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Human aging is associated with cognitive decline and an increased risk of

neurodegenerative disease. Our objective for this study was to evaluate potential

relationships between age and variation in gene expression across different regions

of the brain. We analyzed the Genotype-Tissue Expression (GTEx) data from 54 to

101 tissue samples across 13 brain regions in post-mortem donors of European

descent aged between 20 and 70 years at death. After accounting for the effects of

covariates and hidden confounding factors, we identified 1446 protein-coding genes

whose expression in one or more brain regions is correlated with chronological age at a

false discovery rate of 5%. These genes are involved in various biological processes

including apoptosis, mRNA splicing, amino acid biosynthesis, and neurotransmitter

transport. The distribution of these genes among brain regions is uneven, suggesting

variable regional responses to aging. We also found that the aging response of many

genes, e.g., TP37 and C1QA, depends on individuals’ genotypic backgrounds. Finally,

using dispersion-specific analysis, we identified genes such as IL7R, MS4A4E, and

TERF1/TERF2 whose expressions are differentially dispersed by aging, i.e., variances

differ between age groups. Our results demonstrate that age-related gene expression

is brain region-specific, genotype-dependent, and associated with both mean and

dispersion changes. Our findings provide a foundation for more sophisticated gene

expression modeling in the studies of age-related neurodegenerative diseases.

Keywords: expression dispersion, Genotype-Tissue Expression (GTEx), expression quantitative trait loci, brain

transcriptome, gene expression, gene expression profiling, factor analysis, statistical

INTRODUCTION

Aging is a natural process, and the progression of age has profound impacts on physical and
mental health. The mechanisms underlying age-related cognitive decline and increased risk
of neurodegenerative disease remain unclear, though both decline and disease are universally
common; therefore, it is critically important to understand the effects of aging on the human
brain. One way to approach this goal is to detect the gene expression changes in the human
brain during the aging process (Lu et al., 2004). Brain transcriptomic studies hold promise for
better understanding the role of aging in both normal brain activity and the development of
neurodegenerative disease. The advent of high-throughput sequencing has allowed the study of
genome-wide patterns of change in gene expression associated with aging.
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In recent years a number of studies on age-related gene
expression have been published, such as (Glass et al., 2013; Peters
et al., 2015; Sood et al., 2015; Yang et al., 2015), though some
have either overlooked the central nervous system or focused on
the brain in toto for comparisons with other organs and tissues.
Meanwhile, mounting evidence shows that the human brain is
functionally heterogeneous, with different sub-regions showing
distinct functions, cell-type compositions, and gene expression
patterns (Fraser et al., 2005; Oldham et al., 2008). In fact, the
development and functions of separate anatomical regions of the
brain are guided by specific, and often independent, networks
of gene expression, (e.g., Kang et al., 2011; Miller et al., 2014;
Tebbenkamp et al., 2014). Not surprisingly, therefore, different
regions of the brain differ in their susceptibilities to diseases.
For example, the hippocampus is affected in Alzheimer’s disease,
while Parkinson’s disease affects the substantia nigra (Hyman
et al., 1984; Jellinger, 1986). The striatum of the basal ganglia
is a primary region affected in Huntington’s disease (Vonsattel
et al., 1985). Neurodegenerative diseases tend to particularly
affect certain sub-regions of the brain (Graveland et al., 1985;
Fearnley and Lees, 1991; Francis et al., 1999; Neumann et al.,
2006; Yao et al., 2015).

In the present study, we focused on the differential gene
expression associated with age in multiple brain regions. Rather
than evaluating only single genes, we also applied factor analysis
(Anand Brown et al., 2015) to identify functional gene sets
that are associated with age. More important, our analysis was
directed to gene expression dispersion (e.g., variance in gene
expression across samples or other measures of dispersion) as
a metric to reveal a new model of age-related gene expression
patterns. Several studies in humans and model organisms
have suggested that age may influence the level of phenotypic
dispersion of the population. Thus, to achieve a comprehensive
picture of brain aging, we included the dispersion-specific
analyses of gene expression with age.

METHODS

GTEx Brain Tissues and Expression Data
The Genotype-Tissue Expression (GTEx) project was established
to determine how genetic variation affects normal gene
expression in human tissues, ultimately to inform the study
of human diseases (GTEx_Consortium, 2015). The project
has collected multiple different human tissues from each of
hundreds of donors to isolate nucleic acids from the tissues and
perform genotyping, gene expression profiling, whole genome
sequencing, and RNA sequencing (RNA-seq) analyses. Among
these many tissues, there is a plethora of samples from a handful
of sub-regions of the brain, from which expression data sets were
generated for the GTEx project and used in the present study.

The expression data (v6, October 2015 release) for brain
specimens of post-mortem donors were obtained from the
GTEx portal website (http://www.gtexportal.org/). The data was
generated using RNA-seq with tissues initially sampled from
two brain regions: cerebellum and cortex, preserved using
the PAXgene tissue preservation system (Groelz et al., 2013),
and with tissues subsequently sampled from frozen brains in

following regions: amygdala, anterior cingulate cortex (BA24),
caudate (basal ganglia), cerebellar hemisphere, frontal cortex
(BA9), hippocampus, hypothalamus, nucleus accumbens (basal
ganglia), putamen (basal ganglia), spinal cord (cervical c-1),
and substantia nigra (Carithers et al., 2015; GTEx_Consortium,
2015). From the downloaded data, we extracted the whole-
gene level RPKM (Reads Per Kilobase of transcript per Million
mapped reads) values for protein-coding genes. The data for
different brain regions was quantile normalized, and log2
transformed, separately. For each region, 10% lowly expressed
genes were excluded from data analysis based on their mean
expression level across samples. The donor’s information of
gender, body mass index (BMI), and sample’s ischemic time were
also downloaded. Tissue samples from donors of non-European
ancestry were excluded from the subsequent data analyses. The
number of remaining samples of 13 brain regions ranged between
54 and 101 (Table 1).

Accounting for Confounding Factors Using
PEER Algorithm
Prior to the regression analysis, we used a two-step approach
based on the PEER algorithm (Stegle et al., 2012) to control
for known covariates as well as hidden data structures in the
GTEx expression data. For each region, PEER was first used
to discover patterns of common variation across the entire
data set and create up to 15 assumed global hidden factors.
In doing so, the known covariates, including the donors’ age,
gender and BMI for all samples from the 13 regions, were
included in the PEER models. Also, for samples from (5)
cerebellum (PAXgene) and (6) cortex (PAXgene), ischemic time
was included as one additional covariate. Note that, at this
step, the age of donors was included to enable the PEER to
discover correlated patterns across global structured data (O.
Stegle, personal communication, November 11, 2015). Next, the
correlation between each of the 15 constructed factors and age
was tested with a data set of each region. The factor(s) showing
a Pearson’s correlation test P-value smaller than 0.05 were
excluded. The remaining factors (denoted PCk, where 1 ≤ k ≤ N
and N is the number of factors), along with non-age covariates
(i.e., known covariates excluding age), were used as a new set
of covariates in the regression analysis. Furthermore, in the
pathway-based factor analysis (described below), the remaining
factors and non-age covariates were supplied to PEER as a new
set of covariates and were regressed out. In this way, the effects of
all known covariates other than age and hidden data structures,
which could potentially confound the subsequent analyses, were
removed. The residual values of the regression were used as a
new, corrected gene expression data in the subsequent analyses.

Analysis of Gene Expression with Age
Using Linear Regression Model
For each region, we modeled gene expression using the following
linear regression model:

Yi = µ+ Ageiα + Sexiβ + BMIiγ +

N
∑

k = 1

PCkiδ + ǫi
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TABLE 1 | Numbers of age-related genes in 13 GTEx brain regions.

FDR

1% 5% 10%

Brain Region Up Down Total Up Down Total Up Down Total

(1) Amygdala (n = 67) 0 0 0 0 1 1 8 9 17

(2) Anterior Cingulate Cortex (BA24) (n = 77) 0 0 0 0 0 0 0 0 0

(3) Caudate (basal ganglia) (n = 101) 23 26 49 171 176 347 355 390 745

(4) Cerebellar Hemisphere (Frozen) (n = 93) 0 0 0 2 8 10 23 35 58

(5) Cerebellum (PAXgene) (n = 110) 54 86 140 358 466 824 688 788 1476

(6) Cortex (PAXgene) (n = 97) 2 4 6 52 64 116 139 184 323

(7) Frontal Cortex (BA9) (Frozen) (n = 95) 0 0 0 2 2 4 2 3 5

(8) Hippocampus (n = 82) 0 0 0 5 2 7 87 42 129

(9) Hypothalamus (n = 86) 0 0 0 20 22 42 84 81 165

(10) Nucleus Accumbens (basal ganglia) (n = 97) 6 5 11 34 33 67 104 91 195

(11) Putamen (basal ganglia) (n = 85) 11 9 20 110 105 215 257 268 525

(12) Spinal Cord (cervical c-1) (n = 64) 0 0 0 0 0 0 0 0 0

(13) Substantia Nigra (n = 54) 0 0 0 1 2 3 1 2 3

Columns “Up” and “Down” list the numbers of up-regulated and down-regulated aging genes, respectively. Results derived from using three different FDR cutoffs (1, 5, and 10%) are

shown. Two regions, (5) Cerebellum (PAXgene) and (6) Cortex (PAXgene), for which samples were preserved using the PAXgene tissue preservation system, are highlighted in bold.

where Yi is the expression level of a given gene in sample i; Agei,
Sexi and BMIi are the age, sex and BMI of sample iwith regression
coefficients α, β , and γ , respectively; PCki (1≤ k≤N) is the value
of the k-th hidden factors for the i-th sample with regression
coefficient δ; N is the total number of factors uncorrelated with
age; ǫi is the error term, and µ is the regression intercept.

We fitted the model in Matlab with the fitlm function in
the Statistics toolbox. For each gene, a least square approach was
used to estimate the regression coefficients. If α was significantly
deviated from 0, the gene was considered to be age-associated.
A gene was considered up-regulated with age if α > 0 and
down-regulated if α < 0.

Throughout this study, the GO term enrichment analysis was
carried out using the DAVID Bioinformatics Resource server
(Dennis et al., 2003). The FDR adjustment on the P-values was
made using the Benjamini–Hochberg procedure (Benjamini and
Hochberg, 1995).

Pathway-Based Factor Analysis of Gene
Expression Associated with Age
The rationale behind pathway-based factor analysis is that a
statistical factor analysis (e.g., PEER) can not only remove noise
components from high-dimensional data but also derive factors
summarizing pathway expression to analyze the relationships
between expression and aging (Anand Brown et al., 2015). We
used the pathway-based factor analysis to analyze the correlation
between age and gene expression of GO-term defined gene sets.
We first applied PEER to the whole gene expression matrix for
each brain region to regress out global factors. The residual
expression levels were treated as new expression data sets; for
a given GO-term gene set, PEER was used to construct factors.
The constructed factors on the gene sets were taken as concise
summaries of common expression variation across each set.

These factor values were considered as phenotypes and referred
to as phenotype factors. Subsequently, by looking for associations
between these new phenotype factors and age, we discovered
groups of functionally related genes with a common response to
aging.

Detecting Effect of Genotype-by-Age
Interaction on Gene Expression
To investigate the genotype-by-age interaction contribution to
gene expression, we included the genotype-by-age interaction
term to the linear regression model described above. As
a contributing factor to the gene expression variance, the
significance of this interaction term was assessed for each
gene after the model was fitted. Sample donors’ genotype
data was downloaded from dbGaP under accession number
phs000424.v6.p1 (October 2015). At each polymorphic site, an
individual’s genotype was denoted with 0, 1, or 2 based on the
number of non-reference alleles, respectively. SNPs with minor
allele frequency greater than 15% were included for the test. To
keep the overall computing time feasible, we randomly selected
2000 genes genome-wide and also included only SNPs with
minor allele frequency greater than 15% in the analysis, which
was run on the high-performance computing cluster of Texas
A&M Institute for Genome Sciences and Society (TIGSS).

Test for Expression Heteroscedasticity
between Age Groups
To compare the level of gene expression dispersion between age
groups, we used Levene’s tests. The test examines if the gene
expression levels of different age groups have equal deviations
from the group means. Let xkj be a set of j= 1,. . . ,nk observations
in each of k = 1,. . . ,g age groups. Levene’s test statistic is the
ANOVA F-ratio comparing the g groups, calculated on the
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absolute deviations zkj =
∣

∣xkj − xk·
∣

∣ , where xk·=
1
nk

∑nk
j = 1 xkj

is the group means. To extend the analytical framework to
muliple genes, we used the Mahalanobis distance (MD)-based
generalization of Levene’s test (Anderson, 2006). A robust version
of MD was used to quantify the distance from individual sample
i to the multivariate centroid of all samples: MD (xi·, xc) =
√

(xi· − xc)
T9−1(xi· − xc), where xi is the vector of expression

of genes in sample i; xc is the location estimator based on
the minimum covariance determinant (Rousseeuw and Van
Driessen, 1999); and ψ is the scattering estimator. Let MDkj be
a set of j = 1,. . . ,nk observations in each of k = 1,. . . ,g age
groups, Levene’s test literally performs ANOVA on MDkj, given

the absolute deviation zkj =
∣

∣MDkj −MDk·

∣

∣ with the group

meansMDk· =
1
nk

∑nk
j = 1MDkj.

All methods are summarized in Supplementary Figure S3.

RESULTS

Identification of Brain Region-Specific
Age-Related Genes
The data of transcriptomic profiles for brain tissues of
169 European ancestry donors aged 20–70 years at death
(GTEx_Consortium, 2015) was downloaded from the GTEx
portal website. The tissue samples were collected from 13
regions (or subareas) of the human brain, namely (1) amygdala,
(2) anterior cingulate cortex [Brodmann area 24 (BA24)], (3)
caudate (basal ganglia), (4) cerebellar hemisphere, (5) cerebellum
(PAXgene), (6) cortex (PAXgene), (7) frontal cortex (BA9), (8)
hippocampus, (9) hypothalamus, (10) nucleus accumbens (basal
ganglia), (11) putamen (basal ganglia), (12) spinal cord (cervical
c-1), and (13) substantia nigra. We excluded samples derived
from non-European donors. The final data matrices, including
54–101 samples all from European donors, were normalized
separately by different brain regions (Methods).

We used linear regression models, controlling for covariates
and hidden confounding factors (Methods), to identify
genes whose expression is correlated or anti-correlated with
chronological age. Table 1 shows the numbers of age-related
genes in the 13 brain regions at the false discovery rate (FDR)
of 1, 5, and 10%. The number of genes identified in most
regions increases with the relaxation of FDR cutoff except in
anterior cingulate cortex and spinal cord where no genes were
identified (Supplementary Figure S4). At FDR of 5%, 1446
distinct age-related genes across all regions were identified
(Supplementary Table S1). Of these, 155 were found in more
than one region of the brain: seven were identified in four,
21 in three, and 127 in two brain regions. For each of these
“multi-hit” genes, the directions of expression response to aging
were the same in the different brain regions where the gene was
identified. For comparison, in a previous study, using microarray
data from 10 regions of 100 post-mortem brains aged from 16
to 83 years, Glass et al. (2013) identified 14 age-related genes.
Out of the 14 genes, six (HSD11B1, MS4A6A, MT1G, PTPN3,
SLC7A5, andWWC2) are among our 5% FDR age-related genes,
showing consistent directions of expression response to aging.
In another previous study, Lu et al. (2004) compared frontal

cortical samples from young and old adult individuals and
identified 416 age-related genes whose expression differs by at
least 1.5-fold. Out of the 416 genes, 61 (14.7%) are among our
5% FDR age-related genes.

Table 1 also shows that some regions demonstrate
significantly more age-related genes than others, suggesting
distinct brain regions might have different levels of sensitivity or
responsiveness to aging. To show that such regional specificities
are not completely due to the difference in the number of
samples from different brain regions used in the analysis, we
repeated the identification of age-related genes by randomly
subsampling samples to 54 (the minimal sample size) for all
regions. We found that the number of identified genes decreased
substantially as the sample size decreases, but the differences in
numbers of identified genes between regions largely remained
(Supplementary Table S2).

The numbers of age-related genes identified show a significant
discrepancy between cerebellar hemisphere and cerebellum
(PAXgene), which is unexpected because tissue samples of
these subareas were essentially from the same region of
the cerebellum. Similarly, it is unexpected to see a great
discrepancy in the numbers of age-related genes identified
between cortex (PAXgene) and frontal cortex (BA9), because
both were sampled from the same region of cortex. Indeed,
clustering analysis based on the Euclidean distance between
gene expression profiles confirmed that cerebellar hemisphere
and cerebellum, as well as cortex and frontal cortex, are more
similar to each other, respectively, than to other brain regions
(Supplementary Figure S1). We consider that the markedly
fewer genes identified in cerebellar hemisphere than cerebellum,
and in frontal cortex than cortex, may be attributed to whether
or not the samples were subject to frozen storage before RNA-
seq was performed. Among all GTEx brain specimens, only
cerebellum and cortex were initially sampled “on site” from the
post-mortem donors, while the rest were subsequently resampled
after the brains were frozen and stored (Carithers et al., 2015;
GTEx_Consortium, 2015). Thus, it is likely that the frozen-thaw
cycle introduced extra expression variability to the samples
[e.g., in cerebellar hemisphere and frontal cortex], resulting in
the identification of fewer genes. To illustrate this further, we
sought to examine the cross-region correlation between genes’
responsiveness to aging. We used each gene’s P-value against
age in the linear regression model as the measure of the gene’s
responsiveness to aging. We ranked genes by their P-values
and then compared the ranks of genes across regions. If the
correlations between cerebellar hemisphere and cerebellum and
between cortex and frontal cortex were high, then we considered
that the discrepancies in age-related gene numbers between
cerebellar hemisphere and cerebellum, and between cortex
and frontal cortex, were simply due to the effect of freezing
on the statistical power of age-related gene detection, rather
than on the gene expression regulation. Figure 1 shows the
correlation matrix with Spearman correlation coefficient (SCC)
between regions. Firstly, we found that the correlation (i.e., the
similarity in gene rank) between anatomically closely related
regions is higher. For example, the SCC between caudate and
putamen, which both belong to basal ganglia, is the highest
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FIGURE 1 | Correlation matrix for the responsiveness of genes to aging between 13 GTEx brain regions. The responsiveness to aging of a gene was

measured with the P-value for slope coefficient in the linear regression model between age and gene expression. The correlation between each two brain regions was

estimated with the nonparametric Spearman rank correlation coefficient between P-values of all genes in the two regions. The order of regions in the matrix was

rearranged based on the similarity between regions. Six clusters of highly correlated regions are highlighted with red boxes: I, cortex; II, cerebellum; III, basal ganglia;

IV, hypothalamus, amygdala, and hippocampus; V, substantia nigra and spinal cord; and IV, amygdala and caudate.

among all region pairs. Intriguingly, the second highest is
between cerebellar hemisphere and cerebellum, despite of the
considerable discrepancy in identified genes between the frozen
and unfrozen cerebellar samples, reinforcing the point that
samples from the same brain region are indeed more similar to
each other with respect to the genes’ responsiveness to aging.
Likewise, cortex, frontal cortex and anterior cingulate cortex are
more correlated with each other than with other regions. Thus,
the human brain appears to have different aging patterns in the
cerebellum, cortex, and basal ganglia (including caudate, nucleus
accumbens, and putamen; Figure 1). These results are consistent
with the findings of a previous microarray-based gene expression
study (Fraser et al., 2005).

Analysis of Gene Expression Pathway
Factors Associated with Age
We set out to detect gene sets, in addition to single genes, with
expression associated with age. We adopted the pathway-based

factor analysis (Anand Brown et al., 2015) and applied it to
14,825 functional gene sets defined by gene ontology (GO)
terms (Methods). As a result, 239 highly significant gene sets
across the 13 brain regions were identified (P < 0.05, corrected
using Bonferroni procedure for the total number of tested gene
sets; Supplementary Table S3). The related GO terms included:
neurogenesis (GO:0022008), neuron projection (GO:0043005),
memory (GO:0007613), and regulation of synaptic plasticity
(GO:0048167). To obtain a broader functional overview of gene
sets, we used the clustering method implemented in REVIGO
(Supek et al., 2011) to summarize as many as 5787 GO terms
associated with age-related genes at 5% FDR significance. With
REVIGO, these GO terms were evaluated against each other
and clustered based on their context similarity. The TreeMap
plots for the clusters were then generated, showing that the
function of age-related gene sets points to a large collection of
biological processes (BP) (Figure 2) and molecular functions
(MF) (Supplementary Figure S2). For example, the top-level
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FIGURE 2 | TreeMap view of GO-term clusters for age-related genes in the brain. The TreeMap was generated by using REVIGO with the input of all GO BP

terms of age-related genes detected in 13 GTEx brain regions at the FDR of 5%. Each rectangle represents a single GO-term cluster. The size of the rectangles is

proportional to the frequency of the GO term in the associated GO annotation database. The cluster representatives were joined into “superclusters” of loosely related

terms, visualized with different colors.

BP GO term clusters are represented by the terms apoptotic
signaling pathway, aging, spliceosomal complex assembly,
glutathione derivative biosynthesis, neurotransmitter transport,
vitamin metabolism, reactive oxygen species metabolism,
methylation, establishment or maintenance of cell polarity,
and viral process (Figure 2). The top-level MF GO term
are listed in Supplementary Figure S2. The largest clusters
represented include growth factor binding, peptidase activity,
phosphotransferase activity (alcohol group as acceptor), copper
ion binding, symporter activity, heme binding, virus receptor
activity, poly(A) RNA binding, and beta-amyloid binding
(Supplementary Figure S2).

Genotype-by-Age Interactions
We evaluated the interactions between genotype and age to assess
how genetic background influences gene expression in the brain
at different ages (Methods). These interactions could be used
to develop strategies to predict individuals’ risks for specific
conditions based on the associations between each individual’s
genotype and expression changes anticipated for genes of
interest. Other studies have identified age-related eQTL such as
those connected with longevity (Walter et al., 2011; Erikson et al.,
2016), AD (Proitsi et al., 2014; Zhu et al., 2014; see also Guerreiro
et al., 2010 though this study did not identify any significant
eQTL), and neurological conditions such as PD (Hernandez et al.,
2012) and hippocampal sclerosis of aging (Nelson et al., 2015).
In this study, we detected a number of interactions with high

significance (nominal P < 10−5). A comprehensive list of
SNPs and genes is provided (Supplementary Table S4), albeit
none of these interactions survived multiple testing corrections
due to the sheer large number of tests performed. We found it
intriguing that certain genotypes seem to be more susceptible to
the effects of aging on the expression of functionally significant
genes. For example, genotypes of SNP rs55675298 can have
different effects on expression of tumor protein p73 gene,
TP73 (Figure 3A). For individuals with the GG genotype, there
is an age-associated increase in TP73 expression; individuals
with GT or TT genotypes do not experience this increase,
which could have profound health implications based on the
potential roles of TP73 in conditions related to aging. TP73 is
a member of the p53 transcription factor family and is located
in a region that is frequently deleted in tumors, particularly
neuroblastomas. Furthermore, TP73 has been found to be critical
for normal neuronal development and survival, making it a
potential candidate gene for susceptibility to Alzheimer’s disease
(AD) (Pozniak et al., 2000, 2002; Yang et al., 2000; Li et al.,
2004; Wetzel et al., 2008). Another example of a relationship
between SNP genotype and age-related gene expression involves
C1QA and the SNP rs72788737 (Figure 3B). Here again, the GG
genotype seems to confer increased expression with age while
GT/TT genotypes are not correlated with increased expression.
Normal aging is associated with an increase in C1q protein
(encoded by C1QA), particularly in certain regions of the brain
that are especially prone to degenerative diseases related to
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FIGURE 3 | Examples of genotype-by-age interaction affecting the expression level of the gene. (A) The interaction between rs55675298 and age affecting

TP73 gene expression. (B) The interaction between rs72788737 and age affecting C1QA gene expression. For each subplot, the left panel shows all samples, the

middle panel shows the major allele homozygous samples, and the right panel shows heterozygous and minor allele homozygous (with a cross) samples.

aging (Stephan et al., 2013). C1q contributes to an aging-related
decrease in the regenerative capacity of certain tissues (Naito
et al., 2012). Less C1q, on the other hand, may confer some
protection against synapse loss and aging-related dysfunction of
the hippocampus (e.g., Stephan et al., 2013; Hong et al., 2016).

Aging Affects the Population-Level
Dispersion of Gene Expression in Brain
Next, we focused on the identification of differentially variable
(DV) genes. These genes show differences in the degree of
dispersion in expression levels between age groups. Using
Levene’s test, we identified 970 DV genes across brain regions
(including 848 distinct genes) showing a significant difference
in expression variance between young (20–60 years) and old
(61–70 years) individuals at the significance level of FDR of 5%
(Supplementary Table S5). About half of these genes show an
increased expression variance in the old while the other half
show a decreased variance. Across brain regions, the distribution
of DV genes is more balanced (Supplementary Table S6),
compared to the distribution of age-related genes. The region
(6) cortex contains 108 DV genes, which is the most; while
the (12) spinal cord contains as little as 40, which is the
least. The top GO-term clusters for these DV genes include
those related to sensory perception, peptide receptor activity,
chemotaxis, peptidase inhibitor activity, and neurotransmitter
binding (Table 2). Figures 4A,B show two examples of DV

genes—IL7R and MS4A4E. The expression dispersion of IL7R
in the hippocampus is more pronounced in old than young
adults (Figure 4A). This gene is known for its possible role
as a determinant of the rate of aging (Passtoors et al., 2015).
In the other example, the expression dispersion of MS4A4E
in the hippocampus also increases with age (Figure 4B). This
gene, as a member of the membrane-spanning four domains
subfamily A gene cluster, plays a role in embryogenesis,
oncogenesis, and the development of AD (Liang et al., 2001;
Karagiannis et al., 2003; Hollingworth et al., 2011; Naj et al.,
2011).

Furthermore, we expanded the utilization of Levene’s test,
coupled with a distance measure, to a multivariate setting
(Anderson, 2006) to identify age-related DV gene sets, i.e., sets of
genes with significant differential expression dispersion between
young and old age groups (Methods). Eight GO term-defined
gene sets (seven distinct gene contents) were identified at the
5% FDR significance level in three brain regions (Table 3). These
include a set of two genes,TERF1 andTERF2, with the function of
age-dependent telomere shortening. Lin et al. (2014) showed that
TERF1 and TERF2 use different mechanisms to find telomeric
DNA but share a novel mechanism to search for protein partners
at telomeres. The deviation of expression profiles of the two
genes from individual samples to the population mean centroid
was measured with MD (Methods). Compared to old specimens,
young samples show an increased level of scattering in their
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TABLE 2 | GO-term clusters for DV genes showing the most differential variability in expression between age groups.

GO term Count Enrichment fold FDR Expression variance change with age

Annotation Cluster 1 Decrease

GO:0007186∼G-protein coupled receptor protein signaling pathway 106 2.29 7.87E-13

GO:0007606∼sensory perception of chemical stimulus 53 2.69 1.30E-07

GO:0007166∼cell surface receptor linked signal transduction 131 1.71 1.66E-07

GO:0004984∼olfactory receptor activity 47 2.56 5.17E-06

GO:0007608∼sensory perception of smell 46 2.59 4.50E-06

GO:0050890∼cognition 74 1.98 9.18E-06

GO:0007600∼sensory perception 67 2.01 2.33E-05

GO:0050877∼neurological system process 89 1.78 2.11E-05

Annotation Cluster 2 Increase

GO:0008528∼peptide receptor activity, G-protein coupled 20 4.11 1.02E-04

GO:0001653∼peptide receptor activity 20 4.11 1.02E-04

GO:0042277∼peptide binding 25 2.89 0.001

Annotation Cluster 3 Increase

GO:0042330∼taxis 19 2.88 0.02

GO:0006935∼chemotaxis 19 2.88 0.02

GO:0007626∼locomotory behavior 26 2.30 0.03

GO:0042379∼chemokine receptor binding 10 4.75 0.02

GO:0007610∼behavior 37 1.91 0.04

GO:0008009∼chemokine activity 9 4.59 0.05

GO:0005125∼cytokine activity 16 1.92 0.54

Annotation Cluster 4 Decrease

GO:0004867∼serine-type endopeptidase inhibitor activity 14 3.57 0.01

GO:0030414∼peptidase inhibitor activity 17 2.60 0.06

GO:0004866∼endopeptidase inhibitor activity 16 2.59 0.09

GO:0004857∼enzyme inhibitor activity 18 1.56 0.77

Annotation Cluster 5 Increase

GO:0030594∼neurotransmitter receptor activity 12 2.96 0.13

GO:0042165∼neurotransmitter binding 12 2.73 0.21

GO:0008188∼neuropeptide receptor activity 6 3.59 0.57

GO:0042923∼neuropeptide binding 6 3.43 0.59

TERF1-TERF2 expression, indicated by the higher level of MD
(Figure 4C).

DISCUSSION

Using the GTEx data, we assessed the associations between gene
expression and chronological age in different neuroanatomical
regions of the human brain. The main findings of our work
include: (1) the gene expression responsiveness to aging in
various brain regions varies widely, and (2) the gene expression
dispersion is a biologically relevant parameter for characterizing
the age-related expression alteration.

Transcriptomic assays of the GTEx project generate high-
dimensional structured data sets in which there are correlated
patterns across large numbers of genes. Some of these are due to
the known technical or biological effects, which can be removed
by fitting them as covariates. However, even after this, there is
typically substantial structural correlation that can potentially
confound the subsequent analyses (Leek and Storey, 2007; Parts

et al., 2011). Therefore, correcting hidden confounding factors
along with covariates is indispensable in revealing the true
relationship between gene expression change and the effect under
consideration—which, in our case, is aging. Thus, we have
carefully controlled for the structural correlations in different
brain regions by inferring the hidden confounding factors using
the method of factor analysis (Stegle et al., 2012) and then
regressing them out. As a result of a rigorous control of input
data, we detected a significant number of age-related genes (1446
distinct genes at the 5% FDR level) across brain regions, which
is more than what have previously reported elsewhere (Lu et al.,
2004; Glass et al., 2013).

Aging of the Brain Occurs in a
Region-Specific Manner
Our analysis of age-related genes specifically focused on each sub-
region of the human brain. We detected the most genes with
significant age associations in the cerebellum, which plays an
important role in adapting and fine-tuning motor programs to
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FIGURE 4 | Differential gene expression dispersion between age groups. (A) Increased gene expression variance of IL7R in hippocampus between age groups

(left: 20–60 years vs. 61–70 years; right: all ages). Each age group was plotted with jitter along the x-axis to show samples within each genotype. (B) Same as (A) but

for MS4A4E. (C) Scatter plot (left) of expression levels of TERF1 and TERF2 with data points grouped by young (20–59 years) and old (60–70 years) ages. Boxplot

(right) of MDs of young and old samples’ TERF1 and TERF2 expression profiles to the population center.
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TABLE 3 | DV gene sets showing significant differential variability in brain region-specific expression between age groups (FDR<5%).

GO Term Gene Set Expression variance

change with age

P-value

(Levene’s test)

FDR

(5) CEREBELLUM

GO:0001309∼age-dependent telomere shortening TERF1, TERF2 Decrease 3.80E-06 0.0094

GO:0032214∼negative regulation of telomere maintenance

via semi-conservative replication

TERF1, TERF2 Decrease 3.80E-06 0.0094

GO:0003691∼double-stranded telomeric DNA binding PURA, TERF1, TERF2, XRCC5,

XRCC6

Decrease 2.51E-05 0.0416

(6) CORTEX

GO:0044062∼regulation of excretion NPHS1, SLC9A3R1 Decrease 6.13E-06 0.0182

GO:0009756∼carbohydrate mediated signaling CLEC7A, COLEC12 Increase 7.77E-06 0.0242

GO:0003840∼gamma-glutamyltransferase activity GGT1, GGT2, GGT5, GGT6, GGT7,

GGTLC1, GGTLC2, GGTLC3

Increase 8.07E-05 0.035

GO:0036374∼glutathione hydrolase activity GGT1, GGT5, GGT6, GGT7 Increase 8.07E-05 0.035

(13) SUBSTANTIA NIGRA

GO:2000146∼negative regulation of cell motility AP1AR, CTNNA1, GATA3, PIN1,

TACSTD2

Decrease 5.20E-06 0.036

Genes are grouped into gene sets based on GO terms shared in the functional annotations of these genes.

make accurate movements, as well as the cortex, which plays a
major role in many complex brain functions such as memory and
awareness.

At this stage, we were aware of the effect of freezing—the
frozen storage seemed to have a profound impact on the age-
related gene detection. With the expression data from cerebellum
and cortex samples subjected to frozen storage, we were unable
to detect as many age-related genes as we identified using data
from unfrozen “fresh” cerebellum and cortex samples. That is to
say, the linear regression-based method for detecting age-related
genes was unpowered when applied to the frozen brain samples.

Nevertheless, samples of the majority of brain regions (11
out of the 13) analyzed in the present study were collected
from frozen brains. We considered them to be processed in
a uniformly consistent manner and thus the results generated
from these brain regions are comparable to each other. The
relative abundance of age-related genes detected in these regions
suggests that different regions have different age-related gene
expression changes as a result. To the best of our knowledge, this
is the first time that expression data was analyzed for so many
brain regions in large numbers of samples processed similarly
across locations and times for a single study. Overall, our results
support the idea that in the human brain there are measurable
patterns of gene expression changes associated with age, and
these patterns are distinct from one region of the brain to
another. Given that the effect of freezing tends to weaken the
overall differential expression signal, our results of the number of
age-related genes derived from frozen samples of the 11 regions
should be considered as a lower bound of the real number of
age-related genes.

Pathway-Based Factor Analysis Identifies
Functional Gene Sets Related to Age
We adopted a newly developed pathway-based factor analysis
(Anand Brown et al., 2015) to identify age-related gene sets.

The analysis is a two-step approach. The factor analysis method,
implemented in PEER (Stegle et al., 2012), was first used to
discover patterns of common variation across the entire data
set. Then newly derived factors summarizing expression of
pathways or gene sets were used to analyze the relationships
between expression and aging. This analysis allowed us to
identify functionally related genes with a common response to
aging. Our results support that aging is associated with a large
number of BP and MF. Many of these associations are consistent
with our current knowledge. For example, aging is related
to chromatin modulation (Feser and Tyler, 2011), apoptotic
signaling pathway (Harman, 1992), glutathione and vitamin
(Nuttall et al., 1998), oxidation-reduction process (Berlett and
Stadtman, 1997), spliceosome complex assembly (Rodríguez
et al., 2016), and neurotransmitter transport (Segovia et al., 2001).

In addition to focusing on linear patterns of gene expression
change with chronological age, we also observed extensive
interactions between the aging effect and the influence of
background regulatory variants. These findings are important
for the in-depth analysis of aging effects from the perspective of
personal genomics.

Evidence for the Aging Effect on Gene
Expression Dispersion
There is a substantial body of evidence for the impacts of aging
on gene expression dispersion. In mice, for example, Southworth
et al. (2009) observed a decrease in the correlated expression
between normally co-expressed genes, which was associated with
aging. Also in mice, Bahar et al. (2006) demonstrated an age-
related increase in cell-to-cell gene expression variation in the
heart (but see Warren et al., 2007). Data from both humans and
rats indicate that gene expression becomes more heterogeneous
with age (Somel et al., 2006; Li et al., 2009) further showed that
gene expression variability in male rats is age-dependent. More
recently, using human twin data, Oh et al. (2016) found that gene
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expression levels as well as epigenetic modifications increased
in similarity in brain tissues of older individuals. Furthermore,
a large study by Peters et al. (2015) revealed age-related gene
expression levels that decreased with age; these findings could be
attributable to dysregulation of transcriptional and translational
systems.

In the present study, we identified a large number of genes
whose population-level expression dispersion is age-related. For
example, the variance inMS4A4E expression in the hippocampus
was greatly increased in individuals over age 60. Such an increase
in expression variability may have resulted from a decrease in
normal regulation of cell growth and inflammation, which may
be related to an increase in AD risk (Akiyama et al., 2000;
Hollingworth et al., 2011; Naj et al., 2011; Heppner et al., 2015).
The increased gene expression variability may also be due to
the interaction between MS4A4E with other genes, e.g., CLU
(Ebbert et al., 2016). Furthermore, we argue that the incomplete
penetrance observed in neurodegenerative diseases (Rossor et al.,
1996; Healy et al., 2008) may be attributed to differences in
phenotypic robustness, which may be associated with or reflected
in the age-related gene expression variability among individuals
who are susceptible to these diseases.

Also, it is interesting to explore possible mechanisms
underlying the increase or decrease in gene expression
variability, as global gene expression is under stabilizing
selection (Khaitovich et al., 2004; Lemos et al., 2005). Previously,
we have shown that both common and rare genetic variants
may confer regulatory function to contribute to gene expression
dispersion (Hulse and Cai, 2013; Wang et al., 2014; Zeng et al.,
2015). In particular, common genetic variants contribute to gene
expression variability via distinct modes of action—e.g., epistasis
and destabilizing mutations (Wang et al., 2015). Rare and
private regulatory variants have been found to be responsible for
extreme gene expression in outlier samples (Montgomery et al.,
2011; Zeng et al., 2015; Zhao et al., 2016). Given this background
information about the genetic regulation of gene expression, we
argue that aging may be associated with gene expression through
age-related genome instability. Mutations accumulate with age in
a tissue-specific manner. The major components of the mutation
spectrum include point mutations and genome rearrangements
such as translocations and large deletions (Busuttil et al., 2007a).
The accumulation of somatic mutations over time in various
tissues and organs has been suggested as a general explanation of
aging (Szilard, 1959; Curtis, 1963; Vijg, 2004). Different organs or
tissues show greatly different rates of mutations that accumulate
with age. The brain as a whole does not seem to accumulate
mutations with age at all, but certain regions of the brain (e.g.,
hippocampus and hypothalamus) are much more susceptible to
mutagenesis and do show increased mutational loads at old age
(Busuttil et al., 2007b).

In conclusion, we demonstrate that age-related gene
expression is brain region-specific, genotype-dependent, and
both mean and dispersion changes in expression level are
associated with the aging process. These findings provide a
necessary foundation for more sophisticated gene expression
modeling in the studies of age-related neurodegenerative
diseases.
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