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Abstract. Microbial communities span many orders of magnitude ranging in scale from 12 

hundreds of cells on a single particle of soil to billions of cells within the lumen of the 13 

gastrointestinal tract. Bacterial cells in all habitats are members of densely populated 14 

local environments that facilitate competition between neighboring cells. Accordingly, 15 

bacteria require dynamic systems to respond to the competitive challenges and the 16 

fluctuations in environmental circumstances that tax their fitness. The assemblage of 17 

bacteria into communities provides an environment where competitive mechanisms are 18 

developed into new strategies for survival. In this minireview, we will highlight a number 19 

of mechanisms used by bacteria to compete between species. We focus on recent 20 

discoveries that illustrate the dynamic and multifaceted functions used in bacterial 21 

competition, and discuss how specific mechanisms provide a foundation for 22 

understanding bacterial community development and function. 23 

 24 

Introduction. Microbes compete to survive in naturally mixed communities and diverse 25 

environments. Microbial communities colonize niches as different as the surface of our 26 

teeth to the soils beneath our feet. The taxonomic diversity of organisms within these 27 

communities is a complex function of differing nutrients, niches, and interactions 28 

between species. In general, the abiotic influences on communities are identified 29 

through analysis of the chemical, spatial, and other relevant parameters that define local 30 

environments. Abiotic factors are varied, affecting microbial growth in many ways, and 31 

can often be manipulated in the laboratory to understand their influence on microbial 32 

communities. The interactions between species, on the other hand, are functions of a 33 

particular community and are a challenge to identify and resolve. Some broad 34 
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categorization provides guidelines for outcomes expected during interaction between 35 

species. Specifically, when non-neutral interactions occur between species, they are at 36 

times cooperative, but this appears to be the exception to the rule (1). More commonly, 37 

competition between species appears to define the interactions that may predominate in 38 

microbial communities.  39 

 40 

Competition is categorized into two modes, exploitative and interference (2). 41 

Exploitative competition is passive in the sense that one organism depletes its 42 

surroundings of nutrients, thereby preventing competitors from gaining access to those 43 

resources. In contrast, interference competition invokes antagonistic factors produced to 44 

impede competitors (3). In microbial systems, competition is typically framed in the 45 

context of growth limitation or inhibition due to exploitation and interference. However, 46 

while species may be sensitive or resistant to growth inhibitory activities, they also may 47 

engage in antibiotic synthesis, motility, sporulation, predatory functions, and biofilm 48 

formation in response to competition. Though not universal amongst all bacteria, these 49 

physiological changes represent the diversity of mechanisms to enhance the 50 

competitive fitness of bacterial species equipped with them. The ability of individual 51 

species to employ a spectrum of competitive mechanisms and responses to challenges 52 

may be essential to their survival in communities of diverse organisms, where 53 

competitive stress may take many forms. To better understand the forces that enable 54 

bacteria to thrive in communities, we consider numerous competitive functions that 55 

determine the relative fitness of different bacteria within a community. 56 

 57 
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 Direct studies on natural communities such as those in soils or plant and animal 58 

hosts are notoriously difficult, because they are complex and variable. Also, explanting 59 

environmental isolates to the laboratory creates additional complications. For instance, 60 

many organisms do not grow under standard laboratory conditions. Recent 61 

technological advances such as the iChip (4) enable the growth of many previously 62 

uncultured bacteria, but in situ manipulation of whole bacterial communities remains 63 

challenging. A frequently used approach to study microbial community interactions is to 64 

culture two or more species together under defined conditions. By investigating  65 

microbial interactions in defined formats, culture-based studies can provide powerful 66 

mechanistic insights into competitive functions.  67 

 68 

In recent years, competition studies between bacteria have contributed to a more 69 

informed view of competitive mechanisms used by different species. We focus this 70 

minireview on mechanisms of interference and exploitation competition between 71 

species involving specialized metabolites, enzymes, and functions associated with the 72 

cell envelope, highlighting interaction outcomes that differ from growth inhibition by 73 

classical antibiotics. The cell envelope forms the barrier between a bacterial cell and its 74 

surroundings, which include competing bacteria. We will parse different competitive 75 

mechanisms into those that occur across the envelope due to exchange of diffusible 76 

factors, and those that require contact between cell envelopes, either directly or via their 77 

embedded proteins.  78 

 79 

Interference and Exploitation At-a-Distance.  80 
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 81 

Specialized Metabolites. Competition between species is often mediated through 82 

bioactive metabolites synthesized by competitors. Specialized metabolites (SMs) are 83 

molecules produced by bacteria that are not involved in primary metabolism but are 84 

involved in other biological processes. Many specialized metabolites were previously 85 

called “secondary” metabolites because their presence is dispensable under laboratory 86 

conditions and their production often occurs during late stages of growth (5). However, 87 

SMs may be essential for some bacteria to persist in the environment (6) or under 88 

competitive stress. In the context of competitive interactions, SMs of primary interest are 89 

those affecting the growth and development of competing bacteria. For instance, 90 

antibiotics provide some of the clearest mechanistic insights for chemical interactions 91 

between competing species of bacteria. However, considering their measurable 92 

biological activities at subinhibitory concentrations, even the empirical roles of 93 

antibiotics in nature are subject to debate (7–10). Overall, the biological functions of 94 

SMs are numerous and, arguably, largely unknown. We will focus, therefore, on several 95 

illuminating examples where bacteria use antibiotics and other SMs in precisely 96 

targeted mechanisms that affect competing organisms in ways other than inhibition of 97 

growth. The abilities of bacteria to respond dynamically to a range of chemical stresses 98 

may have profound effects on their fitness in competitive multi-species communities.  99 

Exploitation competition due to SMs. In some cases, clearly self-serving functions of 100 

SMs indirectly lead to exploitation of resources, yielding a competitive advantage. 101 

Exploitation competition occurs when one organism disrupts the growth of its 102 

competitors by using a shared, limited resource (11). Exploitation often occurs when 103 
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one bacterial species alters its external environment through their various metabolic 104 

functions and prohibits the growth of other bacterial species (3). This exploitation can 105 

arise from direct consumption of nutrients, buildup of toxic waste products, or the 106 

activity of SMs. An example of SM-mediated exploitation is found in siderophores, which 107 

are SMs produced for capture of iron (12). Iron is essential for cytochromes and iron-108 

sulfur proteins, and competition for iron is driven by its availability. Siderophores are one 109 

mechanism to chelate external iron, which is then imported as a complex into the 110 

producer cells (13). Siderophore production thus increases the bioavailability of iron 111 

while simultaneously depleting the supply available to competitors. The significance of 112 

iron is underscored by the numerous examples of siderophore-mediated competition in 113 

different environments, including competition for colonization of the light organ in 114 

Hawaiian bobtail squid by different strains of Vibrio fischeri (14) and between the human 115 

opportunistic pathogens Staphylococcus aureus and P. aeruginosa (15). Bacteria also 116 

acquire iron from their environment and engage in exploitation competition by using 117 

other iron uptake systems including transporters (16). However, because siderophores 118 

are extracellular SMs, they are also subject to piracy by other species, posing a 119 

competitive risk to the producing organism (e.g. (17, 18). These examples of 120 

siderophore-mediated interactions illustrate the potential complexity of specialized 121 

metabolites and exploitative interactions that are probably pervasive in nutrient-limited 122 

environments. 123 

 124 

Interference competition due to SMs: Antibiotic Activity without Antibiosis. The classic 125 

view of antibiotics and other SMs as weapons has guided their isolation and 126 
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characterization since their discovery. In the process of discovery, antibiotic molecules 127 

are isolated from bacterial strains grown in the laboratory and tested for growth 128 

inhibition of target organisms (19). This approach has been effective for identifying the 129 

majority of antibiotics, but it has left gaps in our understanding of the ecological 130 

functions of these molecules. For instance, concentrations of antibiotics sufficient to 131 

inhibit growth may be rare in natural environments (20, 21). Do antibiotics at lower than 132 

inhibitory concentrations have functions relevant to competitive interactions? This 133 

question has inspired investigation into the effects of subinhibitory concentrations of 134 

antibiotics on bacteria, where a wide range of responses has been observed among 135 

organisms exposed to different antibiotics. For example, subinhibitory concentrations of 136 

jadomycin B cause Streptomyces coelicolor to prematurely sporulate and produce a 137 

pigmented antibiotic prodigiosin (22). Subinhibitory concentrations of kanamycin induce 138 

the expression of type VI secretion genes in Pseudomonas aeruginosa (23). Numerous 139 

other antibiotics induce global transcriptional responses (reviewed in depth, (24)). 140 

Cellular stresses from subinhibitory antibiotic concentrations may trigger these 141 

responses as early warning systems of chemical warfare. Alternatively, the natural 142 

functions of some antibiotics and SMs may be reflected in the subinhibitory responses 143 

of competitors, independent of inhibitory activity (10). Clearly delineated mechanisms of 144 

concentration-dependent activities and responses during competition are needed to 145 

understand the roles of antibiotics and other SMs in community dynamics. 146 

 147 

Interference competition due to SMs: Multifunctional metabolites. Bacteria produce 148 

many SMs, representing an enormous chemical diversity with poorly understood 149 
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function (20). Although antibiotic activity is the most common activity ascribed to SMs, 150 

many antibiotics also have effects on bacterial competitors that are independent of 151 

growth inhibition (see above). There are numerous reports detailing the effects of SMs 152 

on the multicellular development of a bacterial species. For example, the soil bacterium 153 

Pseudomonas protogens produces 2,4-diacetylphloroglucinol, a SM with antifungal 154 

activity that is used in biocontrol (25). The cellular differentiation of B. subtilis is inhibited 155 

by 2,4-diacetylphloroglucinol when cultured with P. protogens (26). In contrast, B. 156 

subtilis biofilm formation is stimulated by the antifungal nystatin (27) and by peptide 157 

antibiotics (28). Bacillaene, is a B. subtilis produced SM that was originally identified as 158 

an antibiotic inhibitor of protein synthesis (29). Bacillaene also interferes with prodigiosin 159 

production in Streptomyces coelicolor and Streptomyces lividans without inhibiting 160 

growth (30, 31). 161 

 162 

Another mechanism for SM interference in competitor development is to derail normal 163 

signaling processes. For example, some marine bacteria produce SMs that interfere 164 

with quorum sensing, and thus disrupt subsequent downstream processes reliant on 165 

communication between competitor cells (32, 33). One challenge is to understand the 166 

fitness benefits of such modulatory activities in competitive interactions between 167 

bacteria. However, in many cases the connection between SMs and the responses they 168 

elicit in competitors is unknown. Model systems using two or more bacteria cultured 169 

together have been developed to investigate how SMs and other factors influence 170 

competitive fitness under controlled settings. 171 

 172 
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Model Systems of SM-Mediated Competition between Species. Multi-species model 173 

systems are advantageous because they open the door to the diversity of competitive 174 

functions used by a single organism, including production of multiple SMs and different 175 

patterns of response to competitor SMs. Soil bacteria provide an illustrative example of 176 

diverse competitive functions. Species of Streptomyces are ubiquitous in the soil and 177 

renowned for their capacity to synthesize SMs (34). In addition, Streptomyces species 178 

undergo developmental phases of their lifecycle, including aerial growth and 179 

sporulation, which may be affected by SM activity (35). For example, sporulation of 180 

some streptomycetes depends upon the peptide SapB that acts as a surfactant and 181 

lowers surface tension, enabling aerial hyphae to expand upward (36). Bacillus subtilis 182 

produces its own lipopeptide surfactant, surfactin. Bacillus subtilis requires surfactin for 183 

biofilm development and some types of motility (27, 37, 38). Intriguingly, surfactin also 184 

antagonizes aerial development of many Streptomyces species (39, 40). Insight into the 185 

mechanism arose from S. coelicolor, which when treated with surfactin was unable to 186 

process and secrete SapB to support aerial growth (41). When compared to antibiotics 187 

that target growth, inhibition of sporulation is a relatively subtle developmental effect 188 

that presumably prevents the spread of Streptomyces. Although B. subtilis does not 189 

likely produce multifunctional surfactin explicitly for competition, the inhibition of 190 

Streptomyces development may enhance competitive fitness in natural environments. 191 

Indeed, some species of Streptomyces have acquired enzymatic resistance to surfactin, 192 

consistent with a natural competitive function. Using imaging mass spectrometry it was 193 

demonstrated that Streptomyces sp. Mg1 hydrolyzes surfactin (Fig 1A and 1B) (40). 194 

The enzyme, surfactin hydrolase, was shown to specifically inactivate surfactin and 195 
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plipastatin, another lipopeptide produced by B. subtilis (40). Hydrolytic inactivation is a 196 

common resistance mechanism for many antibiotics (42). Analogously to the 197 

emergence of new β-lactamases, production of surfactin hydrolase and other antibiotic 198 

degrading enzymes promotes the competitive fitness of their bacterial producers, 199 

although with surfactin the selection is against a developmental process. 200 

 201 

FIG 1. Mechanisms of bacterial competition. Top (A,B)- Detecting patterns of SM 202 

production and degradation through imaging mass spectrometry. (A) False-colored 203 

extracted ion image showing the distribution of surfactin (blue) produced by B. subtilis 204 

and hydrolyzed surfactin (yellow) resulting from the activity of surfactin hydrolase 205 

secreted by Streptomyces sp. Mg1. (B) The extracted ion image from (A) overlaid onto 206 

a photograph of a culture of B. subtilis and Streptomyces sp. Mg1 to highlight the 207 

localization patterns of each SM during competition. Middle (C,D)- Revealing essential 208 

SM functions using predator-prey interactions. (C) Photograph of M. xanthus spotted 209 

onto the center of a wild-type B. subtilis NCIB3610 colony. The colony is mostly opaque 210 

due to intact, viable B. subtilis. (D) A mutant B. subtilis strain deficient in bacillaene 211 

production becomes transparent as it is consumed by M. xanthus, which forms fruiting 212 

bodies on the lysed remains of the B. subtilis colony. Bottom (E,F)- Structural features 213 

of a contact-mediated competitive apparatus. (E) Cryo-electron micrographs of a T6SS 214 

apparatus inside an intact Vibrio cholerae cell. Scale Bar is 100 nm. (F) Comparison of 215 

flagellum (F) and T6SS sheath (S) isolated from V. chloerae. Scale bar Is 100 nm. 216 

Panels C and D were provided by John Kirby. Panels E and F were reproduced from 217 

(43) with permission. 218 
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 219 

Competitive culture models enable us to interpret the functions of SMs in new 220 

ways that enhance our view of competition dynamics. Several reports show that SMs 221 

provide defense against otherwise overwhelming forces. For instance, laboratory strains 222 

of B. subtilis are preyed upon by Myxococcus xanthus, but the undomesticated B. 223 

subtilis strain NCIB 3610 is resilient (44). Many domesticated laboratory strains of B. 224 

subtilis lack a gene, sfp, required for production of several SMs, including bacillaene 225 

(45, 46). This defect, which renders domesticated B. subtilis susceptible to M. xanthus 226 

predation, was subsequently shown to be specific to the loss of bacillaene production 227 

(44) (Fig. 1C and 1D). Indeed, exogenous application of bacillaene protected sensitive 228 

strains of B. subtilis and Escherichia coli from predation. Thus, under the pressure of 229 

predation, bacillaene is essential for defense of B. subtilis. Intriguingly this is not the 230 

only demonstration of a defensive role for bacillaene. Strains of B. subtilis deficient in 231 

bacillaene production are also hypersensitive to lysis by linearmycins produced by S. 232 

Mg1 (47, 48). Bacillaene was originally discovered as an antibiotic inhibitor of protein 233 

synthesis, (29) and its function dispensable for growth of B. subtilis. However, 234 

competition studies expand our view of bacillaene to include essential defensive 235 

functions, the precise mechanisms of which are not known. Nevertheless, examples 236 

such as bacillaene and surfactin serve to illustrate that SMs provide diverse and 237 

important competitive functions for the producer organisms. 238 

 239 

As seen in examples from antibiotics to siderophores, SMs have varied and 240 

sometimes essential functions in competition between species. However, aside from 241 
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antibiotics, little mechanistic detail is available for the targets and processes affected by 242 

SMs (e.g. (32, 33)).  The identification of chemically mediated mechanisms of 243 

competition will require continued exploration of competitive dynamics between species. 244 

An important consideration is how the SMs operate along with other entities that 245 

mediate interactions between competing species. 246 

 247 

Secreted Enzymes. In addition to SMs, bacteria secrete enzymes that participate in 248 

competition. Secreted enzymes that confer antibiotic resistance have a clear 249 

competitive benefit (40). Additionally, bacteria benefit by interfering with the 250 

development of their competitors, e.g. using enzymes to degrade signaling molecules 251 

like acyl homoserine lactones (49–52). However, surprisingly little is known about how 252 

bacteria use secreted enzymes to kill or inhibit their competitors. The predatory bacteria 253 

M. xanthus is a prolific producer of degradative enzymes and encodes in its genome 254 

more than 300 degradative hydrolytic enzymes (53, 54). The functions of many of these 255 

enzymes are unknown, but bacteriolytic activity has been demonstrated for some (55). 256 

An example of competitive enzyme function is found where Staphylococcus epidermidis 257 

competes with Staphylococcus aureus for colonization of the human nasal cavity (56). 258 

Staphylococcus epidermidis secretes a serine protease, Esp, which inhibits S. aureus 259 

biofilm formation (57). Esp degrades S. aureus biofilms by inactivating autolysins and 260 

preventing release of DNA that is an essential component of the biofilm extracellular 261 

matrix (58). The presence of Corynebacterium spp. in the nasal cavity is often inversely 262 

correlated with pathogenic Streptococcus pneumoniae (59). Like S. epidermidis, 263 

Corynebacterium accolens also utilizes a secreted enzyme, LipS1, to interfere with a 264 
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competitor. LipS1 is a triacylglycerol lipase that produces oleic acid from the hydrolysis 265 

of a human-produced triglyceride, triolein (60). Oleic acid and other free fatty acids 266 

inhibit the growth of S. pneumoniae (60, 61). Esp and LipS1 interfere with bacterial 267 

competitors but through fundamentally different mechanisms. Thus, secreted enzymes 268 

may have many active roles at or near the cell surface of competitors, although this 269 

area is in need of further study.  270 

 271 

Extracellular Vesicles. Extracellular vesicles are of great interest for both bacterial and 272 

eukaryotic interaction processes. Vesicles are capable of vectoring proteins, lipids, 273 

nucleic acids, and small molecules that function in competitive and signaling processes 274 

(62). Many bacteria produce extracellular vesicles (EVs) during normal growth. The 275 

precise mechanisms of EV biogenesis and cargo loading are beginning to be identified. 276 

Gram-negative bacteria produce EVs (also called outer membrane vesicles) when the 277 

outer membrane is “pinched,” and the vesicle buds from the cell surface (63). A second 278 

vesicle-release mechanism is reported to occur within biofilms of P. aeruginosa (64). In 279 

this system, prophage-encoded endolysins activate cellular lysis, releasing membrane 280 

fragments that form vesicles and permeate the extracellular space. The problem for 281 

Gram-positive bacteria is more complicated due to the lack of an outer membrane, and 282 

the mechanism of EV generation is currently unknown, although several models have 283 

been hypothesized (65). After formation, EVs are released into the environment. When 284 

an EV encounters a Gram-negative cell the vesicular membrane and the outer 285 

membrane fuse, which delivers the cargo into the recipient’s periplasm (66). 286 
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Extracellular vesicles have been observed to adsorb to the cell wall of Gram-positive 287 

bacteria, thereby delivering their contents to target cells (66). 288 

 289 

 Extracellular vesicles are used by bacteria for diverse processes including biofilm 290 

formation (67), carbon storage (68), virulence (69), and quorum sensing (70). Bacteria 291 

also use EVs for defensive measures against several types of antimicrobial insult. For 292 

instance, the EVs of Prochlorococcus adsorb phages (68), and EVs from P. aeruginosa 293 

and Staphylococcus aureus protect β-lactamases from proteolytic degradation (71, 72). 294 

Though EVs are often characterized for their defensive functions (73), bacteria also use 295 

vesicles to deliver antagonistic agents to competing bacteria. These agents can be 296 

enzymes, such as the peptidoglycan-degrading hydrolases produced by P. aeruginosa 297 

(66) and Lysobacter sp. XL1 (74), or antibiotic SMs like actinorhodin or prodigiosins 298 

found in the EVs produced by S. coelicolor (75) and S. lividans (76), respectively.  299 

 300 

The EVs of M. xanthus are of tour de force in regards to their competitive 301 

potential. The EVs produced by M. xanthus contain not only 29 predicted hydrolytic 302 

enzymes (11 of which were not found in the outer membrane) but also 16 specialized 303 

metabolites including the myxalamids, which are known antibiotics, and DKxanthene 304 

534 (77). DKxanthene 534 and myxalamids are polyketide and hybrid polyketide-305 

peptide molecules, respectively, both having non-polar hydrocarbon regions. Consistent 306 

with membrane localization, both molecules are typically extracted from cell pellets and 307 

have low abundance in supernatants (78, 79). These characteristics highlight an 308 
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important function of EVs to facilitate transfer of hydrophobic molecules, including 309 

antibiotics, across aqueous environments (70).  310 

 311 

Extracellular vesicles also intersect with SMs in intriguing patterns that may affect 312 

competition between bacteria. Recently, it was shown that B. subtilis disrupts its own 313 

EVs by secreting surfactin (80). The targeted lysis of EVs by surfactin may serve as a 314 

defensive mechanism against antibiotic-laden vesicles produced by competing 315 

organisms or as an offensive tool to prevent non-polar signaling molecules, including 316 

quorum sensors, from reaching their intended targets. Extending on overlapping 317 

functions, bacteria reportedly become reversibly resistant to antibiotics when they 318 

swarm (81). In B. subtilis, swarming motility requires surfactin (82, 83). As an intriguing 319 

hypothesis for niche exploration, B. subtilis might produce surfactin not only to promote 320 

its movement over surfaces but also as a defense mechanism against EVs produced by 321 

other organisms. 322 

 323 

Contact-Mediated Competition.  324 

 325 

Different species of bacteria physically interact at high cell densities in ways that 326 

promote information exchange, such as plasmid conjugation, or through competitive 327 

interaction mechanisms. Some competitive functions appear to have evolved to function 328 

specifically in close proximity. In particular, bacteria use membrane and cell envelope 329 

embedded functions that are outwardly directed toward competitors. Such mechanisms 330 

 on S
eptem

ber 12, 2018 by guest
http://jb.asm

.org/
D

ow
nloaded from

 

http://jb.asm.org/


 

 

are likely to be important for survival under crowded conditions through both their 331 

inhibitory functions and their contributions to community structure. 332 

 333 

Contact-Dependent Inhibition. As a specific mechanism of interference competition, 334 

contact-dependent inhibition (CDI) describes a membrane protein that operates as a 335 

delivery system for a cellular toxin. The prototypical CDI system was first described in 336 

uropathogenic E. coli EC93 and consists of three components: CdiA, CdiB, and CdiI 337 

(84). CdiA and CdiB are homologous to the two-partner secretion system proteins TpsA 338 

and TpsB, respectively. In two-partner secretion systems, the secreted substrate TpsA 339 

is translocated across the outer membrane through its cognate beta-barrel protein TpsB 340 

(85). Likewise, in CDI systems the toxin CdiA is attached to CdiB, which is an outer 341 

membrane beta-barrel protein that extends away from the cell. This arrangement leads 342 

to CDI being referred to as a “toxin on a stick” (86). CdiI provides the producing cell with 343 

immunity towards its own toxin by specifically binding to CdiA and inhibiting its activity 344 

(87). When a CDI-producing cell (CDI+) makes direct contact with a susceptible target 345 

cell, its CdiA toxin interacts with the outer membrane protein BamA (88). The CdiA 346 

protein is then deposited onto the target cell surface and undergoes self-cleavage, 347 

which transports the carboxy-terminal (CT) portion of CdiA into the periplasm (89). 348 

Many CdiA toxins are nucleases and require entry into the cytoplasm to exert their 349 

effects (87). Translocation of the toxin into cytoplasm requires the proton motive force 350 

(90) and interaction with toxin-specific inner membrane protein receptors (91). The 351 

requirement for a membrane receptor protein on target cells limits CDI to a narrower 352 

range of specificity when compared to diffusible agents like antibiotics. This specificity is 353 
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due to variability in extracellular loops 6 and 7 of BamA, which form the CdiA-CT-354 

binding site (92). Due to the narrower target range, it has been speculated that CDI 355 

systems are a means to inhibit closely related species. This would allow CDI+ bacteria 356 

to inhibit other bacteria that are more likely in direct competition for the same or very 357 

similar ecological niches (86).  358 

 359 

Biofilms are community structures that form as a result of the concerted effort 360 

between many cells. The conditions within a biofilm are inherently stressful to cells. 361 

Resources including nutrients, oxygen, and physical space are limiting (93). These 362 

conditions breed competition between cells within the biofilm and provide strong 363 

selection for competition. For example, growth within a biofilm selects for bacteria that 364 

engage in exploitation competition by preferentially occupying biofilm surfaces and 365 

gaining access to oxygen (94). Biofilm growth has also selected for cells that are able to 366 

engage in inference competition with their neighbors. Burkholderia thailandensis 367 

illustrates the utility of CDI functions for promoting competitive success in a biofilm. 368 

Disruption of the CDI system (CDI-) of B. thailandensis both sensitizes cells to CDI from 369 

isogenic siblings and abolishes biofilm formation (95). Both functions are tied to BcpA 370 

(homologous to CdiA), but the biofilm functions are independent of CDI activity (96).  371 

These observations suggest that CDI systems help to ensure a competitive advantage 372 

by supporting biofilm formation while excluding competitors. CDI-dependent cell 373 

adhesion and defects in biofilm production for CDI- strains have also been reported in E. 374 

coli (97) and P. aeruginosa (98), further solidifying the link between CDI and biofilm 375 

development.  376 
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 377 

Aside from the costs of biofilm formation and the cellular challenges within a 378 

biofilm, these structures serve to protect bacteria from various external stresses (99, 379 

100). For instance, bacteria have evolved mechanisms, including CDI, to competitively 380 

exclude non-sibling cells from biofilms (101). Developing biofilms contain three-381 

dimensional structures called “pillars” for B. thailandensis (102). These structures 382 

extend outwards from the biofilm attachment site, providing cells within the pillars better 383 

access to oxygen and nutrients than the cells in the biofilm substratum (93). The CDI 384 

system of B. thailandensis excludes CDI-sensitive cells from developing pillars (102). 385 

Cells that produce the same CDI system, presumably siblings, are not killed by CDI due 386 

to their cognate immunity genes. This selective killing by CDI provides a kin 387 

discrimination mechanism for B. thailandensis biofilms and likely protects the biofilm 388 

from invaders. Taken together, the CDI functions of B. thailandensis demonstrate 389 

important competitive advantages that arise in close cellular proximity through direct 390 

inhibition of competitors and through construction of defensive biofilm structures. 391 

 392 

Type VI Secretion Systems. The type VI secretion system (T6SS) was originally 393 

identified as a virulence factor produced by V. cholerae against amoebae and 394 

macrophages (103). Subsequently, genes encoding T6SS were found in roughly one-395 

quarter of Proteobacteria with sequenced genomes (104) including, but not limited to, 396 

opportunistic pathogens such as Acinetobacter baumannii (105) and Serratia 397 

marcescens (106). The observation that many of the identified T6SS had no apparent 398 
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effect on eukaryotic cells and that T6SS gene clusters occurred in non-pathogenic 399 

bacteria prompted investigation into potential antibacterial activities (106, 107).  400 

 401 

The T6SS of Gram-negative bacteria have emerged as a powerful weapon in 402 

close-quarters interference competition between bacteria. The basic mechanism of 403 

function for T6SS is to inject toxic effector molecules directly into the cytoplasm of target 404 

cells. Structurally and functionally the T6SS apparatus is homologous to bacteriophage 405 

contractile tails (108). The T6SS apparatus is a cylindrical spiked-tipped inner tube that 406 

is surrounded by a sheath and anchored to the inner membrane (Fig. 1E and 1F). When 407 

the cell is in physical contact with its target, the sheath contracts, and the inner tube is 408 

propelled outward and punctures the membrane of a target cell using its spiked tip. 409 

Within the target cell the spike disassociates from the tube and the toxic effectors are 410 

delivered. Common effectors characterized thus far include phospholipases (109–111), 411 

peptidoglycan hydrolases (112–114), and nucleases (115, 116).  412 

 413 

 In addition to T6SS being an effective delivery system for toxic payloads, one 414 

example demonstrates that the sharpened spike of the T6SS is a potent weapon even 415 

in the absence of toxic effectors. Using its TagQRST-PpkA-Fha1-PppA sensing system, 416 

P. aeruginosa detects cell envelope damage caused by the T6SS of other bacteria 417 

(117). This detection or “danger sensing” allows the cell to mount a response against its 418 

antagonist and minimize future damage to the cell or its siblings (118). In the case of P. 419 

aeruginosa, the cell retaliates against T6SS-mediated attacks, directing its own T6SS in 420 

the same direction as the initial attack in a behavior called “dueling” (119). Duels 421 
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damage target cells and can cause membrane blebbing, plasmolysis, and even lysis. 422 

Strains of P. aeruginosa that are deficient in production of all known T6SS effectors still 423 

retaliate against T6SS-mediated attacks and engage in dueling with effective killing 424 

activity (117). If P. aeruginosa cells lose their duels and are lysed by competitors, they 425 

release diffusible danger signals that stimulate T6SS activity and promote the survival of 426 

siblings (120). 427 

 428 

 Like CDI, The T6SS killing mechanism also functions to favor siblings in biofilm 429 

formation. Strains of Proteus sort self from non-self in mobile multicellular swarms. This 430 

kin-discrimination is observed as cell-free zones between swarms called Dienes lines 431 

(named for their discoverer Louis Dienes) on agar surfaces. In these zones, opposing 432 

swarms of P. mirabilis do not intermingle. The establishment of Dienes line formation 433 

was found to be due to T6SS (121). At the intersection between opposing swarms, P. 434 

mirabilis use their T6SS to kill, and in turn are killed by T6SS of competitors, creating a 435 

demilitarized zone (DMZ) where the Dienes lines exist between mobile populations. As 436 

with B. thailandensis, strains join the beneficial swarm when they are not killed by the 437 

T6SS. An added benefit of this kin-discrimination arises because swarming provides 438 

increased resistance to antibiotics (81). Thus, entry into the swarm promotes 439 

competitive fitness of bacteria by excluding unrelated cells and from enhancing defense 440 

against antibiotics. Similar boundary formation has also been reported for M. xanthus 441 

(122) and B. subtilis (123). The observation of discrimination in B. subtilis demonstrates 442 

that CDI and T6SS are not the only mechanisms that bacteria use for kin-discrimination, 443 

as B. subtilis does not produce CDI or T6SS. The question remains whether B. subtilis 444 
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demarcates Dienes lines through a contact-dependent or –independent mechanism, 445 

although evidence suggests combinatorial mechanisms are used (124). 446 

 447 

 Both the CDI and T6SS are analogous in that a toxin is delivered directly to a 448 

target cell. However, like many antibiotics, these toxins are typically soluble molecules. 449 

How then, are insoluble effectors delivered? In one case the T6SS toxin Tse6, produced 450 

by P. aeruginosa, contains transmembrane domains that are shielded from the aqueous 451 

environment by an associated chaperone. The chaperone, EagT6, protects Tse6 until 452 

delivery into the target’s periplasm (125). This example appears to be the exception, 453 

where the majority of membrane-associated effectors lack a chaperone or other clear 454 

vectoring mechanism. As described previously, extracellular vesicles are another 455 

mechanism for delivery of otherwise insoluble cargo.  456 

 457 

Outer Membrane Exchange. In addition to CDI, T6SS, and EVs, Gram-negative 458 

bacteria appear to use the outer membrane itself as an effective delivery system for 459 

otherwise insoluble toxins. Outer membrane exchange (OME) for Myxobacteria, for 460 

example, is a contact-dependent mechanism for cells to share membrane components, 461 

including phospholipids and insoluble lipoproteins, with other cells (126). OME has been 462 

demonstrated to extracellularly complement mutants deficient in production of particular 463 

outer membrane products. For example, via OME the gliding motility of non-motile M. 464 

xanthus mutants is stimulated when mutant cells are mixed with wild type cells (127). 465 

OME is also intertwined with colony swarming and sporulation (127). Furthermore, a 466 
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recent report implicates OME as a powerful defensive mechanism to dilute membrane 467 

damage over a population of cells (128).  468 

 469 

OME requires the production of an outer membrane protein complex TraAB in 470 

both the donor and recipient cell (127). TraAB appears to be the only component 471 

necessary to mediate OME (129) and, similarly to the BamA receptor in CDI systems, 472 

TraAB contains a polymorphic domain that limits OME to a narrow range of related 473 

targets (130). Given the functional similarities to CDI systems and the potential of OME 474 

to directly deliver toxic effectors into the envelope of target bacteria, it is not surprising 475 

that Myxobacteria use OME to mediate competition and engage in kin recognition. 476 

Motile cells of M. xanthus are killed when cultured with their non-motile siblings. Killing 477 

is dependent upon the presence of TraA in the target motile cell and a polyploid 478 

prophage in the killer non-motile sibling (131). Currently, the effector delivered by OME 479 

is not known, but it is likely produced from toxin-antitoxin module encoded on the 480 

prophage (131). No further examples of OME-mediated competition have been reported 481 

thus far. However, as with EVs, new studies will likely uncover fascinating roles for 482 

these membrane-derived strategies in bacterial competition. 483 

 484 

Conclusions. 485 

 486 

Bacteria use competitive mechanisms that are nearly as diverse as the 487 

competitors they encounter (Fig. 2). Inherent in each competitive strategy are 488 

advantages and disadvantages. When bacteria use secreted effectors like antibiotics, 489 
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enzymes, or vesicles, they are able to compete while minimizing the risks of direct 490 

damage during contact-mediated competition. Once a cell exports its competitive 491 

molecules across its envelope, those molecules are subject to diffusion, which 492 

diminishes their growth inhibitory effect on competitors at a distance. However, many of 493 

these metabolically expensive products operate between inactive and inhibitory 494 

concentrations and may possibly act as chemical cues for competitors (132). Exposure 495 

to subinhibitory antibiotic concentrations can induce resistant states (133–135), select 496 

for resistant competitors (136), stimulate biofilm formation (137–139), and motility (140). 497 

Activation of a resistant state allows a competitor unrestricted access into a previously 498 

protected niche. If potential prey senses a cue and escapes predation, then the 499 

producer loses nutrients in the form of that lysed cell. Thus, if a competitor senses a 500 

cue, the producer may suffer the consequences for competitive fitness. However, it is 501 

also important to note that our current understanding of response to subinhibitory 502 

concentrations of antibiotics and other SMs in the context of bacterial communities is 503 

limited and requires further investigation. The direct delivery of toxins into a target cell 504 

by CDI or T6SS circumvents diffusion and the potential costs of subinhibitory antibiotic 505 

concentrations. The tradeoff is that contact-mediated competition puts a cell in direct 506 

contact with its competitor and allows the risk of retaliation such as in the dueling 507 

response (117) or from high concentrations of diffusible SMs.  508 

 509 

FIG 2 Summary of mechanisms used in bacterial competition. (A) Contact-mediated 510 

mechanisms involve either direct contact between cell envelopes (OME) or are 511 

facilitated by protein complexes (CDI and T6SS). In the case of CDI and T6SS, toxic 512 
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effectors (square or Pac-Man) are delivered into the target cell. (B) Bacteria compete at-513 

a-distance using SMs (examples shown are bacillaene and streptomycin), secreted 514 

enzymes, and extracellular vesicles. CDI, contact-dependent inhibition; EVs, 515 

extracellular vesicles; M, membrane; MT, target cell membrane; IM, inner membrane; 516 

OM, outer membrane; PG, peptidoglycan; T6SS, type VI secretion system. 517 

 518 

 We have emphasized the differences between competitive mechanisms that are 519 

contact-mediated and those that occur at-a-distance. However, bacteria are not 520 

mutually exclusive in the systems they employ. For example, Pseudomonas species 521 

use T6SS but are also prolific producers of SMs including antibiotics and siderophores 522 

(141). Bacteria also use direct contact to deliver secreted factors at high local 523 

concentration. Predatory Bdellovibrio species physically collide with target cells, pierce 524 

their cell envelope, and digest their prey from within using an impressive cocktail of 525 

secreted enzymes that includes nucleases and peptidoglycan hydrolases (142, 143). 526 

The differences between contact-mediated and distance approaches may reflect how 527 

bacteria use both systems in competition. A cell producing secreted molecules, like 528 

antibiotics, creates a chemical or enzymatic protective shell around itself. Within this 529 

shell the cell is also able to simultaneously engage in exploitative competition via its 530 

exclusive access to nearby nutrients. The spectrum of inhibitory activities, in concert 531 

with small size, low charge, and ease of entrance into target cells (144, 145), place 532 

antibiotics at the foundation of such protective chemical shells. However, if a competitor 533 

breaches the defenses, then the delivery of toxic effectors by CDI or T6SS directly into 534 

the target may stop the invasion. A remarkable balance of antibiotic resistance and 535 
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contact-dependent mechanisms has been shown with A. baumanii (146). Several multi-536 

drug resistant A. baumannii strains carry a plasmid that provides antibiotic resistance 537 

while also inhibiting expression of T6SS systems. However, the plasmid is unstable, 538 

and loss of the plasmid provides a mechanism to activate T6SS at the cost of losing 539 

antibiotic resistance in some cells. The net result is a population with shared functions in 540 

competitive fitness through defense and through close quarters exclusion of 541 

competitors. Perhaps contact-mediated mechanisms like CDI, T6SS, or OME are 542 

needed to selectively inhibit closely related competitors with the capacity to pass 543 

unharmed across a chemical defensive barrier (92, 130, 146). 544 

 545 

 Culture-based studies have revealed many mechanistic details of bacterial 546 

competition. However, we note that many of the studies highlighted in this minireview 547 

used simple, small-scale bacterial communities with minimal mixing. To gain a deeper 548 

understanding of bacterial competition in natural communities, systems are needed that 549 

combine the use of multiple approaches and expanded knowledge of diverse 550 

competitive mechanisms. Although beyond the scope of this minireview, mathematical 551 

modeling is a powerful approach to understand how bacterial communities are formed 552 

and maintained (e.g. (147, 148)). Mathematical approaches stand to become more 553 

powerful as they incorporate diverse competitive outcomes in addition to killing or 554 

survival. For instance, what effects does T6SS-mediated retaliation have in a modeled 555 

competition? How does SM-mediated developmental inhibition affect a community? 556 

What are the consequences of exposure for cells outside the inhibitory ranges of SMs? 557 

Using controlled experiments in the laboratory, new mechanistic details of competition 558 
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are being identified, despite limitations to our understanding of these mechanisms in 559 

natural environments. The genomes of many antibiotic producing bacteria contain silent 560 

SM gene clusters that are not expressed under laboratory conditions (149). Likewise, 561 

many studies with CDI and T6SS require artificial expression conditions (150, 151). 562 

These obstacles are a central focus of current efforts to understand competitive 563 

mechanisms. Meanwhile, models that better mimic the native environment are being 564 

developed to provide a clearer view of bacterial interactions under natural conditions 565 

(e.g. (87, 116, 152)) The examples above and many more innovative studies are 566 

expanding our views of the interactive interfaces between two bacterial species. The 567 

emerging challenge is to build these interfaces into networks, which will represent the 568 

many facets of competition within microbial communities. 569 
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