
Geophys. J. Int. (2006) 164, 383–393 doi: 10.1111/j.1365-246X.2006.02857.x

G
JI

S
ei

sm
ol

og
y

FA S T T R A C K PA P E R

A construct of internal multiples from surface data only: the concept
of virtual seismic events

Luc T. Ikelle
CASP project, Department of Geology and Geophysics, Texas A&M University, College Station, TX 77843-3115, USA. E-mail: ikelle@nutmeg.tamu.edu

Accepted 2005 October 28. Received 2005 September 11; in original form 2004 October 20

S U M M A R Y
We here describe one way of constructing internal multiples from surface seismic data only. The
key feature of our construct of internal multiples is the introduction of the concept of virtual
seismic events. Virtual events here are events, which are not directly recorded in standard
seismic data acquisition, but their existence allows us to construct internal multiples with
scattering points at the sea surface; the standard construct of internal multiples does not include
any scattering points at the sea surface.

The mathematical and computational operations invoked in our construction of virtual events
and internal multiples are similar to those encountered in the construction of free-surface
multiples based on the Kirchhoff or Born scattering theory. For instance, our construct operates
on one temporal frequency at a time, just like free-surface demultiple algorithms; other internal
multiple constructs tend to require all frequencies for the computation of an internal multiple
at a given frequency. It does not require any knowledge of the subsurface nor an explicit
knowledge of specific interfaces that are responsible for the generation of internal multiples in
seismic data. However, our construct requires that the data be divided into two, three or four
windows to avoid generating primaries. This segmentation of the data also allows us to select
a range of periods of internal multiples that one wishes to construct because, in the context of
the attenuation of internal multiples, it is important to avoid generating short-period internal
multiples that may constructively average to form primaries at the seismic scale.

Key words: Born scattering, internal multiples, Kirchhoff scattering, scattering diagrams,
virtual seismic events.

1 I N T RO D U C T I O N

The present seismic imaging techniques require, for their applica-

tions, that seismic data contain only primaries. To fulfil this require-

ment, we need to attenuate free surface and internal multiples from

our seismic data prior to imaging them. So far, most efforts by the

petroleum seismology community have been limited to the attenu-

ation of free-surface multiples. The few examples of techniques for

attenuating internal multiples will be discussed later in this section.

Our objective here is to present a construct of internal multiples,

which can be computed in the same mode as free-surface multiples

at a similar cost in CPU time and computational storage.

Fig. 1 shows an example of primaries, free-surface multiples and

internal multiples. We can see that internal multiples are seismic

events with no bounce at the free surface but with a bounce between

two interfaces other than the free surface. So the fundamental dif-

ference between internal multiples and free-surface multiples, from

the scattering theory point of view, is that the path of a free-surface

multiple contains at least one scattering point at the sea surface,

whereas the path of an internal multiple does not contain any scat-

tering point at the sea surface. This fundamental difference between

internal multiples and free-surface multiples can be cast into the

following four points:

(i) The interface generating free-surface multiples, which is the

air–water interface (a free surface), is well defined and unique in its

kind in our geological models. On the contrary, the internal multi-

ples can be generated at any interface in the subsurface. Therefore,

possible interfaces generating internal multiples are in theory al-

most endless. Moreover, the notion of interface in the context of

internal multiples is totally different from that of the sea-surface

interface in the context free-surface multiples. Rock formations in

the subsurface result in the breakdown of pre-existing rocks, lead-

ing to fractures and bedding in rock formations, and thus making

it quite difficult to clearly define internal-multiple-generating inter-

faces. Even potential internal multiple generators like the top and

bottom of basalt might sometimes be difficult to define for this rea-

son. Obviously, the seafloor (i.e. the water–solid interface in the case
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Figure 1. Examples of primaries, free-surface multiples and internal multiples.

of the hard seafloor) is an exception; it is a well-defined internal-

multiple-generating interface.

(ii) We know that the smallest period of free-surface multiples is

the two-way traveltime in the water column. This period is a funda-

mental feature, which allows us to distinguish between primaries and

free-surface multiples. For practical purposes, we require this period

to be longer than the duration of the source signature. In the case

of internal multiples, the period of multiples can be very short (less

than the typical seismic temporal sampling interval, which is 4 ms)

or very long, because we have heterogeneities at almost all scales

in the subsurface, as well logs and core samples have shown. Actu-

ally, primaries themselves are generally an average of short-period

internal multiples. In other words, the shortest period of internal

multiples is not as clearly defined as that of free-surface multiples,

and it is a parameter that we need to control to avoid modifying our

primary signals.

(iii) In towed-streamer experiments, for instance, sensors are lo-

cated near the sea surface and, therefore, can be extrapolated to the

sea surface to coincide with the sea-surface scattering points of free-

surface multiples. In essence, that is what we do in the construction

of free-surface multiples based on the Kirchhoff theory (e.g. Ikelle

et al. 2003). Unfortunately, all the scattering points in the context of

internal multiples, as depicted in the classical scattering diagrams

in Fig. 1, are located in the subsurface. The extrapolations of these

scattering points to the surface already required the knowledge of

the model of the subsurface. So one of the fundamental challenges

in the attenuation of internal multiples that we will be addressing in

this paper is how to attenuate them without any knowledge of the

subsurface. We will introduce the concept of virtual events, which

will allow us to redraw the scattering diagrams of internal multiples

with scattering points at the free surface.

Our goal in this paper is to formulate a construct of internal mul-

tiples, which does not require any knowledge of the subsurface. We

will also seek to include in this formulation ways of selecting the

range of periods of internal multiples that one might wish to con-

struct. Before we start addressing this goal, let us put our work in

this paper in some context with respect to previous contributions.

Efforts to attenuate internal multiples (sometimes called interbed

multiples) can be traced to the 1950s (e.g. Hansen 1948; Robinson

1957; Schneider et al. 1965). The predictive deconvolution was then

the method of choice for attenuating internal multiples. This method

is essentially based on the assumption that multiple events are peri-

odic and primary events are not. This assumption holds quite well

in zero-offset data, stack data and moveout-corrected CMP data for

relatively flat models of the subsurface. That is why the predictive

deconvolution was very successful in the 1960s and 1970s when

seismic processing was generally limited to stacked data from rela-

tively flat models of the subsurface. Unfortunately, this assumption

breaks down when the medium is multidimensional.

The more recent efforts are those of Berkhout & Verschuur

(1997) and Weglein et al. (1997). Both of these works are multi-

dimensional and do not make any assumption about the periodicity

of multiples. Berkhout and Verschuur’s approach, which is gener-

ally known as the feedback method, attenuates internal multiples

related to a specific interface that is responsible for the genera-

tion of internal multiples. This method requires the selection of

the multiple generating reflector or a velocity model of the sub-

surface. When the internal-multiple-generating reflector is speci-

fied, the feedback method becomes computationally equivalent to

free-surface multiple attenuation. In the Weglein et al. approach,

Figure 2. (a) A combination of virtual seismic data with standard towed-

streamer data produces internal multiples. (b) An illustration of the construc-

tion of virtual seismic data.
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A construct of internal multiples 385

internal-multiple-generating interfaces are not explicitly specified

and can attenuate all internal multiples of a given order at once

through an inverse scattering series. However, their solution is quite

expensive compared to the feedback method or free-surface multi-

ple attenuation. In fact, unlike the free-surface multiple attenuation

method, the Weglein et al. method requires all frequencies for the

computation of an internal multiple at a given frequency. Hence it

does not contain the key computational feature of the free-surface

multiple methods based on the Kirchhoff or Born scattering theory.

Our approach here differs from those of Berkhout & Verschuur

(1997) and Weglein et al. (1997) because it leads to a construct

of internal multiples, which is both computationally similar to the

construct of free-surface multiples and does not require any specific

interpretative interface or velocity model. However, our construct

requires that we divide data into segments to control the range of

periods of internal multiples that one might wish to generate and to

avoid generating primaries, as we will see later.

2 C O N S T RU C T I O N O F V I RT UA L

E V E N T S A N D I N T E R N A L M U LT I P L E S

Fig. 2 illustrates one possible construct of internal multiples. First

of all, let us remark that scattering diagrams are drawn with arrows,

which is unusual. The scattering diagrams are generally drawn with-

out arrows because it is generally assumed in the petroleum seis-

mology community that the ray paths in these diagrams track the

direction of wave propagation. We have explicitly included the ar-

rows in the scattering diagrams in our construct of internal multiples

because our diagrams sometimes do not follow the path of the wave

propagation.

The construct of internal multiples has two steps. The first consists

of constructing a virtual event (Fig. 2b). We call this event virtual

because it comes into existence to facilitate merely our physical

Figure 3. (a) 1-D synthetic data consisting of four primaries. We have divided these data into two parts: d 0(x , t) and d ′
0(x , t). (b) is d 0(x , t) and (c) d ′

0(x , t).

construct of internal multiples. More specifically, it allows us to

redraw the scattering diagram of internal multiples with a scattering

point at the free-surface (Fig. 2a). Let me emphasize that virtual

events are not directly recorded in seismic data. Moreover, virtual

events can be temporarily allowed to violate Snell’s laws and the

other laws governing the energy partition at an interface. Notice

that the construction of this virtual event requires a time inversion

of one of the two fields that we are combining for this construct. In

other words, the scattering operation, which is generally carried out

as a convolution in most free-surface multiples, must be replaced by

a correlation type in order to take into account this time inversion.

However, the combination of the virtual event with normal seismic

events is carried out with standard convolution operations.

3 A N U M E R I C A L I L L U S T R AT I O N

O F T H E C O N S T RU C T I O N O F V I RT UA L

E V E N T S A N D O F I N T E R N A L

M U LT I P L E S F O R 1 - D M E D I A

For a 1-D medium and when working in the f –k domain, the math-

ematical expressions of our construct of virtual events and internal

multiples can be described as follows. Let DA(k, ω) be the f –k ver-

sion of a CMP gather da(x , t). We partition our data into d 0(x , t)
and d ′

0(x , t). We will later discuss the reason for this partition and

how it can be performed. The field of virtual events, which we will

denote DV (k, ω) in the f –k domain, can be obtained as follows:

DV (k, ω) = D∗
0 (k, ω)DA(k, ω). (1)

The asterisk denotes the complex conjugate.

Fig. 3 shows the data used to illustrate our construct of inter-

nal multiples. We have divided these data into two parts: d 0(x , t)
and d ′

0(x , t). The data d 0(x , t) consist of three primaries. The cor-

responding field of virtual events is shown in Fig. 4, that is, the

inverse Fourier transform of DV (k, ω) with respect to t and x. We

will denote this field by dV (x , t). The field dV (x , t) contains two
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Figure 4. An illustration of the construction of virtual seismic data as a multidimensional correlation of the actual data with d 0(x , t). (a) is the actual data in

Fig. 3(a), (b) is d 0(x , t) and (c) is the field of virtual seismic events.

Figure 5. An illustration of the construction of internal multiples as a multidimensional convolution of the field of virtual events (without the apparent

direct-wave arrivals) with the data d ′
0(x , t). (a) is d ′

0(x , t), (b) is d ′
v(x , t) and (c) is the field of predicted internal multiples dI (x , t). The nomenclature of the

events in (b) and (c) is given in Fig. 6. Notice also that the field of predicted internal multiples is displayed for a time window between 0.5 s and 1.5 s, whereas

the data d ′
0(x , t) and the field of virtual events d ′

v(x , t) are displayed for the time window between 0.0 s and 1.0 s.

types of events: the autocorrelation of each of the three primaries

and the crosscorrelations between the primaries. In the x–t domain,

the events corresponding to autocorrelation are all grouped into the

apparent direct wave in Fig. 4(c), which can easily be eliminated. The

events corresponding to the crosscorrelation between the primaries

constitute the virtual events that we are interested in generating. So

Fig. 5(b) represents the desired field of virtual events, which we will

denote as d ′
V (x , t). Notice that we have retained only the positive
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A construct of internal multiples 387

time in our computation of d ′
V (x , t) to avoid creating non-virtual

events.

Let us now consider another part of the data located below d 0

(x , t), which we have denoted d ′
0(x , t). If D ′

0(k, ω) and D ′
V (k, ω)

are the f –k versions of d ′
0(x , t) and d ′

V (x , t), respectively, we can

obtain the field of internal multiples as follows:

DI (k, ω) = D ′
0(k, ω)D ′

V (k, ω). (2)

Fig. 5(c) shows that we have effectively predicted all internal multi-
ples whose first or last bounces are below the second primaries. Note

that in eq. (1) as well as in eq. (2), the computation of virtual events

and internal multiples can be carried on one temporal frequency, say

ω1, at a time. The computations of these events for ω1 are totally

independent of the other frequencies. Thus they can be carried out

in parallel over various frequencies. It is nice to see that our com-

Figure 6. (a) Scattering diagrams of virtual events in Fig. 5(b). (b) Scattering diagrams of internal multiples in Fig. 5(c).

Figure 7. (a) One shot gather of 2-D synthetic data consisting of three primaries. We have divided these data into two parts: d ′
0 and d0. (b) is d0 and (c) d ′

0.

putation of virtual events and internal multiples preserves this key

computational features of free-surface demultiple algorithms.

The results in Figs 3–5 are also captured in Fig. 6 by using the

scattering diagrams. So the reason why we decided to divide the

data in d 0(x , t) and d ′
0(x , t) is now easy to understand. We need

to partition our data to avoid generating primaries; for instance,

if we use d 0(x , t) instead of d ′
0(x , t) in the computation of inter-

nal multiples in eq. (2), by drawing a diagram similar to the one

in Fig. 6(b), we can see that we will end up reconstructing primaries

in addition to constructing internal multiples. This division need not

be a very careful operation; we simply have to avoid generating pri-

maries. Moreover, there are very few internal-multiple-generating

reflectors (e.g. seafloor, top of salt and top of basalt). Therefore, this

partition may be required only once or twice per data set in order

to remove all significant internal multiples. We will further discuss
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388 L. T. Ikelle

Figure 8. An illustration of the construction of virtual seismic data as a multidimensional correlation of the d0 with d ′
0. (a) is the data in Fig. 7(b), (b) is the

data in Fig. 7(c) and (c) is the field of virtual seismic events.

Figure 9. An illustration of the construction of internal multiples as a multidimensional convolution of the field of virtual events with the data d ′
0 in Fig. 7(c).

(a) is the data in Fig. 7(c), (b) is the field of virtual events, and (c) is the field of predicted internal multiples. The nomenclature of the events in (b) and (c) is

given in Fig. 10. Notice also that the field of predicted internal multiples is displayed for a time window between 1.0 s and 3.2 s, whereas the data d0 and the

field of virtual events dV are displayed for the time window between 0.0 s and 2.2 s.

the issues related to the division of the data in the next two sections

of this paper.

The particular strategy in how the data must be partitioned for

the construction of virtual events and internal multiples will de-

pend on processing objectives like imaging of multiples, imag-

ing of virtual events or attenuation of internal multiples. We can-

not describe a specific strategy for each of these potential pro-

cessing objectives in a single paper. We will limit ourselves in

the remainder of this paper to answering the following four ques-

tions that may help in developing strategies for specific processing

objectives:

(i) Is the construct of virtual events and internal multiples that

we have just described valid for multidimensional media?

(ii) Can we avoid generating the apparent direct wave in Fig. 4?

(iii) How can we generate all internal multiples associated with

a particular data set?

(iv) How can we avoid generating very short-period internal mul-

tiples, which may sometimes be part of our primaries at the seismic

scale?

In the next section we will focus on the first two questions. The

following section will address questions (iii) and (iv). It will also
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A construct of internal multiples 389

Figure 10. (a) Scattering diagrams of virtual events in Fig. 9(b). (b) Scattering diagrams of internal multiples in Fig. 9(c).

Figure 11. An illustration of the gap between d0 and d ′
0, which allows us

to control the smallest period of internal multiples that we can generate.

discuss some minor computational issues related to the segmentation

of the data.

4 A N U M E R I C A L I L L U S T R AT I O N

O F T H E C O N S T RU C T I O N O F V I RT UA L

E V E N T S A N D O F I N T E R N A L

M U LT I P L E S F O R 2 - D M E D I A

For a 2-D medium and when working in the ω − x domain, the

mathematical expressions of our construct of virtual events and in-

ternal multiples can be described as follows. Let dA(xs, ω, xr) be

the seismic data in which xs and xr represent the shot points and

Figure 12. An illustration of how we can progressively move the bottom

internal-multiple generator (BIMG) to generate and attenuate several classes

of internal multiples. This process is carried out iteratively. In the first itera-

tion, we predict and attenuate all the internal multiples, which have at least

one bounce above the BIMG1 and at least one below the BIMG1. Using the

output of this iteration as our new data, we then move the BIMG deeper to

a new position: the BIMG2. We partition our new data in d02 and d ′
02, as

depicted in Fig. 12. Notice that d02 does not include data above the BIMG1.

Then we predict and attenuate all the internal multiples, which have at least

one bounce located between the BIMG1 and the BIMG2, one bounce below

the BIMG2 and so on.

receiver points, respectively. We partition our data into d 0(xs, ω, xr)

and d ′
0(xs, ω, xr). The field of virtual events, which we will denote

dV (xs, ω, xr) in the ω − x domain, can be obtained as follows:

dV (xs, ω, xr ) =
∫

d∗
0 (xs, ω, x) dA(x, ω, xr ) dx . (3)
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390 L. T. Ikelle

Again, the asterisk denotes the complex conjugate. If we want to

avoid generating the apparent direct wave depicted in Fig. 4(c), we

can alternatively compute the field of virtual events as follows:

dV (xs, ω, xr ) =
∫

d∗
0 (xs, ω, x) d ′

0(x, ω, xr ) dx . (4)

In other words, we have replaced dA(xs, ω, xr) in eq. (3) with

d ′
0(xs, ω, xr). By doing so, we eliminate all the autocorrelations of

primaries, and we are left only with the crosscorrelations between

the primaries that constitute the virtual events that we are interested

in generating.

The field of virtual events produced by eq. (3) is obviously differ-

ent from the one produced by eq. (4). However, as we will discuss

in the next section, either formula can be used recursively to pro-

duce all desired virtual events and subsequently all desired internal

multiples. The attractiveness of the formula in eq. (4) over the one

in eq. (3) is that it does not generate an apparent direct wave.

Because we illustrated the formula in eq. (3) in its 1-D form

in the previous section, let us use our 2-D example to illustrate

the formula in eq. (4). Fig. 7 shows one of the shot gathers of the

data used to illustrate our construct of internal multiples. We have

divided these data into two parts: d 0(xs, t , xr) and d ′
0(xs, t , xr).

The corresponding field of virtual events is shown in Fig. 8. Notice

that, contrary to Fig. 4, the field dV (xs, t , xr) in Fig. 8 does not

contain an apparent direct wave. Notice also the strange look of

some virtual events in Fig. 8, especially the diffraction events, which

seem to have been totally time inverted. One way of explaining this

strange look is to approach the operation in eq. (4) as a kind of a

migration operation without stack in which the migration operator

is computed with an incorrect velocity model. Let d 0(xs, ω, x) be the

migration operator and d ′
0(x , ω, xr) be the data in this hypothetical

migration. The velocity model associated with the data d 0(xs, ω,

x) is obviously different from the one associated with the data d ′
0

(x , ω, xr). Therefore, the crosscorrelation operation in eq. (4), which

performs the migration operation in this case, has overcorrected the

data, hence producing the strange-looking image in Fig. 8.

Let us now turn to the construction of internal multiples. We can

obtain the field of internal multiples as follows:

dI (xs, ω, xr ) =
∫

d ′
0(xs, ω, x) dV (x, ω, xr ) dx . (5)

Fig. 9 shows that after convolution (5), we recover the normal shape

of data. As expected, we have effectively predicted all four internal

multiples in this case. The scattering diagrams in Fig. 10 describe

these four multiples.

5 D I S C U S S I O N

5.1 Controlling the shortest period of internal multiples

to be predicted

Well logs and core samples have shown that there are heterogeneities

in the subsurface at almost all scales. Therefore, the period of inter-

nal multiples can be quite small. Actually a number of primaries in

the seismic data are generally just averages of short-period internal

multiples. So it is important to develop ways of selecting the range

of periods of internal multiples that one may wish to generate. In

particular, we would like to make sure that we are generating internal

multiples that are part of primary events at the seismic scale. One

way of selecting the shortest periods of internal multiples that we

can generate using the algorithm in eqs (4) and (5) is to introduce a

gap between d 0(xs, ω, x) and d ′
0(x , ω, xr), as described in Fig. 11. As

illustrated in this figure, the length of such a gap defines the shortest

period of internal multiples that we can generate.

5.2 Attenuation of internal multiples

As we have seen in Figs 6 and 10, by segmenting the data we cannot

predict all the possible internal multiples in a given data set by us-

ing eqs (4) and (5). However, we sometimes need to construct more

than the multiples in Figs 6 and 10, especially when the processing

objective is to attenuate internal multiples. An iterative approach

along the lines of the one described in Fig. 12 can be used to gen-

erate and attenuate all significant internal multiples. The basic idea

is to continuously move the boundary between d 0(xs, ω, x) and

d ′
0(x , ω, xr) at each iteration. We will call this boundary the bottom

internal-multiple generator (BIMG).

Let us expand further on the particular scheme described in

Figs 12 and 13. At the first iteration, we predict and attenuate all

the internal multiples which have at least one bounce above the first

BIMG (which we denote BIMG1) and at least one below the BIMG1;

in Fig. 12 the data above the BIMG1 are denoted d 01(xs, ω, x),

and the data below the BIMG1 are denoted d ′
01(x , ω, xr). The out-

put of this iteration is used as the data for the next iteration. In the

second iteration, we move the BIMG deeper, to a new position, say,

the BIMG2, and define new fields d 02(xs, ω, x) and d ′
02(x , ω, xr),

as depicted in Fig. 12. Notice that d 02(xs, ω, x) does not include

data above the BIMG1. Then we predict and attenuate all the inter-

nal multiples, which have at least one bounce between the BIMG1

and the BMG2, one bounce below the BIMG2 and so on. The scat-

tering diagrams in Fig. 13 illustrate the first two iterations of this

process. This figure is based on eqs (4) and (5). Similar diagrams

can be produced by using eqs (3) and (5). In practice, there are very

few internal-multiple-generating reflectors; the classic ones are the

seafloor, the top and bottom of salt and the top and bottom of basalt.

Therefore, only two or three iterations may be required per data set

in order to attenuate all significant internal multiples (see also Ikelle

2003, 2004).

As illustrated in various examples in this paper, the kinematic of

predicted multiples is an obvious correction. To ensure an effective

removal of predicted internal multiples from the data, it is important

to make the amplitude of virtual events consistent with those of the

data by replacing, for example, in eq. (3), d∗
0 with d−1

0 . The field d−1
0

is defined as follows:∫ ∞

−∞
dx ′ d−1

0 (xs, ω, x ′) d0(x ′, ω, xr ) = δ(xs − xr ). (6)

The numerical aspects of the computations of d−1
0 are discussed

in Ikelle (2005). For example, we described in that paper a way

of computing d−1
0 through a process of migration and demigration

without the need to inverse any matrix.

5.3 Separation of seismic data at the BIMG location

Notice that the separation of seismic data at the BIMG location does

not require any special smoothing technique, as we are going to end

up convolving the truncated data with the field of virtual events. This

convolution allows us to smooth any rough edges that the separation

of data at the BIMG location might have created.

For long-offset data, some events may have their trajectories

crossing the BIMG. In other words, one portion of an event may

be located above the BIMG, and the other portion of the same event

may be located below the BIMG. This separation is not a problem;
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A construct of internal multiples 391

Figure 13. An illustration with scattering diagrams of the first two iterations of the iterative process described in Fig. 12. The first iteration predicts and

attenuates all the internal multiples, which have at least one bounce above the BIMG1 and at least one below the BIMG1. The output of this iteration is used as

the data for the second iteration. So in the second iteration, we predict and attenuate all the internal multiples, which have at least one bounce located between

the BIMG1 and the BIMG2, one bounce below the BIMG2 and so on.
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Figure 14. An example of construction of OBS internal multiples as a

combination of virtual events with OBS data. Notice that this combination

is independent of OBS receivers, therefore, the OBS internal multiple of each

component of OBS data is constructed separately. Moreover, this construct

is not affected by any potential poor coupling of geophones that may occur

during OBS acquisition.

the portion of the event located above the BIMG will be used to pre-

dict internal multiples in one iteration, and the second portion of the

event located below the BIMG will be used in the next iteration to

predict the second set of internal multiples associated with the event

located below the BIMG. In other words, the fact that some complex

Figure 15. (a) A construction of internal multiples based on the downgoing continuation operation (adapted from Jakubowicz 1998). (b) A construction of

internal multiples as a combination of two primaries minus a third primary (adapted from Landa et al. 1999). (c) One way of constructing internal multiples

with virtual events that can be related to the construct in (a) and (b). Note that the downgoing continuation operations in (c) are performed by the primaries

sandwiched between the two virtual events.

events may not fall completely above the BIMG or completely below

the BIMG is another reason why the iterative process described in

Figs 12 and 13 is necessary. Watts and Ikelle (2005) show examples

of this point for complex models containing salt bodies.

In this paper, we have made our separation directly using the

modelling to focus the discussion entirely on the construction of

virtual events and of internal multiples.

5.4 Internal multiples in OBS

The concept of virtual events introduced here can also be used to

construct OBS internal multiples. As illustrated in Fig. 14, OBS

internal multiples can be constructed as a multidimensional con-

volution of the virtual events with OBS data. Note that just as in

the case of the construction of the OBS free-surface multiples (see

Ikelle 1999a,b), in which we combine towed-streamer data and OBS

data to construct multiples. We also need to combine virtual events

constructed from towed-streamer data with OBS data in order to con-

struct internal multiples. Note also that just as in the case of OBS

free-surface multiples, the OBS internal multiple of each compo-

nent of OBS data is constructed separately because the scattering

integral is carried out OBS shot points instead of receiver points.

Moreover, this construct is not affected by any potential poor cou-

pling of geophones that may occur during OBS acquisition.
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5.5 Linking the concept of virtual events to other

constructs of internal multiples

During the review process for this paper, an internal-multiple con-

structs presented at a conference (Jakubowicz 1998) and another

published by Landa et al. (1999) were drawn to our attention.

Figs 15(a) and (b) show the diagram of Jakubowicz and Landa

et al., respectively. Fig. 15(a) is based on the downgoing contin-

uation proposed by Berkhout & Verschuur (1997), with the differ-

ence that Jakubowicz’s diagram does not require the velocity model.

Fig. 15(b) can be described as a combination of two primaries mi-

nus a third primary. Fig. 15(c) shows how these diagrams can be

constructed from virtual events.

6 C O N C L U S I O N S

We have described a construct of virtual events and internal multi-

ples that is based on the classical computational operations encoun-

tered in the construction of free-surface multiples. Our construct

uses only surface data and does not require any knowledge of the

subsurface.
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