, Hindlll, Sacll,
Ncol and Apal 1) with cutting sequences frequently found in C. reinhardtii
genome were used to digest genomic DNAs. Digestion products were
ligated to short linkers and then used as template for nested PCRs. The
primers were based on tagged sequences on both ends of the insertion site.
Specifically amplified fragments were then sequenced to identify the
insertion site. The 2P40 strain was backcrossed and was called ift57-1.

Rescue of ift57-1

We used the Chlamydomonas bacterial artificial chromosome (BAC) clone
13E3 (http:/www.genome.clemson.edu/), which contains the /FF757 gene,
to rescue ift57-1 cells. The linearized 13E3 was co-transformed with
the paromomycin-resistant pS//03 plasmid for selection. Before
transformation, we treated cells with gametic autolysin for 15-20 min to
dissociate cell clumps. Transformation was carried out by electroporation as
described with modifications (Pollock et al., 2004). Cells were re-suspended
in TAP liquid medium containing 60 mM sorbitol, and then transferred to a
4 mm electroporation cuvette. After adding ~300 ng of linearized pSI103
and 900 ng of linearized 13E3, cells were chilled on ice for 5 min, and then
electroporated in an ECM630 electroporator (BTX, USA) with the
following parameters: capacitance, 50 uF; resistance, 650 Q; and voltage,
825 V. Transformants were obtained from TAP plates containing 10 ng pul~!
paromomycin and screened for recovered swimming. Integration of /F'T57
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gene was confirmed by PCR using /FT57 gene-specific primers, [FT57-51-
69-F and [FT57-515-535-R (Table Sl1). Expressions of [FT57 were
confirmed by western blotting. We chose one of the rescue colonies for
detailed analysis, and named it ift57-1-rescue.

Comparison of effects of different types of media on flagellar
assembly

1ft57-1 and cc125 cells from fresh TAP plates were transferred to TAP and
M1 liquid medium, respectively, and were shook under light at 110 rpm for
3 days. Supernatants without visible cell clumps were then transferred to
fresh TAP or M1 medium. After culture for 3 days, 300 randomly picked
cells or cell clusters from each flask (TAP cc125, TAP 2P40, M1 cc125, and
M1 2P40) were analyzed. Cells were divided into four categories: (1)
aggregate, four or more than four cells formed clumps; (2) bald, single
cells with no flagella; (3) short flagella, single cells with flagella shorter than
half the length of wild-type flagella (<6 um); (4) long flagella, single cells
with flagella longer than half the length of wild-type flagella (>6 um).

Antibodies and immunoblotting assay

The polyclonal rabbit anti-CrDYF-3 antibody was produced by Bethyl
Laboratories, Inc (Montgomery, TX). The immunogen is an internal peptide
(N-CLYDALGQEPELREHR-C) of the CrDYF-3 protein. The peptide was
synthesized, purified by high-performance liquid chromatography (HPLC),
and verified by mass spectrometry. The peptide was conjugated to KLH
before being used for immunization. The antisera were affinity purified
before being used in immunoblotting.

Other antibodies used in this study include antibodies against IFT
proteins: FLA10, IFT57, IFT81, IFT139, IFT172 (Cole et al., 1998), IFT20,
IFT46 (Hou et al., 2007), IFT70 (Fan et al., 2010), IFT56 (Ishikawa et al.,
2014), IFT74 (Qin et al., 2004) and IFT122 (Behal et al., 2012); antibodies
against motility-related proteins: FAP20 (Yanagisawa et al., 2014), MBO2
(Tam and Lefebvre, 2002), RSP3 (Diener et al., 1993) and IC97 (Wirschell
et al., 2009), IC138 (Hendrickson et al., 2004), IC140 (Yang and Sale,
1998), LC1 (Benashski et al., 1999); and antibody against IFT cargo BBS4
(Lechtreck et al., 2009). Anti-p-F,-ATPase (AtpB) was purchased from
Agrisera (Sweden). Anti-IC69 was from Sigma-Aldrich (USA). The
primary antibodies used in this study are listed in Table S2.

The SDS-PAGE and immunoblotting assays were performed as described
(Silva et al., 2012). Chemiluminescence was used to detect the primary
antibodies. The intensities of the immunoblot bands were quantified by the
Image Lab™ Software (Bio-Rad, California, USA).

qPCR assay

qPCR was performed using Sybr Green PCR Dye as described previously
(Wood et al., 2012). The following pairs of qPCR primers were used:
qIFTS7F/qQIFT57R, qIFT74F/qIFT74R, qlFTI40F/qIFT140R, qlFTSS8F/
q/FT88R and qGBLPF/qGBLPR (Table S1). Primers for /F'T57 gene were
designed for this study. The remaining primers were described in a previous
publication (Wood et al., 2012). The guanine nucleotide-binding protein
subunit B-like protein (GBLP) was used as an internal control. The program
used for amplification is: 94°C for 2 min, 40 cycles of 94°C for 10 s and
60°C for 30 s, then 60°C for 2 min, finishing with a melting curve.

Photoaccumulation assay

Since most cells in iff57-1 liquid culture were in clumps, we used the
following procedure to get rid of bald cells or cell clumps before performing
photoaccumulation assays (DiPetrillo and Smith, 2011). The cc/25 and
ift57-1 cells from fresh TAP plates were transferred to M1 liquid medium
(Sager and Granick, 1953) and cultured with aeration for 3 days. Then flasks
were left to stand still for 10 min to allow bald cells or clumps to sediment to
the bottom of the flask. The upper layers were transferred to new flasks with
fresh M1 media. After culturing for 2 more days, 20 ml of cc/25 and ift57-1
cells were transferred to Petri dishes for photoaccumulation assays. Half of
each Petri dish was covered by foil. The light was then shed from open sides
of the dishes for 20 min. One sample was taken from the side close to the
light from each dish (site 1 from cc/25; site 3 from ift57-1), and one sample
was taken from the side away from the light (site 2 from cc/235; site 4 from
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ift57-1). 300 randomly picked cells were analyzed for flagellar assembly
from sample 1, 3 and 4; however, there were almost no cells recovered in
sample 2 since almost all cells went to site 1.

Flagella isolation

Flagella were isolated as previously described (Cole et al., 1998). Briefly,
cells cultured in TAP medium were deflagellated by pH shock, and then cell
bodies were removed by centrifugation through a 25% sucrose cushion at
1800 rpm (652 g). Isolated flagella were collected at 10,000 rpm (17,050 g)
in an SW 32 Ti motor (Beckman Coulter, USA). Owing to the presence of
cell clumps in ift57-1, cells were treated with gametic autolysin for
15-20 min to dissociate clumps followed by 4 h incubation in 10 mM
HEPES to encourage flagellation before flagella isolation.

Cycloheximide treatment

Chlamydomonas cells were cultured to dark green before cycloheximide
(12.5 pg ml™") treatments. Protein samples were prepared at 0 h, 6 h and
12 h after adding cycloheximide.

Whole-cell sucrose density gradient

The sucrose density gradient centrifugation of whole-cell extracts was
prepared the same way as described previously (Richey and Qin, 2012). The
Optima XE-90 Ultracentrifuge (Beckman Coulter, USA) with an SW41
rotor was used. Cw92, a cell-wall-deficient mutant in the cc/25 background,
was used as a wild-type control. Fractions at 19S, 12S and 10S were
estimated by the sedimentation positions of Rubisco, RSP3 and FLA10,
respectively.

Imaging

Flagellar assembly status analysis and length measurements

C. reinhardtii cells were fixed with 2% glutaraldehyde. Images were
collected on an Axioplan phase—contrast microscope (Carl Zeiss,
Oberkochen, Germany) using a 63x1.40 NA oil Plan-Apochromat
objective (Olympus, Tokyo, Japan). Measurement of flagellar length was
performed using ImageJ] (NIH).

Assessment of flagellar waveform pattern

C. reinhardtii cells were placed in a hand-made swimming chamber of
~100 pm thickness, and were observed under an Axioplan phase-contrast
microscope with a 63x1.40 NA oil Plan-Apochromat lens. Movies were
taken with a Phantom High Speed Micro-eX2 camera (Vision Research) at
600 frames per second (fps) and processed using the Cine Viewer software
[version 2.6, Vision Research Inc, Prince Edward Island (P.E.L.), Canadal].
Movies were imported to ImageJ for analysis.

Recording of cell-swimming tracks

Cells were cultured in M1 medium with aeration. After removing bald and
cell clumps, flagellated cells were placed in chambers as described above
and observed through a dark-field microscope. Tracks of swimming cells
were taken with a 2 s exposures and processed in Imagel.

TIRF microscopy and analytical methods

The strain ift57-1 fla3-1b::KAP-GFP was generated by crossing ift57-1 with
the strain fla3-1b::KAP-GFP (Mueller et al., 2005). The cross progenies
were selected by phenotypes, PCR and fluorescence microscopy. The PCRs
were performed using an [FT57-specific primer [FT757-51-69-F and a
primer named pHyg3-624-643-R (Table S1) based on the sequence of
pHyg3. The fla3-1b::KAP-GFP and fla3-1bifi57-1::KAP-GFP cells were
first cultured in TAP and then transferred to M1 liquid medium with aeration
to encourage flagellar assembly. Only the cells with near full-length flagella
were used for microscopic observation. The cells were immobilized in M1
medium supplemented with 10 mM Hepes (pH 7) and 6.25 mM EGTA
(Wren et al., 2013). To record the motility of KAP—GFP, images were taken
with an inverted Nikon eclipse-Ti microscope (Tokyo, Japan) with a
100x1.49 NA TIRF objective. Microscopic images and time-lapses were
captured using a Hamamatsu ImagEM X2™ EM-CCD camera C9100-23B
(Shizuoka Prefecture, Japan). The motility of KAP—GFP was imaged with a

488 nm laser under a 100x objective with 1.5% amplifier at 30 fps. The
kymograph was then made using the Reslice function in ImageJ (http:/rsb.
info.nih.gov/ij/).

Immunofluorescence microscopy

The cell staining was carried out as previously described (Richey and Qin,
2012) with slight modifications. Briefly, cells were fixed in 100% cold
methanol and then blocked in PBS containing 10% goat serum, 5% BSA,
and 1% cold-water fish gelatin. Then slides were incubated with primary
antibodies for 4 h at room temperature, followed by 3 washes with PBS.
Slides were then incubated with secondary antibodies for 1 h at room
temperature. Images were taken on an Olympus IX81 microscope
(Olympus, Tokyo, Japan) with a Yokogawa CSU-X1 Spinning Disk Unit
(Andor Technology, CT, USA).

Statistical analysis

Statistical analyses were performed using the software GraphPad Prism
(GraphPad Software, San Diego, California, USA). Quantitative data is
presented as the meands.d. Statistical analysis between two groups was
performed with a Student’s #-test (*P<0.05; **P<0.01; ***P<0.001; ns,
represents no significant difference).
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