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Local Discouragement and Global Collapse: 
A Theory of Coordination Avalanches 

By THOMAS D. JEITSCHKO AND CURTIS R. TAYLOR* 

We study a dynamic game in which all players initially possess the same information 
and coordinate on a high level of activity. Eventually, players with a long string of 
bad experiences become inactive. This prospect can cause a coordination avalanche 
in which all activity in the population stops. Coordination avalanches are part of 
Pareto-efficient equilibria; they can occur at any point in the game; their occur- 
rence does not depend on the true state of nature; and allowing players to exchange 
information may merely hasten their onset. We present applications to search 
markets, organizational meltdown, and inefficient computer upgrades. (JEL D83) 

"We have nothing to fear, but fear itself." 
Franklin D. Roosevelt, 
1st Inaugural Address, 

Washington, DC, March 1933. 
Economic activity often requires a significant 

degree of coordination among agents. In some 
settings, such as labor and product markets, 
prices aggregate the information held by indi- 
viduals and automatically coordinate supply 
and demand behavior.1 There are, however, 
many settings in which coordination is impor- 
tant, but the information held by individuals is 
not aggregated. In these settings, coordination 
among agents is only implicit, supported by 
nothing more than the belief by each individual 
that others will act appropriately. For instance, 
in the absence of deposit insurance, the only 
thing that keeps an individual from running on 
his bank is the belief that other depositors will 
refrain from running on it. Similarly, an impor- 

tant reason that an individual purchases a fash- 
ion good is the belief that others will also find it 
fashionable. 

Such faith-based coordination is, however, 
fragile. Specifically, even in states of nature 
under which coordinating on a certain action is 
optimal, some individuals may privately receive 
erroneous negative information that discourages 
them from acting appropriately. Moreover, this 
local discouragement can spill over and gener- 
ate a global collapse of coordination. Indeed, 
merely the fear that some individuals have be- 
come discouraged can trigger a coordination 
avalanche in which all agents simultaneously 
abandon a possibly optimal course of action. 
That is, global collapse may arise from nothing 
more than "fear itself." 

In this paper, we present a model where this 
type of coordination failure may occur in a 
Pareto-efficient equilibrium. Specifically, we 
study a stochastic dynamic version of a Stag- 
Hunt game with many players.2 In each period 
of the game, each player must decide between 
taking a risky action (investing) or a safe action 
(not investing). A player who does not invest 
receives a contemporaneous payoff of zero. If a 
player decides to invest, then he experiences a 
success with probability p and a failure with 
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econ.tamu.edu); Taylor: Department of Economics, Duke 
University, P. 0. Box 90097, Durham, NC 27708 (e-mail: 
crtaylor@econ.duke.edu). We thank Parikshit Ghosh, 
Farshid Vahid, Juuso Valimaki, and especially Steffen Huck 
for helpful comments. Jeitschko' s research was supported in 
part by the Bush Program in the Economics of Public Policy 
and Taylor's in part by the Alfred P. Sloan Foundation 
and the National Science Foundation (Grant No. SBR- 
9810858). 

1 The processes by which prices aggregate information 
are only beginning to be studied. For pioneering work in this 
area, see Wolfgang Pesendorfer and Jeroen M. Swinkles 
(2000). 

2 The Stag-Hunt game exhibits the type of strategic 
complementarities necessary to yield multiple Pareto- 
rankable equilibria. On this point, see Russell Cooper and 
Andrew John (1988). 
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probability 1 - p. These outcomes are inde- 
pendent across players and over time. 

There are three key ingredients in our model. 
First, players are initially uncertain about the 
actual value of p. In particular, there are states 
of nature (high values of p) in which it is 
optimal to invest and other states (low values of 
p) in which investment is not optimal. Players 
possess a common prior under which the ex- 
pected value of p is high enough to warrant 
initial investment. 

The second crucial ingredient is the presence 
of a network externality or complementarity in 
actions. Specifically, while a failed investment 
always yields a negative payoff, the return to a 
successful investment depends positively on the 
number of other players also investing. Hence, 
the expected return to investing depends both on 
the state of nature and on the degree of coordi- 
nation among players. 

The final important component of the model 
is that information is not aggregated. In partic- 
ular, agents observe only their own investment 
outcomes which they use to update their per- 
sonal beliefs about p. 

To see how these three ingredients can lead to 
a global collapse of coordination, suppose that it 
is individually rational for all agents to invest 
for the first T periods of the game, and consider 
the set of agents who have experienced no suc- 
cesses by this date. For T sufficiently large, 
these unsuccessful agents will become discour- 
aged, i.e., they will believe that p is small and 
will rationally decide to stop investing. More- 
over, the fact that these agents stop investing 
after date T lowers the expected return to invest- 
ing for everyone else in the population because 
of the network externality. Indeed, the fact that 
agents with zero successes stop investing after 
date T can induce agents with one success to 
stop; the fact that agents with zero and one 
success stop investing can induce agents with 
two successes to stop; and so on. In the end, 
even the most optimistic agents who have ex- 
perienced T successes and no failures can be 
induced to stop investing by the fact that all of 
the less fortunate agents stop. In other words, a 
coordination avalanche can generate complete 
coordination failure at date T + 1 even when p 
is actually very high and investing is optimal. 

Although our model is stylized, its three crit- 
ical features- uncertainty, complementarities 

in actions, and dispersed information-occur 
widely in economic and social contexts. Above 
we mentioned bank runs and purchase of fash- 
ion goods as settings in which the logic of our 
model has bite. Other potential applications in- 
clude: initial public offers of stock, monetary 
crises, and industrial investment under imper- 
fect competition, among others. Indeed, below 
we show how our model can be extended to 
explain the collapse of a search market, the 
sudden departure of several key members of an 
organization, and the mass adoption of a com- 
puter software upgrade. Each of these phenom- 
ena can be viewed as a coordination avalanche 
which occurs independently of the true state of 
nature and may, therefore, actually be quite 
inefficient. 

Although coordination breaks down in our 
model because information is not aggregated, it 
should be emphasized that we are not studying 
a setting of social learning or herding.3 In other 
words, our notion of a coordination avalanche 
has little to do with the theory of informational 
cascades developed by Bikhchandani et al. 
(1992). An informational cascade occurs in a 
setting where agents initially possess differen- 
tial information regarding the wisdom of taking 
a certain action. Agents move sequentially and 
observe the actions taken by all players ahead of 
them. At some point in the game, each remain- 
ing player may rationally decide to ignore his 
private information and take the same action as 
the player ahead of him in the queue; i.e., a 
cascade may occur. Moreover, because infor- 
mation is not being aggregated, it is possible 
that agents in a cascade will all take the wrong 
action. 

In our model, by contrast, agents initially 
possess identical information. They do not ob- 
serve the actions of other players, but update 
their beliefs based upon their personal experi- 
ences. At some point, a group of agents may 
become discouraged, and this possibility can 
generate a chain reaction throughout the popu- 
lation which leads all agents simultaneously to 
abandon a particular course of action. 

A key feature of an informational cascade is 
its lack of depth. In other words, a cascade is 

3 The herding literature began with Abhijit V. Banerjee 
(1992) and Sushil Bikhchandani et al. (1992). 
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easily stopped or reversed in the face of new 
information or expert players. Our notion of a 
coordination avalanche, on the other hand, in- 
volves wide-scale coordination failure which 
may be very difficult to stop or reverse. Hence, 
informational cascades are a good explanation 
for transitory spells of social conformity, while 
coordination avalanches are probably better at 
explaining more catastrophic and permanent 
changes. 

A paper that complements ours is Andrew 
Caplin and John Leahy (1994). Caplin and 
Leahy study a three-stage model of market dy- 
namics. In the first stage (Business as Usual), 
market participants obtain private information 
regarding a parameter of common interest. Act- 
ing on the basis of this information is, however, 
costly, which leads to a spell of inertia. In the 
second stage (Market Crashes), some agents 
eventually become privately convinced that ac- 
tion is required. Their actions are observed and, 
hence, release information to other market par- 
ticipants which can lead them to suddenly fol- 
low suit. In the third stage (Wisdom After the 
Fact), agents lament the fact that the informa- 
tion released by the crash was known in the 
aggregate very early in the game (after the first 
period). 

We are-not surprisingly-sympathetic to 
this story. We, however, do not believe that 
crashes are always precipitated by the observ- 
able actions of a set of agents. While herd-like 
stampedes of this kind are undoubtedly impor- 
tant, we believe that crashes are sometimes trig- 
gered by nothing more than the fear that some 
agents have become discouraged. Thus, while a 
crash occurs in Caplin and Leahy's model only 
if investment is inefficient, a coordination ava- 
lanche occurs in our setting whether or not it is 
economically justified. In fact, most crashes are 
probably precipitated by some combination of 
herding and fear. Caplin and Leahy (1994) iden- 
tify the herd aspect of crashes, and in this paper 
we attempt to model the fear component. 

Our paper is also related to a branch of the 
game-theoretic literature on common beliefs 
and almost common knowledge pioneered by 
Dov Monderer and Dov Samet (1989) and Ariel 
Rubinstein (1989). In particular, Hans Carlsson 
and Eric van Damme (1993) also study a model 
in which agents are uncertain about the payoffs 
in the game they are playing.5 These authors 
show that asymmetric or differential informa- 
tion and introspection will lead players to select 
the risk-dominant equilibrium over the Pareto- 
efficient one in a class of 2 X 2 coordination 
games. There are, however, several important 
differences between their analysis and ours. 
First, Carlsson and van Damme study a one- 
shot game in which players initially possess 
differential information which leads them to 
play secure strategies. By contrast, we study a 
dynamic game in which agents are initially 
identically informed and are presumed to play 
cooperative strategies in early periods. Also, 
whereas Carlsson and van Damme study a class 
of two-player games, we analyze "population 
games" in which the expected payoff from 
choosing the risky action depends positively on 
the fraction of other players also choosing it. 
Lastly, Carlsson and van Damme present an 
elegant contribution to the theory of equilibrium 
selection, while our orientation in this paper is 
more applied. 

Finally, our analysis shares some common 
features with two papers in the macroeconomic 
theory of regime changes, namely Peter Howitt 
and R. Preston McAfee (1992) and Christophe 
Chamley (1999). Both of these papers also fea- 
ture models built on Stag-Hunt games with mul- 
tiple Pareto-rankable equilibria. In both Howitt 
and McAfee (1992) and Chamley (1999), the 
economy oscillates randomly between a high 
and a low equilibrium. In Howitt and McAfee 
(1992), agents learn to play sunspot equilibria 
because of spurious correlation between sun 
spots and economic fundamentals. This spuri- 
ous correlation is similar to the feature in our 
model that even in good states of nature, there 
are always agents who will ultimately become 
discouraged. In Chamley (1999), transitions be- 
tween the equilibria are triggered by an under- 

4In Ho Lee (1998) studies a financial market model in 
which the price of an asset may rise in a cascade until an 
expert arrives and sells it short. The price of the asset then 
drops precipitously in what Lee terms as an "informational 
avalanche," a concept that is clearly very different from 
ours. Amil Dasgupta (1999) investigates a hybrid model 
where herding occurs in coordination games. 

SSee also Hyun Song Shin and Timothy Williamson 
(1996) and Stephen Morris and Shin (2001). 
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lying random process that governs agent 
heterogeneity. 

In the following we investigate the causes 
and timing of avalanches. Specifically, we show 
that coordination avalanches will occur when 
network externalities are sufficiently strong or 
information differences between agents are suf- 
ficiently weak. We also show that an avalanche 
can happen at any point in the game. In Section 
IV we consider a setting in which agents acquire 
additional information by "talking with their 
friends," and demonstrate that such information 
exchange can cause a coordination avalanche to 
occur sooner than it otherwise would have. We 
present two extensive applications of the theory 
in Section V. First, organizational meltdowns in 
which the most talented members of a produc- 
tive group all simultaneously leave the organi- 
zation for alternative employment. Second, we 
present a simple model of mass adoption of a 
computer upgrade. Some brief concluding re- 
marks appear in Section VI. The proofs of all 
results either appear in Appendix A or have 
been omitted in the interest of space (and are 
available from the authors). In Appendix B we 
generalize the model somewhat and show that if 
a coordination avalanche occurs, then no agent 
ever experiments in equilibrium. 

I. The Model 

There is a continuum of ex ante identical 
agents with mass normalized to one. Each agent 
is a risk-neutral expected-utility maximizer who 
lives forever but (for analytic convenience) is 
assumed to possess a discount factor of 8 = 0. 

In each period, t = 1, 2, ..., each agent 
chooses an action from the set {YES, NO 1. If 
an agent selects NO, then he receives a contem- 
poraneous payoff of zero. If he selects YES, 
then his payoff depends on what other players in 
the population choose and on a move by nature. 
Specifically, if an agent plays YES, then he 
experiences a success with probability p and a 
failure with probability 1 - p. An agent who 
experiences a success in period t receives a 
payoff of u(m) - c and an agent who experi- 
ences a failure receives - c, where mt is the 
mass of agents in the population who play YES 
in period t, u() is a strictly increasing function 
normalized so that u(O) = 0 and u(1) = 1, and 
c E (0, 1) is a constant. Hence, playing YES 

involves an "investment" of c and an uncertain 
return. The fact that u() is increasing captures 
the network externality or complementarity that 
is an essential part of our story. 

Another key element of the model is that 
agents are initially uncertain regarding the true 
value of p. In particular, they initially possess 
common prior beliefs over the value of p rep- 
resented by the probability distribution FQ) 
which may have a density denoted by fO-). The 
expectation operator with respect to the prior is 
denoted by Et * ]. Agents (in the basic model) 
observe only their own histories of successes 
and failures which they use to update their be- 
liefs on p at the end of each period.6 Finally, all 
aspects of the environment are assumed to be 
common knowledge. 

To begin the analysis, consider a one-shot 
version of the game. Denote the expected value 
of p under the initial beliefs, F(), by - = E[p]. 

LEMMA 1 (ONE-SHOT EQUILIBRIUM): If 
p > c, then there are three Bayesian-Nash 
equilibrium outcomes to the one-shot game. 

1. A locally stable outcome in which all agents 
play YES and receive expected payoffs of 
u(l)pj - c = p - c; 

2. An unstable outcome in which a proportion 
m = u 1(clp) of the agents play YES and 
all agents receive expected payoffs of zero; 

3. A locally stable outcome in which none of 
the agents play YES and all agents receive 
payoffs of zero. 

If p = c, then there are two equilibrium out- 
comes corresponding to 2 and 3 above. And 
finally, if p < c, the unique (globally stable) 
equilibrium corresponds to 3. 

When pj > c, equilibrium outcome 1 obvi- 
ously Pareto-dominates the others. Indeed, as 
the lemma makes clear, 

- 
> c is necessary and 

sufficient for the existence of multiple equilibria 
that are Pareto rankable. As this is fundamental 
to our analysis, we assume p > c below. Also, 
in games of longer duration, we assume that 
agents coordinate on a Pareto-efficient perfect 

6 A variant of the model in which agents share informa- 
tion is considered in Section IV. 



212 THE AMERICAN ECONOMIC REVIEW MARCH 2001 

Bayesian equilibrium (PBE). This means that 
all agents play YES in the first period and 
continue playing YES so long as it is a mutual 
best response to do so. Finally, because we wish 
to analyze coordination avalanches that start 
when some agents ultimately become discour- 
aged and quit playing YES, it is necessary to 
assume that F(c - s) > 0, for some s > 0. In 
other words, the prior must place nonzero 
weight on values of p for which investment is 
never efficient; i.e., agents must initially believe 
that such states are possible. 

II. Coordination Avalanches 

The expected return to an agent from playing 
YES at any point in the game depends on two 
things, namely, on the true value of p and on the 
mass of agents in the population playing YES at 
that point. As noted in the previous section, the 
mass of agents who play YES in the first period 
is ml = 1. 

Consider an agent who experiences a failure 
in the first period. This agent will update his 
beliefs on p and be somewhat less optimistic 
about playing YES in the second period. Indeed, 
after a sufficiently long string of failures with- 
out a success, this agent will be so pessimistic 
about the value of p that he will stop playing 
YES (i.e., he will have a dominant strategy to 
play NO), and once he stops playing YES, he 
will never start again because an agent who 
plays NO receives no new information. 

This is formalized in the following lemma. 

LEMMA 2 (THE STOPPING DATE): Define 
T to be the smallest integer such that 

(1) E[(p - c)(l _ p)T] < 0. 

Then 1 ? T < oo, and in an efficient PBE all 
agents play YES through date T, and any agent 
who experiences T failures plays NO following 
that date. 

All agents in the population know that the 
mass of (1 - p)T agents who have never had a 
success will quit investing after date T. How- 
ever, individuals with different experiences 
have different beliefs about how large the mass 

of discouraged agents is likely to be. Specifi- 
cally, individuals who have experienced rela- 
tively few successes over the T periods believe 
that (1- p)T is likely to be big, while individ- 
uals who have experienced relatively few fail- 
ures believe it is likely to be small. Hence, 
calculating an optimal strategy for each possible 
history involves a rather subtle assessment 
about the likely experiences of other agents and 
how they will react to these experiences. 

Let B(kIt, p) be the binomial distribution with 
parameters t and p; i.e., B(kIt, p) is the probability 
of experiencing k or fewer successes in t periods 
when the probability of a success in each period is 
p. Suppose that all agents with k or fewer suc- 
cesses decide to stop playing YES following date 
T. Then, the expected gross return to an agent who 
plays YES at date T + 1 is pu(1 - B(k|I, p)). In 
general, no agent knows the value of this return. 
Instead, each agent has beliefs about its value that 
are derived from his personal experiences. For 
instance, whether an agent with k + 1 successes 
should also quit playing YES depends on the 
expected value of pu(1 - B(k|I, p)) given k + 1 
successes in T trials. If this expected value is less 
than c, then agents with k + 1 successes should 
also quit playing YES, and the question then is 
whether agents with k + 2 successes should quit, 
given their beliefs. 

Keeping track of agents' beliefs requires 
some additional notation. We denote the history 
of an agent who experiences k successes and 
t - k failures by h = gkbt- k. (Note that if an 
agent stops playing YES at some point, then he 
stops acquiring information and his history 
stops evolving.) Define 

rgkbt-k =pu(l - B(k -1 It, p)), k = 0, ..., t, 

where B(-1 t, p) = 0. Then, rgkbt-k is the 
expected gross return to an agent who plays 
YES when the true success rate is p and all 
agents with fewer than k successes play NO. 
Also, define the expected value of rh given 
history h by rh= Ej[rh]i. In other words, rh is 

7 It is straightforward to verify that 

- E[pu(1 -B(k- 1 t, p))pk(1 p)t -k] 
rgkb'-k = E[pk(l - p)t-k] 
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the expected gross return from playing YES to 
an agent with history h when all agents with 
worse histories play NO and all agents with the 
same or better histories play YES. Finally, de- 
fine the expected value of p conditional on 
history h by Ph = Eh[p]. The following exam- 
ple helps to fix this notation and illustrates how 
a coordination avalanche occurs. 

Example I (A Diamond Search Market):8 Con- 
sider a setting in which agents may search for 
a new trading partner in each period t = 1, 
2, .... If an agent searches in period t, then he 
finds a partner with probability pmt, where p 
is interpreted as a macroeconomic friction 
parameter. When two agents meet, they trans- 
act a trade worth 1 to each of them [i.e., 
u(m) = m]. Suppose that the initial (common 
prior) beliefs about p are given by a Beta 
distribution with density f(p) 44(p I a, f3), 
where a = 1 and ,B = 2, and suppose that the 
cost of search in each period is c = 2/7.9 The 
initial beliefs yield 

ax 1 

a+ 3 

So, in the efficient PBE, all agents search in the 
first period. The measure of agents who do not 
find a partner in the first period and receive 
payoffs of -c is B(O|1, p) = 1 - p. The 
posterior belief of these agents is fb(p) = 

4(4p I a, f3 + 1), which yields 

Pb = rb = 4 < C. 

Hence, these individuals have a dominant strat- 
egy to stop searching in the second period. How 
does this affect agents who found a trading 
partner in the first period? The posterior belief 
of these agents is fg(p) = 4(P|pa + 1, 13), 
which yields 

Pg 2> C. 

When deciding on whether to search in the 
second period, however, these agents must ac- 
count for the expected attrition of the discour- 
aged agents. In particular, the probability of 
finding a second-period partner is 

rg= p( -B(0 1, p)) 

=p(l - (1 -p)) =p2. 

Thus, agents who experienced a successful first- 
period search must compute the expectation of 
p2 given their beliefs about p; i.e., they must 
compute 

rg= pf(p) dp = < c. 
0 

Hence, agents who had good experiences in the 
first period are induced to stop searching in the 
second period by the expected attrition of the 
agents who had bad experiences. In the words 
of the following definition, a coordination ava- 
lanche occurs at date T + 1 = 2. 

Definition I (Coordination Avalanche): If in a 
Pareto-efficient PBE of the game, all agents 
play YES through period T and all agents play 
NO from period T + 1 on, then a coordination 
avalanche is said to occur in period T + 1. 

PROPOSMTION 1 (NECESSARY AND SUF- 
FICIENT CONDITIONS): A coordination ava- 
lanche occurs in period T + 1 of the game if 
and only if p/7-1 > c > pb- and rgbkT-k < c for 
k = 1, ... , T. 

To understand the intuition underlying a coor- 
dination avalanche, suppose that rgibT-j <c for 
all j = 0, ... , k, so that agents with k or fewer 
successes quit playing YES in period T + 1. 
Whether agents with k + 1 successes will also 
quit depends on the magnitudes of two oppos- 
ing forces, the informational effect and the mar- 
ginal network externality. To isolate these 
forces, write 

8 See Peter A. Diamond (1982). 
9 Although our theory applies to any distribution for which 

p > c and F(c - E) > 0, Beta distributions are analytically 
very convenient because they are a conjugate family for the 
Bemnoulli distributions. This greatly simplifies Bayesian updat- 
ing (see Monis H. DeGroot, 1970 p. 160). 
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(2) rgk-IbT-k- I - rgkbT -k 

{Egk+IbT-k-l[pu(l 
- B(k - TL-, P))] 

- EgkbT-k[PU(l - B(k - ILT, p))]} + 

+ {Egk+ IbT-k- I [p(u(l - B(k |T, p)) - 

- u(1 - B(k -I1|I, P)))]}. 

By assumption, rgkbT-k < c. Hence, if the dif- 
ference on the left side of (2) is negative, then 
agents with k + 1 successes will join the agents 
with k or fewer successes in playing NO in 
period T + 1. Now, observe that the first term in 
braces on the right side of (2) is positive. This is 
the informational effect: Agents with k + 1 
successes are more optimistic than those with k 
successes. Hence, they believe both that the 
probability of success, p, is likely to be larger 
and that the mass of quitters with k - 1 or 
fewer successes, B(k - IfT, p), is likely to be 
smaller. This effect can stop a coordination av- 
alanche because it indicates that agents with 
k + 1 successes have a greater incentive to play 
YES than agents with k successes. 

On the other hand, the second term in braces 
on the right side of (2) represents the marginal 
network externality which promotes a coordina- 
tion avalanche. In particular, when deciding 
whether to quit playing YES, agents with k 
successes only have to worry about the attrition 
of agents with k - 1 or fewer successes. Agents 
with k + 1 successes, however, must also 
worry about the attrition of the agents with k 
successes. The marginal network externality 
given in (2) is what the agents with k + 1 
successes perceive as the reduction in their ex- 
pected payoff from playing YES due to the 
attrition of the agents with k successes. There is 
no reason a priori to suppose this effect is small. 
To the contrary, Bayesian agents will generally 
believe that there is a relatively large number of 
individuals with experiences similar to their 
own. Hence, while agents with T successes be- 
lieve that the mass of agents with no successes 
is likely to be small, agents with only one suc- 
cess believe that the mass of agents with no 
successes is likely to be large, and the percep- 
tion of agents with only one success is critical in 
starting a coordination avalanche. 

In the introduction, we suggested that a co- 
ordination avalanche can be interpreted as the 
manifestation of "fear itself." In other words, a 
total collapse might occur even when the un- 
derlying fundamentals actually favor invest- 
ment (i.e., even when p > c). In this regard, 
perhaps the most striking aspect of Proposition 
1 is what it does not say. Specifically, the con- 
ditions under which a coordination avalanche 
occurs have nothing to do with the true value of 
p. That is, whether an avalanche ultimately 
occurs depends only on the shape of u(), and 
the prior, F(). In other words, if a coordination 
avalanche occurs in period T + 1, then it does so 
for any realization of p, even p = 1. 

To illustrate, consider once again Example 1 
in which a coordination avalanche occurs at t = 
2. Note that agents who experienced a first- 
period success are not induced to quit searching 
due to the actual number, 1 - p, of discouraged 
agents. No one observes this number. Rather, 
the decision of an agent with a first-period suc- 
cess to quit searching at t = 2 is based solely on 
his updated beliefs. The actual distribution of 
experiences in the population is not observable 
and, therefore, plays no partin an agent's decision- 
making process. Hence, an agent with a first- 
period success will quit searching in the second 
period, even if the actual success rate is p = 1, 
and no one actually experienced a first-period 
failure. 

The point here is not that a coordination 
avalanche is the inevitable consequence of ini- 
tial beliefs. This is simply an artifact of the 
stylized model we have constructed to illustrate 
the phenomenon. The deterministic nature of 
coordination avalanches would undoubtedly be 
altered in a more complicated but less tractable 
model. What we do wish to emphasize is that 
coordination may collapse even in situations 
when the actual experiences of most agents do 
not justify quitting. In other words, it is the fear 
(not necessarily the fact) that some agents have 
become discouraged that generates a total col- 
lapse, and in this sense, coordination avalanches 
can be said to derive from nothing but fear 
itself. 

III. The Causes and Timing of Avalanches 

As noted above, whether the discouragement 
of the most unfortunate agents triggers an ava- 
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lanche depends only on the shape of u() and the 
prior. For instance, if u() is concave, then the 
marginal network externality generated by the 
first group of quitters is small and an avalanche 
is, therefore, unlikely. On the other hand, if uQ) 
is convex, then the first group of quitters im- 
poses a relatively large marginal network exter- 
nality on the rest of the agents in the population 
which can easily trigger an avalanche. This is 
formalized in the following proposition. 

PROPOSITION 2 (LARGE EXTERNALITY): 
If u() is sufficiently convex and F() is continuous 
at p = 1, then a coordination avalanche will 
occur. 

The intuition here is easily grasped. If uQ ) is 
very convex, then successful investment re- 
quires a lot of teamwork (coordination). In this 
case, the discouragement of even a small num- 
ber of agents has dire consequences for all the 
others. Hence, an avalanche will occur at date 
T + 1 unless every agent in the population is 
fairly certain that no one actually has become 
discouraged, i.e., (1- p) = 0 or equivalently 
that p = 1. This, however, requires the prior to 
have a probability atom atp = 1; i.e., FQ) must 
be discontinuous at this point. 

Proposition 2 shows how a large marginal 
network externality gives rise to a coordination 
avalanche for any initial beliefs except those 
that place significant probability on p = 1. The 
following result demonstrates that if the initial 
beliefs are sufficiently concentrated around p = 
c, then the informational effect will be small 
and local discouragement will lead to global 
collapse for any increasing function u(). 

PROPOSMON 3 (SMALL INFORMATIONAL 
EFFECT): Suppose that the prior is given by 

F(p) ~ Fifp < 
c, F (p)- 1-(1-()))fP'c i- -f(p)), if p <: cl 

for 0 < A ' 1, where FK() is any probability dis- 
tribution satisfying 

- > c and Ft(c - E) > 0. 

(i) The stopping date , defined in equation (1) 
does not depend on A. 

(ii) If A is sufficiently small, then a coordina- 
tion avalanche occurs. 

This proposition provides some guidance 
about the type of initial beliefs that lead to a 
coordination avalanche. Specifically, an ava- 
lanche will occur at date T + 1 if the initial 
beliefs are sufficiently concentrated around p = 
c. 10 To understand the intuition, recall that 
when the prior is concentrated, no single suc- 
cess or failure is very informative. (Indeed, in 
the limit, beliefs are degenerate and no updating 
occurs at all.) Thus, a concentrated prior means 
that the difference in beliefs between an agent 
with k and k + 1 successes is minor; i.e., the 
informational effect is small. To see why the 
prior must be concentrated around p = c, note 
that if it were very concentrated around p < c, 
then p would be less than c, and no agent would 
play YES at the outset. On the other hand, if the 
prior were very concentrated around p > c, 
then it would take many periods before any 
agents became discouraged. When T is large, the 
expected mass of agents with k successes and 
T-k failures is small for any k = O, ..., T, 
which gives rise to a modest marginal network 
externality. This small externality may not nec- 
essarily dominate the small informational effect 
for agents who have had only few failures. 
Indeed, given the strong prior with 

- > c, 
agents with only few failures will continue to 
think that investing is worthwhile. Conversely, 
when the prior is concentrated around p = c, 
even if T is large, the marginal network exter- 
nality always outweighs the informational ef- 
fect, since even under the prior investments 
yield only small expected net returns. This leads 
to a total collapse of coordination of T + 1. 

The preceding discussion should not be in- 
terpreted as saying that a necessary condition 
for the occurrence of an avalanche is that T be 
small. This is not true. What is critical is the 
relative magnitudes of the informational effect 
and the marginal network externality. For in- 
stance, Proposition 2 indicates that an avalanche 
will occur very late in the game if F() is con- 
centrated around some point p > c and u() is 
very convex. It is possible, however, for an 
avalanche to occur very late in the game even in 
the important setting where u() is linear. 

10 While it is technically convenient to concentrate the 
prior around p = c by transferring probability mass to this 
point, the result holds more generally as the proof of the 
next proposition illustrates. 
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PROPOSITION 4 (AVALANCHES ANY 
TIME): Suppose u(m) = m. Then, for any T = 

1, 2, ... and for any c E (0, 1), there exists a 
prior, FQ), such that a coordination avalanche 
occurs in period T + 1. 

The intuition for this result is similar to that 
of Proposition 3. Specifically, if an avalanche is 
to occur at a very late date, then the marginal 
network externality associated with the attrition 
of any group will be quite small. This means 
that the informational effect must also be small; 
i.e., the distribution must be fairly concentrated. 

Coordination avalanches that occur after 
many periods are especially dramatic. Agents 
play YES round after round until at some point 
they all simultaneously switch to NO in a rather 
spectacular collapse of cooperation. At this 
point in the game, agents with no successes quit 
investing based on their beliefs about p, and 
agents with k + 1 > 0 successes are pushed 
into quitting by their beliefs about agents with k 
successes much like a row of dominoes toppling 
or a chain reaction, until even the agents with 
only good experiences opt to play NO. This is 
illustrated in the following example. 

Example 2: Suppose u(m) = m, the prior is a 
Beta distribution with a = 4 and ,B = 26, and 
c = 0.1. In accordance with Proposition 4, the 
initial beliefs yield p = 0. 13 3 3, which is close 
to c, and the variance is 0.0038, which is small. 
Moreover, it can easily be verified that a coor- 
dination avalanche occurs in this setting in the 
eleventh period. That is, through the tenth 
round, all agents play YES, and then switch to 
NO forever. At this point all agents who have 
never had a failure (and this is the entire popu- 
lation if p = 1) are more than 99.99 percent 
certain that p > c. 

IV. Information Exchange 

Coordination avalanches occur not because 
all agents decide that the actual success rate, p, 
is too low, but because they are unable to ob- 
serve the population dynamics and fear that 
there may be significant attrition. Stated another 
way, avalanches occur because agents act on the 
basis of their personal experiences rather than 
aggregate information. Note that the true value 
of p is reflected in the experiences of the pop- 

ulation as a whole after the first round of play. 
For example, suppose all agents reported their 
first-period outcomes to an information center 
which then publicized the success rate. In this 
case, information would be efficiently aggre- 
gated, and agents would continue to play YES 
from the second period on if and only if the true 
value of p exceeded c. 

Even without an information center, agents 
may often have access to sources of information 
apart from their own experiences. For instance, 
they might directly observe the outcomes of a 
set of other agents or a group of individuals 
might share their experiences with each other. 
Because a coordination avalanche is generated 
by a failure to aggregate information, it seems 
reasonable that providing agents with additional 
unbiased signals would help deter an avalanche. 
In this section, we show that this is not neces- 
sarily so. Indeed, the situation may actually 
deteriorate when agents receive more informa- 
tion because this can cause an avalanche to 
occur at an earlier date than it otherwise would 
have. 

We model the availability of additional infor- 
mation as follows. Suppose that at the end of 
each period each agent meets with the same 
group of n - 1 ?-1 other agents (his friends). 
Suppose that each individual in a group truth- 
fully reports his experience in each period to his 
friends.11 Hence, so long as an agent continues 
to play YES, he receives n independent obser- 
vations in each period (one from his own project 
outcome and n - 1 from his friends). For ease 
of reference, we refer to this setting as a game 
with communication and the original setting as 
a game without communication. 

PROPOSITION 5 (AVALANCHES WHEN 
AGENTS COMMUNICATE): If a coordina- 
tion avalanche occurs in period T + 1 in the 
game without communication and if Tln is an 
integer, then a coordination avalanche occurs 
in period TIn + 1 in the game with communi- 
cation. 

Although this result is somewhat surprising, the 
intuition behind it is quite straightforward. When 

" Of course, an agent is actually indifferent about what 
he reports to other group members. 
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agents talk with their friends, the acquisition of 
observations speeds up by a factor of n. Specifi- 
cally, if all agents have played YES through pe- 
riod t, then the distribution of observations in the 
population at this point is B(k|nt, p) for k = 0,..., 
nt. In other words, the mass of agents who have 
never observed a success (through personal expe- 
rience or that of a friend) is (1 - p)nt; the mass of 
agents who have observed one success is ntp(l - 

p)nt- 1; and so on. Hence, if a coordination ava- 
lanche occurs in period T + 1 in the game without 
communication, then it occurs in period TIn + 1 in 
the game with communication, provided that TIn 
is an integer. 

As an illustration, recall Example 2 from the 
end of the previous section in which a coordina- 
tion avalanche occurs in period T + 1 = 11 in a 
game without communication. Proposition 5 indi- 
cates that if agents communicate with n - 1 = 1 
friend at the end of each period, then an avalanche 
occurs in period TIn + 1 = 6. If agents commu- 
nicate with n - 1 = 4 friends, then an avalanche 
occurs in period TIn + 1 = 3. And, if agents 
communicate with n - 1 = 9 friends, then an 
avalanche occurs in period TIn + 1 = 2. Thus, 
while it is true that good news spreads more 
quickly in a game with communication, so does 
bad news, and it is the fear that bad news is 
spreading that can trigger an avalanche. 

It is, of course, not true that communication 
always makes things worse. In particular, sup- 
pose that an avalanche occurs in period T + 1 of 
a game without communication, but that TIn is 
not an integer (or sufficiently close to one). 
Then it may be possible in a game with com- 
munication to "jump" over the avalanche. 

To illustrate, recall Example 1 from Section 
II in which an avalanche occurs in the second 
period in a game without communication. After 
the first period there are (1 - p) agents who 
have experienced a failure and p agents who 
have experienced a success, and the expected 
attrition of the unsuccessful set is more than 
enough to induce the successful set also to quit. 
To see how communication can help, suppose 
that at the end of each period, agents share their 
experiences with one friend (so In = 1/2). In 
this case, there are three sets of agents after the 
first period. Specifically, there are (1 _ p)2 
agents who have not observed a success, 
2p(l - p) agents who have observed one suc- 
cess and one failure, and p2 agents who have 

observed two successes. Agents in the first set 
will certainly quit at this point. The expected 
attrition of these agents is, however, not quite 
enough to induce agents in the second set to 
quit. In particular, it is straightforward to verify 
that rgb = 2/7 = c. 12 Thus, in this case, 
communication definitely improves matters be- 
cause it stops a total collapse of coordination 
that would otherwise occur following the first 
round of play. 

The fact that communication can stop an ava- 
lanche is not surprising. As noted above, coordi- 
nation avalanches occur because information is 
not aggregated. In this light, it is somewhat more 
striking that giving agents additional information 
can actually make things worse by hastening the 
onset of a total collapse. 

V. Applications and Extensions 

In the introduction, we suggested that our 
theory is applicable in a wide variety of settings. 
Specifically, a coordination avalanche may oc- 
cur whenever there is a network externality and 
information is not aggregated. In this section we 
outline two applications which are intended to 
highlight the breadth of the theory. 

A. Organizational Meltdown 

It is common in many organizations where 
complementarities are important (e.g., academic 
departments, theater and music groups, and 
sports teams) to observe several of the most 
talented individuals simultaneously abandoning 
the organization for alternative employment. 
Often, the new positions taken by these individ- 
uals are no better than the ones they left. Indeed, 
the primary reason for leaving may not have 
been the attraction of the new position, but the 
fear that other talented team members were 
about to quit and damage the performance of the 
organization. In the end, of course, this is ex- 
actly what happens. Our theory of coordination 
avalanches can easily be modified to explain the 
sudden departure of several key members of an 
organization as we now illustrate. 

12 Note that indifferent agents who have experienced at 
least one failure will not play NO in a Pareto-efficient PBE 
because agents with fewer failures are strictly better off if 
they play YES. 
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Suppose that an organization is initially com- 
posed of n1 > 1 productive agents each of 
whom is one of two possible types, Oi = 1 
(talented) or Oi = 0 (untalented) for i = 1, .... 
n1. An individual's type is private unverifiable 
information. In each period t = 1, 2, ... each 
agent in the organization undertakes a project 
that either succeeds, yielding him a payoff of 
one, or fails, yielding him a payoff of zero (for 
simplicity, the outcome of each project is also 
assumed to be private unverifiable information). 
The probability that agent i's project succeeds 
in period t is y(Oi)pt, where 

y(O) 0 + (1 - 0)r 

for some small 7- > 0 and where 

Pt 
nt 

is the average level of talent in the organization 
at date t. Suppose that at the beginning of each 
period each agent in the organization has the 
option of quitting and receiving an expected 
payoff flow of Oic, where c E (0, 1). Let F() 
denote the common prior over P1 and suppose 
that - > c and F(c - 8) > 0. 

First, observe that the expected date-t payoff 
to an untalented agent from staying in the orga- 
nization is TIEh[PtI0 = 0] while his payoff 
from quitting is zero. Hence, an untalented 
agent will leave the organization only if he is 
certain that there are no talented members left. 

What about talented members? The expected 
payoff to a talented agent in the first period if all 
other talented agents stay in the organization is 
P 1 and his opportunity cost is c. Hence, in an 
efficient PBE, all agents remain in the organi- 
zation for the first period, and P2 = Pi1. Indeed, 
by analogy with Lemma 2, Pt = P1 for all t ' 
T, where T is the smallest integer satisfying 

E[(p, - c)(I - p )TI0 = 1] < 0. 

Following period T, however, a talented agent 
who has experienced no successes will believe 
that the average level of talent in the organiza- 
tion is so low that he should quit. This, of 

course, can trigger a coordination avalanche in 
which all talented individuals "jump ship" in 
period T + 1. Note also that such an avalanche 
may be based on fear rather than fact. Specifi- 
cally, the organization may actually contain a 
very high fraction of talented agents none of 
whom was actually discouraged, but each of 
whom was worried about the possible discour- 
agement of his colleagues. Indeed, it is possible 
that all individuals in a small organization 
might actually be talented, in which case a 
coordination avalanche results in the complete 
dissolution of the group. 

B. Avalanches in Computer Upgrades 

Another area in which network externalities 
are important is the purchase and use of com- 
puter hardware and software. Indeed, a major 
reason computer users upgrade their computers 
is to stay compatible with friends and co- 
workers who are also upgrading. In fact, the fear 
that a significant number of other computer 
users have switched (or are about to switch) to 
a new standard can actually induce a sudden 
wide-scale shift to the new program even when 
switching is not efficient. We illustrate this pos- 
sibility with a simple modification of our model. 

Suppose that there is a continuum of com- 
puter users with total mass of one. There are 
two types of individuals in this population, type 
L computer users for whom 0 = 0L ' 0 and 
type H computer users for whom 0 =OH > OL 

The proportion of type L individuals in the 
population is denoted by p. There is initial 
uncertainty regarding the actual value of p rep- 
resented by the common prior F(). 

The benefits to an individual from using a 
software program derive from two sources. Spe- 
cifically, in each period t = 1, 2, ... each agent 
i receives a stand-alone benefit from using pro- 
gram j of pjOi where pj > 0 is a productivity 
parameter. Also, in each period, each agent is 
uniformly randomly matched with another 
agent in the population to work on a joint 
project. If two matched agents use the same 
software program, then they each receive a pay- 
off of one, and if they use different programs, 
then they each receive zero. 

All agents initially own the original version 
of the program denoted by j = 0. At t = 1, an 
upgrade denoted by j = 1 comes on the market, 
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where Pi > po. The total cost to any individual 
of switching to the new program is K > 0. The 
benefits from switching to the new program, of 
course, depend in part on the number of other 
individuals who switch. 

The following key inequalities are assumed 
to hold: 

K +1 

(3) OH 
-P Po' 

K - -1 -p) 
(4) OL< P-( p) 

Pi - Po 

K-i 
(5) OL > 

Inequality (3) says that the stand-alone benefit 
to a type H computer user from adopting the 
new program is so high that he should upgrade 
even if no other individuals do so (i.e., upgrad- 
ing at t = 1 is a dominant strategy). This is not 
true for type L individuals. Indeed, (4) indicates 
that (given initial beliefs), type L individuals are 
better off jointly staying with the old program 
rather than jointly switching to the new one. 
Inequality (5), however, implies that if a type L 
individual believes that a large enough fraction 
of computer users have switched to the new 
program, then he should follow suit. 

The potential for a coordination avalanche in 
this setting is clear. In particular, (3) and (4) imply 
that there is a Pareto-efficient PBE in which all 
type H and no type L computer users switch to the 
new program at the beginning of t = 1. Hence, in 
the first period, p(l - p) type L computer users 
will suffer compatibility problems from being 
matched with type H individuals. Accordingly, 
these type L computer users will update their 
beliefs on p and be more inclined to switch to the 
new program at t = 2.13 Specifically, in the con- 
text of this example, define 

C -((P1 PO)OL + 1 - K), 

and let T be defined as in (1). Then, a type L 
computer user who has been matched to do 
projects with T type H and no type L individuals 
will switch to the new program in period T + 1. 
This can, of course, trigger an upgrade ava- 
lanche in which all type L individuals switch. 
Indeed, Proposition 3 indicates that if F() is 
sufficiently concentrated around c, then an av- 
alanche is inevitable. 

Observe once again that a coordination ava- 
lanche may be based on fear rather than fact. In 
particular, the number, 1 - p, of type H indi- 
viduals who value the new program highly may 
actually be quite small (even zero), and an av- 
alanche may, nevertheless, occur. The net 
change in social surplus when all individuals 
switch to the new program is 

(Pi - PO)(POL + (1 - P)OH) - K. 

Inequality (3) implies that this is positive if p is 
sufficiently small, but inequality (4) implies that 
it is negative if p is sufficiently large. Hence, a 
coordination avalanche may induce all agents to 
switch to the new program even though upgrad- 
ing is socially inefficient and the number of 
agents who benefit from upgrading is minute. 

VI. Conclusion 

The theory of coordination avalanches pre- 
sented in this paper is novel in several respects. 
Specifically, we have shown that it is possible 
for coordination among agents to break down 
endogenously at any point in time. Moreover, 
this collapse does not depend on agents' arbi- 
trary beliefs about sunspots or on social herd- 
ing. Rather, it derives from uncertainty about 
payoffs, complementarities in actions, and dis- 
persed information. We believe that these three 
characteristics are common in many economic 
and social settings. 

We presented brief applications of the theory 
to search markets, organizational meltdowns, 
and the wide-scale adoption of a computer up- 
grade. We also provided some technical condi- 
tions under which a coordination avalanche 
would occur. Intuitively, coordination ava- 
lanches are likely when there are strong network 
externalities or weak informational differences 
among agents with different experiences. 

An intriguing feature of a coordination 

13 Type H computer users also update their beliefs on p, 
but (3) ensures that they never wish to switch back to the old 
program. 
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avalanche is that its occurrence does not de- 
pend on the true state of nature. In other 
words, an avalanche occurs because agents 
fear that some of their fellow players have 
become discouraged. Hence, coordination av- 
alanches are a product of agents' beliefs 
rather than observable actions. As we noted 
above, we do not think that real-world col- 
lapses are typically based only on beliefs, but 
we do think that they are often an important 

part of the story. In this light, our analysis 
points to two policy prescriptions. First, any 
mechanism that raises the confidence of in- 
dividuals will help to avert a coordination 
avalanche. Second, credibly publicizing ag- 
gregate information can also help. A coordi- 
nation avalanche is triggered by fear and 
uncertainty, and anything that eases fear or 
reduces uncertainty can, therefore, keep coor- 
dination from collapsing. 

APPENDIX A 

PROOF OF LEMMA 2 (THE STOPPING DATE): 
Let t be the date after which an agent with t failures and no successes will stop playing YES in 

a Pareto-efficient PBE. Since u(1) = 1, t is the smallest integer such that the expected value of 1 - 
p given t failures and no successes is less than c: 

p(l-p)' 
dF (p) 

1 ~~~~< C. 

(1-p)' dF (p) 
0 

Multiplying both sides by the denominator of the left side and consolidating yields 

E[(p - c)(I - p)] < 0. 

Hence, t = . Next, note that T = 0 implies Ep < c violating the assumption that p > c. Hence, 
it remains only to be shown that T < oo exists. This follows easily from the assumption that F(c - 

6) > 0 for some 6 > 0. The details are omitted in the interest of space. 

PROOF OF PROPOSITION 2 (LARGE EXTERNALITY): 
Since u(O) = 0, u(1) = 1, and u(Q) is increasing, the limiting case of the convex function u(Q) 

is 
, 0, if 0 m <1 

1, if m = 1. 

By Lemma 2, agents with no successes will quit playing YES in period T + 1. At this point the 
payoff from playing YES to an agent who has had only good experiences is 

EgTIu(mT+ I)p|mT+ I < 1] + lim (u(1)1[FgT(1 ) - FgT(X)) C. 
x- 1 

If F(-) is continuous at 1, then so are the posterior beliefs, so that the second term is equal to zero. 
For u( ) sufficiently convex, the first term is arbitrarily close to zero, so that the total expected payoff 
from playing YES is negative and a coordination avalanche occurs in T + 1. 

PROOF OF PROPOSITION 3 (SMALL INFORMATION EFFECT): 
Under the initial beliefs, the first agents will become discouraged following date T which is the 

smallest integer satisfying 
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A p (l-p)T dF (p) + (1 - A)c(I -c) 

< C . 

A (1 - p)T dF (p) + (1 - A)(1 -c) 

Multiplying through by the denominator on the left and collecting terms renders this as 

A (p -c) (I p)` d F(p) < . 

Comparing this with (1) confirms that T= T which does not depend on A. Now, let E1 *] denote 
the expectation operator with respect to F(), and recall (2). The (positive) informational effect 
which retards an avalanche can be written as 

7 AE[pu(I -B(k- 1I, p))pk?l(1 _p)Tkl] 

\AE[pk+?(l -p)T-k-l] + (1 - A)ck+l(1 - c) 

(1- A)cu(l - B(k - 1 T, C))Ck+ 1(1 - 1 

+ AL[pk? 1(1 - 
p)T-k-1] + (1 - A)Ck+ 1(1 - C)7k -) - 

( AE[pu(I - B(k - T, P))p(- p)T-k] 

AL[pk(1 - p) T-k] + (1 - A) Ck(l - + 

(1 - A)cu(1 - B(k - 1 T, C))Ck(1 - C)T- 
+ A 

[pk(l _ p)T-k] + (1 - A)Ck(l - C)Tk 

for k 0, ..., T- 1. It is easy to check that as A approaches zero, this difference becomes 
arbitrarily small. On the other hand, as A approaches zero, the (negative) marginal network 
externality converges to c(u(1 - B(k - 1 T, c)) - u(l - B(k T, c))), which is strictly negative 
because c > 0, T < oo, and u(Q) is increasing. 

PROOF OF PROPOSITION 4 (AVALANCHES ANY TIME): 
Let T and c be given. Then by Proposition 1, it must be shown that there exists a common prior 

such that pbT-' > C > pb , and rgkb -k < C, Vk = 1, ..., . 
Suppose that the common prior is a Beta distribution with parameters a and ,B; i.e.,f(p) = 4(pI a, 

,B). Then we seek a > 0 and , > 0 such that a coordination avalanche occurs in period T + 1. 
Assume a > [c/(1 - c)](T - 6) > 0 for arbitrary 6 C (0, 1) and set B = [(1 - c)lc]a - 

T + 6. Then a > 0 and ,B > 0. Moreover, period T + 1 is the first period in which any agents play 
NO. That is, 

a ca 
Pb-'=ta +f + T 1 a-c(l-8) 

and 
a ca 

PbT <f+~ac <C. 
ab o +: + T a + cE 

It now must be shown that there exists a > [cI(1 - c)](T - 6) and ,B = [(1 - c)lc]a - T + 

6, such that agents with k = 1, ..., T good experiences also play NO. 
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Notice that for all k 1, , 

rgkb T-k EgkbT-k[p(1 - B(k - 1T, p))] 

- -P E ( J 1(T1 p) jfgkbT k(p)dp. 

An agent with k good experiences after playing YES for T periods has a posterior about p given 
byfgkbT-k(p) = (pla + k, g + T - k). Thus, rgkbT-k becomes 

F(a + f + T)F(a + k + 1) 
F(a + k)F(a + f3 + T + 1) 

k-1 ( T F F(a+ + T)F(a + k +j+ 1)F(3 + 2T -k-j) 

j , ) V i F(a+k)F(p +T-k)F(a+13+2T+ 1) 

Substituting ,B = [(1 - c)lc]a - T + 6 from above, and recalling that F(z + 1) = zF(z), this 
simplifies to 

a+k k-I H (aJ 
+ k+u)a+-k+v 

-a+6 j0?H(a 8 w 

aw = 0 

Thus, for all k, rgkbr-k is the sum of ratios of polynomials and hence continuous in a. Since 

lim rgkb T-k I - ( J ) ( 

for sufficiently large ae, igkbT-k < c, Vk =1, .., T. 

PROOF OF PROPOSITION 5 (AVALANCHES WHEN AGENTS COMMUNICATE): 

Since an avalanche occurs in period T + 1 of the game without communication: 

(Al) Pb > C> Pb? Vt< T 

and 

(A2) rgkbT-k < c, k = 1, . , T. 
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Now, note that as long as all agents play YES in the game with communication, the distribution 
of observations in the population evolves over time according to {B(k|nt, p) } t= i. Similarly, as long 
as all agents play YES in the game without communication, the distribution of experiences in the 
population evolves over time according to { B(k t, p) I = 1. The first sequence is thus a subsequence 
of the second. 

Consider a periodj < TIn in the game with communication. If all agents play YES through period 
j, then the beliefs of agents who have never observed a success (their own or a friend's) yield -Pb"ji 
This is greater than c by (Al). Hence, all agents play YES through period j < Tin in a 
Pareto-efficient equilibrium. However, in period j = Tin, (Al) indicates that the most pessimistic 
agents will quit playing YES. Moreover, since B(k|nj, p) = B(k|T, p), an avalanche occurs in the 
game with communication at this point by (A2). 

APPENDIX B 

Suppose that agents do not fully discount the future and let 5 > 0 be the discount factor. Also let Vh 
be the expected discounted payoff to an agent with history h in a Pareto-efficient PBE. In this context, 
experimentation means that it is optimal to play YES for an agent with history h even when r, - c < 

0, which obviously cannot be the case if 5 = 0. The following result shows that the analysis presented 
in the main text generalizes to a setting with nonmyopic agents so long as 5 is not too large. 

PROPOSITION BI (AVALANCHES AND NONMYOPIC AGENTS): If a coordination ava- 
lanche occurs in period T + 1 of the game when 5 = 0, then there exists 8 > 0 such that a 
coordination avalanche occurs in period T + 1 of the game when 0 < 5 < & 

The intuition behind this result is fairly obvious. Specifically, because an avalanche occurs in the first 
period when all agents would receive a myopic expected payoff strictly less than zero from playing YES 
(i.e., when rgkb'-k < c for k = 0, ..., t), an avalanche will still occur at this point if agents are not too 
patient. The next result shows that avalanches and experimentation are incompatible. 

PROPOSITION B2 (AVALANCHES AND EXPERIMENTATION): Agents experiment in an 
efficient PBE only if a coordination avalanche does not occur. 

PROOF: 
We prove the converse. Suppose an avalanche occurs in period T + 1. Then we want to show that 

no agent ever plays YES when his expected current payoff is negative. First, because an avalanche 
occurs in period T + 1, V kbT-k O for k = 0, ..., T. Move back one period and write the Bellman 
equation for the agents who have had no successes 

VbT- l max {O, Pb-T' - c + 5 X 0}. 

Since an avalanche occurs in period T + 1, the most pessimistic agents still play YES in period T; 
so T-1 - c ' 0. Since hT-T 

- 
T- P - the result follows. 

The intuition here is a bit more subtle. First, note that an avalanche is always triggered by the expected 
attrition of agents who have never had a success. Now, consider an agent who has experienced only 
failures one period before the avalanche occurs. It is useless for him to experiment at this juncture because 
the game will collapse in the next period whether or not he has a success. Hence, he must earn a 
nonnegative expected current payoff from playing YES at this point. But, no agent in the current period 
or any previous one has ever had lower expectations, so no one ever experiments. 

The message of Proposition B2 is clear. Agents will not experiment in the face of a coordination 
avalanche. Moreover, while myopic agents are probably the most likely to fall victim to an 
avalanche, Proposition B1 indicates that avalanches can knock out patient players as well. 
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