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Abstract

A minimax method for finding multiple critical points in Banach spaces is

successfully developed in [12] by using a projected pseudo-gradient as a search direction.

Since several different techniques can be used to compute a projected pseudo-gradient,

the uniform stepsize and the continuity of a search direction, two key properties for

the convergence results in [5], get lost. In this paper, instead of proving convergence

results of the algorithm for each technique, unified convergence results are obtained

with a weaker stepsize assumption. An abstract existence-convergence result is also

established. It is independent of the algorithm and explains why function values always

converge faster than their gradients do. The weaker stepsize assumption is then verified

for several different cases. As an illustration to the new results, the Banach space

W
1,p
0 (Ω) is considered and the conditions posed in the new results are verified for a

quasilinear elliptic PDE.
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1 Introduction

Let B be a Banach space, B∗ its topological dual, 〈, 〉 the dual relation and ‖ · ‖ the norm in

B. Let J ∈ C1(B, R) and ∇J ∈ B∗ be its (Fréchet) gradient. A point u∗ ∈ B is a critical

point of J if u∗ solves the Euler-Lagrange equation ∇J(u∗) = 0. The first candidates for a

critical point are the local extrema. Traditional numerical algorithms focus on finding such

stable solutions. Critical points that are not local extrema are unstable and called saddle

points. In physical systems, saddle points appear as unstable equilibria or transient excited

states. Multiple critical points exist in many nonlinear problems in applications ([3, 6, 7,

8, 10, 11], etc.). Choi-McKenna [1] in 1993 and Ding-Costa-Chen [2] in 1999 devised two

algorithms for finding critical points of (the Morse index) MI=1 and MI=2, respectively.

But no mathematical justification or convergence of the algorithms is established. Based on

a local minimax characterization of saddle points, Li-Zhou [4] developed a local minimax

algorithm (LMM) for finding critical points of MI=1,2,...,n, and proved its convergence in

[5]. All those algorithms are formulated in Hilbert spaces where the gradient ∇J(u) played a

key role to construct a search direction. In order to find multiple solutions in Banach spaces

[3, 10], Yao-Zhou successfully developed the first LMM in Banach spaces and solved several

quasilinear elliptic PDEs for multiple solutions [12]. The method is also modified to solve

the nonlinear p-Laplacian operator for multiple eigen-pairs [13]. The key to the success of

Yao-Zhou’s algorithm is to replace the gradient by a projected pseudo-gradient (PPG). The

purpose of this paper is to establish some convergence results for the algorithm.

Compare to those results in Hilbert spaces [5], there are several significant differences.

When B is a Hilbert space, the gradient ∇J(u) which played the key role to construct a

search direction in LMM in [5], is uniquely determined in B and naturally continuous if J is

C1 and B = L⊕L⊥ holds for any closed subspace L. When B is a Banach space, however, the

gradient ∇J(u) is in B∗ not B and cannot be directly used as a search direction in B. Thus a

PPG is introduced to LMM. Although theoretically a Lipschitz continuous PPG flow exists,

for most cases, no explicit formula is available. On the other hand, there are many different

ways to select a PPG. When PPGs are numerically computed in an implementation, they

may belong to different PPG flows. We lost the uniform stepsize property and the continuity

of a search direction, two key conditions in proving the convergence results in [5]. To make
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up the first loss, we design a weaker stepsize condition, assumption (H), to replace the old

uniform stepsize property; To make up the second loss, we generalize the notion of a peak

selection to that of an L-⊥ selection with which its continuity or smoothness can be verified.

Thus corresponding modifications in LMM [12] have to be made.

To simplify our approach, in this paper, we assume B = L ⊕ L′. When L is finite-

dimensional, such L′ always exists. In particular, for the commonly used Banach space

W 1,p
0 (Ω), we present an explicit formula for obtaining L′ and a practical technique to compute

a PPG.

Instead of proving convergence results of the algorithm for each of the techniques used

to compute a PPG, in this paper, we establish some unified convergence results. To do so,

in Section 2, we generalize a peak selection to an L-⊥ selection and prove the existence of a

PPG at a value of an L-⊥ selection. A new LMM and its mathematical foundation are also

presented there. Sections 3 is devoted to prove unified convergence results. We introduce

a new stepsize assumption (H) and then prove a subsequence convergence result, Theorem

3.1, under some very reasonable assumptions. An abstract existence-convergence result,

Theorem 3.2 is then established. This result is actually independent of algorithms. It also

explains why in our LMM, function values always converge faster than their gradients do.

Based on this abstract result, another convergence result, Corollary 3.1, is proved to show

that under certain conditions, a convergent subsequence implies a point-to-set convergence.

Assumption (H) is then verified for several different cases, in particular, for the commonly

used Banach space W 1,p
0 (Ω). In the last section, we discuss how to check other conditions

we posed in the convergence results. In particular, we present a quasilinear elliptic PDE and

verify those conditions.

2 A Min-⊥ Method

Let L be a closed subspace of B. For a subspace A ⊆ B, denote SA = {v ∈ A|‖v‖ = 1}. For

a point v ∈ SB, let [L, v] = {tv + w|w ∈ L, t ∈ R}. Since ∇J(u) ∈ B∗ not B, it cannot be

used as a search direction in B. Thus a pseudo-gradient is used instead.
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Definition 2.1. Let J : B → R be Fréchet differentiable at u ∈ B with ∇J(u) 6= 0 and

0 < θ ≤ 1 be given. A point Ψ(u) ∈ B is a pseudo-gradient of J at u w.r.t. θ if

‖Ψ(u)‖ ≤ 1, 〈∇J(u), Ψ(u)〉 ≥ θ‖∇J(u)‖.(2.1)

A pseudo-gradient flow of J w.r.t. θ is a continuous mapping F : B → B such that ∀u ∈ B

with ∇J(u) 6= 0, F(u) is a pseudo-gradient of J at u w.r.t. θ.

In Definition 2.1, the condition ‖Ψ(u)‖ ≤ 1 is not essential. It can be replaced by any

bound M ≥ 1, since after a normalization, θ can always be replaced by θ
M

. It is known

[9] that a C1 functional has a locally Lipschitz continuous pseudo-gradient flow. Pseudo-

gradients have been used in the literature to find a minimum of a functional in Banach

spaces. However, as saddle points are concerned, such pseudo-gradients do not help much,

since they lead to a local minimum point. Thus we introduce a new notion, called a projected

pseudo-gradient (PPG), which plays a key role in the success of our LMM in Banach spaces.

Definition 2.2. An L′-projected pseudo-gradient (PPG) G(u) of J is a pseudo-gradient

of J at u such that G(u) ∈ L′.

The motivation to define a PPG is two-fold. Firstly, as a pseudo-gradient, it provides a proper

searching termination criterion, i.e., with (2.1), G(u) = 0 implies ∇J(u) = 0; Secondly the

condition G(u) ∈ L′ is to prevent a pseudo-gradient search from entering the subspace L,

which is spanned by previously found critical points. The existence of such L′-PPG of J at

u = P(v) is established by Lemma 2.1 in [12], where P is a peak selection defined below.

Definition 2.3. ([12]) A set-valued mapping P : SL′ → 2B is called the peak mapping

of J w.r.t. L if

P (v) = {w = arg local- max
u∈[L,v]

J(u)}, ∀v ∈ SL′ .

A mapping P : SL′ → B is called a peak selection of J w.r.t. L if P(v) ∈ P (v), ∀v ∈ SL′.

If a peak selection P is locally defined near a point v ∈ SL′, we say that J has a local peak

selection P at v.

By using a peak selection and a PPG, a local minimax method (LMM) is successfully

developed in [12] for computing multiple saddle points in Banach spaces. However, as

convergence analysis is concerned, such an algorithm has an ill-condition, i.e., the graph

defined by a peak selection is not closed, in other words, a limit of a sequence of local
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maxima is not necessarily a local maximum point. Consequently, we cannot talk about

a limit, continuity or do convergence analysis within the content of a peak selection. We

introduce a generalized notion.

Definition 2.4. A set-valued mapping P : SL′ → 2B is called the L-⊥ mapping of J if

P (v) = {u ∈ [L, v] : 〈∇J(u), w〉 = 0, ∀w ∈ [L, v]}, ∀v ∈ SL′.

A mapping P : SL′ → B is called an L-⊥ selection of J if P(v) ∈ P (v), ∀v ∈ SL′. If an L-⊥

selection P is locally defined near a given v ∈ SL′, we say that J has a local L-⊥ selection

P at v.

Lemma 2.1. If J is C1, then the graph Gr = {(u, v) : v ∈ SL′ , u ∈ P (v) 6= ∅} is closed.

Proof. Let (un, vn) ∈ Gr and (un, vn) → (u0, v0). We have un ∈ [L, vn], ∇J(un) ⊥ [L, vn].

Since vn → v0 ∈ SL′, for each w ∈ [L, v0], there are wn ∈ [L, vn] such that wn → w. Thus

∇J(un) ⊥ wn. But J is C1, un → u0 and wn → w lead to ∇J(u0) ⊥ w, i.e., ∇J(u0) ⊥ [L, v0].

Thus v0 ∈ SL′ and u0 ∈ P (v0), i.e., (u0, v0) ∈ Gr.

It is clear that if P is a peak selection of J w.r.t. L, then P is an L-⊥ selection of J . The

generalization not only removes the ill-condition and makes it possible to check the continuity

of P but also exceeds the scope of a minimax principle, the most popular approach in critical

point theory. It enables us to treat non-minimax type saddle points, such as the monkey

saddles, or a problem without a mountain pass structure, see Example 2.1 in [14]. By a

similar argument as in Lemma 2.1 of [12] we can prove the following existence of an L′-PPG.

Lemma 2.2. Assume B = L ⊕ L′ and 0 < θ < 1 be given. For v0 ∈ SL′, if P is a local

L-⊥ selection of J at v0 s.t. ∇J(P(v0)) 6= 0 and Ψ(P(v0)) ∈ B is a pseudo-gradient of J at

P(v0) w.r.t. θ, then there exists an L′-PPG G(P(v0)) of J at P(v0) w.r.t. θ s.t.

(a) G(P(v0)) ∈ L′, 0 < ‖G(P(v0))‖ ≤ M := ‖P‖ where P : B → L′ is the linear projection;

(b) 〈∇J(P(v0)), G(P(v0))〉 = 〈∇J(P(v0)), Ψ(P(v0))〉;

(c) If Ψ(P(v0)) is the value of a pseudo-gradient flow Ψ(·) of J at P(v0), then G(·) is

continuous and G(P(v0)) is called the value of an L′-PPG flow of J at P(v0).

We now start to establish some mathematical foundation for our new algorithm.

Lemma 2.3. ([12]) ‖v −
v − w

‖v − w‖
‖ ≤

2‖w‖

‖v − w‖
, ∀v ∈ B, ‖v‖ = 1, ∀w ∈ B.
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Lemma 2.4. For v0 ∈ SL′, if J has a local L-⊥ selection P at v0 satisfying (1) P is

continuous at v0, (2) d(P(v0), L) > 0 and (3) ∇J(P(v0)) 6= 0. Then, there exists s0 > 0

such that for 0 < s < s0

J(P(v0(s))) − J(P(v0)) < −
θs

4
|t0|‖∇J(P(v0))‖(2.2)

where P(v0) = t0v0 + w0 for some t0 ∈ R, w0 ∈ L, v0(s) =
v0 − sign(t0)sG(P(v0))

‖v0 − sign(t0)sG(P(v0))‖
and

G(P(v0)) is an L′-PPG of J w.r.t. θ at P(v0).

The proof of Lemma 2.4 can follow a similar argument of Lemma 2.4 in [12]. The inequality

(2.2) will be used to define a stepsize rule for the algorithm and establish convergence results.

With Lemma 2.4, the following characterization of saddle points is clear.

Theorem 2.1. Let v0 ∈ SL′. Assume that J has a local L-⊥ selection P at v0 such

that (1) P is continuous at v0, (2) d(P(v0), L) > 0 and (3) v0 is a local minimum point of

J(P(v)). Then P(v0) is a critical point of J .

2.1 A Min-Orthogonal Algorithm

Definition 2.5. Let v0 ∈ SL′ and P be a local L-⊥ selection of J at v0 with ∇J(P(v0)) 6= 0.

A point w ∈ L′ is a descent direction of J(P(·)) at v0 if there is s0 > 0 such that

J(P(v0(s))) < J(P(v0)), ∀ 0 < s < s0 where v0(s) =
v0 + sw

‖v0 + sw‖
.

By Theorem 2.1, a descent direction method to approximate a local minimum of J(P(v))

leads to the following min-⊥ algorithm.

Assume that L = [u1, u2, ..., un−1], where u1, u2, ..., un−1 are n−1 previously found critical

points of J and L′ is a subspace of B such that B = L ⊕ L′. For given positive numbers

λ, θ ∈ (0, 1) and ε.

Step 1: Let v1 ∈ SL′ be an ascent-descent direction at un−1.

Step 2: Set k = 1. Solve for uk ≡ P(vk) ≡ tk0vk + tk1u
1 + · · ·+ tkn−1u

n−1 such that tk0 > 0,

〈∇J(P(vk)), vk〉 = 0 and 〈∇J(P(vk)), u
i〉 = 0, i = 1, 2, ..., n − 1.

Step 3: Find a descent direction wk ∈ L′ of J(P(·)) at vk.
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Step 4: If ‖∇J(uk)‖ ≤ ε, then output uk = P(vk), stop. Otherwise, do Step 5.

Step 5: For each s > 0, denote vk(s) =
vk + swk

‖vk + swk‖
and set vk+1 = vk(sk) where

sk = max
m∈N

{ λ

2m
|2m > ‖wk‖, J(P(vk(

λ

2m
))) − J(uk) < −

θ|tk0|

4
(

λ

2m
)‖∇J(uk)‖

}

.

Step 6: Update k = k + 1 and go to Step 3.

Remark 2.1.

(1) The constant λ ∈ (0, 1) is used to prevent the stepsize from being too large to loose

search stability. From now on we always assume that λ is such a constant.

(2) In Step 2, one way to solve the equations while satisfying the nondegenerate condition

tk0 > 0 is to find a local maximum point uk of J in the subspace [L, vk], i.e., uk = P(vk)

and P is a peak selection of J w.r.t. L.

(3) In Step 3, we may assume ‖wk‖ ≤ M for some M ≥ 1. There are many different

ways to select a descent direction wk. However, when a descent direction is selected,

a corresponding stepsize rule in Step 5 has to be designed so that it can be achieved

and leads to a convergence. For example, when a negative L′-PPG flow, or a negative

L′-PPG is used as a descent direction, we have vk ∈ SL′ and a positive stepsize sk for the

current stepsize rule in Step 5 can always be obtained. In some cases, when −∇J(P(vk))

is used to construct a descent direction, the stepsize rule in Step 5 has to be modified as

in Case 3 below.

3 Unified Convergence Results

Definition 3.1. For each v ∈ SL′ with ‖∇J(P(v))‖ 6= 0, write P(v) = tvv + vL for some

vL ∈ L and define the stepsize s(v) at v as

s(v) = max
m∈N

{

s =
λ

2m
|2m > ‖w‖, J(P(v(s))) − J(P(v)) < −

1

4
θ|tv|s‖∇J(P(v))‖

}

where w is a descent direction J at P(v) and v(s) =
v + sw

‖v + sw‖
.
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Let {uk} be the sequence generated by the algorithm where uk = P(vk). Since a PPG can

be computed by many different ways, we lost the uniform stepsize, one of the key condition,

in [5]. Here we design a new stepsize assumption (H) to establish unified convergence results.

This condition is weaker than the uniform stepsize assumption in [5] and will be verified for

several different cases.

Assumption (H) : if v0 ∈ SL′ with ∇J(P(v0)) 6= 0 and vk → v0, then

there is s0 > 0 such that sk = s(vk) ≥ s0 when k is large.

We need the following PS condition and Ekeland’s variational principle [10].

Definition 3.2. A function J ∈ C1(B, R) is said to satisfy the Palais-Smale (PS)

condition if any sequence {ui} ⊂ B such that {J(ui)} is bounded and ∇J(ui) → 0 possesses

a convergent subsequence.

Lemma 3.1. (Ekeland’s variational principle) Let X be a complete metric space and

J : X → R∪{+∞} be a lower semi-continuous function bounded from below. Then, for any

ε > 0 and x0 ∈ X with J(x0) < +∞, there is x̄ ∈ X such that

J(x̄) + εd(x0, x̄) ≤ J(x0) and J(x) + εd(x, x̄) > J(x̄), ∀x ∈ X and x 6= x̄.

First we prove a subsequence convergence result whose conditions will be verified with an

application problem in Section 4.

Theorem 3.1. Let J ∈ C1(B, R) satisfy the PS condition. If an L-⊥ selection P of J

satisfies (1) P is continuous on SL′, (2) d(P(vk), L) ≥ α > 0, ∀k = 1, 2, ...,

(3) inf
1≤k<∞

J(P(vk)) > −∞, (4) assumption (H) is satisfied, then

(a) {vk} has a subsequence {vki
} such that uki

= P(vki
) converges to a critical point of J;

(b) if a subsequence vki
→ v0 as i → ∞, then u0 = P(v0) is a critical point of J .

Proof. (a) By the stepsize rule and Lemma 2.3, for k = 1, 2, ..., we have

J(uk+1) − J(uk) ≤ −
1

4
θαsk‖∇J(P(vk))‖ ≤ −

|1 − λ|

4M
θα‖vk+1 − vk‖‖∇J(P(vk))‖.(3.1)

Suppose that there is δ > 0 such that ‖∇J(P(vk))‖ ≥ δ for any k. From (3.1), we have

J(uk+1) − J(uk) ≤ −
|1 − λ|

4M
θαδ‖vk+1 − vk‖, ∀k = 0, 1, 2, ....(3.2)

Adding up two sides of (3.2) gives

lim
k→∞

J(uk) − J(u0) =
∞

∑

k=0

[J(uk+1) − J(uk)] ≤ −
|1 − λ|

4M
θαδ

∞
∑

k=0

‖vk+1 − vk‖,(3.3)
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i.e., {vk} is a Cauchy sequence. Thus vk → v̂ ∈ SL′. By the continuity of P, ‖∇J(P(v̂))‖ ≥

δ > 0. On the other hand, adding up two sides of (3.1) gives

lim
k→∞

J(uk) − J(u0) ≤ −
1

4
θα

∞
∑

k=0

sk‖∇J(P(vk))‖ ≤ −
1

4
θαδ

∞
∑

k=0

sk,

or sk → 0 as k → ∞. It contradicts assumption (H). Therefore, there is a subsequence {vki
}

such that ‖∇J(P(vki
))‖ → 0 as i → ∞ and {J(P(vki

))} is convergent. By the PS condition,

{P(vki
)} has a subsequence that converges to a critical point u0.

(b) Suppose u0 = P(v0) is not a critical point. Then there is δ > 0 such that ‖∇J(uki
)‖ >

δ, i = 1, 2, .... Similar to (3.1), we have

J(uki+1) − J(uki
) ≤ −

1

4
θαski

‖∇J(uki
)‖ < −

1

4
θαδski

.

Since
∞

∑

k=0

[J(uk+1) − J(uk)] = lim
k→∞

J(uk) − J(u0), it leads to limi→∞(J(uki+1) − J(uki
)) = 0.

Hence lim
i→∞

ski
= 0. It contradicts assumption (H). Thus u0 is a critical point.

Next we prove an abstract existence-convergence result, that is actually independent of

the algorithm and also explains why function values always converge faster than the gradients

do. Denote Kc = {u ∈ B|∇J(u) = 0, J(u) = c}. By the PS condition, Kc is compact.

Theorem 3.2. Let B = L ⊕ L′, V ⊂ B be open and U = V ∩ SL′ 6= ∅. Assume that

J ∈ C1(B, R) satisfies the PS condition,

(1) P is a continuous L-⊥ selection of J in Ū , where Ū is the closure of U on SL′,

(2) infv∈U d(P(v), L) > α > 0,

(3) infv∈∂Ū J(P(v)) > c = infv∈U J(P(v)) > −∞, where ∂Ū is the boundary of Ū on SL′.

Then Kp
c = P(U) ∩ Kc 6= ∅ and for any {vk} ⊂ U with J(uk) → c where uk = P(vk),

(a) ∀ε > 0, there is k̄ > 0 such that d(Kp
c , uk) < ε, ∀k > k̄;

(b) If in addition, ∇J(P(·)) is Lipschitz continuous in U , then there is a constant C such

that ‖∇J(uk)‖ ≤ C(J(uk) − c)
1

2 .
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Proof. Define

Ĵ(P(v)) =
{ J(P(v)) v ∈ Ū ,

+∞ v /∈ Ū .

Then, Ĵ(P(·)) is lower semicontinuous and bounded from below on the complete metric

space SL′ . Let {vk} ⊂ U be any sequence such that J(P(vk)) → c. By our assumption (3),

such a sequence always exists. Denote uk = P(vk). Applying Ekeland’s variational principle

to Ĵ(P(·)), for every vk ∈ U and δk = (J(uk) − c)
1

2 , there is v̄k ∈ SL′ such that

Ĵ(P(v̄k)) − Ĵ(P(v)) ≤ δk‖v̄k − v‖, ∀v ∈ SL′ ,(3.4)

Ĵ(P(v̄k)) − Ĵ(P(vk)) ≤ −δk‖v̄k − vk‖.(3.5)

By the definition of Ĵ(P(·)) and assumptions on P, we have v̄k ∈ Ū ,

J(P(v̄k)) − J(P(v)) ≤ δk‖v̄k − v‖, ∀v ∈ U,(3.6)

J(P(v̄k)) − J(P(vk)) ≤ −δk‖v̄k − vk‖.(3.7)

It follows c ≤ J(P(v̄k)) ≤ J(uk) − δk‖v̄k − vk‖, or

‖v̄k − vk‖ ≤ δk(3.8)

and d(L,P(v̄k)) > α when k is large. Then J(P(vk)) → c implies J(P(v̄k)) → c. By

assumption (3), we have v̄k ∈ U for large k. For those large k, if ∇J(P(v̄k)) 6= 0, by

Lemma 2.4 and then Lemma 2.3, when s is small,

J(P(v̄k(s))) − J(P(v̄k)) ≤ −
θs

4
|tk0|‖∇J(P(v̄k))‖ ≤ −

αθ

8M
‖∇J(P(v̄k))‖‖v̄k(s) − v̄k‖

where v̄k(s) = v̄k+sw̄k

‖v̄k+sw̄k‖
∈ U , w̄k = −sign(tk0)G(P(v̄k))), P(v̄k) = tk0v̄k + uk

L for some uk
L ∈ L,

G(P(v̄k)) is an L′-PPG of J at P(v̄k) with ‖G(P(v̄k))‖ ≤ M , see Lemma 2.2 and |tk0| > α

by our assumption (2). Hence by (3.6), we get

‖∇J(P(v̄k))‖ ≤
8M

αθ
δk,(3.9)

which implies ∇J(P(v̄k)) → 0 and then ∇J(P(vk)) → 0 by (3.8). {J(P(vk))} is already

bounded. By the PS condition, {uk} has a subsequence that converges to a critical point

u∗. By assumptions (3) and (1), it is clear that u∗ ∈ Kp
c 6= ∅. Let β be any limit point of
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{d(Kp
c , uk)} and uki

= P(vki
) ∈ {uk} such that limi→∞ d(Kp

c , uki
) = β. By the PS condition,

{P(vki
)} has a subsequence that converges to a critical point ū. Again ū ∈ Kp

c , i.e., β = 0.

Thus conclusion (a) holds.

If in addition, ∇J(P(·)) is Lipschitz continuous in U with a Lipschitz constant ℓ1, then

by (3.8) and (3.9), conclusion (b) follows from

‖∇J(P(vk))‖ ≤ ‖∇J(P(v̄k))‖ + ‖∇J(P(vk)) −∇J(P(v̄k))‖

≤
16M

αθ
δk + ℓ1‖v̄k − vk‖ ≤ (

16M

αθ
+ ℓ1)(J(uk) − c)

1

2 .

Corollary 3.1. Let J ∈ C1(B, R) satisfy the PS condition, V1 and V2 be open in L′

with ∅ 6= U2 ≡ V2 ∩ SL′ ⊂ V1 ∩ SL′ ≡ U1. If P is a continuous L-⊥ selection of J in U1 with

(1) infv∈U1
d(P(v), L) ≥ α > 0, c = infv∈U1

J(P(v)) > −∞ and Kp
c = P(U1) ∩ K ⊂ Kc,

(2) there is d > 0 with inf{J(P(v))|v ∈ U1, d(v, ∂U1) ≤ d} = a > b = sup{J(P(v))|v ∈ U2},

(3) given {vk} such that v1 ∈ U2, ‖vk+1 − vk‖ < d, J(uk+1) < J(uk) and {uk} has a

subsequence that converges to a critical point u0, where uk = P(vk). Then

(a) ∀ε > 0, there is k̄ > 0 such that d(Kp
c , uk) < ε, ∀k > k̄;

(b) If in addition, ∇J(P(·)) is Lipschitz continuous in U1, then there is a constant C such

that ‖∇J(uk)‖ ≤ C(J(uk) − c)
1

2 .

Proof. First, we prove that vk ∈ U1 and d(vk, ∂U1) > d, k = 1, 2, .... In fact, if vk ∈ U1,

d(vk, ∂U1) > d and J(uk) ≤ b, then vk+1 ∈ U1 and J(uk+1) < b, i.e., vk+1 ∈ U1 and

d(vk+1, ∂U1) > d. Thus, for v1 ∈ U2, vk ∈ U1 and d(vk, ∂U1) > d, k = 1, 2, .... Since

Kp
c = P(U1) ∩ K ⊂ Kc and {uk} has a subsequence that converges to a critical point u0,

we have u0 ∈ Kp
c 6= ∅. Denote U = {v ∈ U1|d(v, ∂U1) > d}. Then by the monotonicity of

{J(uk)}, we have J(uk) → c = infv∈U J(P(v)) as k → ∞, and

inf
v∈∂Ū

J(P(v)) ≥ a > b ≥ J(P(v1)) ≥ c = inf
v∈U

J(P(v)).

Thus all the assumptions of Theorem 3.2 are satisfied and the conclusions follow.
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Remark 3.1. There are two types of conditions posed in our convergence results. One is

used in the literature to guarantee the existence of multiple solutions. The other is what we

posed to insure a convergence for the algorithm. We will focus on verification of the later.

(1) In Theorem 3.2, if U = SL′ , condition (3) can be simplified as c = inf
v∈SL′

J(P(v)) > −∞.

(2) In Corollary 3.1, condition (2) or its variants are frequently used in the literature to

form a topological linking for applying a deformation lemma to prove an existence of

multiple solutions. It is clear that condition (3) in Theorem 3.2 is much weaker. It is

used to trap a descending flow away from critical points at other levels. Condition (3)

in Corollary 3.1 is designed for our algorithm to cover several different cases in Banach

spaces and is guaranteed by our assumption (H) and Theorem 3.1.

(3) Note that when Kp
c contains only one point, Theorem 3.2 can be easily stated as a

point-to-point convergence result. Theorem 3.2 together with its Corollary 3.1 improve

a convergence result in Hilbert spaces, Theorem 3.3 in [5] in several directions. They (a)

cover several different cases in Banach spaces, (b) do not require P be a homeomorphism

and (c) contain a new result on relative convergence rate, i.e., inequality (2) which

explains why in our numerical computations, J(P(vk
n)) always converges much faster

than ‖∇J(P(vk
n))‖ → 0.

Next we verify assumption (H) for several different cases. It is done in Lemmas 3.3, 3.4,

3.6 and 3.7 below. Cases 1 and 2 are general, so we assume B = L⊕L′ where L′ is a closed

subspace of B and P : B → L′ is the corresponding projection. In Step 3 of the algorithm,

we choose wk = −sign(t0)G(P(vk)) where G is either an L′-PPG of J or the value of an

L′-PPG flow of J . Then ‖wk‖ ≤ M = ‖P‖. By Lemma 2.4 we obtain

Lemma 3.2. If P is a local L-⊥ selection of J at v ∈ SL′ such that (1) P is continuous

at v, (2) d(P(v), L) > 0 and (3) ∇J(P(v)) 6= 0, then s(v) > 0.

Case 1: Use the value of a negative PPG flow G as a descent direction.

Here G(P(vk)) is the value of an L′-PPG flow of J at P(vk) = tk0vk +vL
k for some vL

k ∈ L.

Lemma 3.3. If P is a local L-⊥ selection of J at v0 ∈ SL′ such that (1) P is continuous

at v0, (2) d(P(v0), L) > 0 and (3) ∇J(P(v0)) 6= 0, then there exist ε > 0 and s0 = λ
2m for
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some integer m such that for each v ∈ SL′ with ‖v − v0‖ < ε, λ ≥ s0‖G(P(v))‖ and

J(P(v(s0))) − J(P(v)) < −
s0θ|tv|

4
‖∇J(P(v))‖, v(s0) =

v + sign(tv)s0G(P(v))

‖v + sign(tv)s0G(P(v))‖
,

P(v) = tvv + wv for some wv ∈ L and G(P(v)) is the value of an L′-PPG flow of J at P(v)

w.r.t. the constant θ.

Proof. By Lemma 2.4, there is s̄ > 0 such that as 0 < s < s̄

J(P(v0(s))) − J(P(v0)) < −
sθ|t0|

4
‖∇J(P(v0))‖(3.10)

where

v0(s) =
v0 − sign(t0)sG(P(v0))

‖v0 − sign(t0)sG(P(v0))‖
, P(v0) = t0v0 + w0

for some w0 ∈ L. Actually, for each fixed s, the two sides of (3.10) are continuous in v0.

Thus, there are ε > 0, s0 = λ
2m for some integer m such that λ ≥ s0‖G(P(v))‖ and

J(P(v(s0))) − J(P(v)) < −
s0θ|tv|

4
‖∇J(P(v))‖,

∀v ∈ SL′ with ‖v − v0‖ ≤ ε.

Case 2: Use a negative PPG G as a descent direction.

Here G(P(vk)) is a L′-PPG of J at P(vk) = tk0vk + vL
k for some vL

k ∈ L. Since an L′-PPG

may be chosen from different L′-PPG flows, we lost the continuity. To compensate the loss,

we assume that an L-⊥ selection P of J is locally Lipschitz continuous.

Lemma 3.4. Let P be a local L-⊥ selection of J at v0 ∈ SL′. If (1) P is Lipschitz

continuous in a neighborhood of v0, (2) d(P(v0), L) > 0 and (3) ∇J(P(v0)) 6= 0, then there

are ε > 0 and s0 = λ
2m for some integer m such that λ ≥ s0‖G(P(v))‖ and

J(P(v(s0))) − J(P(v)) < −
1

4
s0θ|tv|‖∇J(P(v))‖,

∀v ∈ SL′ with ‖v − v0‖ < ε, where

v(s) =
v − sign(tv)sG(P(v))

‖v − sign(tv)sG(P(v))‖
, s > 0, P(v) = tvv + wv for some wv ∈ L

and G(P(v)) is an L′-PPG of J at P(v) w.r.t. the constant θ.

Proof. First, denote P(v(s)) = tsvv(s) + wv(s) for some wv(s) ∈ L, we have

J(P(v(s))) − J(P(v)) = 〈∇J(P(v)) + (∇J(ζ(v, s))−∇J(P(v))),P(v(s)) −P(v)〉(3.11)
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where ζ(v, s) = (1−η)P(v)+ηP(v(s)) for some η ∈ [0, 1]. By assumption (1) and Lemma 2.3,

as s is small and for any v close to v0,

‖P(v(s)) − P(v)‖ ≤ ℓ‖v(s) − v‖ ≤
2ℓs‖G(P(v))‖

‖v − sign(tv)sG(P(v))‖
≤ 4ℓMs.(3.12)

On the other hand, by the definition of an L-⊥ selection of J , we have

〈∇J(P(v)),P(v(s)) −P(v)〉 = −
sign(tv)t

s
vs〈∇J(P(v)), G(P(v))〉

‖v − sign(tv)sG(P(v))‖

= −
|tsv|s〈∇J(P(v)), Ψ(P(v))〉

‖v − sign(tv)sG(P(v))‖
≤ −

sθ|tv|‖∇J(P(v))‖

2
< 0(3.13)

and

|〈∇J(ζ(v, s))−∇J(P(v)),P(v(s)) − P(v)〉|

≤ ‖∇J(ζ(v, s))−∇J(P(v))‖ ‖P(v(s)) − P(v)‖ ≤
sθ|tv|‖∇J(P(v))‖

4
(3.14)

where in the last inequality, since J is C1 and by assumptions (2) and (3), we have

‖∇J(ζ(v, s)) −∇J(P(v))‖ ≤
θ|tv|‖∇J(P(v))‖

16ℓM
.(3.15)

By (3.11) and the boundedness of L′-PPGs, there exist ε > 0 and s0 = λ
2m for some integer

m such that λ ≥ s0‖G(P(v))‖ and

J(P(v(s0))) − J(P(v)) ≤ −
s0θ|tv|‖∇J(P(v))‖

4
, ∀v ∈ SL′ with ‖v − v0‖ < ε.

Case 3: Use a practical technique for a descent direction in B = W 1,p
0 (Ω).

Let B = W 1,p
0 (Ω) where Ω ⊂ R

n is open and bounded, p > 1, B∗ = W−1,q(Ω) with

1
p

+ 1
q

= 1. The usual gradient δJ(u) ∈ B∗ = W−1,q(Ω) cannot be used as a search

direction. Thus d = ∆−1
p (δJ(u)) ∈ B has been used in the literature as a descent direction

to find a local minimum of J : B → R, where ∆p is the p-Laplacian operator defined in

(4.1) and ∆−1
p is its inverse. It leads to solve a sequence of quasi-linear elliptic equations

∆pdk = δJ(uk). But such d is not a PPG, it does not help much for finding a saddle point.

A practical technique is used in [12] for numerical implementation to compute a PPG. The

results are very promising. Here we wish to provide some mathematical justification. This

technique is based on the understanding that when a nice smooth initial guess v0 is used,
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we may expect that ‘nice’ functions are actually used to approximate a critical point. Let

P be an L-⊥ selection of J . For v ∈ SL′, u = P(v), by the definition of P, δJ(u) ⊥ L.

But δJ(u) ∈ W−1,q(Ω), its smoothness is poor. We first lift its smoothness by computing

d := ∇J(u) = ∆−1(−δJ(u)) ∈ W 1,q
0 (Ω), i.e., dk = ∇J(uk) is solved from

∆dk(x) = −δJ(uk)(x), x ∈ Ω, dk(x)|∂Ω = 0.

Observe that notationally for any w ∈ B,

〈d, w〉W 1,q
0

×W
1,p
0

≡ 〈∇d,∇w〉Lq×Lp ≡

∫

Ω

∇d(x) · ∇w(x) dx

=

∫

Ω

−∆d(x)w(x) dx =

∫

Ω

δJ(u)(x)w(x) dx ≡ 〈δJ(u), w〉
W−1,q×W

1,p
0

.

This suggests that d = ∇J(u) be used as a gradient of J at u. In particular when u = P(v),

〈∇J(u), w〉W 1,q
0

×W
1,p
0

= 〈δJ(u), w〉W−1,q×W
1,p
0

= 0, ∀w ∈ [L, v],(3.16)

or ∇J(u) ⊥ [L, v]. This suggests a natural way to choose L′. We will discuss it late. Since

‖δJ(u)‖W−1,q = sup
‖w‖

W
1,p
0

=1

〈δJ(u), w〉W−1,q×W
1,p
0

= sup
‖w‖

W
1,p
0

=1

〈d, w〉
W

1,q
0

×W
1,p
0

= sup
‖∇w‖Lp=1

|〈∇d,∇w〉Lq×Lp | ≤ ‖d‖
W

1,q
0

,(3.17)

the PS condition of J in terms of δJ implies the PS condition of J in terms of ∇J . In our

convergence analysis of the algorithm, the first order approximation contains a term

〈δJ(v0),∇J(v0)〉W−1,q×W
1,p
0

=

∫

Ω

δJ(v0)∇J(v0)dx

=

∫

Ω

−∆(∇J(v0))∇J(v0)dx =

∫

Ω

∇(∇J(v0)) · ∇(∇J(v0))dx = ‖∇J(v0)‖
2
W 1,2 ,

which will be used to design a new stepsize rule. Next we let uk = P(vk) and check the ratio

1 ≥ θk ≡
‖∇J(uk)‖

2
2

‖∇J(uk)‖q‖∇J(uk)‖p

≥ θ > 0 ∀k = 1, 2, ...,(3.18)

where ‖ · ‖r is the norm in W 1,r
0 (Ω) with r > 1. Let G(uk) =

∇J(uk)

‖∇J(uk)‖p

. We have

‖G(uk)‖p ≤ M = 1 and

〈δJ(uk), G(uk)〉 =
‖∇J(uk)‖

2
2

‖∇J(uk)‖p

= θk‖∇J(uk)‖q ≥ θk‖δJ(uk)‖W−1,q ≥ θ‖δJ(uk)‖W−1,q(3.19)
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where the last inequality holds if (3.18) is satisfied, i.e., G(uk) is a pseudo-gradient of J at

uk. Then (3.16) suggests that G(uk) is also an L′-PPG of J at uk = P(vk) if L′ = L⊥ where

L⊥ is given in (3.20), L = [w1, ..., wn−1] and w1, ..., wn−1 are linearly independent. To show

B = L ⊕ L⊥, we need further assume that when 1 < p < 2, w1, ..., wn−1 are n-1 previously

found ‘nice’ critical points, or at least they are ‘nice’ approximations of some exact critical

points such that L ⊂ W 1,q
0 (Ω). Such an assumption holds automatically when 2 ≤ p. Thus

L′ := L⊥ = {u ∈ B|

∫

Ω

∇u(x) · ∇v(x) dx = 0, ∀v ∈ L}(3.20)

is well defined and L ∩ L′ = {0} holds. For any w ∈ B, we compute wL :=
∑n−1

i=1 αiwi from
∫

Ω

∇wL(x) · ∇wj(x) dx =

∫

Ω

∇w(x) · ∇wj(x) dx, j = 1, ..., n − 1.

Thus wL ∈ L and w − wL ∈ L⊥, i.e., B = L ⊕ L′.

But we cannot assume that such G(uk) is the value of a PPG flow of J at uk = P(vk),

because we do not know the ratio at other points. In all our numerical examples, (3.18) is

satisfied. But we note that the ratio is stable for 1 < p ≤ 2 and gets closer to 0 as p → +∞.

Thus we treat those two cases differently in our convergence analysis. For 1 < p ≤ 2, we

assume that (3.18) is satisfied. But for p > 2, we only assume ‖∇J(uk)‖p ≤ M for some

M > 0. Either one of the assumptions implies ∇J(uk) ∈ L⊥ ⊂ B. By comparing G(uk) and

∇J(uk), Step 3 and the stepsize rule in Step 5 need to be modified as below.

Step 3: Find a descent direction wk of J at uk = P(vk), wk = −sign(tk0)∇J(uk).

Compute the ratio θk =
‖wk‖

2
2

‖wk‖p‖wk‖q

> 0;

Since 〈δJ(uk),∇J(uk)〉 = ‖∇J(uk)‖
2
2, the stepsize rule in Step 5 has to be changed to

sk = max
{

s =
λ

2m
|m ∈ N, 2m > ‖wk‖, J(P(vk(s))) − J(uk) ≤

|tk0|s

−4
‖∇J(uk)‖

2
2

}

,(3.21)

where 0 < λ < 1. Note that if θk > θ > 0, theoretically the term ‖∇J(uk)‖
2
2 in the above

stepsize rule can be replaced by θ‖∇J(uk)‖q, i.e., we use G(P(vk)) =
∇J(uk)

‖∇J(uk)‖p

as an L′-

PPG of J at uk = P(vk). Then this case can be covered by Case 2. But in implementation,

the lower bound θ of the ratio is usually not known beforehand. In particular, we do

not known whether or not the ratio is satisfied at a limit point of the sequence. Thus

the current stepsize rule (3.21) has to be used in implementation. First we show that if

0 < ‖∇J(P(v0))‖p < +∞, then a positive stepsize can always be attained.
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Lemma 3.5. For v0 ∈ SL′, if J has a local L-⊥ selection P at v0 satisfying (1) P is

continuous at v0, (2) d(P(v0), L) > 0 and (3) 0 < ‖∇J(P(v0))‖2 < +∞. Then there exists

s0 > 0 such that as 0 < s < s0

J(P(v0(s))) − J(P(v0)) < −
|t0|s

4
‖∇J(P(v0))‖

2
2(3.22)

where P(v0) = t0v0 + w0 for some t0 ∈ R, w0 ∈ L and v0(s) =
v0 − sign(t0)s∇J(P(v0))

‖v0 − sign(t0)s∇J(P(v0))‖
.

Proof. Since ‖P(v0(s)) − P(v0)‖ → 0 as s → 0, we have

J(P(v0(s)) − J(P(v0)) = 〈δJ(P(v0)),P(v0(s)) − P(v0)〉 + o(‖P(v0(s)) − P(v0)‖)

= −
sign(t0)t

s
0s‖∇J(P(v0))‖

2
2

‖v0 − sign(t0)s∇J(P(v0))‖
+ o(‖P(v0(s)) −P(v0)‖) < −

|t0|s

4
‖∇J(P(v0))‖

2
2

where P(v0(s)) = ts0v0(s) + ws
0 and ws

0 ∈ L, when s > 0 is very small.

Next we verify assumption (H).

Subcase p<2. (We assume (3.18) holds.) We have ∇J(uk) ∈ W 1,q
0 (Ω) ⊂ B. The

conclusion in the next lemma is actually stronger than assumption (H).

Lemma 3.6. Let J ∈ C1(B, R) and v0 ∈ SL⊥. Let P be a local L-⊥ selection of J at v0

such that P is continuous at v0 and d(P(v0), L) > 0. If δJ(P(v0)) 6= 0, then there are ε > 0

and s0 = λ
2m for some integer m such that λ ≥ s0‖∇J(P(v))‖p and

J(P(v(s0))) − J(P(v)) < −
|tv|s0

4
‖∇J(P(v))‖2

2,

∀v ∈ SL′, ‖v−v0‖ < ε, where P(v) = tvv+w, w ∈ L and v(s0) =
v − sign(tv)s0∇J(P(v))

‖v − sign(tv)s0∇J(P(v))‖
.

Proof. By Lemma 3.5, we have

J(P(v0(s))) − J(P(v0)) < −
|t0|s

4
‖∇J(P(v0))‖

2
2.(3.23)

When p < 2, we have q > 2. J is C1 implies that ∇J is continuous in ‖ · ‖2-norm. For fixed

s, all the terms in (3.23) are continuous in v0. Thus there exists ε > 0 and s0 = λ
2m for some

integer m such that λ ≥ s0‖∇J(P(v))‖p since J is C1 and

J(P(v(s0))) − J(P(v)) < −
|tv|s0

4
‖∇J(P(v))‖2

2, ∀v ∈ SL′ , ‖v − v0‖ < ε.
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With the new stepsize rule and the uniform stepsize result, Lemma 3.6, if θk > θ > 0 holds

in Step 3. We can verify Theorem 3.1. The proof is similar. We need only replace (3.1) by

J(uk+1) − J(uk) < −
αsk

4
‖∇J(uk)‖

2
2 (by (3.18))

< −
αθsk

4
‖∇J(uk)‖p‖∇J(uk)‖q < −

αθ|1 − λ|

4M
‖vk+1 − vk‖‖∇J(uk)‖q(3.24)

where 0 < λ < 1 is given in (3.21) and then follow the proof.

Subcase p>2. (We only assume ‖∇J(uk)‖p ≤ M for some M > 0.) We have

B = W 1,p
0 (Ω) ⊂ W 1,2

0 (Ω). To verify assumption (H) and prove the convergence of the

algorithm, we note that in this case, ∇J(uk) ∈ L′ = L⊥ still holds, i.e., −∇J(uk) can be

used as a search direction. But J is C1 means that δJ is continuous in ‖ · ‖(−1,q)-norm and

∇J is continuous in ‖·‖q-norm, not necessarily in ‖·‖2-norm. Thus we need an L-⊥ selection

P to be locally Lipschitz continuous.

Lemma 3.7. Let J ∈ C1(B, R) and v0 ∈ SL′. Assume that P is a local L-⊥ selection

of J at v0 such that (1) P is locally Lipschitz continuous (2) d(P(v0), L) > 0 and (3)

δJ(P(v0)) 6= 0. Then for any vk ∈ SL′ with lim
k→∞

vk = v0 and ‖∇J(P(vk))‖p ≤ M , there are

k̄, s0 = λ
2m for some integer m such that λ > s0‖∇J(P(vk))‖p and

J(P(vk(s0))) − J(P(vk)) ≤ −
s0|tk|‖∇J(P(vk))‖

2
2

4
, ∀k > k̄,

where vk(s) =
vk − sign(tk)s∇J(P(vk))

‖vk − sign(tk)s∇J(P(vk))‖
and P(vk) = tkvk + vL

k , vL
k ∈ L.

Proof. Denote P(vk(s)) = tskvk(s) + vL
k (s) for some vL

k (s) ∈ L. Then, by the mean value

theorem, we have

J(P(vk(s)))−J(P(vk)) = 〈δJ(P(vk))+(δJ(ζ(vk, s))−δJ(P(vk))),P(vk(s))−P(vk)〉(3.25)

where ζ(vk, s) = (1 − λk)P(vk) + λkP(vk(s)) for some λk ∈ [0, 1]. By assumption (1) and

Lemma 2.3,

‖P(vk(s)) − P(vk)‖ ≤ ℓ‖vk(s) − vk‖ ≤
2ℓs‖∇J(P(vk))‖p

‖vk − sign(tk)s∇J(P(vk))‖
.

On the other hand, by the definition of an L-⊥ selection of J , as s > 0 is small and k is

large, we have

〈δJ(P(vk)),P(vk(s)) − P(vk)〉 = −
sign(tk)t

s
ks‖∇J(P(vk))‖

2
2

‖vk − sign(tk)s∇J(P(vk))‖

≤ −
s|tk|

2
‖∇J(P(vk))‖

2
2 < 0.(3.26)
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Since J is C1 and 1 < q < 2 in this case, by assumptions (2), (3) and applying inequality

(3.17), there exists δ > 0 such that when s is small and k is large,

|tk|‖vk − sign(tk)s∇J(P(vk))‖‖∇J(P(vk))‖
2
2

8ℓ‖∇J(P(vk))‖p

> δ > 0.

Thus we can choose s > 0 small and k large such that

‖δJ(ζ(vk, s)) − δJ(P(vk))‖ ≤
|tk|‖vk − sign(tk)s∇J(P(vk))‖‖∇J(P(vk))‖

2
2

8ℓ‖∇J(P(vk))‖p

.

Hence

|〈δJ(ζ(vk, s)) − δJ(P(vk)),P(vk(s)) − P(vk)〉|

≤ ‖δJ(ζ(vk, s)) − δJ(P(vk))‖‖P(vk(s)) −P(vk)‖ ≤
s|tk|‖∇J(P(vk))‖

2
2

4
.(3.27)

Applying inequalities (3.26) and (3.27) to (3.25), there exist k̄, s0 = λ
2m for some integer m

such that λ > s0‖∇J(P(vk))‖p and

J(P(vk(s0))) − J(P(vk)) ≤ −
s0|tk|‖∇J(P(vk))‖

2
2

4
, ∀k > k̄.

With the new stepsize rule (3.21) and the assumption ‖∇J(uk)‖p < M , the conclusion

of Lemma 3.7 implies assumption (H), i.e., s(vk) ≥ s0. Then the convergence result,

Theorem 3.1, can be verified. The proof is similar. Note that when ‖∇J(uk)‖q > δ0 for

some δ0 > 0, ‖∇J(uk)‖2 > δ for some δ > 0. We only need to replace (3.1) and (3.2) by

J(uk+1) − J(uk) < −
αsk

4
‖∇J(uk)‖

2
2 ≤ −

αsk

4
δ2

≤ −
αskδ

2

4M
‖∇J(uk)‖p ≤ −

αδ2|1 − λ|

4M
‖vk+1 − vk‖p

where 0 < λ < 1 is given in (3.21) and the last inequality follows from Lemma 2.3. Then

following the proof, the unified convergence result, Theorem 3.1 is also obtained.

4 An Application to Nonlinear p-Laplacian Equation

As an application, let us consider the following quasilinear elliptic boundary-value problem

on a bounded smooth domain Ω ⊂ R
n







∆pu(x) + f(x, u(x)) = 0, x ∈ Ω,

u(x) = 0, x ∈ ∂Ω,
u ∈ B ≡ W 1,p(Ω), p > 1,(4.1)
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where ∆p defined by ∆pu(x) = div(|∇u(x)|p−2∇u(x)) is the p-Laplacian operator which

has a variety of applications in physical fields, such as in fluid dynamics when the shear

stress and the velocity gradient are related in certain manner where p = 2, p < 2, p > 2 if

the fluid is Newtonian, pseudoplastic, dilatant, respectively. The p-Laplacian operator also

appears in the study of flow in a porous media (p = 3
2
), nonlinear elasticity (p > 2) and

glaciology (p ∈ (1, 4
3
)). Under certain standard conditions on f , it can be shown that a point

u∗ ∈ W 1,p
0 (Ω) is a weak solution of (4.1) if and only if u∗ is a critical point of the functional

J(u) =
1

p

∫

Ω

|∇u(x)|pdx −

∫

Ω

F (x, u(x))dx where F (x, t) =

∫ t

0

f(x, s)ds.(4.2)

Many multiple solutions to the above quasilinear elliptic PDE have been numerically

computed in [12,13] for p < 2 and p > 2. Convergence results obtained in Section 3 can be

applied, see Case 3. Since conditions (1), (2) and (3) in Theorem 3.1 are basic assumptions in

our results and new in the literature, we focus on verifying them in this section. While other

conditions, such as the PS condition, have been studied in the literature and therefore will

not be discussed here. Let us assume some of the standard growth and regularity conditions

in the literature. Denote the Sobolev exponent p∗ = np

n−p
for p < n and p∗ = ∞ for p ≥ n.

Assume

(a) f ∈ C1(Ω̄ × R, R), f(x, 0) = 0,
f(x, tξ)

|tξ|p−2tξ
monotonically increases to +∞ in t,

(b) For each ε > 0, there is c1 = c1(ε) > 0 such that f(x, t)t < ε|t|p + c1|t|
p∗ ∀t ∈ R, x ∈ Ω.

It is clear that u = 0 is a critical point of the least critical value of J and f(x, u) = |u|q−2u

for q > p satisfies condition (a). For each v ∈ B with ‖v‖ = 1 and t > 0, let g(t) = J(tv).

We have

g′(t) = 〈∇J(tv), v〉 =

∫

Ω

(

tp−1|∇v(x)|p − f(x, tv(x))v(x)
)

dx

= tp−1
(

1 −

∫

Ω

f(x, tv(x))|v(x)|p

|tv(x)|p−2tv(x)

)

dx.

Thus, by condition (a), there is a unique tv > 0 such that g′(tv) = 0, i.e., for L = {0} and

each v ∈ SB, the L-⊥ selection (actually a peak selection) P(v) = tvv is uniquely determined

with J(P(v)) > 0. By taking a derivative of condition (a) w.r.t. t, we have

g′′(t) = (p − 1)t(p−2) −

∫

Ω

f ′
u(x, tv(x))v2(x) dx

< (p − 1)t(p−2) −

∫

Ω

(p − 1)

t
f(x, tv(x))v(x) dx =

p − 1

t
g′(t).(4.3)
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Thus condition (3) in Theorem 3.1 is always satisfied for any L. Next let us recall that when

L = [u1, u2, ..., un−1], by the definition of an L-⊥ selection, P(v) = t0v+ t1u
1 + · · ·+ tn−1u

n−1

is solved from

∂

∂t0
g(t0, ..., tn−1) = 〈∇J(t0v + t1u

1 + · · ·+ tn−1u
n−1), v〉 = 0,(4.4)

∂

∂ti
g(t0, ..., tn−1) = 〈∇J(t0v + t1u

1 + · · ·+ tn−1u
n−1), ui〉 = 0, i = 1, ..., n − 1,

where g(t0, ..., tn−1) = J(t0v++t1u
1+...+tn−1u

n−1). If u = P(v) = t0v+t1u
1+· · ·+tn−1u

n−1

satisfies (4.4) and at u, the n × n matrix

Q =

[

∂2

∂ti∂tj
g(t0, ..., tn−1)

]

=

















〈J ′′(u)v, v〉 〈J ′′(u)u1, v〉 · · · 〈J ′′(u)un−1, v〉

〈J ′′(u)v, u1〉 〈J ′′(u)u1, u1〉 · · · 〈J ′′(u)un−1, un−1〉

· · · · · ·

〈J ′′(u)v, un−1〉 〈J ′′(u)u1, un−1〉 · · · 〈J ′′(u)un−1, un−1〉

















is invertible, i.e., |Q| 6= 0, then by the implicit function theorem, around u, the L-⊥ selection

P is well-defined and continuously differentiable. The condition |Q| 6= 0 can be easily and

numerically checked. For the current case L = {0}, by (4.3), we have Q = g′′(tv) < 0. Thus

the L-⊥ selection P is C1. To show that d(P(v), L) > α > 0 for all v ∈ SB, by (b), for any

ε > 0, there is c1 = c1(ε) such that f(x, v(x))v(x) < ε|v(x)|p + c1|v(x)|p
∗

. It follows
∫

Ω

f(x, v(x))v(x) dx < ε

∫

Ω

|v(x)|p dx + c1

∫

Ω

|v(x)|p
∗

dx

(by the Poincare and Sobolev inequalities)

≤ εc0(Ω)

∫

Ω

|∇v(x)|p dx + c1c2(Ω)
(

∫

Ω

|∇v(x)|p dx
)

p∗

p

=
[

εc0(Ω) + c1c2(Ω)
(

∫

Ω

|∇v(x)|p dx
)

p∗

p
−1]

∫

Ω

|∇v(x)|p dx.

Thus

〈∇J(v), v〉 ≥
[

1 − εc0(Ω) − c1c2(Ω)
(

∫

Ω

|∇v(x)|p dx
)

p∗

p
−1]

∫

Ω

|∇v(x)|p dx

=
[

1 − εc0(Ω) − c1c2(Ω)‖v‖p∗−p
]

‖v‖p.

It follows that for any small ε > 0, c1, c0(Ω) and c2(Ω), there is t0 > 0 such that when

0 < ‖v‖ = t < t0, we have 〈∇J(v), v〉 ≥
[

1 − εc0(Ω) − c1c2(Ω)tp
∗−p

]

tp > 0. Therefore the

L-⊥ selection P(v) satisfies ‖P(v)‖ > t0 or d(P(v), L) > t0 > 0, ∀v ∈ SB where L = {0}.
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