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Summary
Dictyostelium discoideum shows chemotaxis towards folic acid (FA) throughout vegetative growth, and towards cAMP during
development. We determined the spatiotemporal localization of cytoskeletal and signaling molecules and investigated the FA-mediated
responses in a number of signaling mutants to further our understanding of the core regulatory elements that are crucial for cell
migration. Proteins enriched in the pseudopods during chemotaxis also relocalize transiently to the plasma membrane during uniform FA

stimulation. In contrast, proteins that are absent from the pseudopods during migration redistribute transiently from the PM to the cytosol
when cells are globally stimulated with FA. These chemotactic responses to FA were also examined in cells lacking the GTPases Ras C
and G. Although Ras and phosphoinositide 3-kinase activity were significantly decreased in Ras G and Ras C/G nulls, these mutants still

migrated towards FA, indicating that other pathways must support FA-mediated chemotaxis. We also examined the spatial movements
of PTEN in response to uniform FA and cAMP stimulation in phospholipase C (PLC) null cells. The lack of PLC strongly influences the
localization of PTEN in response to FA, but not cAMP. In addition, we compared the gradient-sensing behavior of polarized cells

migrating towards cAMP to that of unpolarized cells migrating towards FA. The majority of polarized cells make U-turns when the
cAMP gradient is switched from the front of the cell to the rear. Conversely, unpolarized cells immediately extend pseudopods towards
the new FA source. We also observed that plasma membrane phosphatidylinositol 3,4,5-trisphosphate [PtdIns(3,4,5)P3] levels oscillate
in unpolarized cells treated with Latrunculin-A, whereas polarized cells had stable plasma membrane PtdIns(3,4,5)P3 responses toward

the chemoattractant gradient source. Results were similar for cells that were starved for 4 hours, with a mixture of polarized and
unpolarized cells responding to cAMP. Taken together, these findings suggest that similar components control gradient sensing during
FA- and cAMP-mediated motility, but the response of polarized cells is more stable, which ultimately helps maintain their directionality.
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Introduction
Chemotaxis is the directed migration of cells towards or away

from gradients of signaling molecules. This migratory process is

implicated in a myriad of physiological activities in single-celled

and multicellular species including inflammation, lymphocyte

homing, axon guidance, angiogenesis and embryogenesis

(Devreotes and Zigmond, 1988; Niggli, 2003; Park et al., 2002;

Rickert et al., 2000; Swaney et al., 2010). Improper chemotaxis

leads to pathological conditions including infectious and allergic

diseases, wound healing, atherosclerosis and tumor metastasis

(Lazennec and Richmond, 2010; Libby, 2002; Moore, 2001;

Patel and Haynes, 2001). The social amoeba Dictyostelium

discoideum is one of the most widely studied of this

phenomenon.

Depending upon their physiological state, D. discoideum cells

can exhibit chemotaxis towards the chemoattractants folic acid

(FA) or cyclic adenosine monophosphate (cAMP) (Devreotes and

Zigmond, 1988). Vegetative cells feed on bacteria and other

microbes and scavenge for food by sensing and migrating toward

FA and other potential chemical signals (Maeda et al., 2009; Pan

et al., 1972). When nutrients are limiting, cells enter a cAMP-

dependent developmental cycle that culminates in the formation of

multicellular fruiting bodies (Bonner, 1971; Bonner, 1978; Katoh

et al., 2007; Loomis, 1979). D. discoideum cells are highly

chemotactic during these early stages of development and are very

polarized, forming a defined front and rear. Altered gene

expression in these cells makes them more sensitive to cAMP

(Manahan et al., 2004; Williams and Harwood, 2003; Zhang et al.,

2007). Both the serpentine cAMP receptor (cAR1) and the

heterotrimeric G protein alpha subunit, Ga2, increase in

expression as do many other developmentally regulated proteins

(Abe and Maeda, 1994; Parent and Devreotes, 1996; Verkerke-

Van Wijk et al., 1998). Upon cAMP stimulation, Ras G activates

the phosphoinositide 3-kinase 2 (PI3K2), one of five PI3Ks

containing a Ras-binding domain in D. discoideum (Funamoto

et al., 2002; Janetopoulos et al., 2005; Kae et al., 2004).

The marked increase of phosphatidylinositol 3,4-bisphosphate

[PtdIns(3,4)P2] and phosphatidylinositol 3,4,5-trisphosphate
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[PtdIns(3,4,5)P3] at the leading edge of migrating cells can be
identified by the plekstrin homology (PH) domain of the cytosolic

regulator of adenylyl cyclase (CRAC), a biosensor that
measures increased levels of these plasma membrane (PM)
phosphoinositides (Dormann et al., 2004; Parent et al., 1998).
PKBA [human protein kinase B (PKB) homolog] is also recruited

to the PM and binds to PtdIns(3,4,5)P3 through its PH domain and
is activated by phosphorylation of its hydrophobic motif and
activation loop (Bozulic and Hemmings, 2009; Chung et al., 2001;

DiNitto and Lambright, 2006; Feng et al., 2004; Guertin et al.,
2006; Kamimura and Devreotes, 2010; Liao et al., 2010; Sarbassov
et al., 2005). In a parallel pathway, Ras C activates the TORC2

complex, which in turn triggers PKBA and a second PKB
homolog, PKBR1 (Charest et al., 2010; Cai, 2010; Kamimura et al.,
2008; Liao et al., 2010). Activated Ras, PI3K2 and PKBA are
localized at the leading edge of chemotaxing cells in cAMP

gradients and help regulate the actin cytoskeleton (Kamimura et al.,
2008; Sasaki and Firtel, 2009). Coronin, dynacortin and LimE are
all actin-binding proteins that localize at the leading edge of a

migrating cell but interact with actin differently: coronin
crosslinks F-actin filaments (de Hostos et al., 1991) and
dynacortin bundles F-actin filaments at the leading edge

(Girard et al., 2004; Kabacoff et al., 2007; Robinson et al.,
2002) while LimE binds and forms a complex with Rac and F-
actin and other actin-binding proteins at the cortex of cell

projections (Prassler et al., 1998). Conversely, the tumor
suppressor and phosphatase and tensin homolog (PTEN) has
been shown to be distributed on the lateral and trailing edge of
the plasma membrane of the cell (Funamoto et al., 2002; Iijima

and Devreotes, 2002). Moreover, cortexillin I stably bundles
actin filaments in the rear of the cell (Ren et al., 2009). This
reciprocal spatial regulation of PI3K2 and PTEN differentially

localizes PtdIns(3,4,5)P3 at the leading edge, which supports F-
actin-mediated membrane protrusions at the front of the cell. At
the same time, this spatial distribution of the enzymes likely

maintains PtdIns(4,5)P2 at the rear, and helps define the back of
the cell (Janetopoulos et al., 2004; Ma et al., 2004).

PtdIns(3,4,5)P3 levels are also regulated by the amount of
PtdIns(4,5)P2 available as substrate for PI3Ks (Kortholt et al.,

2007). Phospholipase C (PLC) cleaves PtdIns(4,5)P2 into inositol
trisphosphate (InsP3) and diacylglycerol (DAG) and has been
implicated in delocalizing PTEN from the PM. Cells lacking PLC

have been shown to have reduced levels of PtdIns(3,4,5)P3 at the
leading edge of migrating cells and demonstrate little change in
response to a uniform stimulus. However, overexpression of PLC

results in an excessive accumulation of PtdIns(3,4,5)P3 and
defects in chemotaxis (Kortholt et al., 2007).

The cAMP-mediated chemotaxis signaling pathways are well
characterized in D. discoideum. However, the signaling pathways

underlying folic acid-based migration are not as well understood.
While a receptor (receptors) has not yet been identified, a G alpha
subunit, Ga4, was found to be specific for FA-mediated

responses. Receptors and heterotrimeric G proteins specific for
cAMP have been known for many years (Chen et al., 1996;
Dormann et al., 2001; Janetopoulos et al., 2001; Kim et al., 1998;

Kortholt and van Haastert, 2008; Kumagai et al., 1991; Milne
et al., 1997; Prabhu and Eichinger, 2006; Pupillo et al., 1989;
Sonnemann et al., 1998). There is only one functional b-subunit

and c-subunit in D. discoideum; cells lacking the b-subunit do not
chemotax or respond to a uniform stimulus of either cAMP or FA
(Hadwiger, 2007; Kumagai et al., 1989; Wu et al., 1995) (C.J.

and G.A.W., unpublished data). Previous studies have examined
the effects of FA treatment alone or with cAMP on the

production of cAMP by cells (Devreotes, 1983). While the
PKBA/PKBR1 activation and substrate phosphorylation have
been studied in response to either FA or cAMP with several
targets having been identified (Kamimura et al., 2008; Liao et al.,

2010), the spatial and temporal dynamics of signaling and
cytoskeletal molecules in response to uniform FA stimulation and
in gradients are not well characterized. Recently, it has been

shown that the signaling proteins PI3K, TORC2, PLA and sGC
are not essential for Ras activation to FA gradients or to steep
gradients of cAMP. These proteins, however, provide a memory

of direction and persistence that increases the sensitivity 150-fold
for chemotaxis toward shallow gradients of cAMP (Kortholt et al.,
2011).

The morphological characteristics of vegetatively-grown D.

discoideum cells chemotaxing to FA are typically quite distinct in
comparison to starved cells undergoing chemotaxis to cAMP.
Although vegetative cells are amoeboid-shaped and unpolarized,

they are quite capable of migrating directionally in a FA gradient
(Bernstein et al., 1981; de Wit and Rinke de Wit, 1986;
Devreotes, 1983; Hadwiger and Srinivasan, 1999; Jowhar et al.,

2010; Kesbeke et al., 1990; Kortholt et al., 2011; Maeda and
Firtel, 1997; Pan et al., 1972; van Haastert et al., 1982). On the
other hand, cells that have been starved undergo developmental
changes that result in a distinct polarized morphology. While the

leading edge can sometimes extend more than one pseudopod,
these cells have a well-defined front and back, typically lacking
lateral pseudopods as they migrate towards a cAMP source

(Andrew and Insall, 2007; Chubb et al., 2002; Devreotes and
Janetopoulos, 2003; Insall and Andrew, 2007; Van Haastert and
Bosgraaf, 2009; van Haastert and Postma, 2007). Regardless of

cell shape, the underlying sensing mechanism regulating
directional motility may be functioning in a similar manner to
well-fed cells. By eliminating the role of polarity and phenotypes

due to developmental delays in cell migration, we can better
elucidate the core regulators of the gradient-sensing mechanism.
Furthermore, understanding the interactions between the cAMP
and FA pathways should provide insight into the regulation of

both chemotactic pathways as the only currently known
difference between cAMP- and FA-mediated chemotaxis is the
Ga-subunits. We speculate that these pathways share the majority

of the signaling components downstream of the heterotrimeric G
proteins.

In this study, we have characterized the localization of

cytoskeletal and signaling proteins of wild-type and signaling
mutants during random motility in response to uniform
stimulation and while in a concentration gradient of the
chemoattractant FA. We demonstrate that there are many

cytoskeletal components that display a reciprocal temporal and
spatial localization as has been previously been described for
PI3K2 and PTEN. Several of these components have motifs that

suggest their localizations are controlled by the PM products of
these two enzymes in response to chemoattractants. We also
characterize the responses of unpolarized and polarized cells to

rapid gradient switching and analyze their gradient-sensing
responses in the absence of an actin cytoskeleton. We conclude
that the underlying mechanism regulating directionality for both

FA- and cAMP-mediated chemotaxis, as well as polarized and
unpolarized cells, are likely the same. However, unpolarized cells
have an added regulatory component that makes them more
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difficult to steer. We also find that several signaling molecules

that have been shown to be crucial for cAMP-mediated

chemotaxis are dispensable for FA-guided motility. While the

inability to chemotax to cAMP and form fruiting bodies make an

excellent screen for identifying chemotaxis mutants, future

studies implicating molecules in gradient sensing and directed

migration should also incorporate FA-mediated signaling to

ensure that the defects are not a result of incomplete polarization

and developmental delay.

Results
Membrane redistribution of signaling and cytoskeletal

markers in response to a uniform folic acid stimulus

The spatiotemporal localization of cytoskeletal and signaling

molecules have been extensively studied in developed D.

discoideum cells exposed to cAMP gradients and during

uniform stimulation (Funamoto et al., 2002; Iijima and

Devreotes, 2002; Janetopoulos and Firtel, 2008; Kortholt and

van Haastert, 2008; Rericha and Parent, 2008; Swaney et al.,

2010). Many of these molecules are also regulated during random

motility and cytokinesis (Janetopoulos et al., 2005; Sasaki et al.,

2007). Ras and PI3K activity localize at the leading edge of a

migrating cell and to the poles of cells during cytokinesis while

other molecules such as PTEN and myosin II redistribute to the

posterior end during chemotaxis and localize to the furrow during

cytokinesis (Janetopoulos and Devreotes, 2006; Sasaki et al.,

2007). A pattern that has not been well appreciated is that the

signaling molecules that redistribute to the PM in response to a

uniform stimulus of cAMP also localize to the leading edge of a

migratory cell and to the poles of cells undergoing cytokinesis.

On the other hand, signaling components such as PTEN, which

dissociate from the membrane when globally stimulated, localize

to the rear and furrow of migrating and dividing cells,

respectively (Iijima and Devreotes, 2002; Janetopoulos et al.,

2005).

We surmised that a similar localization pattern for signaling

and cytoskeletal proteins would be observed in D. discoideum

cells when stimulated globally with the chemoattractant FA. To

test this, vegetative cells were given a uniform stimulus of FA.

PHCrac–GFP, RBDRaf–GFP, PI3K–GFP, LimE–RFP, GFP–

dynacortin and coronin–GFP all rapidly translocated to the PM

after addition of FA to these unpolarized cells (Fig. 1). On the

other hand, PTEN–GFP, myosin II–GFP and GFP–cortexillin-1

all dissociated from the PM (Fig. 1). Interestingly, the two actin

bundling proteins dynacortin and cortexillin-1 had opposing

responses to FA (similar results not shown were found with

uniform cAMP stimulus in developed cells).

Reciprocal regulation of signaling and cytoskeletal

markers during folic-acid-mediated chemotaxis

Cells display a polarized distribution of Ras and PI3K activity at

the leading edge and PTEN at the trailing edge during cAMP-

mediated chemotaxis (Funamoto et al., 2002; Iijima and

Devreotes, 2002; Ma et al., 2004). Given that uniform

responses to FA mirrored those seen with cAMP, we examined

the distribution of a number of signaling and cytoskeletal markers

when cells were migrating in a FA gradient. While these cells

were mostly unpolarized and extended pseudopods in all

directions, the localization of RBDRaf–GFP, PI3K2–GFP,

PHCrac–GFP, LimE–RFP and GFP–dynacortin was confined to

pseudopodial projections while GFP–cortexillin-1, myosin II–

GFP and PTEN–GFP was reciprocally regulated and absent from

the periphery of pseudopods (Fig. 2). In some cases, cells can

develop a somewhat polarized leading edge, but this is atypical

and the cells tend to meander as they make their way up the FA

gradient.

Ras and PI3K activity are significantly reduced in Ras G

and Ras C/G null cells

There are four major signaling pathways that have been

implicated in cAMP-mediated chemotaxis: PI3K, TORC2, sGC

and PLA2. Among these, PI3K and TORC2 pathways are the

most extensively studied. The small G proteins Ras G and C

regulate PI3K and TORC2, respectively (Kamimura et al., 2008;

Kortholt and van Haastert, 2008). It has been reported that Ras C

and Ras G null cells are capable of chemotaxis, however, Ras

Fig. 1. Membrane redistribution of signaling and

cytoskeletal proteins by uniform folic acid stimulation.

Fluorescent images of the indicated GFP markers during

uniform folic acid stimulation (100 mM). (A) PHCrac–GFP,

PI3K2–GFP, LimE–RFP, RBDRaf–GFP, GFP–dynacortin and

coronin–GFP translocated to the plasma membrane upon FA

addition (middle column). The cells adapt and the molecules

return to the cytosol (right column). (B) GFP–cortexillin-1,

myosin-II–GFP, and PTEN–GFP proteins are on the plasma

membrane prior to stimulus and re-localize to the cytosol.

Time between frames designated in seconds. Scale bar:

10 mm.
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C/G double nulls are completely blind in a cAMP gradient and

together are required for directed migration (Bolourani et al.,

2006). Ras G is thought to regulate the production of

PtdIns(3,4,5)P3 by activating PI3K at the leading edge during

cAMP-mediated chemotaxis (Kamimura et al., 2008; Kortholt

et al., 2010; Charest et al., 2010). In these studies, cAR1

expression was significantly reduced and delayed during early

development in Ras G null cells and undetectable in Ras C/G

double null cells (Bolourani et al., 2006). To sidestep this

developmental defect, we decided to test PI3K activity and RBD

activity in wild-type (WT) cells and in the various Ras mutant

lines during random migration and in response to FA. Previous

work has shown that Ras, PI3K and PTEN are regulated in cells

lacking heterotrimeric G-protein signaling and without the

presence of an external stimulus (Sasaki et al., 2007). Activated

Ras was monitored using RBDRaf in the absence of

chemoattractants during random motility in both WT and Ras

mutant backgrounds (Fig. 3). RBD–GFPRaf localized strongly at

the pseudopods and macropinosomes in WT cells. There was a

gradual decrease in RBD–GFPRaf localization in cells lacking Ras

C, Ras G and Ras C/G double nulls, respectively. To determine

the corresponding activity of PI3K, we visualized both

recruitment of PI3K2–GFP to pseudopods and the levels of

PtdIns(3,4,5)P3 using PHCrac–GFP. Previous studies have shown

that recruitment of PI3K2 to the PM is sufficient for activity

(Huang et al., 2003). The fluorescence intensity of the PI3K

markers mirrored that of RBDRaf (Fig. 3).

To examine the downstream signaling responses of cells in the

absence of Ras, we stimulated cells with a uniform stimulus of

FA and measured the translocation of RBDRaf–GFP, PI3K–GFP

and PHCrac–GFP from the cytosol to the PM. These responses

were significantly reduced in the Ras G and Ras C/G double null

cells (Fig. 4A,B). Next, we analyzed the regulation of PKB

substrate phosphorylation in WT and mutant cell lines in

response to FA. Cells lacking the Ga4 subunit showed a very

weak, but substantial response after uniform addition of FA

(Fig. 4C). Numerous PKB substrates were phosphorylated in WT

cells stimulated with FA or cAMP, with many similar targets.

Several identified protein substrates including Talin B (280 kDa)

Ras GefN (180 kDa), Ras GefS (110 kDa), PI4P5K domain

containing protein (110 kDa), RhoGap GacQ (65 kDa), PHAPS

(86 kDa) and SHAPS (53 kDa) had increases in phosphorylation

(Kamimura et al., 2008; Liao et al., 2010). As a negative control,

PKB substrate phosphorylation was observed in PKBA/PKBR1

double nulls in response to uniform FA stimulation. As expected,

the PKBA/PKBR1 double nulls showed no measurable PKB

substrate phosphorylation (supplementary material Fig. S1). The

relative quantification of the western blot (Fig. 4C, bar chart)

demonstrated that Ga4 and Ras C were the primary positive

regulators of PKB substrate phosphorylation in response to FA.

Ras G seems to play only a minor role, if any, in the regulation of

PKB substrate phosphorylation in response to FA.

Ras C and G are not required for folic acid chemotaxis

Given the strong defects in cAMP-mediated chemotaxis in Ras C/G

nulls (Bolourani et al., 2006) and the decrease in Ras and PI3K

activity shown in Fig. 4, we hypothesized that the Ras C, G and C/

G double nulls might also have strong defects in FA chemotaxis.

Surprisingly, we found that Ras C, G and C/G double nulls were

able to migrate directionally quite robustly and with no significant

difference between WT and Ras mutants in migration speed,

chemotactic index or persistence (Fig. 5). We re-examined the Ras

C/G double nulls and found that when starved and pulsed with

cAMP, they can polarize and migrated well in gradients of cAMP

(supplementary material Fig. S2A). Interestingly, we also tested the

ability of the double nulls lacking PKBA and PKBR1 to chemotax.

These mutants chemotaxed well to FA (supplementary material

Fig. S2B) and also migrated to cAMP, as previously reported (Meili

et al., 1999), but did not polarize well (data not shown).

PLC can regulate the localization of PTEN–GFP on the

plasma membrane

The PM distribution of PtdIns(4,5)P2 may be a major contributor

to the spatial and temporal distribution of signaling and

Fig. 2. Localization of signaling proteins during exposure to a folic acid

gradient. Representative images of indicated fluorescently tagged proteins

migrating towards 10 mM FA in a micropipette. The arrow indicates the

position of the micropipette. RBDRaf–GFP, PI3K–GFP, PHCrac–GFP, LimE–

RFP and dynacortin–GFP localized in pseudopods projecting in the direction

of the micropipette. Myosin II–GFP, PTEN–GFP and GFP–cortexillin-1

delocalized from the pseudopods during migration towards FA. Scale bar:

,5 mm.

Fig. 3. Random motility of WT and Ras mutants. The vegetative cells

expressing RBDRaf–GFP, PI3K–GFP and PHCrac–GFP were plated in the Na/

KPO4 buffer. The fluorescence images were captured in the absence of

chemoattractant. All three markers localized to the pseudopods and

macropinosomes. Scale bar: ,5 mm.
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cytoskeletal markers described above. Both PTEN and

cortexillin-1 have putative PtdIns(4,5)P2-binding motifs (Iijima

et al., 2004; Stock et al., 1999). PtdIns(4,5)P2 is the substrate for

PI3K for synthesis of PtdIns(3,4,5)P3 and for phospholipase C

(PLC) in the production of InsP3 and DAG. The binding of PTEN

to PtdIns(4,5)P2 is thought to play a regulatory role in lipid

signaling and is necessary for proper PM localization (Iijima

et al., 2004). In the absence of chemical gradients, it was

observed that vegetative PLC null cells formed random

pseudopods and accumulated PtdIns(3,4,5)P3 at the pseudopods

during random cell migration (not shown). More strikingly,

PTEN was often missing from peripheral pseudopodial

Fig. 4. Ras and PI3K activity are significantly reduced in Ras G and Ras C/G null cells. (A) Fluorescent images of wild-type and Ras mutants expressing

RBDRaf –GFP, PI3K–GFP and PHCrac–GFP. Cells were stimulated with 100 mM FA (+), and the indicated GFP-tagged proteins translocated to the plasma

membrane. Scale bar: ,5 mm. (B) The percentage change of membrane to cytosol ratio is significantly decreased in Ras G and Ras C/G null cells (P,0.05). Error

bars show the standard error of mean. (C) Western blot band intensity (left) was quantified using ImageJ and plotted (right) as the percentage change of Ras

mutants over the wild type.

Dynamic redistribution of signaling proteins 225
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normal reciprocal regulation of PtdIns(3,4,5)P3 levels and PTEN

in random migration (Fig. 6A; supplementary material Movie 1).

We also found that these cells polarized after only four hours of

starvation and had a sharp localization of PTEN at the rear of the

cell during chemotaxis (Fig. 6B). Since this was a surprising

result, we elected to test the localization of PTEN–GFP in PLC

null cells in response to uniform FA stimulation. While we did

sometimes see PTEN relocalize from the PM to the cytosol in

response to FA, the response was greatly diminished

(Fig. 6C,E,F). This observation is similar to the PTEN–GFP

response reported when PLC null cells were stimulated with

cAMP (Kortholt et al., 2007). However, in our hands, the PTEN–

GFP delocalized in a manner that was indistinguishable from loss

of PTEN from the PM in PTEN null cells stimulated with cAMP

(Fig. 6D) (Iijima and Devreotes, 2002). We counted the amount

of cells showing a response and quantified the percentage of cells

that responded to the stimulation event. When uniformly

stimulated with cAMP, 66% of the PTEN null cells showed a

loss of PTEN–GFP from the PM (total 65 cells), while 87% of the

PLC null cells responded (out of 41 cells). There was no

significant difference in PTEN–GFP responses to cAMP in these

two cell lines (Fig. 6F).

Directional changes by U turns and cell switching

Vegetative cells are capable of net cell translocation in multiple

directions by extending ‘random’ pseudopods. Cells that are

migrating during aggregation to form a fruiting body, however,

are highly polarized and generally have a leading edge.

Typically, polarized cells responding to chemotaxis appear to

migrate faster in cAMP gradients than unpolarized cells in FA

gradients (Jowhar et al., 2010). We tested the ability of polarized

and unpolarized cells to change directions in response to an 180˚
gradient reversal. For this experiment, we mixed highly polarized

cells expressing PHCrac–GFP and LimE–RFP (red arrows in

Fig. 7A) that were starved and polarized, with unpolarized cells

expressing PHCrac–GFP alone (green arrows in Fig. 7A) grown

on a bacterial lawn. A micropipette was filled with a mixture of

both FA and cAMP. Polarized cells that responded to cAMP

typically maintained their polarity before and after the gradient

was moved to a location 180˚ behind the cell. The polarized cell

sensed the change in gradient and made a slow U-shaped turn and

then proceeded to migrate to the new source position (Fig. 7A;

supplementary material Movie 2). This is in stark contrast to

unpolarized cells that extend random pseudopods in a biased

manner toward the source of FA. When the gradient was moved

to the back of unpolarized cells, these cells quickly sensed the

change in gradient and extended pseudopods in the new direction

(Fig. 7A; supplementary material Movie 2). We also observed

that partially polarized cells responding to cAMP were capable of

reversing their polarity and extending lateral pseudopods and

moved in the new direction (data not shown). Unpolarized cells

in general are capable of changing directions more quickly than

polarized cells.

Directional sensing can be visualized in Latrunculin-A-

treated polarized cells, but not in vegetative cells

Treatment of migrating D. discoideum cells expressing PHCrac–

GFP with the actin polymerization inhibitor Latrunculin-A first

demonstrated the ability of eukaryotic cells to do spatial sensing

(Parent and Devreotes, 1999). Since unpolarized cells appear to

bias random pseudopods toward the gradient source, we

hypothesized that the unpolarized cells might have trouble

forming a stable PHCrac–GFP crescent toward a gradient source

as has been shown for polarized cells. This was tested by mixing

unpolarized cells expressing PHCrac–GFP with polarized cells

expressing LimE–RFP and PHCrac–GFP. Both unpolarized cells

chemotaxing to FA and polarized cells migrating towards cAMP

rapidly migrated toward a micropipette loaded with the two

chemoattractants (Fig. 7B, top panels). As the cells approached the

micropipette, Latrunculin-A was added (Fig. 7B, bottom panels).

The formerly polarized cells rounded up and formed stable

PHCrac–GFP crescents toward the gradient source. The

immobilized unpolarized cells, however, formed random

Fig. 5. Chemotaxis and

quantification of WT, Ras C, Ras G

and Ras C/G null cells during

migration to FA. (A) Frames of wild-

type and Ras mutants at time 0 and after

30 minutes in an FA gradient. Cells

migrate up the concentration gradient

and towards the micropipette. Scale bar:

,20 mm. (B–D) Quantification from

three independent experiments of

(B) migration speed, (C) chemotaxis

index, and (D) persistence. Migration

speed chemotaxis index and persistence

of wild-type, Ras C, Ras G and Ras C/G

null cells are not significantly

different (P,0.05).
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PHCrac–GFP crescents irrespective of the gradient source (Fig. 7B,

bottom right). We have never obtained a stable PHCrac–GFP

response of an immobilized cell when put in a FA gradient.

To test if this phenomenon was a general property of

unpolarized cells, we examined PHCrac–GFP crescent formation

in response to cAMP in cells starved for only 4 hours. The 4-hour-

starved cells contained a mixed population of unpolarized cells and

semi-polarized cells (Fig. 7C, top panel). The unpolarized cells

still clearly were undergoing macropinocytosis, while the semi-

polarized cells were not. All of the cells at this point were

responsive to uniform stimulus (supplementary material Fig. S3)

and could chemotax (supplementary material Movie 3) however,

the unpolarized cells were not capable of forming a stable PHCrac–

GFP crescent toward the cAMP source. Conversely, the semi-

polarized cells formed a stable PHCrac–GFP crescent toward the

cAMP source (Fig. 7C, bottom panel; supplementary material

Movie 4). We also found that the unpolarized cells were resistant

to Latrunculin-A treatment at the concentration used to elicit a

response in polarized cells and required a 2-fold increase in

Latrunculin-A. When the semi-polarized cells were immobilized

and eliciting a crescent PHCrac–GFP response, the unpolarized

cells were still capable of migrating slightly towards the

micropipette at the lower concentrations, and did so with a

biased random walk (supplementary material Movie 5). Vegetative

cells grown on bacterial lawns used for FA chemotaxis also

displayed this resistance to Latrunculin-A and required higher

concentrations to be immobilized. The results here suggest that it is

an inherent property of unpolarized cells that prevents cells from

forming a stable response, and is not a fundamental difference

between the cAMP and folic acid signal transduction pathways.

Discussion
The spatial redistribution of proteins is crucial for motility during

random pseudopod formation,, as a cell develops a leading edge

and rear during directed migration, and also for the establishment

of cellular polarity during cytokinesis. What we demonstrate in

this paper, and what can be gleaned from other studies examining

the dynamic localization of proteins, is that the presence of a

signaling or cytoskeletal molecule on the PM in any one of these

morphological conditions would also indicate the localization of

that same protein in the other states (Funamoto et al., 2002; Iijima

and Devreotes, 2002; Janetopoulos and Firtel, 2008; Kortholt and

van Haastert, 2008; Rericha and Parent, 2008; Swaney et al.,

2010). Thus, Ras activity, as assayed at the leading edge of a

migrating cell, would be predicted to be at the poles of dividing

cells or on the advancing edges of pseudopods in a randomly

Fig. 6. Localization of PTEN–GFP in PLC

and PTEN null cells. (A) PTEN–GFP

delocalizes (arrows) from pseudopods during

random motility when expressed in PLC null

cells. Shown is a cell at two different time

points. (B) Fluorescence image of PTEN–

GFP localized to the rear of a polarized PLC

null cell during chemotaxis. (C; left panel)

PTEN–GFP is distributed on the PM prior and

subsequent to folic acid stimulation in PLC

null cells. WT cells expressing PHCrac–GFP

were used as controls and show a response

during uniform folic acid stimulation. (Right

panel) PTEN–GFP is localized on the PM

prior to FA stimulation and delocalized

subsequent to FA stimulation in PTEN null

cells. (D) PTEN–GFP is localized on the PM

prior to cAMP stimulation and delocalized

subsequent to cAMP stimulation in PLC null

(left panel) and PTEN null cells (right panel).

(E) The number of cells that responded to

cAMP and FA in PTEN–GFP/PTEN null and

PLC null were manually counted and

expressed as a percentage of response.

(F) The percentage change of the membrane

to cytosol ratio is significantly decreased in

PTEN–GFP/PLC null-FA over all other cells

(P,0.05). Error bars show the standard error

of mean. Scale bars: ,5 mm.
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Fig. 7. Spatial and directional sensing during FA- and cAMP-mediated chemotaxis. (A) Unpolarized cells switch directions whereas polarized cells do U-

turns when gradients are reversed. Polarized cells expressing PHCrac–GFP and LimE–RFP appear orange, and one such cell is indicated by a red arrow. Vegetative

cells expressing only PHCrac–GFP are green and one unpolarized cell is indicated by the green arrow. These cells were imaged while exposed to a gradient formed

by a micropipette containing both 10 mM cAMP and 100 mM FA. The micropipette (indicated by the asterisk) was moved from the front to the rear of the cells

after 8 seconds at the first position. Note how quickly the cell indicated with green arrow moves towards the micropipette after it is moved to a new position while

the cell indicated with the red arrow performs a U-turn. Polarized cells maintain front and rear polarity during migration and perform U-turns. Vegetative PHCrac–

GFP cells extend pseudopods from the ‘rear’ of the cell and migrate towards the FA source (see also supplementary material Movie 2). Scale bar: ,5 mm.

(B) PHCrac–GFP localizes to random pseudopods in unpolarized cells in response to a folic acid gradient and to the front of polarized cells in response to a cAMP

gradient. Top panels depicts polarized cells expressing PHCrac–GFP and LimE–RFP mixed with unpolarized cells expressing PHCrac–GFP alone, all migrating

toward a micropipette loaded with 10 mM cAMP and 100 mM FA. Bottom left panel shows both cell types responding to the mixed chemoattractant source after

10 mM Latrunculin-A treatment. Bottom right panel is a cropped and enlarged image of the area outlined with a white rectangle in bottom left panel. The PHCrac–

GFP crescent is in the direction of the gradient source in the cell responding to cAMP and is randomly distributed in the cell that was responding to FA. The white

asterisk represents the location of the mixed chemoattractant-loaded micropipette tip. Scale bar: 10 mm. (C) Unpolarized cells do not form stable PHCrac–GFP

crescents toward a gradient of cAMP. WT cells expressing PHCrac–GFP were starved for 4 hours and tested for cAMP responses. All of the cells responded to

temporal cAMP stimulus (supplementary material Fig. S3) and migrated towards the micropipette (supplementary material Movie 3). The top panel (a frame from

supplementary material Movie 3) shows semi-polarized cells (arrows numbered 1–3) and unpolarized cells (arrowheads labeled 4–6). The bottom panel (frame

from supplementary material Movie 4) shows the same cells after Latrunculin-A treatment at steady state in a 10 mM cAMP gradient. Semi-polarized cells

(1–3) make stable PHCrac–GFP crescents towards the micropipette, whereas unpolarized cells (4–6) make oscillatory PHCrac–GFP crescents when immobilized

(see supplementary material Movie 4). An asterisk indicates the position of the pipette. Scale bar: ,25 mm.
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migrating cell (Sasaki et al., 2007). Moreover, one can determine

with confidence whether a protein is a leading edge or rear

protein by stimulating an unpolarized cell with FA and observing

the time course of the protein’s redistribution to and from the PM

(see Fig. 8). We are now isolating membrane fractions with and

without chemoattractant stimulation to look at the spatial changes

in the proteome (data not shown). The isolation of membrane-

associated proteins in response to a uniform stimulus may be a

powerful method for isolating leading edge and rear proteins of

polarized cells. It will be interesting to see how well this pattern

holds up for other dynamic signaling and cytoskeletal molecules

and how applicable it will be overall for other eukaryotic

systems.

When cells were stimulated with a uniform concentration of

FA, Ras and PI3K were activated, the PM levels of

PtdIns(3,4,5)P3 increased, and the cytoskeletal proteins LimE,

dynacortin and coronin were all recruited to the inner leaflet of

the PM. Conversely, PTEN, myosin II, and cortexillin-1

dissociate from the PM in response to a uniform stimulus of

FA (Fig. 1). The same responses were found in the pseudopods of

cells migrating in a FA gradient (Fig. 2). The localization and

translocation of the proteins listed above in unpolarized cells are

similar to the published results for developed cells in response to

cAMP (Funamoto et al., 2002; Iijima and Devreotes, 2002;

Janetopoulos and Firtel, 2008; Kortholt and van Haastert, 2008;

Rericha and Parent, 2008; Swaney et al., 2010). Our results

demonstrate that the major signal transduction proteins, lipids,

and cytoskeletal elements function similarly in both types of

directed migration.

In previous studies, PTEN, myosin II and cortexillin I were

shown to act as mechanosensors that control cell shape during

cytokinesis (Pramanik et al., 2009; Ren et al., 2009). We show,

for the first time, that cortexillin-1 also responds dynamically to a

uniform chemoattractant stimulus. The system appears to require

cortexillin I to stably anchor the actin filaments so that the

myosin motor can generate tension during cytokinesis (Ren et al.,

2009). The same mechanism may operate at the rear of cell

during migration. Moreover, PTEN and cortexillin I have

PtdIns(4,5)P2-binding domains, which suggest that these

proteins are posterior and furrow residing proteins (Iijima et al.,

2004; Stock et al., 1999). Conversely, dynacortin becomes highly

enriched in cortical protrusions and at leading edge of polarized

cells and likely contributes to actin assembly (Girard et al., 2004;

Kabacoff et al., 2007; Robinson et al., 2002).

Given the similarity of FA and cAMP-mediated chemotaxis, we

analyzed several suspected chemotaxis mutants that have been

characterized mainly in response to cAMP. The protein Ras G

regulates PI3K and thus PtdIns(3,4,5)P3 synthesis, which recruits

and activates PKBA. Ras C regulates the TORC2 pathway, which

activates PBKR1 and PKBA to a lesser extent (Kamimura et al.,

2008). These activated protein kinases phosphorylate a number of

actin regulatory proteins such as Talin B, PI5K, Ras GefS and

RhoGap. It has been shown that that Ras C and G are required for

cAMP-stimulated development and chemotaxis. It is not surprising

that cells lacking Ras G or both Ras C and G had poor cAMP

responses, given that there was virtually no upregulation of the

cAMP receptor in these cells (Bolourani et al., 2006). Interestingly,

while the RBDRaf–GFP construct is supposed to be recruited to

Fig. 8. Schematic diagram of signaling

events. (A) A randomly moving vegetative cell.

PtdIns(3,4,5)P3 [PI(3,4,5)P3], PtdIns(4,5)P2

[PI(4,5)P2] and signaling proteins are color

coded. Pseudopods are enriched with

PtdIns(3,4,5)P3 (dark blue), PI3K, LimE,

dynacortin, coronin and Ras activity (maroon

signaling and cytoskeletal components).

PtdIns(4,5)P2 (orange), cortexillin-1, myosin II

and PTEN are localized (light blue) to the

membrane areas between the pseudopods.

(B) Upon uniform chemoattractant stimulation,

PtdIns(4,5)P2 levels decrease and cortexillin-1,

myosin II and PTEN delocalize from the

membrane and are enriched in the cytoplasm

(light blue). In contrast, the other components

localize uniformly across the membrane

periphery as PtdIns(3,4,5)P3 levels increase.

(C) A vegetative cell migrating in a FA

gradient. Pseudopods are biased towards the FA

source and enriched with PtdIns(3,4,5)P3 and

maroon signaling and cytoskeletal components.

More PtdIns(4,5)P2, PTEN, cortexillin-1,

myosin II and PTEN were found at the plasma

membrane away from the FA source.

(D) Similar localization was previously

observed in polarized cells exposed to a cAMP

gradient. PtdIns(3,4,5)P3 localization is based

on PHCrac–GFP, while PtdIns(4,5)P2

distribution is based on the localization of

PTEN–GFP.
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activated Ras (Kortholt et al., 2011), it has not been previously
used as a biosensor in the Ras mutant backgrounds of D.

discoideum. We observed the localization of PHCrac–GFP,
PI3K–GFP and RBDRaf–GFP during random motility in

vegetative WT, Ras C null, Ras G null, and Ras C/G null cells.
In Ras G and Ras C/G null mutants RBDRaf, PI3K and PHCrac

membrane translocations were reduced compared to WT and the

Ras C null mutant. This suggests that Ras G predominantely
regulates PI3K activity, as has been shown for cAMP-mediated

responses. Given that there is still some low level of PI3K activity
in our assays, there may be other Ras proteins, such as Rap1, or

Ras D or Ras B, that regulate PI3K and PtdIns(3,4,5)P3 levels. Ras
D and Ras B have been shown to have increased expression levels
in Ras G nulls, and Ras D has also been shown to go up in CG nulls

(personal communication, Huaqing Cai, Devreotes lab,
Department of Cell Biology, Johns Hopkins University School

of Medicine). However, these redundant and possibly
compensatory Ras proteins do not apparently bind RBDRaf–GFP.
In contrast, our PKB substrate phosphorylation data showed Ras G

contributed little to overall substrate phosphorylation. Ras C and
Ras C/G null mutants showed a decreased ability to phosphorylate

numerous PKB substrates in response to FA. These data suggests
that Ras C is important for PKB activity and that Ras G is

important for PtdIns(3,4,5)P3 production in response to FA. Since
Ras C predominantly activates PKBR1, these results are consistent
to those during cAMP signaling which demonstrated that PKBR1

is the major PKB isoform in cAMP signaling regulating PKB
substrate phosphorylation (Kamimura et al., 2008). We also tested

the ability of Ras mutants to elicit chemotaxis in a FA gradient.
Our results demonstrate that there were no statistical differences

between the Ras mutants and WT in migration speed, chemotactic
index and persistence even though Ras and PI3K activity were
clearly inhibited. Thus, Ras C and G are dispensable for FA

chemotaxis. This is in stark contrast to the previously published FA
and cAMP chemotaxis data of Ras C, G and CG nulls (Bolourani

et al., 2006, Kortholt et al., 2011; Bolourani et al., 2010). In the
previous reports, the Ras mutants had a severe FA and cAMP
chemotaxis defect and cAMP developmental defect. However, in

our experiments, we found no difference between the Ras C and G
mutants and wild-type chemotaxis toward FA or cAMP. However,

we did observe cytokinesis and developmental defects in the Ras
CG nulls, which are consistent with the published data. One

possible reason for the differences we see in the FA chemotaxis is
that we obtain highly chemotactic cells when they are grown in the
presence of Klebsiella aerogenes, whereas the previous reports had

grown cells axenically in HL-5 medium prior to testing (Bolourani
et al., 2010). We do find that Ras CG nulls require ‘coaxing’ to

polarize properly, but they are clearly able to chemotax to cAMP.
We do not find this surprising given that PKBA/PKBR1 double

nulls also chemotax to both FA and cAMP. Future studies should
be directed towards determining if Ras CG nulls have difficulty
migrating in shallow gradients of cAMP, as has been reported for

mutants lacking PI3 kinase activity (Takeda et al., 2007; van
Haastert et al., 2007). However, we caution that these studies may

be difficult to interpret since the cells do not polarize properly.

Since we established that the Ras C and G proteins function
similarly in both polarized and unpolarized cells, we were

interested in testing mutants lacking phospholipase C (PLC).
PLC nulls should have aberrant phosphoinositide levels, which

might affect polarity and also cause developmental problems.
Previously, it was reported that PLC null cells showed very weak

changes in PM PtdIns(3,4,5)P3 levels upon cAMP stimulation
(Kortholt et al., 2007). These observations concluded that, with

levels of PtdIns(4,5)P2 not changing much in the absence of
PLC, PTEN would remain associated with the PM and bias
the PtdIns(4,5)P2/PtdIns(3,4,5)P3 balance towards even more
PtdIns(4,5)P2. This would dampen any effect of PI3K activity.

Furthermore, in cells overexpressing PLC, PTEN was found
mostly in the cytoplasm, because the overall abundance of PM
PtdIns(4,5)P2 was lowered. When uniformly stimulated with FA,

we observed a very weak dissociation of PTEN–GFP from the
PM in PLC null cells, consistent with previously published
results of cells stimulated with cAMP (Kortholt et al., 2007). On

the other hand, we found a strong dissociation of PTEN–GFP
from the PM in PLC null cells stimulated with cAMP. This was
not significantly different from PTEN–GFP in PTEN null cells.
These data suggest that PLC does affect the localization of PTEN

by shifting the PM balance towards more PtdIns(4,5)P2 and this
can be seen in PLC null cells stimulated with the weak
chemoattractant FA. However, starved PLC null cells that are

stimulated with cAMP can still lower PtdIns(4,5)P2 via other
pathways, such as PI3K. It is important to note that highly
polarized cells, whether they be wild-type or PLC nulls, will

localize PTEN to the very rear of the cell and do not show much
of a redistribution of PTEN to the cytosol when stimulated with
cAMP. We found that PLC null cells polarize earlier than wild-

type cells, and this may have contributed to the conflicting report
in the earlier study. We did find that overexpression of PLC did
apparently lower PM PtdIns(4,5)P2 levels and redistributed the
PTEN into the cytosol, as previously reported (Kortholt et al.,

2007). As is often typical of a negative regulator, overexpression
of the protein has a stronger phenotype than deleting it.

Finally, we examined the morphology and behavior of

unpolarized and polarized cells during gradient sensing and
gradient switching. Most polarized cells make big U-turns when
the chemotactic source is moved to the rears of the cells. In

contrast, vegetative cells extend multiple pseudopods that tend to
be oriented towards the initial FA source. When the gradient is
switched, unpolarized cells stop immediately and extend
pseudopods towards the new direction of the gradient. This

result demonstrates that the apparent biased random walk of
unpolarized cells is more efficient at rapid changing of direction
than fully polarized cells. This may be a useful characteristic so

that feeding D. discoideum can rapidly reorient to the correct
direction of food sources. Unpolarized cells can also generate
phagosomes along the entire periphery of the cell.

We next tested the ability of unpolarized cells treated with
Latrunculin-A to form a stable PHCrac–GFP crescent toward a FA
source. When cytoskeletal actin organization was disrupted by
Latrunculin-A, PtdIns(3,4,5)P3 oscillations were observed all

over the PM, regardless of the direction of the gradient. However,
in polarized cells, the PtdIns(3,4,5)P3 crescent was stably
localized toward the high side of the cAMP gradient (Fig. 7B).

We also tested the ability of 4-hour-starved cells to form a stable
PHCrac–GFP crescent toward a cAMP gradient (Fig. 7C;
supplementary material Movie 4). Highly unpolarized cells,

whether responding to FA or cAMP, are unable to make
stabilized PtdIns(3,4,5)P3 responses. We speculate that these
underlying ‘random’ crescents in vegetative and in 4-hour-

starved unpolarized cells are generated by an oscillatory
mechanism that is independent of the heterotrimeric G proteins
and can only be biased to some extent by the chemotactic signal
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transduction system. It has been demonstrated that the enzymes

regulating phosphoinositide levels are regulated quite normally

during random motility and during cytokinesis in cells lacking

heterotrimeric function (Sasaki et al., 2007). Polarized cells

appear to be able to suppress these basal oscillations and focus

the PtdIns(3,4,5)P3 synthesis in the direction of the gradient and

distribute PTEN at the rear of the cell.

Latrunculin-A-treated unpolarized cells in general may struggle

to be able to make a stable response, because the internal motility

oscillator is always in the background. We speculate that

unpolarized cells are highly sensitive to stochastic signaling

fluctuations within the cell – this is why their PM is so active,

and may also explain why they can move and change directions

quickly when the gradient is switched. The stochastic ‘excitation’

that produces these oscillations may be biased by the FA gradient so

that the random pseudopods occur more often in the correct

direction. However, it is also possible that the pseudopods are

reinforced or stabilized in the correct direction and that FA-

mediated signaling is not capable, by itself, of producing a

pseudopod (Insall and Andrew, 2007). Instead, FA-mediated

signaling can only modulate an existing pseudopod initiation

process. We suggest that cells responding to FA are still performing

spatial sensing and integrate the signal across the entire periphery of

the cell. We speculate that this increases the probability of random

pseudopods on the high side of the gradient. This phenomenon is

not limited to FA gradient sensing. Unpolarized cells that have been

starved for a few hours can chemotax to cAMP, but are also unable

to give a stable crescent response in a cAMP gradient when treated

with Latrunculin-A. Cell polarity likely requires feedback

mechanisms that are reinforced after upregulation of

chemosensory components, the addition of a chemoattractant, and

the silencing of this stochastic signaling. This same inhibitory

mechanism is likely at work as cells become quiescent at the onset

of mitotic metaphase just prior to cytokinesis, but without an

external cue, the cells round up and await mitosis. We were unable

to find a signaling mutant other than cells lacking the heterotrimeric

G proteins that could not migrate to FA gradients. These findings

suggest that cells that divide and undergo random motility will also

likely be capable of chemotaxis. Therefore, screens using

conditional mutants may be necessary to find other core

regulatory elements involved in chemotaxis.

Materials and Methods
Materials

Folic acid (FA) was obtained from Fischer scientific, Latrunculin-A from
Molecular Probes, cAMP and LY294002 from Sigma-Aldrich, and anti-
phospho-PKB substrate antibody from Cell Signaling Technology. Ras C, Ras G
and Ras C/G null cells were described previously (Bolourani et al., 2006). Cell
lines were acquired from the Gerald Weeks labs twice, Dicty base once, and once
from the Van Haastert lab with the same results. The Ras C/G double null mutant
cells need to be pulsed with 60 nM cAMP or they will not develop properly. In
experiments described here, PTEN–GFP was expressed in the PLC null cell lines
previously described (Kortholt et al., 2007). PTEN–GFP was also expressed in the
original PLC nulls (not shown) with similar results (Drayer et al., 1994). Plasmids
have all been described previously: PHCrac-GFP (Parent et al., 1998), PI3K2-GFP,
PTEN-GFP, coronin-GFP, GFP-myosin II (Janetopoulos et al., 2005), RBDRaf-
GFP (Kortholt et al., 2011), LimE-RFP (Clarke et al., 2006) and GFP-dynacortin
and GFP-cortexillin-1 (Girard et al., 2004). All of the fusion proteins are full
length and GFP or RFP fusions do not appear to affect the target protein function
as determined in the cited references.

Cell culture

Cells were grown in axenic or non-axenic conditions as required for assay. For
axenic culture, cells were grown in HL5 medium (ForMedium) at 22 C̊. For non-
axenic culture, cells were grown with Klebsiella aerogenes (KA) on an SM agar

plate overnight at 22 C̊. Transformants were maintained in 40 mg/ml G418 (RPI)
or 50 mg/ml hygromycin (Sigma-Aldrich), or both as required.

Random motility assay

Vegetative cells grown with Klebsiella aerogenes (KA) bacteria overnight were
harvested from the SM plate and washed three times with development buffer
(DB) (5 mM Na2HPO4 5 mM KH2PO4, 1 mM CaCl2, 2 mM MgCl2, pH to 6.5) by
centrifugation at 1000 rpm for 5 minutes to isolate D. discoideum in the absence of
bacteria. Washed cells were seeded onto a chambered microscope slide in 2 ml of
DB and allowed to adhere for 15 minutes. Images were captured on a Zeiss-
Axiovert 200 M microscope using SlideBook5 software. FITC and Narrow Band
Cy3 Cubes for 3I Marianas workstation were used for GFP and RFP fluorescence.

Uniform folic acid stimulation

Cells were prepared using the same protocol as described for the random motility
assay. A micropipette containing 100 mM FA was used to stimulate cells. The
micropipette was lowered after the fifth frame during a 30-frame time-lapse
acquisition. Fluorescent frames were acquired every 1.5 seconds and imaged using
a 406 PlanNeofluar 1.3 NA oil objective.

Analysis of biosensor translocation to the plasma membrane

Mean fluorescent intensity of the cytosol and membrane before and during
translocation was measured using Slidebook5 software. The membrane to cytosol
ratio before and during translocation was calculated using the following formula
(membrane-background/cytosol-background). The percentage change of intensity
during translocation was calculated by the following formula: (membrane to
cytosol ratio after translocation 2 membrane to cytosol ratio before translocation)/
(membrane to cytosol ratio before translocation)6100. Membrane and cytosol
regions were manually traced prior to and after FA addition.

FA and cAMP chemotaxis assays

D. discoideum cells (56105) were centrifuged and pelleted at 1500 rpm for
,2 minutes in a 15 ml conical tube. Cells were then resuspended in 500 ml HL5
(no antibiotics). One inoculation loop full of KA bacteria grown freshly the night
before was added to the conical tube. The D. discoideum and KA bacteria were
resuspended by vortexing and subsequently spread on fresh SM plate. When we
analyzed the Ras mutants, we mixed WT Ax2 cells expressing PHCrac–GFP and
mutant cells on the same SM bacterial plate. Our control cell line expressing
PHCrac–GFP were carefully examined and were expressing the GFP fusion protein
near 100%. Data was not included if both cells failed to chemotaxis. As Ras
mutants were created in the JH10 background, we also raced AX2 PHCrac–GFP
cells against non-fluorescent JH10s and found no difference in chemotaxis. FA
needs to be prepared properly for the chemotaxis assays to work well. One must
add just enough NaOH to dissolve FA. We added 5.5 mg FA to 12.5 ml dH2O, and
then 13.5 ml 2 N NaOH to make a 1.25 mM stock FA solution. FA was centrifuged
at high speed in a microcentrifuge to eliminate any undissolved FA or large
particulates that could clog the micropipette. A micropipette containing 100 mM
folic was placed in the same focal plane as the cells and phase contrast and
fluorescent frames were acquired with an interval of 15 seconds for 30 minutes
using a 406 1.3 NA oil objective. In the case of the mixed chemotaxis assay,
polarized cells were mixed with vegetative cells in a chambered microscope slide.
Polarized cells were prepared as mentioned previously (Kamimura et al., 2008).
For polarity reversals and U-turn experiments, a micropipette containing 6 ml of
both 10 mM cAMP and 100 mM FA was placed at one position in the field of view
until the cells move toward the source. The micropipette was then shifted to a
distant position in the same field of view and polarity reversals and U-turns of cells
were monitored. During image acquisition, 60 frames were captured with an
interval of 15 seconds at position 1 and then 60 more frames were collected at
micropipette position 2 for each individual movie.

Average speed, chemotactic index and persistence calculation

Average speed was calculated as the total distance traveled by the cell divided by time
using Slidebook5 software. To calculate chemotactic index, the cosine of the angle
between the direction of movement and the direction of chemoattractant gradient was
determined. The X, Y coordinates of micropipette, start and end positions of the cell
were calculated by Slidebook5 software. From these values, the length of each side of
the triangle was determined. The cosine of the angle was calculated by plugging in the
length of each face in the standard law of cosine formula. Persistence was calculated
as the shortest linear distance between the start point and end point of the migration
path divided by the total distance traveled by the cell. Linear distance was derived
from XY coordinates of start and end point of cell and total distance from XY
coordinates every position from start to end (Cai et al., 2010).

Detection of PKB substrate phosphorylation by western blotting

Vegetative Cells grown on KA plates were prepared as described above. The cells
were stimulated with 50 mM folic acid for 15 seconds then lysed by heating at
95 C̊ for 5 minutes in 16 SDS sample buffer. Unstimulated control cells were
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aliquoted before stimulation and treated as above. For stimulating polarized cells,
1 mM cAMP was used. Cell lysate equivalent to 46104 cells were loaded into SDS-
PAGE and transferred using the Invitrogen transblot apparatus. The blot was
probed using rabbit anti phospho-PKB substrate antibody (Cell Signaling
Technology) (Kamimura et al., 2008) and goat anti-rabbit secondary IR680
antibody (Li-Cor). The blot was visualized using Odyssey (Li-Cor) IR detecting
instrument.

Analysis of phospho-PKB substrates using ImageJ
The intensity of all bands in each lane of the blot (Fig. 4C) was measured using
ImageJ. The intensity for WT was normalized to 100. The response of Ras and a4
mutants was calculated as 100Y/X, where X is the intensity for WT and Y the
intensity for Ras mutants.

Directional sensing of PH–GFP in Latrunculin-A-treated vegetative and
polarized cells exposed to a gradient containing a mixture of cAMP and
folic acid
Vegetative cells were prepared as described above. Polarized cells were prepared
as described above with the only difference being starved cells were pulsed for
5 hours with cAMP. For the chemotaxis assay, the cAMP and FA competent cells
were mixed in a 1:1 ratio and added to a one-well chamber for observation under
the microscope. 6 ml of final 10 mM cAMP and 100 mM folic acid mixture was
added to a glass micropipette. The cells were observed under a 406 oil 1.3 NA
immersion objective using a Zeiss Axiovert 200 M fluorescence microscope. Cells
were captured migrating toward the mixed chemoattractant pipette using a Cool
Snap CCD camera and Slidebook software. Once both cell types were close to the
micropipette (,4 minutes from when the pipette was lowered), 10 mM
Latrunculin-A was added to the cells. The cells became round within 2 minutes
of Latrunculin-A treatment.

Directional sensing of PH–GFP in Latrunculin-A-treated 4-hour-starved
cells exposed to cAMP gradient
WT cells expressing PH–GFP were starved for 1 hour and subsequently pulsed
with 60 nM cAMP for 3 hours. Chemotaxis assay was performed as described
above. 1 mM Latrunculin-A was added initially and then ramped up to 10 mM
during the course of the 30-minute movie until all cells were round.
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