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Abstract. We analyze an adaptive discontinuous finite element method (ADFEM) for symmetric
second order linear elliptic operators. The method is formulated on nonconforming meshes made
of simplices or quadrilaterals, with any polynomial degree and in any dimension ≥ 2. We prove
that the ADFEM is a contraction for the sum of the energy error and the scaled error estimator,
between two consecutive adaptive loops. We design a refinement procedure that maintains the level
of nonconformity uniformly bounded, and prove that the approximation classes using continuous
and discontinuous finite elements are equivalent. The geometric decay and the equivalence of classes
are instrumental to derive optimal cardinality of ADFEM. We show that ADFEM (and AFEM on
nonconforming meshes) yields a decay rate of energy error plus oscillation in terms of number of
degrees of freedom as dictated by the best approximation for this combined nonlinear quantity.
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1. Introduction and Main Results. Let Ω ⊂ Rd, d ≥ 2, be a polyhedral
domain. We study the convergence of an interior penalty discontinuous Galerkin
(IPDG) method for the diffusion problem:

−div (A∇u) = f in Ω, u = 0 on ∂Ω; (1.1)

precise conditions on f : Ω → R
d and A : Ω → R

d×d are specified later.
Discontinuous Galerkin finite elements have received much attention due to their

flexibility and ability to incorporate physical properties. We refer to [5] for a uni-
fied analysis of discontinuous Galerkin methods, [17] for a discussion of the inherent
stability mechanism of those methods and [22] for comparison on their relative per-
formances. For earlier work on interior penalty methods on elliptic problems we refer
to Douglas and Dupont [28], Baker [9], Babǔska and Zlámal [7], Wheeler [51], and
Arnold [4]. For further studies, we refer for instance to [18, 29, 34, 44, 35] and the
references therein. However, fewer references are available for the a posteriori error
analysis: see [1] for a review, [13, 47] regarding L2-norm or function error estimation,
and [33, 20, 36] regarding energy norm estimation. To the best of our knowledge, the
only results concerning convergence of adaptive discontinuous finite element methods
(ADFEM) have been obtained recently by Karakashian and Pascal [37] and Hoppe,
Kanschat, and Warburton [31].

The ADFEM proposed here is based on a residual type estimator and consists of
loops of the form

SOLVE → ESTIMATE → MARK → REFINE. (1.2)

Given a grid Tk, SOLVE computes the solution Uk of the discrete problem

aTk
(Uk, V ) = FTk

(V ), ∀V ∈ V(Tk),
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where aTk
is the bilinear form over Tk associated with (1.1). The procedure ESTI-

MATE computes the error indicators ηTk
(Uk, T ), for all T ∈ Tk. These indicators are

used by the procedure MARK, which is the marking strategy originally introduced
by Dörfler [27] and consisting of selecting a subset Mk of Tk satisfying

ηTk
(Uk,Mk) ≥ θ ηTk

(Uk, Tk),

where 0 < θ < 1 is given. Finally, REFINE subdivides each marked element ρ ≥ 1
times and ensures that the level of nonconformity remains uniformly bounded.

The symmetric IPDG formulation considered by Arnold [4] reads: given a trian-
gulation T of Ω, with skeleton Σ (set of interior interelement sides), seek U ∈ V(T )
satisfying

aIP (U, V ) := (A∇U,∇V )T − 〈{{A∇U}} , [[V ]]〉Σ

− 〈{{A∇V }} , [[U ]]〉Σ + γ
〈
h−1 [[U ]] , [[V ]]

〉
Σ

= (f, V )T , ∀V ∈ V(T ), (1.3)

where γ is a positive penalty parameter and {{·}} , [[·]] stand for the average and jump
operators; for precise definitions consult Section 2.1. As in [32], we employ a lifting
operator [12, 5, 18, 46, 33] in Section 2.2 to replace aIP (·, ·) by a different bilinear
form aT (·, ·) and thereby obtain an equivalent discrete formulation to (1.3) which is
also well defined for u under the minimal regularity u ∈ H1(Ω) and div(Au) ∈ L2(Ω).

Karakashian and Pascal [37] were able to prove that if γ is sufficiently large then
the following contraction property holds

aIP (u − Uk+1, u− Uk+1) ≤ αaIP (u − Uk, u− Uk), (1.4)

where α < 1 and Uk, Uk+1 are two consecutive solutions of the ADFEM on tetrahedral
meshes. To obtain (1.4), the following assumptions were made in [37]
• f belongs to the finite element space and A is the identity matrix;
• the solution of (1.1) possesses the extra regularity u ∈ H2(Ω);
• two successive subdivisions are not too far from each other;
• a relative large amount of new nodes (12 vertices for piecewise linear elements in

2D) must be created by refining each marked element.
Hoppe et al. [31] improved upon [37]: first the refinement procedure consists of just
one bisection per marked element, and second the right-hand side is in L2. However,
• [31] assumes that the ensuing data oscillation contracts relative to itself between

consecutive iterates, which is not guaranteed when marking only by the estimator;
• the technique used in [31] for error analysis is based on the Crouzeix-Raviart

element, and thereby applies only to conforming meshes of Ω ⊂ R
2.

To enforce the aforementioned contraction of data oscillation one would need to mark
also by oscillation. Unfortunately, this would lead to separate marking and, as dis-
cussed by Cascón et al [21], to the risk of getting sub-optimal meshes.

In this paper we extend and improve [31, 37] in several respects. Our novel
contributions are to
• deal with general data f : Ω → R, A : Ω → Rd×d, with regularity specified in

Section 2.1.1, and non-convex bounded polyhedral domains of Rd, d ≥ 2. Since
A may be discontinuous, this entails dealing with regularity u ∈ H1

0 (Ω) and
A∇u ∈ H(div) for the solution u of (1.1), which is minimal if f ∈ L2(Ω);

• allow different types of nonconforming subdivisions such as tetrahedral or hexa-
hedral meshes with hanging nodes and examine the complexity of REFINE with
fixed level of non-conformity;
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• refine each marked element using only one subdivision, either quad-refinement
for hexahedral meshes, or red-refinement and bisection for tetrahedral meshes;

• prove a contraction property of the ADFEM, without further assumptions on
REFINE, for the sum of energy error and scaled error estimator;

• show that the approximation classes consisting of continuous and discontinuous
finite elements are equivalent;

• derive a quasi-optimal asymptotic rate of convergence for the ADFEM, which
seems to be the first result of this type in the literature for dG methods;

• obtain a quasi-optimal asymptotic rate of convergence for the continuous Galerkin
method on (hexahedral and tetrahedral) nonconforming meshes, as a by-product.

We would like to point out that [37, 31] consider mixed boundary conditions, but
in the present work we restrict ourselves to homogeneous Dirichlet boundary condition
to simplify the already technical presentation. Similarly, a reaction term of the type
c u with 0 ≤ c ∈ L∞(Ω) could have been added to the development as in [21] without
changing the essence.

Our first Main Result concerns the reduction of the sum of energy error and scaled
error estimator between two consecutive adaptive loops (1.2):

Main Result 1. There exist a penalty threshold γm, a scaling factor δ > 0,
and a contraction constant 0 < α < 1 such that the scaled sum of energy error
aTk

(u− Uk, u− Uk) and estimator η2
k(Uk, Tk) on mesh Tk contracts:

aTk+1
(u − Uk+1, u− Uk+1) + δη2

k+1(Uk+1, Tk+1)

≤ α
(
aTk

(u− Uk, u− Uk) + δη2
k(Uk, Tk)

)
.

(1.5)

A few comments are in order. The contraction property (1.5) is in the spirit of [21] in
that it extends the ideas developed by Cascón et al for a continuous and conforming
framework to dG (as well as cG) with nonconforming meshes. As a consequence of
the coercivity property (Lemma 2.2) the adaptive finite element solution Uk converges
in the broken energy norm, defined in (2.7), to the continuous solution of (1.1). The
proof of (1.5), given in Section 4, does not rely on a lower bound for the error and,
therefore, the interior node property as well as marking by oscillation can both be
avoided; their significance for cG is pointed out in [42, 48, 21]. The estimator takes
care of possible oscillations of f ∈ L2(Ω) and A as well as possible increase of the error
due to mesh refinement. A new major difficulty, compared to cG, is the presence of
the negative power of the local meshsize h in the term

∥∥h−1/2 [[U ]]
∥∥

Σ
, which appears

in the upper bound (Lemma 3.2) and when comparing two successive solutions of the
ADFEM (Corollary 4.3). To overcome this difficulty we need to

• resort to an idea of [2, 37] to control jumps by the estimator (Lemma 3.3);
• study the behavior of REFINE between consecutive refinements (Corollary 4.1).

The contraction property (1.5) is a crucial ingredient to prove quasi-optimality
of the ADFEM. Let oscTk

(Uk, Tk) be the oscillation over Tk (see Section 2.1) and let
As be a suitable approximation class (see Section 5.1). Roughly speaking, (u, f, A)
belongs to As if the following happens: given an arbitrary tolerance ǫ > 0, it is possible
to find a nonconforming refinement T of T0 with O(ǫ−s) DOFs so that the total error
is bounded by ǫ, the latter being the sum of the broken energy error |||u− U |||T and
the oscillation oscT (U, T ).

Main Result 2. If (u, f, A) ∈ As with s > 0, then there holds

|||u− Uk|||Tk
+ oscTk

(Uk, Tk) � #T −s
k . (1.6)
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To the best of our knowledge no convergence rate for dG methods is yet known; we
refer to [15, 48, 21] for results concerning cG methods. The main difficulty of the proof
is again caused by the term

∥∥h−1/2 [[U ]]
∥∥

Σ
. To see this, let ǫ be the error associated

to (Uk, Tk) in step k of the ADFEM, and let (U∗, T∗) be the optimal solution-mesh
pair for this tolerance ǫ. Since the subdivisions T∗ and Tk are a priori unrelated, the
negative power of mesh size prevents direct estimation of the jump terms as in the
proof of the Main Result 1 (where at most ρ refinements separate two consecutive
subdivisions). The cure to this issue resides on the following property of intrinsic
interest and shown in Proposition 5.2:

the approximation classes for cG and dG methods are equivalent on noncon-
forming partitions with bounded level of nonconformity,

namely they exhibit the same asymptotic rate of convergence. Therefore, comparing
with continuous optimal approximations, the effect of the jump term becomes man-
ageable. The advantages of dG over cG are thus to be found in local conservation and
stabilization properties rather than accuracy.

We finally emphasize that the Main Results 1 and 2 extend those of Cascón et al
[21] for cG on conforming meshes to nonconforming meshes with hanging nodes.

The outline of this article is as follows. In Section 2 we start by setting the
notations and definitions and conclude with the interior penalty method. In Section
3 we discuss each module of (1.2) and give the ingredients for the proof of the main
results. Sections 4 and 5 are dedicated to the proofs of the main results. To unify the
treatment of the various refinement strategies, we impose seven conditions below, as
described in Table 1.1:

Condition 1 2 3 4 5 6 7

Page 5 12 17 18 24 25 27
Table 1.1

Page references of the Conditions required to obtain Main Results 1 and 2.

In Section 6, we verify that these conditions are valid for quad-refinement of hexahe-
dral meshes, and bisection of simplicial meshes; red-refinement of simplicial meshes
is somewhat in between the two and is not discussed in detail. In particular, note
that Main Result 1 relies on Condition 3, which restricts one step refinements, while
Main Result 2 hinges also on Condition 4 (complexity of REFINE) and Condition 6

(overlay of two subdivisions). Finally, we conclude in Section 7 with a brief discussion
of cG on nonconforming meshes with hanging nodes.

2. Interior Penalty Methods. Here we state the assumptions on data, discuss
the notion of discontinuous finite elements on nonconforming meshes. The lifting
operator [12, 5, 18, 46, 33] on nonconforming subdivisions is then introduced leading
to the description of IPDG. We next define residual estimator and oscillation and
conclude with an instrumental decomposition of the finite element space.

2.1. Notations and Preliminaries. In order to simplify the notation we write
f � g whenever f ≤ Cg with a constant C independent of the discretization parame-
ters and the penalty parameter γ.

2.1.1. The Continuous Problem. Given an initial conforming partition T0 of
Ω, we assume that f ∈ L2(Ω) and

A ∈
∏

T∈T0
W 1

∞(T )d×d is symmetric positive definite
with eigenvalues in [am, aM ], where 0 < am ≤ aM <∞,

(2.1)
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the last condition meaning

am |ξ |2 ≤ Aξ · ξ ≤ aM |ξ |2 , ∀ξ ∈ R
d, a.e. in Ω.

From now on, we shall not specify the dependency on am, aM of the constants ap-
pearing below. The restriction to conforming initial subdivision is made in order to
avoid technicalities, so nonconforming initial subdivisions can be treated similarly.

Invoking the Lax-Milgram Lemma, the above assumptions ensure that the weak
formulation of (1.1), namely

u ∈ H1
0 (Ω) :

∫

Ω

A∇u · ∇v =

∫

Ω

fv, ∀v ∈ H1
0 (Ω) (2.2)

possesses a unique solution. Note that no additional regularity on the solution of (1.1)
is required: arbitrary polyhedral domains and discontinuous A are examined here.

2.1.2. Types of Subdivisions of Ω. The theoretical framework developed here-
after is not restricted to a special type of partitions of Ω. In fact, nonconforming
partitions made of tetrahedrons (triangles when d = 2) or hexahedra (quadrilaterals
when d = 2) are considered for d ≥ 2. We now provide three relevant examples.

Quad Refinements. Elements are quadrilaterals (or hexahedra when d = 3), and
refinement consists of subdividing them into 2d children; see Fig. 2.1 for d = 2.

P

Fig. 2.1. (Left) Quad refinement of a quadrilateral onto four children. (Right) Typical patch
present in subdivisions generated by such refinement procedures allowing hanging nodes. The shaded
elements depict the domain of influence of the proper node P ; see Condition 7 in Section 6.

Red Refinements. We only provide the description of this procedure when d = 2
because it is rather involved otherwise. A triangle is subdivided into four triangles by
joining the midpoints of the element sides. Refer to Fig. 2.2 for an example of such
a refinement together with a typical patch.

Bisections. This refinement procedure is studied in [15] for d = 2 and in [49] for
d > 2; see also the survey [43]. Bisection splits a given element T into two children,
regardless of d, upon connecting the midpoint of an edge with the vertices of T off
such edge. Fig. 2.3 depicts the effect of one bisection along with a typical patch
for d = 2. The specific choice of the refinement edge solely depends on the initial
partition T0 and the bisection rules [49, condition (b) of Section 4].

From now on, we use the three dimensional denomination for elements of the
partitions even when discussing the two dimensional case. Having the aforementioned
examples in mind we assume the following behavior of the refinement procedure.

Condition 1 (Atomic Refinement). The subdivision of an element into children
is called atomic refinement and is dictated exclusively by the initial partition T0 and
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P

Fig. 2.2. (Left) Red-refinement of a triangle onto four children. (Right) Typical patch present in
subdivisions generated by such refinement procedures allowing hanging nodes. The shaded elements
depict the domain of influence of the proper node P ; see Condition 7 in Section 6.

P

Fig. 2.3. (Left) Bisection of one element onto two children. (Right) Typical patch present in
subdivisions generated by such refinement procedures allowing hanging nodes. The shaded elements
depict the domain of influence of the proper node P ; see Condition 7 in Section 6.

the refinement rules. If T ′ is a child of T ∈ T and hT = |T |1/d is the meshsize, then
there exist constants βm ≤ βM < 1 only depending on the dimension d such that

βmhT ≤ hT ′ ≤ βMhT . (2.3)

Moreover, the shape regularity of any refinement T of T0 is determined by that of T0.
The above condition obviously holds for quad- and red-refinement since there is

no ambiguity on how to subdivide an element and shape regularity is preserved. For
bisection, instead, Stevenson’s generalization [49] of the newest vertex rule studied by
Binev et al [15] implies that the refinement edge only depends on the initial labeling
of T0. Moreover, shape regularity is maintained [10, 38, 39, 41, 49, 50].

We now resort to the language of graph theory. Starting from an initial conforming
mesh T0, we represent the refinement procedure by an infinite forest F, called master
forest, whose roots are the elements of T0. For instance, for bisections F is a binary
tree [15, 21] regardless of d whereas for d = 2 quad and red refinements F is a quad-
tree. Let F0 be the initial forest corresponding to T0. If NC is the number of children
created by refining an element, a finite subset F ⊂ F is called forest if F0 ⊂ F and
• all nodes in F \ F0 have a predecessor;
• all nodes in F have NC successors or none.

For bisections NC = 2 whereas for quad refinements NC = 2d. The successors of an
element T are called children.

Under Condition 1, each forest F corresponds to a unique (possibly nonconform-
ing) partitions T (F) of Ω by defining T (F) as the set of leaf nodes; the set of all
such partitions is denoted by T. We also denote by Σ(T ) the set of sides (faces) of a
partition T (F), and use the abbreviation T := T (F), Σ := Σ(T ) when no confusion
is possible. The level (or generation) ℓ(T ) of an element T ∈ T is the number of
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atomic refinements needed to obtain T starting from an element of the initial mesh.
Also we define the meshsize h to be the (piecewise constant) function

h|K = |K|1/d′

∀K ∈ T (d′ = d), K ∈ Σ (d′ = d− 1). (2.4)

If F ⊂ F∗ are two forests, we call T∗ = T (F∗) a refinement of T = T (F) and
denote it as T ≤ T∗. We define RT →T∗ := T \ (T∗ ∩ T ) to be the set of elements of T
which have been refined to obtain T∗.

We now discuss the overlay of two subdivisions. Given two forests F , F∗ ⊂ F we
define F∪F∗ ⊂ F to be the union of the nodes of F and F∗. The resulting subdivision
is called the overlay of T (F) and T (F∗) and is denoted by

T (F) ⊕ T (F∗) := T (F ∪ F∗).

Note that the above construction ensures that T (F)⊕T (F∗) is a refinement of both,
T (F) and T (F∗). Moreover following Lemma 3.7 (second part) in [21] we directly
obtain that under Condition 1 and for TA, TB two refinements of T0

#(TA ⊕ TB) ≤ #TA + #TB − #T0. (2.5)

A condition on the overlay of two refinements of T0, namely Condition 6, is imposed
in Section 5.3 when discussing the optimality of the algorithm.

2.1.3. Discontinuous Finite Elements and Energy Spaces. Let n ≥ 1 be a
given polynomial degree. The basic polynomial space Pn depends on the element type.
If the master element K̂ is a d-simplex, then Pn(K̂) indicates the set of polynomials

of total degree ≤ n. If K̂ is a hypercube instead, then Pn(K̂) stands for the set of
polynomials of degree ≤ n in each variable. Finally, iso-parametric mappings define
the polynomial spaces in each element of T and side of Σ; see [16]. From now on, we
will not specify the dependency on n of the constants appearing below.

We associate a discontinuous finite element space

V(T ) :=
∏

T∈T

P
n(T )

to any partition T of Ω. To shorten notation, we define for any set of elements τ ⊂ T

(u, v)τ :=
∑

T∈τ

(u, v)T ∀u, v ∈ L2(τ).

Likewise, for any set of sides σ ⊂ Σ we let

〈ψ, ζ〉σ :=
∑

S∈σ

〈ψ, ζ〉S ∀ψ, ζ ∈ L2(σ).

When no confusion is possible the same notation is used for functions in L2(τ)d or
L2(σ)d. At the same time, we also define the corresponding “broken norms”

‖v‖τ := (v, v)
1/2
τ , ‖ψ‖σ := 〈ψ, ψ〉1/2

σ .

The broken H1 space

E(T ) :=
∏

T∈T

H1(T ) (2.6)
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is referred to as the energy space. We now recall the mean and jump operators. We
let T± ∈ T satisfy S = T+∩T− ∈ Σ, and let νT± the outer unit normal to T±. Given
v ∈ E(T ) and w ∈ E(T )d, we define

{{v}}S :=
1

2
(v+ + v−), {{w}}S :=

1

2
(w+ + w−),

and

[[v]]S := v+νT+ + v−νT− , [[w]]S := w+ · νT+ + w− · νT− .

By convention, if S ∈ Σ is a boundary side, then we set

{{v}}S = v, {{w}}S = w, [[v]]S = v νΓ,

with νΓ denoting the unit outer normal on Γ. Note that we leave [[w]]S undefined.

Finally, the energy space E(T ), is endowed with the mesh dependent energy norm

|||v|||2T :=
∥∥∥A1/2∇v

∥∥∥
2

T
+ γ

∥∥∥h−1/2 [[v]]
∥∥∥

2

Σ
, ∀v ∈ E(T ). (2.7)

2.2. The Discrete Formulation. We now introduce an alternate expression
aT (·, ·) for the symmetric bilinear form aIP (·, ·), which is well defined on the broken
energy space E(T ) × E(T ) of (2.6), and so on H1

0 (Ω) ×H1
0 (Ω). To this end, we need

the following lifting operator.

2.2.1. Lifting Operator. Let LT : E(T ) → V(T )d be defined by [32]

∫

Ω

LT (v) · AW := 〈[[v]] , {{AW}}〉Σ , ∀W ∈ V(T )d. (2.8)

Note that LT is well defined on the whole broken energy space E(T ), and that L(v) = 0
for all v ∈ H1

0 (Ω). We refer to [12, 5, 18, 46, 33] for more details on the lifting operator.
In particular, we have the following stability result for LT , proved in [46] when A is
the identity. The proof can be easily modified to incorporate the uniformly symmetric
positive definite matrix A in definition (2.8), as done below for completeness.

Lemma 2.1 (Stability of the Lifting Operator). Assume that A satisfies (2.1).
There exists a constant CL only depending on the shape regularity of T such that

‖LT (v)‖L2(Ω) ≤ CL

∥∥∥h−1/2 [[v]]
∥∥∥

Σ
∀v ∈ E(T ).

Proof. We first recall the inverse estimate ‖h1/2W‖L2(∂T ) � ‖W‖L2(T ) for all

W ∈ V(T )d. In view of the positive definiteness assumptions (2.1) on A, this bound
implies the global estimate ‖h1/2 {{AW}} ‖Σ � ‖A1/2W‖L2(Ω). Finally, it suffices to
choose W = LT (v) in (2.8), to obtain

∥∥∥A1/2LT (v)
∥∥∥

2

T
=

∫

Ω

LT (v) · ALT (v) �
∥∥∥h−1/2 [[v]]

∥∥∥
Σ

∥∥∥A1/2LT (v)
∥∥∥
T
.

This yields the desired result.
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2.2.2. The Discrete Problem. Let γ > 0 be the penalty parameter, and let
aT (·, ·) : E(T ) × E(T ) → R and FT (·) : E(T ) → R be defined by

aT (v, w) := (A∇v,∇w)T − (LT (w), A∇v)T

− (LT (v), A∇w)T + γ
(
h−1 [[v]] , [[w]]

)
Σ

(2.9)

and

FT (v) := (f, v)T , (2.10)

where the lifting operator LT : E(T ) → V(T )d is given in (2.8). The discontinuous
Galerkin interior penalty method for problem (2.2) reads: given a subdivision T ∈ T,
f ∈ L2(Ω), and A satisfying (2.1), seek

U ∈ V(T ) : aT (U, V ) = FT (V ), ∀V ∈ V(T ). (2.11)

Note that the definition of the lifting operator (2.8) directly implies that

aT (V,W ) = aIP (V,W ), ∀V,W ∈ V(T ),

where the bilinear form aIP (·, ·) is given in (1.3). In contrast to (1.3), the lifting
operator LT : E(T ) → V(T )d ensures that the bilinear form aT (·, ·) of (2.9) is well
defined on E(T ) × E(T ) and in particular on H1

0 (Ω) × H1
0 (Ω). Unfortunately, this

is achieved at the expense of consistency, namely the solution u ∈ H1
0 (Ω) does not

satisfy (2.11). However, since LT (v) = 0 for all v ∈ H1
0 (Ω), u still satisfies the partial

consistency relation:

aT (u, v) = FT (v), ∀v ∈ H1
0 (Ω). (2.12)

Moreover, elementwise integration by parts yields the error-residual relation

aT (u− U, v) = (R(U), v)T − 〈J(U), v〉Σ + (LT (U), A∇v)T , ∀v ∈ H1
0 (Ω), (2.13)

where the interior and jump residuals, R(V ) and J(V ) for any V ∈ V(T ), are

R(V )|T := f + div (A∇V ) ∀T ∈ T , J(V )|S := [[A∇V ]]S ∀S ∈ Σ. (2.14)

We now review properties of the bilinear form that can be found in [45, Propo-
sition 3.1], [33, Lemmas 4.3 and 4.4], and [8, Proposition 2.11]. We give a proof for
completeness.

Lemma 2.2 (Coercivity and Continuity). Let T be a refinement of T0. There
exist constants γ1, Ccont, Ccoer such that for γ ≥ 1 there holds

aT (v, w) ≤ Ccont |||v|||T |||w|||T ∀v, w ∈ E(T ), (2.15)

and for γ ≥ γ1 there holds

Ccoer |||v|||
2
T ≤ aT (v, v) ∀v ∈ E(T ). (2.16)

Proof. We focus on (2.16), since (2.15) readily follows upon using the Cauchy-
Schwarz inequality for each term in aT (v, w). For v ∈ E(T ) we have

aT (v, v) = (A∇v,∇v)T − 2 (LT (v), A∇v)T + γ
(
h−1 [[v]] , [[v]]

)
Σ
.
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Lemma 2.1, in conjunction with (2.1) and Young inequality, yields

(LT (v), A∇v)T ≤
1

4

∥∥∥A1/2∇v
∥∥∥

2

T
+ C2

LaM

∥∥∥h−1/2 [[v]]
∥∥∥

2

Σ
,

where CL is the constant given in Lemma 2.1. Inserting this into aT (v, v), setting
γ1 = 4C2

LaM , and recalling the definition (2.7), we obtain (2.16) with Ccoer = 1/2.
Continuity (2.15) and coercivity (2.16) of the bilinear form aT (·, ·) ensure the

existence of a solution of problem (2.11) by invoking the Lax-Milgram Lemma.
Remark 2.3 (Penalty Parameter). The parameter γ in (2.9) must be chosen

sufficiently large to ensure coercivity. Actually, we will assume later that γ is even
bigger to prove the Main Results 1 and 2.

2.2.3. Estimator and Oscillation. We use residual based estimators as the
kernel of the ADFEM strategy. In view of (2.14), for any T ∈ T and V ∈ V(T ), let

η2
T (V, T ) := ‖hR(V )‖2

T +
∥∥∥h1/2J(V )

∥∥∥
2

∂T∩Ω
,

where h is defined in (2.4) and, for any subset τ of T , let

η2
T (V, τ) :=

∑

T∈τ

η2
T (V, T ); (2.17)

note that the jump ‖h−1/2 [[V ]] ‖∂T∩Ω is not part of ηT (V, T ). A similar notion is
useful for the matrix A

ηT (A, τ) := max
T∈τ

ηT (A, T ), (2.18)

where

η2
T (A, T ) := ‖h div A‖2

L∞(T ) + ‖A‖2
L∞(T ) .

For m ∈ N \ {0}, we recall that Pm(K) is the space of polynomials of degree ≤ m
on d or (d − 1)-simplices K or polynomials of degree ≤ m in each variable on d or
(d − 1)-quadrilaterals. Moreover, for p ∈ [2,∞] we let P p

m := Id − Πp
m, where Πp

m is
the Lp−best approximation operator onto Pm(K) where K depends on the context.

We define the oscillation for V ∈ V(T ) and T ∈ T to be

osc2
T (V, T ) :=

∥∥h P 2
mR(V )

∥∥2

L2(T )
+

∥∥∥h1/2 P 2
m′J(V )

∥∥∥
2

L2(∂T∩Ω)
,

and

osc2
T (V, τ) :=

∑

T∈τ

osc2
T (V, T ), (2.19)

for any subset τ of T . The specific choice of m and m′ depends on the element type:

• simplices: m = 2n− 2,m′ = 2n− 1
• quadrilaterals: m = 2n− 1,m′ = 2n,

because ∇Pn(K) ⊂ [Pn(K)]d for quadrilaterals instead of ∇Pn(K) ⊂ [Pn−1(K)]d.
Moreover, both choices yield Lemmas 2.4 and 2.5 below. Note that due to the defini-
tion of the L2-projection, the estimator dominates the oscillation, namely

oscT (V, T ) ≤ ηT (V, T ), (2.20)
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for V ∈ V(T ) and T ∈ T . The oscillation counterpart related to A is given by

osc2
T (A, T ) :=

∥∥h P∞
n−1divA

∥∥2

L∞(T )
+ ‖P∞

n A‖2
L∞(T ) , ∀T ∈ T

and

oscT (A, τ) := max
T∈τ

oscT (A, T ), ∀τ ⊂ T .

Both ηT (V, T ) and ηT (A, T ) enjoy the following monotonicity property:

ηT∗(V, T∗) ≤ ηT (V, T ), ηT∗(A, T∗) ≤ ηT (A, T ), ∀T∗ ≥ T . (2.21)

The latter is used to prove the following two lemmas, which are instrumental in
deriving the main results. Even though the lemmas are stated for general meshes T
and T∗ made of tetrahedra or hexahedra, their original proofs in [21] for conforming
simplices are still valid and are thus omitted.

Lemma 2.4 (Estimator Reduction). Assume that the refinement strategy satisfies
Condition 1. Let T , T∗ ∈ T be two refinements of T0 with T ≤ T∗. Let R := RT →T∗

be the set of elements of T refined to obtain T∗ and λ := 1 − βM , where 0 < βM < 1
is the constant appearing in Condition 1. There exists a constant Cer only depending
on the shape regularity of T0 and ηT0

(A, T0) such that for V∗ ∈ V(T∗), V ∈ V(T ) and
for all ζ > 0, there holds

η2
T∗

(V∗, T∗) ≤ (1 + ζ)
(
η2
T (V, T ) − λη2

T (V,R)
)

+ (1 + ζ−1)Cer ‖∇(V∗ − V )‖2
T∗
.

Proof. See [21, Corollary 3.4].

Lemma 2.5 (Perturbation of Oscillation). Let T , T∗ ∈ T with T ≤ T∗. Then
there exists a constant Λ only depending on the shape regularity of T0 and oscT0

(A, T0),
such that for all V ∈ V(T ) and V∗ ∈ V(T∗) there holds

osc2
T (V, T ∩ T∗) ≤ 2osc2

T∗
(V∗, T ∩ T∗) + Λ

∥∥∥A1/2∇(V∗ − V )
∥∥∥

2

T∗

.

Proof. See [21, Corollary 3.5].

2.2.4. Space Decomposition and Continuous Approximation. It turns
out that the decomposition of V(T ) into its continuous and discontinuous components
is useful; see Remark 2.7. Let V0(T ) := V(T ) ∩H1

0 (Ω) be the underlying conforming
finite element space. We introduce the following orthogonal decomposition of V(T )

V(T ) := V
0(T ) ⊕ V

⊥(T ), (2.22)

where V
⊥(T ) is the orthogonal complement of V

0(T ) in V(T ) with respect to the
(discrete) scalar product aT (·, ·).

Remark 2.6 (Partial Galerkin Orthogonality). Invoking the partial consistency
relation (2.12) and using the above definition of V0(T ) we readily deduce

aT (u− U, V 0) = 0, ∀V 0 ∈ V
0(T ), (2.23)

where u ∈ H1
0 (Ω) and U ∈ V(T ) are the solution to (1.1) and (2.11) respectively. This

partial Galerkin orthogonality will be instrumental in our subsequent discussion.
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Remark 2.7 (Continuous Galerkin Solution). Let U ∈ V(T ) be the dG solution of
(2.11). In view of (2.22), we write U = U0+U⊥ where U0 ∈ V0(T ) and U⊥ ∈ V⊥(T ).
We claim that U0 is the corresponding cG solution, i.e.

aT (U0, V 0) = FT (V 0), ∀V 0 ∈ V
0(T ). (2.24)

Indeed, since V0(T ) and V⊥(T ) are orthogonal with respect to aT (·, ·), we obtain for
all V = V 0 + V ⊥ ∈ V(T )

(f, V 0) + (f, V ⊥) = (f, V ) = aT (U, V ) = aT (U0, V 0) + aT (U⊥, V ⊥).

Hence, this implies (2.24).
We now describe local properties of an interpolation operators onto V0(T ). To

this end, let T ∈ T and ω(T ) ⊂ T denotes a discrete set including T so that

diam (ω(T )) ≤ ChT , (2.25)

with C > 0 a constant only depending on the shape regularity of T . Let σ(T ) =
Σ ∩ ω(T ) be the skeleton of T within ω(T ). For latter use, we also define for a set of
element τ ⊂ T

ω(τ) :=
⋃

T∈τ

ω(T ). (2.26)

Condition 2 (Interpolation Operator onto V
0(T )). There exists an interpolation

operator IT : E(T ) → V0(T ) and a constant CI only depending on the shape regularity
of T such that for all T ∈ T the following inequalities hold:

‖v − IT v‖L2(T ) ≤ CI ‖hDv‖L2(ω(T )) ∀v ∈ H1
0 (Ω); (2.27)

and for |a| = 0, 1

‖Da(V − IT V )‖L2(T ) ≤ CI

∥∥∥h
1−2|a |

2 [[V ]]
∥∥∥

L2(σ(T ))
∀V ∈ V(T ), (2.28)

The operator IT is defined locally and preserves V
0(T ) locally.

Remark 2.8 (Level of Non-Conformity). It turns out that the constant CI in
Condition 2 depends on the relative size of the support of the basis functions in V(T )
and V0(T ); see Section 6.

Lemma 2.9 (Estimate on the Nonconforming Component). Let γ1 be given by
Lemma 2.2. If V = V 0 + V ⊥ ∈ V(T ) according to (2.22), and Condition 2 holds,
then there exists a constant C > 0 only depending on shape regularity of T such that
for all γ ≥ max(1, γ1) there holds

∣∣∣∣∣∣V ⊥
∣∣∣∣∣∣

T
≤ Cγ1/2

∥∥∥h−1/2
[[
V ⊥

]]∥∥∥
Σ

= Cγ1/2
∥∥∥h−1/2 [[V ]]

∥∥∥
Σ
. (2.29)

Proof. From the definition (2.22) of V⊥(T ) we obtain

aT (V ⊥, V ⊥) = inf
W 0∈V0(T )

aT (V −W 0, V −W 0).

Hence, choosing W 0 = IT V given in Condition 2, and invoking Lemma 2.2 and (2.28),
yield the desired result.
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3. The Adaptive Procedure. We analyze here an adaptive dG method (AD-
FEM), which consists of loops of the following form with counter k ≥ 0:

SOLVE → ESTIMATE → MARK → REFINE. (3.1)

Let {Tk}k≥0 and {Vk}k≥0 := {V(Tk)}k≥0 be the sequence of meshes and cor-
responding finite element spaces generated by iterating (3.1). We discuss each of
these four procedures in the following subsections. To do so, we drop the subscript k
whenever no confusion is possible.

3.1. The Module SOLVE. Given a mesh T , SOLVE finds the solution U ∈ V

of discrete linear problem (2.11). Due to the symmetry of the bilinear form aT (·, ·),
conjugate gradient methods may be used to solve (2.11). Multilevel preconditioners
are studied in [30, 19] but, for simplicity, we assume that U is computed exactly.

3.2. The Module ESTIMATE. The crucial ingredient of any ADFEM is the
control of the error by the estimator, namely the so-called reliability. The following
Lemma is proved in [36] for formulation (1.3) and in [32] for an hp version of it, both
for simplices. Our proof applies to formulation (2.11).

Lemma 3.1 (First Upper Bound). Let T be any subdivision of Ω and let Condition
2 be valid. Let u ∈ H1

0 (Ω) and U ∈ V(T ) be the corresponding solutions of (2.2) and
(2.11), respectively, and γ1 ≥ 1 be as in Lemma 2.2. Then, for γ ≥ γ1 there holds

aT (u− U, u− U) � η2
T (U, T ) + γ

∥∥∥h−1/2 [[U ]]
∥∥∥

2

Σ
, (3.2)

where the constant hidden in “�” depends on the shape regularity of T .
Proof. To cope with the partial consistency (2.12) of aT (·, ·) we invoke the orthog-

onal decomposition (2.22) and write U = U0 + U⊥ with U0 ∈ V0(T ), U⊥ ∈ V⊥(T ).
The error e := u−U ∈ E(T ) thus splits as e = v−U⊥ with v = u−U0 ∈ H1

0 (Ω) and

aT (e, e) = aT (e, v − IT v) − aT (e, U⊥) (3.3)

because of (2.23). In view of (2.13), the first term reads

aT (e, v− IT v) = (R(U), v − IT v)T −〈J(U), v − IT v〉Σ∩Ω + (LT (U), A∇(v − IT v))T .

Coupling Lemma 2.1 together with assumption (2.1) implies

(LT (U), A∇(v − IT v))T �
∥∥∥h−1/2 [[U ]]

∥∥∥
Σ

∥∥∥A1/2∇(v − IT v)
∥∥∥
T
.

Using the definition (2.17) of ηT (U, T ), and Cauchy-Schwarz inequality, yields

aT (e, v − IT v) �
(
ηT (U, T ) +

∥∥∥h−1/2 [[U ]]
∥∥∥

Σ

)

×
(∥∥∥A1/2∇(v − IT v)

∥∥∥
T

+
∥∥h−1(v − IT v)

∥∥
T

+
∥∥∥h−1/2(v − IT v)

∥∥∥
Σ

)
.

Invoking a scaled trace inequality, assumption (2.1) on A and the approximation
property (2.27) of the interpolation operator IT , implies

∥∥∥A1/2∇(v − IT v)
∥∥∥
T

+
∥∥h−1(v − IT v)

∥∥
T

+
∥∥∥h−1/2(v − IT v)

∥∥∥
Σ

�
∥∥∥A1/2∇v

∥∥∥
T
.
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Since v = e+ U⊥, coercivity (2.16) gives

∥∥∥A1/2∇v
∥∥∥
T
� aT (e, e)1/2 +

∥∥∥A1/2∇U⊥
∥∥∥
T
,

whence

aT (e, v − IT v) �
(
ηT (U, T ) +

∥∥∥h−1/2 [[U ]]
∥∥∥

Σ

)(
aT (e, e)1/2 +

∥∥∥A1/2∇U⊥
∥∥∥
T

)
.

Finally, if C denotes a generic constant independent of γ, then Young inequality and
the definition (2.7) of the energy norm lead to

aT (e, v − IT v) ≤
1

4
a(e, e) +

1

4

∣∣∣∣∣∣∇U⊥
∣∣∣∣∣∣2

T
+ C

(
η2
T (U, T ) +

∥∥∥h−1/2 [[U ]]
∥∥∥

2

Σ

)
.

Concerning the last term of (3.3), Cauchy-Schwarz inequality, together with con-
tinuity (2.15), coercivity (2.16) and Young inequality, implies

aT (e, U⊥) � aT (e, e)1/2
∣∣∣∣∣∣U⊥

∣∣∣∣∣∣
T
≤

1

4
a(e, e) + C

∣∣∣∣∣∣U⊥
∣∣∣∣∣∣2

T
.

Inserting this and the previous estimate into (3.3) leads to

aT (e, e) � η2
T (U, T ) +

∥∥∥h−1/2 [[U ]]
∥∥∥

2

Σ
+

∣∣∣∣∣∣U⊥
∣∣∣∣∣∣2

T
,

Hence for γ ≥ 1, the estimate (3.2) follows from (2.29).
Remark 3.2 (Influence on γ). The upper bound obtained in [37] reads

‖∇(u− U)‖2
T � η2

T (U, T ) + γ2
∥∥∥h−1/2 [[U ]]

∥∥∥
2

Σ
.

Compared to (3.2), we have been able to get a lower power of γ using the decomposition
U = U0 + U⊥ and the interpolation operator of Condition 2.

The residual estimator ηT (U, T ) is exactly the same as for cG [42, 40, 21]. The up-
per bound provided in Lemma 3.1 may suggest to add the jump term γ1/2

∥∥h−1/2 [[U ]]
∥∥

Σ
to ηT (U, T ). This would destroy the monotonicity property (2.21) of the estimator
with respect to the meshsize, which is instrumental for Lemmas 2.4 and 2.5 and thus

for the proof of the main results. However, the jump term γ
∥∥h−1/2 [[U ]]

∥∥2

Σ
on the

right hand side of (3.2) can be bounded by γ−1ηT (U, T )2 for γ sufficiently large as
stated in the following Lemma. We present an alternative proof to the original one in
[37, eq. (3.20)]; see also [2] for a similar result in 2D using linear finite elements.

Lemma 3.3 (Jump Control). Assume that Condition 2 holds on any subdivision
T of Ω. Let U ∈ V(T ) be the solution of (2.11) and γ1 ≥ 1 be as in Lemma 2.2.
There exists a constant γ2 ≥ γ1 such that for γ ≥ γ2, there holds

γ
∥∥∥h−1/2 [[U ]]

∥∥∥
Σ
� ηT (U, T ).

The constant hidden in “�” depends on the shape regularity of T .
Proof. The coercivity property (2.16) of Lemma 2.2 implies the existence of

constants C, γ1 independent of γ and the meshsize h such that for γ ≥ γ1

γ
∥∥∥h−1/2 [[U ]]

∥∥∥
2

Σ
≤ CaT (U − V 0, U − V 0) ∀V 0 ∈ V

0(T ) (3.4)
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because
[[
V 0

]]
= 0. On the other hand, since U solves (2.11) we have

aT (U − V 0, U − V 0) = FT (U − V 0) − aT (V 0, U − V 0). (3.5)

Let us concentrate for the moment on the second term of the right-hand side of
(3.5). The penalty term containing γ on aT (V 0, U −V 0) vanishes because

[[
V 0

]]
= 0.

Therefore, using that L(V 0) ≡ 0 on Ω and rewriting V 0 = U + (V 0 − U), we obtain

aT (V 0, U − V 0) =
(
A∇U,∇(U − V 0)

)
T
−

∥∥∥A1/2∇(U − V 0)
∥∥∥

2

T
−

(
LT (U), A∇V 0

)
T
.

Integration by parts, coupled with definition (2.8) of the lifting operator, leads to

(
A∇U,∇(U − V 0)

)
T

=
(
−div(A∇U), U − V 0

)
T

+
〈
[[A∇U ]] ,

{{
U − V 0

}}〉
Σ∩Ω

+
(
LT (U − V 0), A∇U

)
T
,

whence, employing again that LT (V 0) = 0, we get

aT (V 0, U − V 0) =
(
−div(A∇U), U − V 0

)
T

+
〈
[[A∇U ]] ,

{{
U − V 0

}}〉
Σ∩Ω

−
∥∥∥A1/2∇(U − V 0)

∥∥∥
2

T
+

(
LT (U), A∇(U − V 0)

)
T
.

Inserting this into (3.5), and using (2.17) and Cauchy-Schwarz inequality, yields

aT (U − V 0, U − V 0) ≤ ηT (U, T )
(∥∥h−1(U − V 0)

∥∥
T

+
∥∥∥h−1/2

{{
U − V 0

}}∥∥∥
Σ∩Ω

)

+
∥∥∥A1/2∇(U − V 0)

∥∥∥
2

T
+ ‖LT (U)‖T

∥∥A∇(U − V 0)
∥∥
T
.

Therefore, choosing V 0 = IT U with the interpolation operator IT : E(T ) → V0(T ) of
Condition 2, and invoking the trace inequality and Lemma 2.1, we arrive at

aT (U − V 0, U − V 0) � ηT (U, T )
∥∥∥h−1/2 [[U ]]

∥∥∥
Σ

+
∥∥∥h−1/2 [[U ]]

∥∥∥
2

Σ
,

where we have also used assumption (2.1) on A. Replacing this into (3.4) implies

(γ − C)
∥∥∥h−1/2 [[U ]]

∥∥∥
2

Σ
� η2

T (U, T ).

This concludes the proof upon choosing γ ≥ γ2 = 2C.
As a direct consequence of the previous Lemma, we obtain a simpler upper bound

and a quasi-localized upper bound.
Corollary 3.4 (Second Upper Bound). Let Condition 2 (interpolation oper-

ator) hold and T be any subdivision of Ω. Let u ∈ H1
0 (Ω) and U ∈ V(T ) be the

corresponding solutions of (2.2) and (2.11), respectively. Let γ2 ≥ 1 be as in Lemma
3.3. Then, for γ ≥ γ2 there exists CU > 0 depending on the shape regularity of T
such that

aT (u − U, u− U) ≤ CUη
2
T (U, T ). (3.6)

Proof. This is a direct consequence of Lemmas 3.1 and 3.3.
It is also possible to localize the error made by ADFEM, but in a sense weaker

than [48, 21]; this is the subject of next Lemma. We recall that RT →T∗ stands for
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the set of refined elements of T needed to obtain T∗ (see Section 2.1.2), and let the
enlarged refined set ω(RT →T∗) defined by (2.26).

Lemma 3.5 (Quasi-Localized Upper Bound). Let Condition 2 hold and γ2 be as
in Lemma 3.3. Let T be any subdivision of Ω and T∗ be a refinement of T ∈ T, and
let U ∈ V(T ) and U∗ ∈ V(T∗) be the corresponding solutions of (2.11). Then, there
exists a constant CLU only depending on the shape regularity of T so that

∣∣∣∣∣∣U0
∗ − U

∣∣∣∣∣∣2
T
≤ CLU

(
η2
T (U, ω(RT →T∗)) + γ−1η2

T (U, T )
)
, ∀γ ≥ γ2,

where U∗ = U0
∗ + U⊥

∗ is the orthogonal decomposition (2.22).
Proof. Write U = U0 + U⊥ with U0 ∈ V0(T ), U⊥ ∈ V⊥(T ) according to (2.22).

From Remark 2.7 we recall that U0
∗ ∈ V

0(T∗) satisfies

aT (U0
∗ , V

0) = (f, V 0), ∀V 0 ∈ V
0(T ),

whence

aT (U0
∗ − U, V 0) = 0, ∀V 0 ∈ V

0(T ).

Splitting U0
∗ − U = E0

∗ − U⊥ + V 0, with E0
∗ = U0

∗ − U0 − V 0 and V 0 ∈ V
0(T ), and

using (2.16) for γ ≥ γ1 yields

∣∣∣∣∣∣U0
∗ − U

∣∣∣∣∣∣2
T
� aT (U0

∗ − U,E0
∗) − aT (U0

∗ − U,U⊥).

The last term cannot be localized but its dependence on γ makes it still acceptable.
In fact, combining (2.15) with Lemmas 2.9 and 3.3 gives

|aT (U0
∗ − U,U⊥)| � γ1/2

∥∥∥h−1/2 [[U ]]
∥∥∥

Σ(T )

∣∣∣∣∣∣U0
∗ − U

∣∣∣∣∣∣
T

� γ−1/2ηT (U, T )
∣∣∣∣∣∣U0

∗ − U
∣∣∣∣∣∣

T
. (3.7)

In order to localize aT (U0
∗ − U,E0

∗), we denote by Ωi each connected component of
RT →T∗ and choose V 0 = IT (U0

∗ − U0) where IT is given in Condition 2. Since IT
is locally a projection, the error E0

∗ vanishes outside the set ω(RT →T∗) The error-
residual relation (2.13), with u replaced by U0

∗ , implies

aT (U0
∗ − U,E0

∗) = (R(U), E0
∗)T − 〈J(U), E0

∗〉Σ + (LT (U), A∇E0
∗)T .

For the last term, we invoke Lemmas 2.1 and 3.3 to obtain (recall that γ > 1)

(LT (U), A∇E0
∗)T � γ−1/2ηT (U, T )

∣∣∣∣∣∣U0
∗ − U

∣∣∣∣∣∣
T
.

So that, using (2.27), splitting U0
∗ −U

0 = U0
∗ −U+U⊥, and recalling (2.29), we arrive

at

aT (U0
∗ − U,E0

∗) � ηT (U, ω(RT →T∗))
∣∣∣∣∣∣U0

∗ − U
∣∣∣∣∣∣

T
+ γ−1/2ηT (U, T )

∣∣∣∣∣∣U0
∗ − U

∣∣∣∣∣∣
T
.

Finally, combining this with (3.7) gives the assertion.
The following lemma deals wth efficiency of the estimator. We only sketch its

proof because one can find it in [36, Theorem 3.2] for simplices, except for the treat-
ment of oscillation. For the latter we refer for instance to [42] and [3].



Quasi-Optimality of an ADFEM 17

Lemma 3.6 (Global Lower Bound). Let T be any subdivision of Ω. Let u ∈ H1
0 (Ω)

and U ∈ V(T ) be the solutions of problems (1.1) and (2.11) respectively. Then, there
exists a constant CGL depending only on the shape regularity of T such that

CGLηT (U, T )2 ≤ |||u− U |||2T + osc2
T (U, T ). (3.8)

Proof. We denote by ψT the bubble function with support in T ∈ T . Since
v = ψT Π2

2n−2R(U) ∈ H1
0 (T ), we easily deduce from (2.13) that

(R(U), v)T = (A∇(u − U),∇v)T ,

whence

‖hR(U)‖2
T � |||u− U |||2T +

∥∥hP 2
2n−2R(U)

∥∥2

T
.

Next, we let S := T+ ∩ T− ∈ Σ and assume that S is a full side of both T+ and T−.
Let ω(S) = T+ ∪ T− and ψS be the side bubble function with support in ω(S). Let
Π2

2n−1J be suitably extended to ω(S) and take v = ψSΠ2
2n−1J ∈ H1

0 (ω(S)) in (2.13).
We readily find out the relation

〈J(U), v〉S = (R(U), v)ω(S);T − (A∇(u − U),∇v)ω(S);T ,

which implies

∥∥∥h1/2J(U)
∥∥∥

2

S
� |||u− U |||2ω(S);T + ‖hR(U)‖2

ω(S);T +
∥∥∥h1/2P 2

2n−1J(U)
∥∥∥

2

S
.

We now suppose that S is not a full side of T+. We refine T+ until S becomes a full
side of an element T̃+ ⊂ T+, which decreases the meshsize, and argue as before to
reach the same inequality because T̃+ ∪ T− ⊂ ω(S).

Finally, invoking the finite overlapping property of sets ω(S), and adding over all
elements T ∈ T the estimates for the interior and jump residuals yields (3.8).

3.3. The Module MARK. The element indicators {ηT (U, T )}T∈T are now
used to choose which element to refine. Our marking strategy, originally proposed by
Dörfler [27], consists of selecting a subset M of T satisfying

ηT (U,M) ≥ θηT (U, T ), (3.9)

where 0 < θ < 1 is a given parameter. We insist on marking exclusively by ηT (U, T ),
as in [21], because separate marking by ηT (U, T ) and oscT (U, T ) may be suboptimal
for cG [11, 15, 23, 37, 40, 42]. We refer to [21, Section 6] and [43, Section 9.4] for
a discussion of separate marking for cG. We observe that Hoppe et al [31] may need
separate marking for dG to enforce a contraction of oscillation, which is avoided here.

3.4. The Module REFINE. The procedure T∗ = REFINE(T ,M) refines at
least all the marked elements M ⊂ T , thereby creating a refinement T∗ ≥ T , and
satisfies the following two conditions. The first one relates two successive subdivisions
while the second condition restricts the global behavior of REFINE.

Condition 3 (Properties of REFINE). The procedure T∗ = REFINE (T ,M)
generates T∗ from T by successive application of atomic refinements so that:

a. the atomic refinements satisfy Condition 1;
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b. all elements of M are refined at least ρ times, with ρ ≥ 1 a given integer;
c. no element of T can undergo more than N atomic refinements, with N ≥ 1 a

universal integer, to give rise to elements of T∗;
d. Condition 2 (interpolation operator) is valid on V(T∗).

If T∗ ∈ T∗ and T ∈ T is its ancestor, then Condition 3(c) reads ℓ(T∗) − ℓ(T ) ≤ N .

Condition 4 (Complexity of REFINE). Let T0 be an initial conforming subdivi-
sion. The REFINE procedure produces sequence of subdivisions {Tk}k≥0 such that

#Tk − T0 ≤ Λ0

k−1∑

j=0

#Mj ,

where Λ0 > 0 is a universal constant depending on T0, the dimension d, and the
number of refinements ρ ≥ 1.

Condition 4 is known to hold for refinement by bisections on conforming meshes:
we refer to Binev, Dahmen and Devore [15] for d = 2 and Stevenson [49] for d > 2, as
well as the survey [43, Section 4] for d ≥ 2. The extension to the type of refinements
described in Section 2.1.2 is provided in Section 6.

4. Contraction Property of the ADFEM. The aim of this section is to prove
the Main Result 1. But this requires a few preliminary results.

4.1. Comparison Results. In order to relate two successive energy norms
aTk

(u−Uk, u−Uk), we start with a Lemma monitoring the decrease of side diameters.
Corollary 4.1 (Relation between Consecutive Sides). Let T∗ ≥ T be two

successive subdivisions created by REFINE. If Condition 3 holds, then there exists
a constant C∗ ≥ 1 only depending on shape regularity of T0, βm in (2.3) and N in
Condition 3 such that for all S ∈ Σ

hS ≤ C∗hS∗ , ∀S∗ ∈ Σ∗, S∗ ⊂ S.

Proof. Let S∗ ∈ Σ∗ be a side of T∗ ∈ T∗. Condition 3(c) implies that ℓ(T∗) ≤
ℓ(T ) +N , which coupled with (2.3) yields hT � hT∗ . In view of Condition 3(a) both
T and T∗ are shape regular with constant only depending on T0, whence

hS � hT � hT∗ � hS∗ .

This ends the proof.
Lemma 4.2 (Mesh Perturbation). Let T∗ ≥ T be two successive refinements

created by REFINE. If Condition 3 is valid, then there exists a constant C independent
of γ and the level of refinement such that for all 0 < ǫ < 1 there holds

aT∗(v, v) ≤ (1 + ǫ)aT (v, v) +
C

ǫ
γ

∥∥∥h−1/2 [[v]]
∥∥∥

2

Σ
∀v ∈ E(T ). (4.1)

Proof. Since (A∇v,∇v)T = (A∇v,∇v)T∗
for v ∈ E(T ), we readily have

aT∗(v, v) = aT (v, v) + 2 (LT v,A∇v)T − 2 (LT∗v,A∇v)T∗

− γ
∥∥∥h−1/2 [[v]]

∥∥∥
2

Σ
+ γ

∥∥∥h−1/2 [[v]]
∥∥∥

2

Σ
.
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Using Lemma 2.1, coercivity (2.16) and Young inequality, we obtain

(LT v,A∇v)T ≤ C
∥∥∥h−1/2 [[v]]

∥∥∥
Σ
aT (v, v)1/2 ≤

ǫ

4
aT (v, v) +

C

ǫ

∥∥∥h−1/2 [[v]]
∥∥∥

2

Σ
,

with C > 0 independent of γ. A similar argument, but also employing Corollary 4.1
to relate the size of sides in Σ∗ to those of Σ, leads to

(LT∗v,A∇v)T∗
≤
ǫ

4
aT (v, v) +

C

ǫ

∥∥∥h−1/2 [[v]]
∥∥∥

2

Σ
.

We finally apply again Corollary 4.1, this time to write
∥∥h−1/2 [[v]]

∥∥
Σ∗

�
∥∥h−1/2 [[v]]

∥∥
Σ
.

Collecting these estimates gives (4.1).
Corollary 4.3 (Comparison of Solutions). Let T∗ ≥ T be two successive refine-

ments created by REFINE, and let U∗ ∈ V(T∗) and U ∈ V(T ) be the corresponding
discontinuous Galerkin solutions of (2.11). Let u ∈ H1

0 (Ω) be the solution of (2.2).
If Condition 3 is valid and γ2 is as in Lemma 3.3, then there exists a constant Ccomp,
independent of γ and the meshsize, such that for all γ ≥ γ2 and all 0 < ǫ < 1

aT∗(u− U∗, u− U∗) ≤ (1 + ǫ)aT (u− U, u− U)

−
Ccoer

2
‖∇(U∗ − U)‖2

T∗
+
Ccomp

ǫγ

(
η2
T (U, T ) + η2

T∗
(U∗, T∗)

)
.

Proof. We recall that Galerkin orthogonality does not hold in the whole energy
space E(T ). We thus invoke the partial orthogonality (2.23) to write

aT∗(u− U∗, u− U∗)

= aT∗(u− U∗ − U0 + U0
∗ , u− U∗ − U0 + U0

∗ ) − aT∗(U
0
∗ − U0, U0

∗ − U0).

Rewriting U∗ + U0 − U0
∗ = U − U⊥ + U⊥

∗ , and employing the coercivity (2.16) and
the continuity (2.15), it follows that

aT∗(u− U∗, u− U∗) ≤ aT∗(u− U, u− U) − Ccoer

∥∥∇(U0
∗ − U0)

∥∥2

T∗

+ Ccont

∣∣∣∣∣∣U⊥
∗ − U⊥

∣∣∣∣∣∣2
T∗

+ 2C
1/2
contaT∗(u− U, u− U)1/2

∣∣∣∣∣∣U⊥ − U⊥
∗

∣∣∣∣∣∣
T∗
.

(4.2)

Since U0 = U − U⊥, U0
∗ = U∗ − U⊥

∗ , the reversed triangle inequality yields

∥∥∇(U0
∗ − U0)

∥∥2

T∗
≥

1

2
‖∇(U∗ − U)‖2

T∗
−

∥∥∇(U⊥
∗ − U⊥)

∥∥2

T∗
.

Plugging the above relation into (4.2), and employing Young’s inequality, leads to

aT∗(u − U∗, u− U∗) ≤ (1 + ǫ)aT∗(u− U, u− U)

−
Ccoer

2
‖∇(U∗ − U)‖2

T∗
+ C

(
1 +

1

ǫ

) ∣∣∣∣∣∣U⊥
∗ − U⊥

∣∣∣∣∣∣2
T∗
,

where 0 < ǫ < 1. The triangle inequality, in conjunction with (2.29), gives

∣∣∣∣∣∣U⊥
∗ − U⊥

∣∣∣∣∣∣2
T∗

� γ
∥∥∥h−1/2

[[
U⊥
∗

]]∥∥∥
2

Σ∗

+ γ
∥∥∥h−1/2

[[
U⊥

]]∥∥∥
2

Σ∗

.
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Since the sides of Σ and Σ∗ are comparable, according to Corollary 4.1, we can replace

the last term by γ
∥∥h−1/2

[[
U⊥

]]∥∥2

Σ
. Invoking Lemma 3.3 with γ ≥ γ2 yields

∣∣∣∣∣∣U⊥
∗ − U⊥

∣∣∣∣∣∣2
T∗

� γ−1η2
T∗

(U∗, T∗) + γ−1η2
T (U, T ).

Finally, applying Lemma 4.2 with v = u− U ∈ E(T ) concludes the proof.
Corollary 4.3 is the dG version of the orthogonality relation between two cG

solutions (Pythagoras theorem). This is crucial to prove a contraction property [21].

4.2. Main Result 1: Contraction Property. We are now in a position to
prove the Main Result 1 announced in the Introduction.

Theorem 4.4 (Contraction Property). Let REFINE satisfy Condition 3. Let
T0 be the initial conforming subdivision and Tk ≤ Tk+1 be two consecutive meshes
obtained from T0 after k ≥ 0 iterations of the adaptive algorithm (3.1). Let Uk ∈
V(Tk), Uk+1 ∈ V(Tk+1) be the corresponding finite element solutions of (2.11), and
u ∈ H1

0 (Ω) be the solution of (2.2), with f ∈ L2(Ω) and A satisfying (2.1).
Then there exist three constants γm ≥ 0, δ > 0 and α < 1 depending solely on

the shape regularity of T0, the marking parameter 0 < θ < 1, the matrix A and the
polynomial order n of the finite elements method, such that for γ ≥ γm, there holds

aTk+1
(u − Uk+1, u− Uk+1) + δη2

Tk+1
(Uk+1, Tk+1)

≤ α
(
aTk

(u− Uk, u− Uk) + δη2
Tk

(Uk, Tk)
)
.

Proof. To simplify the notation we write Ek := u−Uk ∈ E(Tk) ak(·, ·) := aTk
(·, ·),

and ηk := ηTk
(Uk, Tk) for the k-th error, bilinear form and estimator.

Using Corollary 4.3 and Lemma 2.4 yields, for any ζ > 0,

ak+1(Ek+1, Ek+1) +

(
δ −

Ccomp

ǫγ

)
η2

k+1 ≤ (1 + ǫ)ak(Ek, Ek)

+

(
Cer(1 + ζ−1)δ −

Ccoer

2

)
‖∇(Uk − Uk+1)‖

2
Tk+1

+ (1 + ζ)δ
(
η2

k − λη2
Tk

(Uk,Rk)
)

+
Ccomp

ǫγ
η2

k.

(4.3)

We choose the parameter δ to eliminate the term ‖∇(Uk+1 − Uk)‖Tk+1
in the right

hand side of (4.3), namely,

Cer(1 + ζ−1)δ =
Ccoer

2
i.e. (1 + ζ)δ =

ζCcoer

2Cer
. (4.4)

Moreover, Dörfler marking (3.9) implies that −η2
Tk

(Uk,Rk) ≤ −θ2η2
k, and combined

with (4.4) leads to

ak+1(Ek+1, Ek+1) +

(
δ −

Ccomp

ǫγ

)
η2

k+1 ≤ (1 + ǫ)ak(Ek, Ek) −
(1 + ζ)δθ2λ

2
η2

k

+
(
(1 + ζ)δ −

(1 + ζ)δθ2λ

2
+
Ccomp

ǫγ

)
η2

k.

The upper bound (3.6) together with (4.4), yields

ak+1(Ek+1, Ek+1) + δ

(
1 −

Ccomp

δǫγ

)
η2

k+1 ≤ Λ1ak(Ek, Ek) + δ

(
Λ2 +

Ccomp

δǫγ

)
η2

k,
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with

Λ1 :=

(
1 + ǫ−

Ccoer

4CUCer
ζθ2λ

)
and Λ2 := (1 + ζ)

(
1 −

θ2λ

2

)
.

We now choose ǫ = Ccoer

8CUCer
ζθ2λ and ζ > 0 so that Λ2 = 1− θ2λ

4 , whence max (Λ1,Λ2) <
1. Finally, on selecting γ ≥ γ2 sufficiently large so that

1 −
Ccomp

δǫγ
≥ Λ2 +

Ccomp

δǫγ
,

the assertion follows immediately.
Remark 4.5 (Geometric Convergence). Combining the coercivity (2.16) with the

contraction property given by Theorem 4.4 yields |||u− Uk|||Tk
≤ Ξ0α

k
2 , with constant

Ξ2
0 := |||u− U0|||

2
T0

+ δη2
T0

(U0, T0). Consequently, we get the geometric decay of jumps

∥∥∥h−1/2 [[Uk]]
∥∥∥

Σk

≤ Ξ0α
k
2 .

5. Quasi-Optimal Cardinality of the ADFEM. The aim of this section is
to prove the Main Result 2, namely the asymptotic estimate for the total error

|||u− Uk|||Tk
+ oscTk

(Uk, Tk) � #Tk
−s,

provided (u, f, A) ∈ As, the definition of approximation class As being the subject of
next subsection. We prove in Proposition 5.2 that the class As is the same whether we
employ continuous or discontinuous finite elements, provided that Condition 2 holds.

The key idea to relate a finite element solution-mesh pair (U, T ) with an optimal
one (U∗, T∗), which achieves a prescribed total error reduction and induces a Dörfler
marking, is due to Stevenson for cG and the Laplace operator [48]. We refer to Cascón
et al [21], as well as the survey [43, Section 9], for an extension of cG to symmetric
operators with variable coefficients such as (1.1). Two new difficulties arise in the
discontinuous Galerkin context. Since the meshes T , T∗ are a priori unrelated, an
overlay does not guarantee a fixed level of refinement and, thus, a way to compare
the local meshsizes. This first difficulty results in the lack of control of jumps which
contain negative powers of meshsize.

To overcome these difficulties, we resort to continuous finite elements and the
equivalence of classes in Proposition 5.2. We prove an estimate for the number of
marked elements in Lemma 5.5 and combine it with the contraction property of The-
orem 4.4 to derive a quasi-optimal convergence rate in Theorem 5.7.

5.1. The Total Error. We recall that the decisions of ADFEM are based on the
estimator ηT (U, T ) via MARK. The global lower bound (3.8) and the control (2.20)
of oscillation by ηT (U, T ) give the equivalence of ηT (U, T ) and the total error :

ηT (U, T ) ≈ |||u− U |||T + oscT (U, T ).

Therefore, any decay rate delivered by ADFEM must hinge on the total error and
any suitable definition of approximation classes should reflect this fact. Invoking the
upper bound (3.6) and the coercivity (2.16) yields the equivalence

|||u− U |||T + ηT (U, T ) ≈ |||u− U |||T + oscT (U, T ), (5.1)
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which, in view of the contraction property of Theorem 4.4, implies that ADFEM also
reduces the total error. Moreover, the following lemma ensures that the dG solution
is quasi-optimal with respect to the total error, and extends a similar result in [21]
for cG; see also [43, Section 9].

Lemma 5.1 (Quasi-Optimality of the Total Error). Assume that Condition 2

holds. Let u ∈ H1
0 (Ω) and U ∈ V(T ) be the solutions of problems (1.1) and (2.11)

respectively, with T ∈ T. Then there exist constants COPT and γO only depending on
the shape regularity of T and on the data such that for γ ≥ γO the following holds

|||u− U |||2T + osc2
T (U, T ) ≤ COPT inf

V ∈V(T )

(
|||u− V |||2T + osc2

T (V, T )
)
. (5.2)

Proof. We use the decomposition (2.22), namely U = U0 +U⊥ and V = V 0 +V ⊥,
where U0, V 0 ∈ V0(T ) and U⊥, V ⊥ ∈ V⊥(T ). Let us start with the energy norm and
invoke the coercivity (2.16) and partial consistency (2.23) to obtain

|||u− U |||2T � aT (u− U, u− U) = aT (u− U, u− U0) − aT (u − U,U⊥)

� aT (u− U, u− V ) − aT (u− U,U⊥) + aT (u− U, V ⊥).

Hence, the continuity (2.15) and coercivity (2.16) yield

|||u− U |||2T � |||u− U |||T
(
|||u− V |||T +

∣∣∣∣∣∣V ⊥
∣∣∣∣∣∣

T
+

∣∣∣∣∣∣U⊥
∣∣∣∣∣∣

T

)
.

The nonconforming parts U⊥ and V ⊥ are controlled by their respective jumps, ac-
cording to (2.29); thus

∣∣∣∣∣∣V ⊥
∣∣∣∣∣∣

T
� |||u− V |||T . The jumps of U are in turn controlled

by the estimator via Lemma 3.3 for γ ≥ γ2, whence
∣∣∣∣∣∣U⊥

∣∣∣∣∣∣
T

� γ−1/2ηT (U, T ) and
the global lower bound (3.8) leads to

|||u− U |||2T � |||u− V |||2T + γ−1
(
|||u− U |||2T + osc2

T (U, T )
)

; (5.3)

note the remaining factor γ−1 on the right-hand side. It remains to estimate the
oscillation term in (5.2). Lemma 2.5 (for T∗ ≡ T ) and the triangle inequality imply

osc2
T (U, T ) � osc2

T (V, T ) + |||u− V |||2T + |||u− U |||2T .

Therefore, using (5.3) we arrive at

osc2
T (U, T ) � osc2

T (V, T ) + |||u− V |||2T + γ−1
(
|||u− U |||2T + osc2

T (U, T )
)
.

Adding this to (5.3), and choosing γ ≥ γ2 sufficiently large, completes the proof.

5.2. Approximation Classes. We now introduce the notion of approximation
classes; see [21] and [43, Section 9] for cG. Let N be an integer bigger than #T0 and
TN ⊂ T be the set of subdivisions with a number of elements not exceeding N

TN := {T (F ) : F ⊂ F, #T ≤ N} .

The best approximation to the total error in the set TN is given by the quantity

σ(N ;u, f, A) := inf
T ∈TN

inf
V ∈V(T )

(
|||u− V |||2T + osc2

T (V, T )
)1/2

,
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which gives rise to the definition of approximation class As for s > 0

As :=

{
(u, f, A) : |u, f, A |s := sup

N≥#T0

(Nsσ(N ;u, f, A)) <∞

}
.

We point out the restriction s ≤ n/d since As = ∅ for s > n/d; see for instance [26].
As it happens for cG, the class As for dG is not a typical approximation class for
functions, as known from approximation theory, because of the nonlinear interaction
between the data (f,A) and the solution U through the oscillation term oscT (U, T ).

We also define the counterparts for continuous finite element approximations

σ0(N ;u, f, A) := inf
T ∈TN

inf
V 0∈V0(T )

(∣∣∣∣∣∣u− V 0
∣∣∣∣∣∣2

T
+ osc2

T (V 0, T )
)1/2

,

and

A
0
s :=

{
(u, f, A) : |u, f, A |0s := sup

N≥#T0

(Nsσ0(N ;u, f, A)) <∞

}
.

We prove next the central result of this section, that both continuous and discontin-
uous finite elements deliver the same asymptotic rate over admissible subdivisions.

Proposition 5.2 (Equivalence of Classes). If Condition 2 holds, then for 0 <
s ≤ n/d we have A0

s ≡ As. Moreover, total errors are equivalent on the same mesh.
Proof. The inclusion A0

s ⊂ As is straightforward because for (u, f, A) ∈ A0
s

|u, f, A|s ≤ |u, f, A|0s.

We now prove As ⊂ A0
s. To this end, let (u, f, A) ∈ As and, for N > #T0, let T∗ ∈ TN ,

V∗ ∈ V(T∗) be so that

|||u− V∗|||T∗
+ oscT∗(V∗, T∗) = inf

T ∈TN

inf
V ∈V(T )

(
|||u− V |||T + oscT (V, T )

)
.

We prove that (u, f, A) ∈ A
0
s upon showing that IT∗V∗ ∈ V

0(T∗) satisfies

|||u− IT∗V∗|||T∗
+ oscT∗(IT∗V∗, T∗) � N−s, (5.4)

where the interpolation operator IT∗ on V0(T∗) is given by Condition 2. Using triangle
inequality we obtain

|||u− IT∗V∗|||T∗
≤

∥∥∥A1/2∇(u − V∗)
∥∥∥
T∗

+
∥∥∥A1/2∇(V∗ − IT∗V∗)

∥∥∥
T∗

.

Interpolation estimate (2.28) yields
∥∥∥A1/2∇(V∗ − IT∗V∗)

∥∥∥
T∗

�
∥∥∥h−1/2 [[V∗]]

∥∥∥
Σ∗

≤ |||u− V∗|||T∗
, (5.5)

whence

|||u− IT∗V∗|||T∗
� |||u− V∗|||T∗

. (5.6)

The oscillation term is treated similarly. In fact, Lemma 2.5 and (5.5) imply

oscT∗(IT∗V∗, T∗) � oscT∗(V∗, T∗) + |||u− V∗|||T∗
.

Coupling this estimate with (5.6), we end up with

|||u− IT∗V∗|||T∗
+ oscT∗(IT∗V∗, T∗) � |||u− V∗|||T∗

+ oscT∗(V∗, T∗).

Since (u, f, A) ∈ As, this implies (5.4) and so that (u, f, A) ∈ A0
s, as desired.
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5.3. Cardinality of Mk. In order to derive a quasi-optimal decay of the total
error |||u− Uk|||Tk

+ oscTk
(Uk, Tk), we assume the following condition regarding the

parameters (θ, γ) and the marking procedure MARK. Let

γ∗ := max

(
CLU (2 + Λ)

CGL
, γm, γO

)
, θ∗(γ) :=

(
CGL − CLUγ

−1(2 + Λ)

1 + CLU (2 + Λ)

)1/2

for γ > γ∗, where Λ is given by Lemma 2.5, γm by Theorem 4.4 and γO by Lemma
5.1. Notice that γ > γ∗ yields θ∗ > 0 and CGL < CLU in turn implies that θ∗ < 1.

Condition 5 (Assumptions about MARK). Let the set of marked elements Mk

and marking parameter θ satisfy

Mk has minimal cardinality and θ ∈ (0, θ∗).

In order to simplify the notation, we let 0 < µ < 1/2 be defined by

µ(γ, θ) :=
CGL − CLUγ

−1(2 + Λ)

2CGL

(
1 −

θ2

θ2∗

)
, ∀γ > γ∗, 0 < θ < θ∗.

Remark 5.3 (Approximate Sort). Condition 5 can be relaxed to

#Mk ≤ C#Mk, and θ ∈ (0, θ∗),

where Mk is a set with minimal cardinality and C is a constant independent of k. This
might be useful to improve upon the O(#Tk log(#Tk)) operations required to perform
an exact sort.

Lemma 5.4 (Optimal Marking). Let Condition 3 (properties of REFINE) hold.
Let T ≥ T0 be a refinement of T0 obtained by algorithm (3.1), let T∗ ≥ T be an
admissible refinement of T , and let U ∈ V(T ), U∗ ∈ V(T∗) be the corresponding
solutions of (2.11). In addition, assume that

∣∣∣∣∣∣u− U0
∗

∣∣∣∣∣∣2
T∗

+ osc2
T∗

(U0
∗ , T∗) ≤ µ

(
|||u− U |||2T + osc2

T (U, T )
)
, (5.7)

where U∗ := U0
∗ + U⊥

∗ according to the decomposition (2.22). Then, for γ > γ∗ and
θ ∈ (0, θ∗(γ)), the set ω(RT →T∗), see (2.26), satisfies a Dörfler marking property

ηT (U, ω(RT →T∗)) ≥ θηT (U, T ).

Proof. Since 0 < µ < 1
2 , the lower bound (3.8) in conjunction with (5.7) implies

(1− 2µ)CGLη
2
T (U, T ) ≤ |||u− U |||2T − 2

∣∣∣∣∣∣u− U0
∗

∣∣∣∣∣∣2
T∗

+ osc2
T (U, T )− 2osc2

T∗
(U0

∗ , T∗).

We estimate the terms involving the energy norm and the oscillation separately. For
the former, the triangle inequality and Lemma 3.5 yield

|||u− U |||2T − 2
∣∣∣∣∣∣u− U0

∗

∣∣∣∣∣∣2
T 0
∗
≤ 2

∣∣∣∣∣∣U − U0
∗

∣∣∣∣∣∣2
T

≤ 2CLUη
2
T (U, ω(RT →T∗)) + 2CLUγ

−1η2
T (U, T ).

For the latter we distinguish the case whether an element belongs to ω(RT →T∗) or
not

osc2
T (U, T ) = osc2

T (U, ω(RT →T∗)) + osc2
T (U, T \ ω(RT →T∗)).
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Since the estimator dominates the oscillation elementwise (see (2.20)), we obtain

osc2
T (U, ω(RT →T∗)) ≤ η2

T (U, ω(RT →T∗)),

while Lemma 2.5 gives

osc2
T (U, T \ ω(RT →T∗)) − 2osc2

T∗
(U0

∗ , T∗) ≤ Λ
∥∥∥A1/2∇(U0

∗ − U)
∥∥∥

2

T
.

Collecting these estimates, and using the localized upper bound of Lemma 3.5, we get

(1 − 2µ)CGLη
2
T (U, T ) ≤ (1 + CLU (2 + Λ))η2

T (U, ω(RT →T∗)) + CLUγ
−1(2 + Λ)η2

T (U, T ),

whence, employing the definitions of θ∗ and µ, results in

η2
T (U, ω(RT →T∗)) ≥

(1 − 2µ)CGL − CLUγ
−1(2 + Λ)

1 + CLU (2 + Λ)
η2
T (U, T ) = θ2η2

T (U, T ).

This is the desired estimate.
In order to estimate the cardinality of Mk we need an additional condition on

the overlays defined in Section 2.1.2.

Condition 6 (Mesh Overlay). Let TA and TB be such that Condition 2 (inter-
polation operator) holds. Then, condition 2 holds on TA ⊕ TB .

Lemma 5.5 (Cardinality of Mk). Let Conditions 3, 4, 5 and 6 be valid. Let
u ∈ H1

0 (Ω) be the solution of (1.1) and Uk ∈ V(Tk) be the k-th solution of (2.11)
generated by (3.1). If (u, f, A) ∈ As, then the following estimate holds for γ > γ∗

#Mk ≤ Cµ(γ, θ)−
1
2s |u, f, A|

1
s
s C

1
2s

OPT

{
|||u− Uk|||

2
Tk

+ osc2
Tk

(Uk, Tk)
}− 1

2s

,

where COPT is the constant in Lemma 5.1 and C is a constant independent of k.
Proof. Set

ǫ2 := µC−1
OPT

(
|||u− Uk|||

2
Tk

+ osc2
Tk

(Uk, Tk)
)
. (5.8)

Since (u, f, A) ∈ As ≡ A0
s by Proposition 5.2, there exists (V 0

ǫ , Tǫ) with V 0
ǫ ∈

V0(Tǫ), Tǫ ∈ T so that

#Tǫ � |u, f, A|1/s
s ǫ−1/s,

∣∣∣∣∣∣u− V 0
ǫ

∣∣∣∣∣∣2
Tǫ

+ osc2
Tǫ

(V 0
ǫ , Tǫ) ≤ ǫ2. (5.9)

In order to relate (Uk, Tk) to (V 0
ǫ , Tǫ), we overlay Tk and Tǫ

T∗ := Tk ⊕ Tǫ.

Let U∗ ∈ V(T∗) be the solution to (2.11) and use the orthogonal decomposition (2.22)
to write U∗ = U0

∗ + U⊥
∗ . In view of Remark 2.7, U0

∗ ∈ V0(T∗) satisfies

aT∗(U
0
∗ ,W

0) =
(
f,W 0

)
T∗
, ∀W 0 ∈ V

0(T∗).

We proceed as in [21] to show that there is a reduction of the total error between
U0
∗ and V 0

ǫ . Since Condition 2 (interpolation operator) holds for T∗, via Condition 6

(mesh overlay), we apply Lemma 5.1 for continuous solutions on T∗ ≥ Tǫ to infer that

∣∣∣∣∣∣u− U0
∗

∣∣∣∣∣∣2
T∗

+ osc2
T∗

(U0
∗ , T∗) ≤ COPT

{∣∣∣∣∣∣u− V 0
ǫ

∣∣∣∣∣∣2
Tǫ

+ osc2
Tǫ

(Vǫ, Tǫ)
}

≤ COPT ǫ
2 = µ

{
|||u− Uk|||

2
Tk

+ osc2
Tk

(Uk, Tk)
}
.
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This, combined with Lemma 5.4, implies that ω(RTk→T∗) verifies the Dörfler property

ηTk
(Uk, ω(RTk→T∗)) ≥ θηTk

(Uk, Tk), ∀θ ∈ (0, θ∗).

Since MARK selects a minimal set Mk ⊂ Tk, according to Condition 5 (assumptions
about MARK), we deduce

#Mk ≤ #ω(RTk→T∗) � #RTk→T∗ ,

where we used (2.25) and shape regularity of T (Condition 3) to get the last estimate.
Gathering the estimates above and using (2.5) (cardinality of mesh overlay) we obtain

#Mk � #RTk→T∗ ≤ #T∗ − #Tk ≤ #Tǫ.

Finally, combining this with (5.9) and (5.8), we reach the desired result.

Remark 5.6 (Exploiting the Equivalence of Classes). The negative power of
the local meshsize h, present in the energy norm |||·|||T , is a source of difficulties
when comparing discrete discontinuous functions on two different meshes. To by-pass
this issue, we resort to the equivalence As ≡ A0

s and the continuous Ritz-Galerkin
projection.

5.4. Main Result 2: Quasi-Optimal Rate of Convergence. We are now
ready to prove the second main result announced in the introduction.

Theorem 5.7 (Quasi-Optimality). Let Conditions 3, 4, 5 and 6 be valid. Let T0

be the initial conforming subdivision. Let f ∈ L2(Ω), A satisfy (2.1) and u ∈ H1
0 (Ω)

be the solution of (1.1). Let {Tk,V(Tk), Uk}k≥0 be the sequence of meshes, finite
element spaces, and discrete solutions generated by ADFEM. Let γ∗ and θ∗ be given
as in Section 5.3. If γ > γ∗, θ ∈ (0, θ∗(γ)) and (u, f, A) ∈ As, then there holds

{
|||u− Uk|||

2
Tk

+ osc2
Tk

(Uk, Tk)
}1/2

≤ C#T −s
k ,

where C is a constant only depending on α, n, T0, A, θ, s, γ and |u, f, A|s.

Proof. Condition 4 and Lemma 5.5 yield

#Tk − #T0 �
k−1∑

j=0

#Mj �
k−1∑

j=0

{
|||u− Uj|||

2
Tj

+ osc2
Tj

(Uj , Tj)
}− 1

2s

�
k−1∑

j=0

{
|||u− Uj|||

2
Tj

+ η2
Tj

(Uj , Tj)
}− 1

2s

,

where we have used (5.1). The contraction property of Theorem 4.4 implies

#Tk − #T0 �
{
|||u− Uk|||

2
Tk

+ η2
Tk

(Uk, Tk)
}− 1

2s
k−1∑

j=1

αj/s.

Since α < 1 we obtain
∑k−1

j=1 α
j/s ≤ 1

1−α1/s . Finally, invoking again (5.1) and noticing

that #Tk ≤ C(#Tk − #T0), with C > 0 independent of k, completes the proof.
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6. Nonconforming Hexahedral and Tetrahedral Meshes. In this section
we briefly discuss under what additional assumptions, the standard refinement pro-
cedures described in Section 2.1.2 satisfy Conditions 3, 4 and 6, thereby yielding the
quasi-optimal rate of convergence of Theorem 5.7. In particular, we shall see that
we need to restrict the ”level of incompatibility”, which corresponds to the ”level of
noncomformity” for refinement by bisection on tetrahedra.

We consider a generalization of the K-meshes introduced by Babuška and Miller
[6] to examine both hexahedral and tetrahedral meshes at once; see Section 6.1. We
discuss in Section 6.2 a REFINE procedure ensuring that the above mesh restrictions
are met. Finally, we verify Conditions 3, 4, 6 for hexahedral meshes in Section 6.3 and
for tetrahedral meshes in 6.5; red refinement of tetrahedra is somewhat in between
these two classes and is only mentioned in Section 6.4. As a by product, we obtain

convergence and optimal cardinality of continuous Galerkin adaptive methods
on nonconforming meshes (see Section 7),

which does not seem to be available in the literature. To avoid technicalities, we
restrict our discussion to polynomial degree one but the arguments extend to higher
polynomial degree.

6.1. Domain of Influence and Admissible Meshes. We start by defining a
basis of V0(T ), leading to the notion of domain of influence and admissible meshes.

Among the set of vertices P of T , let P0 be the conforming ones and N0 = #P0.
Let P ∈ P0 be a conforming node of T . We construct a continuous piecewise linear
basis function ψP over T recursively as in [6, Theorem 1.3.3]. We first rearrange the
elements of T by level ℓ(T1) ≤ ℓ(T2) ≤ ... ≤ ℓ(TN ). Suppose that ψP has been defined
for each T ∈ T such that l(T ) < n. If T ∈ T with l(T ′) = n and Q is a vertex of T ,
we define ψP on T as follows:

• if Q is a conforming node, then set ψP (Q) = 1 ifQ = P and ψP (Q) = 0 otherwise;
• if Q is a hanging node, then Q belongs to an edge E contained in T ′ ∈ T with
ℓ(T ′) < n and set ψp(Q)|T = ψp(Q)|T ′ .

Note that this definition is independent of the choice of T ′ since, by construction, ψP

is continuous across interelements of lower level. Finally we observe that {ψP }P∈P0

is a basis of V
0(T ) because any V ∈ V

0(T ) can be uniquely written as

V =
∑

P∈P0

V (P )ψP . (6.1)

The domain of influence of P is defined by DT (P ) = supp(ψP ). Examples are
depicted in Figs 2.3, 2.1 and 2.2. Moreover, we introduce the set

ω(T ) :=
⋃

P : DT (P )∩T 6=∅

DT (P ) ∀T ∈ T . (6.2)

We say that a mesh T is admissible, if Condition 7 holds.
Condition 7 (Admissible Subdivision). There exists a constant C uniform on

the level of discretization of T such that for any conforming node P ∈ P0 of T

diam(DT (P )) ≤ ChT , ∀T ∈ T , T ∈ DT (P ). (6.3)

Condition 7 implies

||ψP ||L2(DT (P )) � h
d/2
T ∀T ⊂ DT (P ), (6.4)
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which will be instrumental for contructing interpolation operators in Lemmas 6.6
and 6.9. For conforming meshes we find that DT (P ) = ∪T∋PT so that (6.3) always
holds with a constant only depending on the shape regularity of T . The situation is
strikingly different for nonconforming meshes: the number of hanging nodes per edge
is obviously restricted by Condition 7 and the shape regularity of T (see Figs. 2.1-
2.2). In addition, Condition 7 also restricts the maximum of level of incompatibility
as illustrated in Figs. 2.1, 2.3 and 2.2: each side contained in the depicted patch has
at most two hanging node and yet element levels differ up to 4. With the same pattern
it is possible to reach any arbitrarily large level of nonconformity while keeping one
hanging node per side for bisection and red refinements and two hanging nodes per
side for quad refinement.

We now briefly discuss how to enforce Condition 7. Let T ∈ M be an element of
T marked for refinement by MARK. Each element T ∈ M has a tag r(T ), initially
set to the desired number of refinements ρ ≥ 1, and both T and r(T ) are updated as
T is refined. Since subdivision of T may give rise to further refinement to keep the
mesh admissible, the local procedure

[T∗,M∗] = MAKE ADMISSIBLE(T ,M, T )

subdivides T once, and perhaps other elements to enforce Condition 7 if necessary,
and updates (T ,M) to (T∗,M∗); we give details in Sections 6.3 and 6.5 below. The
mesh T∗ ≥ T is the smallest refinement of T which is admissible, whereas M∗ is
obtained from M as follows: every time an element T is subdivided, T is removed
from M and, provided that r(T ) ≥ 2, replaced by its children who inherit the tag
r(T ) − 1. This procedure must be iterated to perform ρ subdivisions.

6.2. Procedure REFINE and Condition 4. The aim of REFINE is to sub-
divide at least ρ times the elements in M while keeping the mesh admissible (see
Condition 7). It simply iterates MAKE ADMISSIBLE until M is empty:

REFINE (T ,M)
for T ∈ M do

[T ,M] = MAKE ADMISSIBLE (T ,M, T );
while M 6= ∅
return(T )

To control the complexity of REFINE, namely the fulfillment of Condition 4, we
need to study MAKE ADMISSIBLE more carefully. It turns out that the key properties
to check are rather abstract and are valid regardless of the refinement strategy. This
is formulated in the next lemma, whose original proof for simplices is due to Binev,
Dahmen, and DeVore [15] for d = 2 and Stevenson [49] for d > 2. We refer to the
survey [43, Section 4.5] for an extensive discussion of these properties.

Lemma 6.1 (Condition 4: Complexity of REFINE). Let Condition 1 hold, T ∈ M
and T ′ ∈ T∗\T be created by a call [T∗,M∗] = MAKE ADMISSIBLE (T ,M, T ). If

ℓ(T ′) ≤ ℓ(T ) + 1 (6.5)

and there exists a geometric constant C, only depending on the shape regularity con-
stant of T0 and the dimension d, so that the distance between T and T ′ satisfies

dist(T, T ′) ≤ Cβ
ℓ(T ′)
M , (6.6)

with 0 < βM < 1 the constant in (2.3), then Condition 4 holds.
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6.3. Quad Refinement. No special initial labeling is necessary for hexahedral
meshes. Condition 7 (admissible subdivision) can be written in more practical terms
as follows. For any forest F , we define F1 to be the biggest forest (in the sense of
number of elements) such that F1 ⊂ F and T 1 := T (F1) is a subdivision with at
most one hanging node per side, hereafter called 1−mesh. For any T ∈ T , we also
define its 1-compatible parent P 1

T (T ) ∈ T 1 to be such that T ⊂ P 1
T (T ). The level of

incompatibility of an element T ∈ T is then defined by

ℓ⊥(T ) := ℓ(T ) − ℓ(P 1
T (T )). (6.7)

We observe that ℓ⊥(T ) ≥ 0 and ℓ⊥(T ) = 0 if and only if T = P 1
T (T ) ∈ T 1 is an

element of the biggest underlying 1−mesh. Finally, the level of incompatibility of T
is defined by

ℓ⊥(T ) := max
T∈T

ℓ⊥(T ).

Condition 7 (admissible subdivision) is equivalent to:

There exists a universal integer L ≥ 0 such that ℓ⊥(T ) ≤ L. (6.8)

This relation limits the local amount of elements not belonging to T 1, as depicted in
Figure 2.1, and is easier to check in practice. It is worth stressing that it is natural
to have L uniformly bounded both algorithmically and theoretically.

Remark 6.2 (Hanging Nodes vs Level of Incompatibility). The number of hang-
ing nodes per side is unrelated to the maximum level of incompatibility when L ≥ 2.
In fact, when L ≥ 2, it is possible to construct a subdivision with an arbitrary large
level of incompatibility. To see this, consider the example described in Figure 2.1 and
continue to refine alternatively the lower left/upper right newly created children.

The routine MAKE ADMISSIBLE hinges on (6.8) and produces the smallest
admissible refinement T∗ of T so that T is refined at least once:

MAKE ADMISSIBLE (T ,M, T )
if ℓ⊥(T ) = L then

T 1 = REFINE COMPATIBLE (T 1, P 1
T (T ))

T = T ⊕ T 1 and update M
end
if T has not been refined then

refine T and update T and M
end
return (T ,M)

This procedure resorts to the routine REFINE COMPATIBLE (T 1, P 1
T (T )) which

acts recursively on 1−meshes T 1, produces the smallest 1−mesh refinement T 1
∗ ≥ T 1,

and refines P 1
T (T ) ∈ T 1. Since REFINE COMPATIBLE can only decrease the level

of incompatibility, we find that the updated nonconforming mesh T ⊕ T 1 satisfies
ℓ⊥(T ⊕ T 1) ≤ L. Given T ∈ T 1, we define its refinement patch to be

R(T , T 1) :=
{
T ′ ∈ T 1 | T ′ and T share an edge and ℓ(T ′) ≤ ℓ(T )

}
.

The procedure REFINE COMPATIBLE works solely on elements T ′ ∈ R(T 1, T )
whose refinement is necessary to produce 1−meshes, and reads as follows:
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REFINE COMPATIBLE (T , T )
for T ′ ∈ R(T , T ) do

if ℓ(T ′) = ℓ(T ) − 1 then
[T ,M] = REFINE COMPATIBLE (T , T ′)

end
end
if T has not been refined then

subdivide T once and update T
end
return(T )

We start by deducing properties of the REFINE COMPATIBLE routine.

Lemma 6.3 (Properties of REFINE COMPATIBLE). Let T be a 1 −mesh and
T ∈ T . Then REFINE COMPATIBLE (T , T ) terminates and produces the smallest
1-mesh refinement T∗ of T such that T is refined and no element of T is refined more
than once. Moreover, all newly created elements T ′ ∈ T∗ satisfy (6.5).

Proof. We first observe that the recursive nature of REFINE COMPATIBLE, to-
gether with its conditional on ℓ(T ′) = ℓ(T )−1, guarantees that this procedure creates
the smallest 1−mesh refinement T∗ of T such that T is subdivided once.

Since a uniform refinement of T is a 1-mesh, and T∗ ≥ T is minimal, we deduce
that it must be a refinement of T∗. This not only shows that REFINE terminates,
but also that it subdivides elements of T at most once. This, in conjunction with
the property ℓ(T ′) ≤ ℓ(T ) for all elements T ′ ∈ T that are refined, yields (6.5) and
completes the proof.

We now show that the procedure REFINE implies Conditions 3, 4, 6, and 7. We
recall that T0 is the initial conforming mesh, L ≥ 0 is the constant in the admissibility
condition (6.8), and ρ ≥ 1 is the number of quad-refinement per marked element.

Lemma 6.4 (Condition 7: Admissible Subdivision). Let T be a refinement of T0

satisfying (6.8), and M be the set of elements of T to be refined. Then REFINE (T ,M)
terminates and produces the smallest refinement T∗ of T fulfilling (6.8). The elements
of T∗ are obtained by at most ρ refinements of elements of T , and the elements is M
are refined exactly ρ times.

Proof. We first note that MAKE ADMISSIBLE only refines elements necessary
to keep the mesh admissible, i.e. to satisfy condition (6.8). Therefore, in view of
the update of M in MAKE ADMISSIBLE, we see that T∗ = REFINE (T ,M) is the
smallest refinement of T in which all the elements of M are refined ρ times. Moreover,
since ρ uniform refinements of T preserve property (6.8), and so create an admissible
partition, we deduce that it must be a refinement of T∗. This not only shows that
REFINE terminates, but also that it subdivides elements of T at most ρ times.

We now prove that T∗ satisfies (6.8). If ℓ⊥(T ) = L for T ∈ M, then a subdi-
vision of T would violate (6.5). The call to REFINE COMPATIBLE subdivides the
1-compatible parent P 1

T (T ) ∈ T 1, thereby decreasing by at least 1 the level of incom-
patibility of all elements of T contained in P 1

T (T ), and creates a 1-mesh refinement
T 1
∗ of T 1. This process is exemplified in Figure 6.1.

If T has not been refined after the first conditional of MAKE ADMISSIBLE, then
ℓ⊥(T ) < L because REFINE COMPATIBLE reduced the level of incompatibility of
T or the conditional was skipped altogether. Consequently, refining T increases ℓ⊥(T )
by 1, namely ℓ⊥(T ) ≤ L, whence (6.8) is verified.

Lemma 6.5 (Condition 4: Complexity of REFINE). The procedure REFINE based
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Fig. 6.1. Refinement procedure for d = 2, L = 2 and r = 1. The number
on each element T indicates its level of incompatibility ℓ⊥(T ). Left: mesh T , underlying
1−mesh T 1 (bold lines), and shaded element to be refined with level of incompatibility 2; this
forces a call to REFINE COMPATIBLE. Right: 1−mesh refinement of T 1 (dashed lines) via
REFINE COMPATIBLE to reduce the level of incompatibility of the shaded element to 1. Re-
finement of the shaded element leads now to an admissible mesh.

on MAKE ADMISSIBLE satisfies

#Tk − T0 ≤ Λ0

k−1∑

j=0

#Mj ,

with a constant Λ0 solely depending on T0, L, and ρ.
Proof. Let M := ∪k−1

j=0Mj be the set of all marked elements to go from T0

to Tk. The assertion follows from Lemma 6.1 provided we can show (6.5) and
(6.6) (with βM = 1/2) for every T ∈ M and newly created element T ′ by a call
to MAKE ADMISSIBLE. The proof of (6.6) is omitted since it follows strictly the
proof by recursion given in [15] and [49] for triangles and tetrahedra; see also [43].
Hence, we focus on (6.5). If ℓ⊥(T ) = L, then the newly created elements T ′ ∈ T 1

∗ =
REFINE COMPATIBLE (T 1, P 1

T (T )) satisfy

ℓ(T ′) ≤ ℓ(P 1
T (T )) + 1 ≤ ℓ(T ) − L+ 1 ≤ ℓ(T ) + 1,

according to Lemma 6.3. Consequently, the newly created elements of T∗ = T ⊕ T 1
∗

are some, but perhaps not all, of those T ′ ∈ T 1
∗ because T 1 ⊂ T .

It remains to examine what happens when T ∈ M has not been refined after the
first conditional of MAKE ADMISSIBLE. In this case, the refinement stays within T
and its children T ′ satisfy ℓ(T ′) = ℓ(T ) + 1.

This conclude the proof.
Lemma 6.6 (Condition 2: Interpolation Operator). Let T ≥ T0 be an admissible

refinement of T0. Then, there exists an interpolation operator IT : E(T ) → V0(T ) and
a constant C only depending on T0, L and ρ such that (2.27) and (2.28) are satisfied.
Moreover, IT is locally a projection.

Proof. Following Clemént [25], we construct IT : E(T ) → V0(T ) via local L2-
projections. We proceed in several steps.
1 Let v ∈ E(T ). For each conforming node P let V

0(DT (P )) := ΠT∈DT (P )P
n(T ) ∩

H1
0 (Ω) and define VP ∈ V0(DT (P )) to be the solution of

∫

DT (P )

(v − VP )W = 0, ∀W ∈ V
0(DT (P )), (6.9)
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where DT (P ) denotes the domain of influence of P ; see Section 6.1. The functions
VP evaluated at P give the nodal values of IT v, namely

IT v :=
∑

P∈P0

VP (P )ψP . (6.10)

If v ∈ V0(DT (P )), then VP (P ) = v(P ) and IT is locally a projection.
2 Definition (6.9) implies ‖VP ‖L2(DT (P )) ≤ ‖v‖L2(DT (P )), whence

‖IT v‖L2(T ) � ‖v‖L2(ω(T )) ∀T ∈ T , (6.11)

where ω(T ) is defined in (6.2). Since IT reproduces constants exactly, namely

IT c|T = c ∀c ∈ P
0(ω(T )),

we have

‖v − IT v‖L2(T ) = ‖(v − c) − IT (v − c)‖L2(T ) � ‖v − c‖L2(ω(T )) ∀c ∈ P
0(ω(T )).

The Bramble-Hilbert lemma [16, Lemma 4.3.8], [24, Theorem 3.1.1] yields (2.27)

‖v − IT v‖L2(T ) � hT ‖∇v‖L2(ω(T )) ∀v ∈ H1
0 (Ω).

3 We now consider v ∈ V(T ) which may thus jump across interelement boundaries.
We scale DT (P ) to a reference domain with unit diameter and examine the seminorm
‖[[v]]‖L2(Σ∩DT (P )) on the space of discontinuous piecewise polynomials

{
v ∈ ΠT∈DT (P )P

n(T )| VP = 0
}
,

where VP is defined by (6.9) [11, 14]. If this seminorm vanishes then v is continuous
and thus v ∈ V0(DT (P )), whence v = VP = 0 according to (6.9). This implies that
the seminorm is equivalent to any norm because of the finite dimensional structure of
the space. Consequently scaling gives

‖Da(v − VP )‖L2(DT (P );T ) ≤ C
∥∥∥h

1
2
−|a | [[v]]

∥∥∥
L2(Σ∩DT (P ))

∀|a| = 0, 1, (6.12)

where C is a constant depending on the integer L defined in (6.8).
4 Finally, let T ∈ T and P,Q ∈ ω(T ) ∩ P0. Then, in view of (6.12), we arrive at

‖VP − VQ‖L2(T ) �
∥∥∥h1/2 [[v]]

∥∥∥
L2(σ(T ))

, (6.13)

where σ(T ) = Σ ∩ ω(T ). Consequently, (6.10) yields

v − IT v = v −
∑

P∈ω(T )∩P0

VPψP = (v − VQ) −
∑

P∈ω(T )∩P0

(VP − VQ)ψP ,

which, combined with (6.12) and (6.13), implies

‖v − IT v‖L2(T ) �
∥∥∥h1/2 [[v]]

∥∥∥
L2(σ(T ))

.

This is the desired estimate (2.28). The proof is thus complete.
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Since Conditions 3(a-c) are obvious (with NT = ρ according to Lemma 6.4) and
Condition 3(d) is a consequence of Lemma 6.6, it remains to show Condition 6.

Lemma 6.7 (Condition 6: Overlay). If TA, TB ∈ T are two refinements of T0

satisfying (6.8), then the overlay T := TA ⊕ TB satisfies (6.8) as well as Condition
2.

Proof. If T ∈ T , then by construction T belongs to either TA or TB , say TA; thus
ℓ(T )− ℓ(P 1

TA
(T ) ≤ L. The underlying 1-meshes satisfy T 1

A ≤ T 1 because TA ≤ T and
T 1 is the largest 1-mesh, in the sense of trees, having T as a refinement. This implies
ℓ(P 1

T (T )) ≥ ℓ(P 1
TA

(T )), whence

ℓ⊥(T ) = ℓ(T ) − ℓ(P 1
T (T )) ≤ ℓ(T )− ℓ(P 1

TA
(T )) ≤ L.

Therefore, T is admissible and Condition 2 holds in view of Lemma 6.6.

6.4. Red Refinement. As in Section 6.3, there is no need for an initial labeling
and shape regularity of any sequence of meshes obtained using red refinement depends
only on the initial mesh T0; this implies Condition 1.

In contrast to quad-refinement, it is possible to create an arbitrary level of in-
compatibility with one hanging node per edge; to see this simply repeat the pattern
in Figure 2.2. The definition of level of incompatibility ℓ⊥(T ) is again relative to the
underlying 1-mesh, as in (6.7), and the practical Condition 7 becomes (6.8).

We observe that proof of Conditions 3, 4, 6, and 7 are somewhat similar to those
of Section 6.5 and are thus omitted.

6.5. Bisection Refinement. We assume that

the initial subdivision T0 is conforming and satisfies the labeling
assumption of Stevenson [49, assumption (b) of Section 4].

(6.14)

This ensures Condition 1 (atomic refinement); see [43, Section 4] for a discussion.
Condition 7 (admissible subdivision) can be written in more practical terms as

follows. We resort to the construction of Section 6.3 for the quad refinement except
that we now use an underlying conforming mesh instead of 1−mesh. For any forest
F , F0 designates the biggest forest (in the sense of number of elements) such that
F0 ⊂ F and T 0 := T (F0) is conforming. For any T ∈ T , we also define its conforming
parent P 0

T (T ) ∈ T 0 to be such that T ⊂ P 0
T (T ). The level of nonconformity of an

element T ∈ T is then given by

ℓ⊥(T ) := ℓ(T ) − ℓ(P 0
T (T )). (6.15)

We observe that ℓ⊥(T ) ≥ 0 and ℓ⊥(T ) = 0 if and only if T = P 0
T (T ) ∈ T 0 is a

conforming element. Finally, the level of nonconformity of T is defined by

ℓ⊥(T ) := max
T∈T

ℓ⊥(T ).

The concept of nonconformity is relative to 0-meshes, or conforming meshes, whereas
that of incompatibility in Section 6.3 refers to 1-meshes. In any event, Condition 7 is
again equivalent to:

There exists a universal integer L ≥ 0 such that ℓ⊥(T ) ≤ L. (6.16)

This relation limits the local amount of nonconforming elements, as depicted in Figure
2.3, and is easier to check in practice. The routine MAKE ADMISSIBLE hinges on it
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and produces the smallest admissible refinement T∗ of T by bisection (newest vertex
bisection for d = 2) so that T is refined at least once:

MAKE ADMISSIBLE (T ,M, T )
if ℓ⊥(T ) = L then

T 0 = REFINE CONFORM (T 0, P 0
T (T ))

T = T ⊕ T 0

end
if T has not been refined then

bisect T and update T and M
end
return (T ,M)

This procedure resorts to the routine REFINE CONFORM(T 0, P 0
T (T )), which pro-

ceeds recursively on conforming meshes T 0 and produces the smallest conforming
refinement T 0

∗ ≥ T 0 such that the level of nonconformity ℓ⊥(T∗) ≤ L for all interme-
diate meshes and P 0

T (T ) ∈ T 0 is refined. In [15, 49], REFINE CONFORM has been
proved to terminate; see also the survey [43].

We now show that this procedure implies Conditions 3, 4, 6, and 7.

Lemma 6.8 (Condition 7: Admissible Subdivision). Let T0 satisfy (6.14). Let
T be a refinement of T0 satisfying (6.16), and M be the set of elements of T to be
refined. Then REFINE (T ,M) terminates and produces the smallest refinement T∗ of
T such that (6.16) is still valid.

Proof. The procedure REFINE CONFORM acts on conforming meshes and ter-
minates according to [49, Theorem 5.1] (since T0 satisfies (6.14)), and so does REFINE
because the former is its only recursion.

The rest of the proof is identical to that of Lemma 6.4 and is thus omitted.

Lemma 6.9 (Condition 2: Interpolation Operator). Let T0 satisfy (6.14). Then,
for any admissible mesh T ≥ T0 there exists an interpolation operator IT : E(T ) →
V0(T ) and a constant C only depending on T0, L and ρ such that (2.27) and (2.28)
are satisfied.

Proof. Proceed exactly as in Lemma 6.6.

Stevenson [49] proved that the initial labeling condition [49, assumption (b) of
Section 4] ensures that any uniform refinement (i.e. such that all the elements have
the same level) is conforming. In particular, given T 0 a conforming subdivision, if
ℓmax := maxT∈T 0 ℓ(T ), then refining recursively all the element of T 0 until they all
have a level equal to ℓmax + 1 yields a conforming refinement of T 0. Based on this
idea, the next lemma provides an alternative way to construct a global refinement of
any conforming subdivision, which turns out to yield Condition 3(c). In the proof of
the next lemma, we use the notion of proper t-subsimplices.

Definition 6.10 (Proper Subsimplices). If an element T = conv hull {zi}
d
i=0,

then T ′ is a proper t-subsimplex of T if T ′ = conv hull {z′j}
t
j=0 where t < d and

z′j ∈ {zi}d
i=0 for 0 ≤ j ≤ t.

The bisection rule, based on vertex order and type [49, 43], guarantees that each
t-subsimplex of T is bisected exactly t-times whenever T is bisected d-times. In
particular, edges of T , which are 1-subsimplices of T , are cut exactly once.

Lemma 6.11 (Effect of d Uniform Refinements). Let T0 satisfy (6.14). If T is
a conforming refinement of T0, then bisecting d times all the elements of T yields a
conforming refinement T∗ of T .

Proof. Let T1, T2 ∈ T be two adjacent elements sharing the t-subsimplex K =
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T1∩T2 with 0 < t < d and let ℓ(T1) ≥ ℓ(T2). If suffices to show that after d bisections
of T1 and T2, the t refinements of K induced by T1 and T2 are conforming.

We bisect T2 further ℓ(T1) − ℓ(T2) times, so that all the descendents of both T1

and T2 have the same level ℓ := ℓ(T1) + d. Consequently, they belong to the uniform
refinement Tℓ of T0 of level ℓ, which is conforming because T0 satisfies (6.14) [49, 43].
We now observe that T2 cannot cause more than t bisections of K, because otherwise
they would not be compatible with the t bisections induced by T1 and they all belong
to the same conforming mesh Tℓ. This in turn shows that, after d refinements of T1

and T2, the t bisections of K are conforming as asserted.
Lemma 6.12 (Condition 3: One-Step Refinement). If T0 fulfills (6.14), then the

REFINE procedure of Section 6.2 fulfills Condition 3 with N = dρ.
Proof. Condition 3(a) follows from the initial labeling of T0 [10, 38, 39, 41, 49, 50],

whereas the tagging of marked elements of Section 6.1 directly implies Condition 3(b).

In order to prove Condition 3(c), we construct an admissible refinement T̃ of T
such that all the marked elements are refined at least ρ times and all the elements are
refined at most ρd times. This implies that T∗ ≤ T̃ because T∗ is, by construction,
the smallest refinement of T such that all the marked elements are refined ρ times;
hence Condition 3(c) follows with N = ρd.

We construct T̃ in three steps. First we perform ρd successive uniform refinements
of T 0, the finest conforming mesh coarser than T , and denote by T̃ 0 the resulting
subdivision. Lemma 6.11 ensures that T̃ 0 is conforming. Second, we construct T̃ ⊥

by refining ρd times all the elements of T ⊥ = T \ T 0. Finally, we set T̃ := T̃ 0 ⊕ T̃ ⊥

and claim that T̃ is admissible. To see this, we prove that ℓ⊥(T̃ ) ≤ ℓ⊥(T ) for all

T̃ ∈ T̃ obtained by refinement of T ∈ T . The latter is a simple consequence of the
following observation: each T ∈ T is refined at most ρd times in steps 1 and 2, so
that its children in the overlay T̃ arise from at most ρd refinements. Therefore,

ℓ⊥(T̃ ) := ℓ(T̃ ) − ℓ(P 0
eT
(T̃ )) ≤ ℓ(T ) + ρd− ℓ(P 0

T (T )) − ρd = ℓ⊥(T ) ≤ L,

which implies Condition 3(c).
Finally, condition 3(d) on the interpolation operator is a consequence of Lemma

6.9 coupled with the uniform bound on the level of nonconformity and shape regularity,
both already proved to hold. This concludes the proof.

Lemma 6.13 (Condition 4: Complexity of REFINE). Let T0 satisfy (6.14). The
procedure REFINE fulfills Condition 4 with a constant Λ0 solely depending on T0, L,
and ρ.

Proof. Proceed as in Lemma 6.5.
Lemma 6.14 (Condition 6: Overlay). If TA, TB ∈ T are two refinements of T0

whose level of nonconformity is not bigger than L ≥ 0, then the overlay T := TA ⊕TB

has a level of nonconformity not bigger than L and Condition 2 holds on T .
Proof. Proceed as in Lemma 6.7.

7. Continuous Galerkin Method on Nonconforming Meshes. The proof
of quasi-optimality of dG hinges on comparing with the corresponding cG method.
As a by-product, we thus obtain quasi-optimal cardinality of the cG method on non-
conforming meshes for the refinement strategies of Section 6, thereby extending [21].

Corollary 7.1 (Quasi-Optimality of cG on Nonconforming Meshes). Assume
that the procedure REFINE consists of one of the strategies of Section 6, and that Con-
dition 5 (assumptions on MARK) is valid. Let T0 be the initial conforming subdivision,
A satisfy (2.1), and u ∈ H1

0 (Ω) be the solution of (1.1) with f = −div (A∇u) ∈ L2(Ω).
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Let
{
Tk,V

0(Tk), Uk

}
k≥0

be the sequence of nonconforming meshes Tk, conforming fi-

nite element spaces V0(Tk) = V(Tk) ∩ H1
0 (Ω), and discrete solutions Uk ∈ V0(Tk)

generated by the continuous AFEM (cG). If θ ∈ (0, θ∗(∞)) with θ∗(γ) given in Con-
dition 5, and (u, f, A) ∈ A0

s, then

{
|||u− Uk|||

2
Tk

+ osc2
Tk

(Uk, Tk)
}1/2

≤ C#T −s
k ,

where C is a constant only depending on α, n, T0, A, θ, s and |u, f, A|0s.
Proof. This is a direct consequence of Proposition 5.2, Theorem 5.7, and the

discussion of Section 6.
We finally observe that the threshold θ∗(∞) coincides with that derived in [21]

for conforming bisection meshes.
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[44] J. T. Oden, I. Babuška, and C. E. Baumann. A discontinuous hp finite element method for
diffusion problems. J. Comput. Phys., 146(2):491–519, 1998.
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