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Abstract. In some models of quantum gravity, space-time is thought to have a foamy structure with non-trivial optical prop-
erties. We probe the possibility that photons propagating in vacuum may exhibit a non-trivial refractive index, by analyzing
the times of flight of radiation from gamma-ray bursters (GRBs) with known redshifts. We use a wavelet shrinkage procedure
for noise removal and a wavelet “zoom” technique to define with high accuracy the timings of sharp transitions in GRB light
curves, thereby optimizing the sensitivity of experimental probes of any energy dependence of the velocity of light. We apply
these wavelet techniques to 64 ms and TTE data from BATSE, and also to OSSE data. A search for time lags between sharp
transients in GRB light curves in different energy bands yields the lower limitM ≥ 6.9×1015 GeV on the quantum-gravity scale
in any model with a linear dependence of the velocity of light∝ E/M. We also present a limit on any quadratic dependence.
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1. Introduction

In standard relativistic quantum field theory, space–time is con-
sidered as a fixed arena in which physical processes take place.
The characteristics of the propagation of light are considered
as a classical input to the theory. In particular, the special and
general theories of relativity postulate a single universal veloc-
ity of light c. However, starting in the early 1960s (Wheller
1963), efforts to find a synthesis of general relativity and quan-
tum mechanics, called quantum gravity, have suggested a need
for greater sophistication in discussing the propagation of light
in vacuum.

A satisfactory theory of quantum gravity is likely to require
a drastic modification of our deterministic representation of
space–time, endowing it with structure on characteristic scales
approaching the Planck length`P ' m−1

P . There is at present no
complete mathematical model for quantum gravity, and there
are many different approaches to the modelling of space-time
foam. Several of these approaches suggest that the vacuum
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acquires non-trivial optical properties, because of gravitational
recoil effects induced by the motion of energetic particles. In
particular, it has been suggested that these may induce a non-
trivial refractive index, with photons of different energies trav-
elling at different velocities. Such an apparent violation of
Lorentz invariance can be explored by studying the propagation
of particles through the vacuum, in particular photons emit-
ted by distant astrophysical sources (Amelino-Camelia et al.
1998). In some quantum-gravity models, light propagation may
also depend on the photon polarization (Gambini & Pullin
1999), inducing birefringence. Stochastic effects are also pos-
sible, giving rise to an energy-dependent diffusive spread in
the velocities of different photons with the same energy (Ford
1995; Ellis et al. 2000a).

One may discuss the effects of space–time foam on the
phase velocity, group velocity or wave-front velocity of light.
In this paper, we discuss only the signature of a modification of
the group velocity, related to a non-trivial refractive indexn(E):
v(E) = c/n(E). This may be derived theoretically from a (renor-
malized) effective Maxwell actionΓeff [E,B], whereE andB
are the electric and magnetic field strengths of the propagating
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wave, in the background metric induced by the quantum gravity
model under consideration. Once the effective Maxwell action
is known, at least in a suitable approximation, one can analyze
the photon dispersion using the effective Maxwell equations
(Ellis et al. 2000b).

One generally considers the propagation of photons with
energiesE much smaller than the mass scaleM characterizing
the quantum gravity model, which may be of the same order as
the Planck massMP, or perhaps smaller in models with large
extra dimensions. In the approximationE � M, the distortion
of the standard photon dispersion relation may be represented
as an expansion inE/M:

E2 = k2(1+ ξ1(k/M) + ξ2(k/M)2 + . . .), (1)

which implies the following energy dependence of the group
velocity

v ≈ c (1− f (E)) . (2)

Here the functionf (E) indicates the difference of the vacuum
refractive index from unity:n(E) = 1+ f (E), which is defined
by the subleading terms in the series Eq. (1).

Different approaches to the modelling of quantum grav-
ity suggest corrections with different powers ofE/M. One of
the better developed is a string-inspired model of quantum
space–time, in which the corrections in Eq. (1) start with the
third power ofk/M, as suggested by one particular treatment
of D branes (Ellis et al. 1997; Ellis et al. 1998; Ellis et al.
2000c). In this approach, the related violation of Lorentz invari-
ance is regarded as spontaneous, and is due to the impacts of
light but energetic closed–string states on massiveD(irichlet)
particles that describe defects in space–time. In the modern
view of string theory,D particles must be included in the spec-
trum, and hence also their quantum fluctuations should be in-
cluded in a consistent formulation of the ground–state vacuum.
In the model of Ellis et al. (1997), Ellis et al. (1998), Ellis
et al. (2000c), the scattering of the closed–string state on theD
particle induces recoil of the the latter, which distorts the
surrounding space–time in a stochastic manner, reflecting the
foamy structure of space–time.

In such a picture, the recoil of the massive space–time def-
fect, during the scattering with a relativistic low–energy probe
such as a photon or neutrino, distorts the surrounding space–
time, inducing an effective net gravitational field of the form

G0i '
(

ki

M

)
· (3)

The dispersion-relation analysis (Ellis et al. 2000b) of the
Maxwell equations in the non-trivial background metric per-
turbed by such a gravitational field results in a linear depen-
dence of the vacuum refractive index on the energy:

f (E) =
( E
M

)
· (4)

In some other realisations of quantum gravity, odd powers
of k/M in Eq. (1) may be forbidden (e.g. Burgess et al. 2002)
by selection rules such as rotational invariance in a preferred

frame. In this case, the leading correction to the refractive
index takes the form

f (E) =
( E

M

)2

· (5)

We assume that the prefactors in both cases are positive, reflect-
ing the fact that there should be no superluminal propagation
(Moore & Nelson 2001). This requirement is not necessarily
respected in some models based on the loop-gravity approach
(Gambini & Pullin 1999a; Alfaro et al. 2000).

The study of short-duration photon bursts propagating over
cosmological distances is a most promising way to probe this
approach to quantum gravity (Amelino-Camelia et al. 1998):
for a recent review, see (Sarcar 2002). The modification of
the group velocity Eq. (2) would affect the simultaneity of the
arrival times of photons with different energies. Thus, given a
distant, transient source of photons, one could measure the dif-
ferences in the arrival times of sharp transitions in the signals
in different energy bands. Several different types of transient
astrophysical objects can be considered as sources for the pho-
tons used to probe quantum-gravity corrections such as Eqs. (4)
and (5) to the vacuum refractive index (Amelino-Camelia et al.
1998; Ellis et al. 2000b; Biller et al. 1999; Schafer 1999).
These include Gamma-Ray Bursters (GRBs), Active Galactic
Nuclei (AGNs) and pulsars.

A key issue in such probes is to distinguish the effects of
the quantum-gravity medium from any intrinsic delay in the
emission of particles of different energies by the source. Any
quantum-gravity effect should increase with the redshift of the
source, whereas source effects would be independent of the
redshift in the absence of any cosmological evolution effects
(Ellis et al. 2000b). Therefore, in order to disentangle source
and propagation effects, it is preferable to use transient sources
with a known spread in redshiftsz. At the moment, one of the
most model-independent ways to probe the time lags that might
arise from quantum gravity is to use GRBs with known red-
shifts, which range up toz∼ 5.

Increasing numbers of redshifts have been measured in re-
cent years, and the spectral time lags of GRB light curves
have been investigated in a number of papers (Norris et al.
1994; Band 1997; Norris et al. 2000; Ellis et al. 2000b; Norris
2002). It is important to detect quantitatively temporal struc-
tures which are identical in different spectral bands, to compare
their time positions. Unfortunately, pulse fitting is problematic
(Norris et al. 1996; Ellis et al. 2000b; Norris et al. 2000) in the
cases of many bursts, because of irregular, overlapping struc-
tures in the light curves. As a result these studies often lack
the accuracy to characterize short-time features in the bursts
that are evident to the eye. The cross-correlation method (Band
1997; Norris et al. 2000; Norris 2002) does not use a rigorous
definition of a spike in a pulse; it relies, instead, on a calcula-
tion of the cross-correlation functions (CCFs) between differ-
ent spectral bands directly in the time domain. However there
are some ambiguities in the interpretation of CCF peaks, which
can lead in some cases to unclear conclusions about the spectral
evolution. In particular this is the case when a GRB light curve
contains an emission cluster of closely spaced spikes (e.g. spac-
ing of order of the width of a spike); then the width of the
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CCF’s central peak, the position of which actually measures
the spectral time lag (Band 1987), may reflect the duration of
the whole cluster and not of the individual spikes, whereas only
the narrow individual constituents (spikes) of such an emission
cluster can mark with a good accuracy the arrival time of ra-
diation, so as to apply for a search for quantum gravity effects
(Amelino-Camelia et al. 1998).

In this paper, we seek to overcome the problems men-
tioned above by using wavelet transforms to remove noise, to
resolve overlapping structures and to classify quantitatively
the irregularities of GRB light curves with known redshifts.
The ability of the wavelet technique to characterize burst
morphology allows us to improve significantly the accuracy of
the measurements of time lags, independently of the degree of
spikes separation inside the emission clusters, increasing the
sensitivity to quantum-gravitational corrections. We analyse
the light curves of GRBs with known redshifts triggered by the
Burst And Transient Source Experiment (BATSE) aboard the
Gamma Ray Observatory (GRO) (see the GRO webpage at
http://cossc.gsfc.nasa.gov/cgro/index.html), search-
ing for a redshift dependence of spectral time lags between
identical sharp signal transitions detected by wavelet trans-
forms in different spectral bands. For several GRBs among
the triggers under consideration, one can compare the BATSE
light curves with those measured at higher energies by the
Orientated Scintillation Spectrometer Experiment (OSSE)
aboard the GRO. We also demonstrate that the wavelet tech-
nique can deal with the leading parts of the GRB light curves
recorded by the BATSE time trigger event (TTE), which
improves the time resolution substantially. Unfortunately, in
all the cases except GRB 980329, the TTE data do not cover
enough of the light curve to exhibit coherent structures in
different spectral bands, which would increase the sensitivity
to higher quantum-gravity scales.

We find that the combination of all the available data,
when analyzed using wavelet transforms, prefers marginally
a linear violation of Lorentz invariance between 1015 GeV
and 1016 GeV, although the effect is not significant. We prefer
to interpret the data as giving a limit on the linear quantum-
gravity scale:

M ≥ 6.9× 1015 GeV, (6)

which we consider to be the most robust and model-
independent currently available.

The layout of this paper is as follows. In Sect. 2 we discuss
the propagation of light in an expanding Universe, establishing
the basic formulae we use subsequently in our analysis of time
lags. The fundamental definitions and features of wavelet trans-
forms are reviewed in Sect. 3, and we describe in Sect. 4 how
wavelet shrinkage can be used to remove noise from GRB spec-
tra. The “zooming” technique for localizing variation points
in GRB light curves is described in Sect. 5, and Sect. 6 uses
this technique to analyze time lags. Our limits on linear and
quadratic quantum-gravity models are obtained in Sect. 7, and
we discuss our results in Sect. 8. In addition, Appendix A dis-
cusses signal threshold estimation in the wavelet approach, and
Appendix B recalls some aspects of the Lipschitz characteriza-
tion of singularities.

2. Light propagation in the expanding Universe

Light propagation from remote objects is affected by the ex-
pansion of the Universe and depends upon the cosmological
model (Ellis et al. 2000b). Present cosmological data motivate
the choice of a spatially-flat Universe:Ωtotal = ΩΛ + ΩM = 1
with cosmological constantΩΛ ' 0.7: see (Bahcall et al. 1999)
and references therein. The corresponding differential relation
between time and redshift is

dt = −H−1
0

dz
(1+ z)h(z)

, (7)

where

h(z) =
√
ΩΛ + ΩM(1+ z)3. (8)

Thus, a particle with velocityu travels an elementary distance

udt = −H−1
0

udz
(1+ z)h(z)

, (9)

giving the following difference in distances covered by two
particles with velocities differing by∆u:

∆L = H−1
0

z∫
0

∆udz
(1+ z)h(z)

· (10)

We consider two photons traveling with velocities very close
to c, whose present day energies areE1 and E2. At earlier
epochs, their energies would have been blueshifted by a fac-
tor 1+ z. Defining∆E ≡ E2 − E1, we infer from Eq. (2) that

∆u =
∆E(1+ z)

M
(11)

in the case Eq. (4) of a linearE-dependence of the velocity of
light, and

∆u =
∆E2(1+ z)2

M2
(12)

for the quadratic correction Eq. (5). Inserting the last two ex-
pressions into Eq. (10), one finally finds that the induced dif-
ferences in the arrival times of the two photons with energy
difference∆E are

∆t = H−1
0
∆E
M

z∫
0

dz
h(z)

, (13)

and

∆t = H−1
0

(
∆E
M

)2 z∫
0

(1+ z)dz
h(z)

(14)

for the linear and quadratic types of correction, respectively.
In the following, we look for such time differences in the

arrival times of photons with energy difference∆E propagating
in such a flat expanding Universe with a cosmological constant
(Bahcall et al. 1999).
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3. What can Wavelet Transforms do?

Wavelet transforms (WT) (for a review, see Dremin et al.
2001) are used to represent signals which require for their
specification not only a set of typical frequencies (scales), but
also knowledge of the coordinate neighbourhoods where these
properties are important. The most important principles distin-
guishing a wavelet basis from a windowed Fourier transform
basis are dilatations and translations. Dilatations enable one
to distinguish the local characteristics of the signal at various
scales, and translations enable one to cover the whole region
over which the signal is studied.

The wavelet transform of a functionf at the scalesand po-
sitionu is computed by convolutingf with a wavelet analyzing
function:

W f(u, s) =

b∫
a

f (t)ψ∗us(t)dt. (15)

The analyzing functionψus is obtained through dilatation by a
scale factors and translation by an amountu from a basic (or
mother) waveletψ:

ψus(t) =
1√
s
ψ

( t − u
s

)
· (16)

It is obvious thatψ must satisfy an admissibility condition
which guarantees the invertibility of the wavelet transform. In
most cases, this condition may be reduced to the requirement
thatψ is a function with zero mean (Mallat 1998):

∞∫
−∞

ψ(t)dt = 0. (17)

In addition,ψ is often required to have a certain number of
vanishing moments:

∞∫
−∞

tnψ(t)dt = 0, n = 0, 1, . . . , p. (18)

In general, this property improves the efficiency ofψ for de-
tecting features (singularities) in the signal, since it is blind to
polynomials up to orderN. One may say that the action ofson
the functionψ, which must be oscillating according to Eq. (17),
is a dilatation ifs > 0 or a contraction ifs < 0. In either case,
the shape of the function is unchanged, it is simply spread out
or squeezed.

A transform Eq. (15) over a suitable wavelet basis is usu-
ally called a continuous wavelet transform (CWT). A wavelet
transform whose waveletsψ are constructed in such a way that
the dilated and translated family

ψ j,m(t) =
1√
2 j
ψ

(
t − 2 jm

2 j

)
; (19)

where j,m are integers, is an orthonormal basis for all func-
tions f satisfying the condition∫
| f |2(t)dt < +∞. (20)

This is called a discrete wavelet transform (DWT): for a review,
see (Dremin et al. 2001; Mallat 1998).

The CWT is mostly used for the analysis and detection of
signals, whereas the DWT is more appropriate for data com-
pression and signal reconstruction. Combining these two types
of wavelet transforms provides an advanced technique for pick-
ing up the positions of particular breaks in the structures of ob-
served GRB light curves in different energy bands, which we
use here to look for non-trivial medium effects on the propaga-
tion of photons due to quantum gravity.

Orthogonal wavelets Eq. (19) dilated by factors 2j are sen-
sitive to signal variations with resolutions 2− j . This property
can be used to make a sequence of approximations to a signal
with improving resolutions (e.g. Mallat 1998). For a function
satisfying the condition Eq. (20), the partial sum of wavelet co-
efficients

∑+∞
k=−∞ dj,kψ j,k can be interpreted as the difference be-

tween two approximations tof with resolutions 2− j+1 and 2− j .
Adapting the signal resolution allows one to process only the
details relevant to a particular task, namely to estimate intensity
profiles of GRB light curves preserving the positions of sharp
signal transients.

CWTs can detect with very high precision the positions
where the intensity profile of a GRB light curve, as estimated
by a DWT, changes its degree of regularity. Sinceψ has zero
average, a wavelet coefficientW f(u, s) measures the variation
of f in a neighborhood ofu whose size is proportional tos.
Sharp signal transitions create large-amplitude wavelet coeffi-
cients. As we see in the following section, the pointwise reg-
ularity of f is related to the asymptotic decay of the wavelet
transformW f(u, s) whens goes to zero. Singularities are de-
tected by following across different scales the local maxima
of the wavelet transform. We use this “zooming” capability
to define the positions of mathematically similar transients
(irregularities) in GRB light curves observed in different en-
ergy bands. These therefore provide the best information about
the arrival times of photons associated with universal intrinsic
emission features at the sources.

4. Extraction of the GRB intensity profiles
by wavelet shrinkage

The observed GRB light curves typically feature a relatively
homogeneous, nonzero background intensity, above which
some inhomogeneous structure is apparent (Kolaczyk 1997).
In the following, we demonstrate that when such a temporally
inhomogeneous signal as the light curve of a GRB contains
both structure and noise, the ability of the DWT to compress the
information in this signal leads efficiently to a simple but effec-
tive noise removal procedure. This wavelet shrinkage technique
(Donoho 1993; Donoho et al. 1995), based on the thresholding
of the DWT, allows one to separate the structure of the signal
from the noise, whilst retaining information about the position
of irregularities of the signal, as provided by the support of the
mother wavelets.

In practice, DWTs break a function down into a coarse
approximation at a given scale, that can be extended to suc-
cessive levels of residual detail on finer and finer scales. The
full decomposition may be expressed in terms of the scale
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Fig. 1. Data from GRB 990308 withz =
1.60 collected by BATSE trigger 7457 in a
total number of 211 64 ms bins in the en-
ergy band 115–320 keV (top panel), and its
Symmlet-10 (Mallat 1998) discrete wavelet
transform (DWT) at the levelL = 6. The
horizontal axis corresponds to the same time
scale as in the original burst. Each level
on the vertical axis shows the wavelet co-
efficients at a given resolution level (i.e.,
scale). The wavelet coefficients are repre-
sented by spikes whose size and direction
(up or down) is determined by the magni-
tude and sign (+ or −) of the coefficient.

function φ j,n and the discrete waveletψ j,n discussed already.
The scale function looks much like a kernel function, and a
finite linear combination of dyadic shifts of this function pro-
vides a generic coarse approximation. Further linear combina-
tions of dyadic shifts of the wavelet function supply the resid-
ual detail. By considering sequences of DWTs with increasing
numbers of dyadic dilatations, the detail at each of the corre-
sponding successive scales is recovered.

We represent the light curve of a given GRB by a binned
discrete signal{X0,X1, . . . ,Xn−1} of dyadic lengthn = 2J,
whereJ > 0. The DWT of such a signal results in a vector of
lengthn of wavelet coefficients. The signal is said to have been
sampled at levelJ. At some coarser resolution level (scale)
L < J, the wavelet coefficient vector contains 2L scale coef-
ficientscL,0, . . . , cL,2L−1 and 2j detail coefficientsdj,0, . . . , dj,2j−1

at each of the levelsj = L, . . . , J−1. Figure 1 displays a typical
example withJ = 11 andL = 6.

Observations of a given GRB light curve can be represented
by the sum

X[n] = f [n] +W[n], (21)

where the intensity profilef [n] is contaminated by the addition
of noise, which is modelled as a realizationW[n] of a random
process whose probability distribution is known. The intensity
profile f is estimated by transforming the noisy dataX[n] with
the “decision operator”D:

F̃ = DX. (22)

The “risk” of the estimator̃F of f is the average loss, calculated
with respect to the probability distribution of the noise. The
numerical value of the risk is often specified by the signal-to-
noise ratio (SNR), which is measured in decibels.

To reduce the noise level ofW, while preserving the degree
of regularity of the intensity profilef , we use a soft thresh-
olding procedure. This procedure sets to zero all coefficients
smaller in magnitude than some thresholdT, and shrinks coeffi-
cients larger thanT towards zero by amountsT, as described in
more detail in Appendix A. This performs an adaptive smooth-
ing that depends on the regularity of the signalf . In a wavelet
basis1 where large-amplitude coefficients correspond to tran-
sient signal variations, this means that the estimator discussed
in Appendix A keeps only transients coming from the original
signal, without adding others due to the noise. After the pre-
processing, which sets the median value of wavelet coefficients
of the signal at the finest scale to unity, the threshold is esti-
mated to beT =

√
2 logn. The example of an intensity profile

estimated by this wavelet shrinkage procedure, as described in
Appendix A, is shown in Fig. 2.

In general, the wavelet shrinkage procedure Eq. (A.2) de-
scribed above guarantees with high probability that|dF̃

j,m| ≤
|df

j,m| (e.g. Mallat 1998), implying that the estimatorF̃ is at
least as regular as the “original” intensity profilef , because its
wavelet coefficients have smaller amplitudes. Thus we use this
property of the DWT of separating very effectively the struc-
tures in the GRB intensity profiles from noise, in the form
of two subsets of wavelet coefficients, large and small ones.
The thresholding procedure deletes wavelet coefficients below
the threshold value, and diminishes the others by the threshold
value. This tends to preserve both broad and narrow features,
while significantly reducing noise fluctuations, after the recon-
struction of the intensity profile by the inverse DWT.

1 In general, the thresholding procedure can be applied to any basis
for the signal decomposition (e.g. Mallat 1998).
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Fig. 2. The GRB 990308 light curve after
preprocessing which sets the median abso-
lute deviation of wavelet coefficients at the
fine scale equal to unity, as described in
more detail in Appendix A. The intensity
profile estimated by the wavelet shrinkage
procedure at the levelL = 6 is presented in
the bottom panel.

5. Detection of variation points in GRB light curves

A wavelet transform can focus on localized signal structure via
a “zooming” procedure that reduces progressively the scale pa-
rameter. To identify the variability points of two different light
curves and characterize their structures, it is necessary to quan-
tify precisely the local regularity of the function which repre-
sents the intensity profile of the original signals. The appro-
priate tools are the Lipschitz exponents2. These are defined in
Appendix B, and can provide uniform regularity measurements
of a function f not only over time intervals, but also at any
pointν.

We use the Lipschitz exponentα to characterize variation
points of the reconstructed intensity profiles of GRBs accumu-
lated in different energy bands. The comparison of the positions
of variation points with the same values ofα gives the infor-
mation about the arrival times of photon probes with different
energies, enabling one to probe for quantum-gravity time-delay
phenomena.

The decay of the CWT amplitude as a function of scale
is related to the uniform and pointwise Lipschitz regularity of
the signal. Thus, measuring this asymptotic decay is equivalent
to “zooming” into signal structures with a scale that goes to
zero. Namely, when the scales decreases, the CWTsW f(u, s)
Eq. (15) measures fine-scale variations in the neighborhood
of u. One can prove (e.g. Mallat 1998) that|W f(u, s)| de-
cays likesα+1/2 over intervals wheref is uniformly Lipschitzα.
Furthermore, the decay of|W f(u, s)| can be controlled from its
local maxima values.

A “modulus maximum” (e.g. Mallat 1998) is any point
(u0, s0) such that|W f(u, s0)| is locally maximal atu = u0. This

2 Lipschitz exponents are also called H¨older exponents in the math-
ematical literature (Dremin et al. 2001; Mallat 1998).

local maximum should be a strict local maximum in either the
right or the left neighborhood ofu0. Any connected curves(u)
in the scale-time plane (u, s) along which all points are modu-
lus maxima, as illustrated in Fig. 3, is called a “maxima line”.
Singularities of a functionf are detected by finding the abscissa
where the wavelet modulus maxima converge on fine scales
(e.g. Mallat 1998). Only at such points canf be singular, i.e.,
with exponentα ≤ 1. This result guarantees that all singular-
ities are detected by following the wavelet transform modulus
maxima at fine scales. Figure 3 shows an example where all
the significant singularities are located by following the max-
ima lines. The positions of these singularities are located by the
modulus maxima lines at the fine scale of decomposition.

To be sensitive to both sharp and smooth singularities, one
has to use wavelets with two vanishing moments, so as to gen-
erate the CWT Eq. (15) of the reconstructed intensity profiles.
The most suitable one is the second derivative of a Gaussian
(Mexican hat) mother wavelet:

Ψ(t) =
2

π1/4
√

3σ

(
t2

σ2
− 1

)
exp

(
− t2

2σ2

)
, (23)

because of the property that the modulus maxima ofW f(u, s)
with the wavelet Eq. (23) belong to connected curves that are
not broken as the scales decreases (e.g. Mallat 1998), which
guarantees that all maxima lines propagate to the finest scales.
The dilatation steps is generally set tos= 21/∆, where∆ is the
number of intermediate scales (voices) for each octave. Thus,
if the voice lattice is sufficientely fine, one can build maxima
lines with very high precision. Connecting maxima into lines as
in Fig. 3 is a procedure for removing spurious modulus maxima
created by numerical errors in regions where the CWT is close
to zero.
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Fig. 3. The CWT image (middle panel)
of the GRB 990308 intensity profile (top
panel). The horizontal and vertical axes
give, respectively, the positionu and log2 s
(where s is the time scale in seconds),
The shadings (colours from white to
black) correspond to negative, zero and
positive wavelet transforms respectively.
Singularities create large amplitude coeffi-
cients in their cone of influence. The modu-
lus maxima (bottom panel) ofW f(u, s) ob-
tained from the matrix of CWT (middle
panel) pointing towards the time positions
of singularities at the fine scale.

Sometimes the CWT may have a sequence of local max-
ima that converge to a pointν on the abscissa, even iff is per-
fectly regular atν. Thus, to detect singularities it is not suffi-
cient merely to follow the wavelet modulus maxima across the
scales. One must also calculate the Lipschitz regularity from
the decay of the modulus maxima amplitude. If, for some scale
s< s0, all the modulus maxima that converge toν are included
in a cone:

|u− ν| ≤ Cs, (24)

then f has an isolated singularity atν. Conversely, the absence
of maxima below the cone of influence Eq. (24) implies thatf
is uniform in the neighborhood of any pointt , ν beyond the
scales0.

The Lipschitz regularity atν is given by the slope
log2 |W f(u, s)| as a function of log2 s along the maxima lines
converging toν, namely

log2 |W f(u, s)| ≈
(
α +

1
2

)
log2 s+ const. (25)

Actually, the Lipschitz property Eq. (B.1) approximates a func-
tion with a polynomialpν in the neighborhood of the pointν.
The CWT estimates the Lipschitz exponents of the function
by ignoring the polynomialpν itself. Moreover, if the scales0

is smaller then the distance between two consecutive singu-
larities, to avoid having other singularities influence the value
of W f(u, s), and the estimated Lipschitz exponentα + 1/2 ≤
1.5, the functionf exhibits a break atν, which can be detected
by following the modulus maxima chain.

In this paper, to define significant points in the time se-
ries of the signal, we do not apply fit functions that select
only prominent peaks, as was done in (Ellis et al. 2000b;

Norris et al. 1995). We consider a more general class of rel-
atively sharp signal transitions, marked by Lipschitz irregular-
ities picked out by the CWT “zoom” technique, which we call
genuine variation points.

6. Analysis of time lags in emissions from GRBs
with known redshifts

Once the BeppoSAX satellite began to localize long bursts
in the sky to within a few arcminutes, and distribute their
locations to observers within hours, it turned to be possible
to discover X-ray, optical, and radio afterglows (Costa et al.
1997; van Paradijs et al. 1997; Frail et al. 1997), and host
galaxies. Subsequent observations led to the spectroscopic
determination of GRB redshifts, using absorption lines in the
spectra of the afterglows and emission lines in the spectra
of the host galaxies. By now, redshifts have been measured
for about 20 bursts (see for example Norris et al. 2000;
http://www.aip.de/ ˜jcg/grbrsh.html; Amati et al.
2002 and references therein).

Our first aim is to measure the timings of genuine varia-
tion points, characterized by Lipschitz exponents as discussed
above, for different spectral bands in the light curves of dis-
tant GRBs. Correlating the time lags between different energies
with the GRB redshifts, we then try to extract time delays re-
lated to the refractive index that may be induced by quantum
gravity.

We use genuine variation points with the same Lipschitz
exponentsα, measured in different energy bands, and assume
that any initial relative time lags attributable to the properties
of source are independent of redshift. Thus, the key to dis-
entangling quantum-gravity effects is reduced to the problem
of detecting genuine variation points with the highest possible
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precision. The biggest uncertainties in our analysis come from
our procedure for estimating the DWT intensity profiles, whilst
the errors generated by the CWT zoom are negligible. The error
in the wavelet-shrinkage procedure is defined by the time-bin
resolution in the analysis of the light curve and the support of
the DWT mother wavelet.

As shown in Table 1, we use GRB light curves from
BATSE, which have been recorded with 64 ms temporal reso-
lution in four spectral channels. Unfortunately, the BATSE cat-
alog of light curves includes only about a half of the GRBs
with known redshifts. The light curves of the other GRBs
with known redshifts have been collected by other satellites
(BeppoSAX, HETE), and the data are not available publicly.
The BATSE lower-level discriminator edges define the chan-
nel boundaries at approximately 25, 55, 115 and 320 keV. We
look for the spectral time lags of the light curves recorded in
the 115−320 keV energy band relative to those in the lowest
25−55 keV energy band, providing a maximal lever arm be-
tween photon energies. We do not use the fourth BATSE chan-
nel with energies between 320 keV and 1.9 MeV, as these have
ill-defined energies and poorer statistics – see Fig. 4. Instead,
we compare the rather more energetic light curves accumulated
by OSSE3 with the 115−320 keV BATSE light curves, which
increases the lever arm for probing photon propagation into the
MeV range.

Since we apply the CWT zoom technique to detect the gen-
uine variation points of the reconstructed intensity profiles, we
impose some conditions on the choice of shrinking wavelet4.
In general, when choosing the appropriate wavelet basis, one
has to strike a balance between the degree of regularity of the
wavelet, the number of its vanishing momentsp and the size
of its support. It is clear that the size of the support defines
uncertainties in the positions of genuine variation points af-
ter the reconstruction of intensity profile. This consideration
motivates using the DWT basis with the most compact sup-
port for the wavelet shrinkage procedure. On the other hand,
to preserve maximally the regularity of the original signal, one
should use wavelets with a high degree of regularity. In addi-
tion, one should avoid disturbing significantly the alignment of
peaks of the original light curves, which motivates using sym-
metrical discrete wavelets.

The discrete wavelet that best reconciles the above require-
ments is that called Symmlet-p (e.g. Mallat 1998). It is the
most symmetric, regular discrete wavelet with minimum sup-
port. The numberp of vanishing moments defines the size of
the support, and consequently the errors of the position estima-
tions 1

2(2p − 1) × bin− size. Moreover the same numberp of
vanishing moments defines the regularity of Symmlet-p. For a
large number of vanishing moments, the Lipschitz regularity of
Symmlet-p is 0.275p (Daubechies 1991). Thus, to have more
then 2 continuous derivatives,p should exceed 8.

3 We are grateful to M. Strikman for kindly providing us with OSSE
data.

4 In most cases, discrete wavelets cannot be represented by an ana-
lytical expression or by the solution of some differential equation, and
instead are given numerically as solutions of functional equations (e.g.
Mallat 1998).

For the selected GRBs in Table 1, we have performed
the wavelet shrinkage procedure using a Symmlet-10 basis5.
At sufficiently high signal-to-noise ratio levels, this procedure
tends to preserve the regularity of the light curves. In some
cases, namely for GRB 980329 and GRB 970508, we applied
the translation-invariant (Mallat 1998) version of the shrink-
age procedure with reduced threshold. This procedure implies
averaging estimates produced from the original signal itself
and from all shifted versions of the signal, and allows one to
avoid artefacts while preserving the real transient structure.
Subsequently, we apply the CWT zoom technique for recon-
structing intensity profiles to identify the arrival times of gen-
uine variation points and estimate their Lipschitz exponents in
every spectral band. We consider that a genuine variation point
has been detected if it has Lipschitz exponentα ≤ 1. Genuine
variation points found in the vicinity of each other, but belong-
ing to two different spectral bands, are considered to have been
generated at the source if the values of their Lipschitz expo-
nents are equal to each other. The other variation points with
α substantially exceeding 1 exhibit only smooth transitions of
the signal, and do not mark sharp transient time structures.
We recall that only sharp transient structures are important in
the search for spectral time lags. For seven GRBs out of nine,
we detected more than one pair of identical genuine variation
point per light curve, as seen in Table 1. The systematic errors
(Kolaczyk 1997) were estimated by using different resolution
levels (L = 6, 5, 4) in the wavelet shrinkage procedure.

In order to probe the energy dependence of the velocity
of light that might be induced by quantum gravity, we have
compiled the whole available data in Table 1 as functions of
the variablesKl andKq, defined by the integrals in Eqs. (13)
and (14), respectively. In the case of linear quantum-gravity
corrections, the variable takes the form

Kl =

z∫
0

dz
h(z)

, (26)

whilst for the quadratic case we use

Kq =

z∫
0

(1+ z)dz
h(z)

· (27)

Since both Eqs. (13) and (14) exhibit linear dependences on the
variables Eqs. (26) and (27) respectively, we perform a regres-
sion analysis for a linear dependence of the time lags between
pairs of genuine variation points, in the form

∆t = aK + b. (28)

The result of our regression fit to the full 64 ms statistics for
linear quantum-gravity corrections Eq. (4) is shown in Fig. 6.
The best fit corresponding to Fig. 6 is given by

∆t = 0.60(±0.46)Kl − 0.72(±0.53). (29)

5 The coefficients of the Symmlet filters are tabulated in WAVELAB
toolbox
(http://www-stat.stanford.edu/˜ wavelab), for example.
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Fig. 4. The light curve for GRB 990308 ob-
tained by BATSE with trigger 7457, binned
with 64 ms resolution in four spectral bands.
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Fig. 5. The estimated intensity profiles of
GRB 990308 – see Fig. 4 – obtained in
four spectral bands by using a Symmlet-10
(Mallat 1998) basis at levelL = 6.
The signal-to-noise ratios are at the levels
S NR1 = 23.07, S NR2 = 22.71, S NR3 =
23.58 andS NR4 = 23.87 for each band,
respectively. All variation points founded
by CWT zoom are marked by circles. The
behaviours of the Lipschitz exponentsα are
estimated. Seven pairs of genuine variation
points in the first and third spectral bands
have been detected.

Following the same procedure for the quadratic corrections,
one gets

∆t = 0.17(±0.17)Kq− 0.42(±0.32). (30)

More precise results can be obtained by combining BATSE
and OSSE data. Four light curves accumulated by OSSE ex-
ibit structures that can be compared with similar features ob-
served by BATSE, as seen in Table 1. Since the OSSE data
are at higher energies: 0.15−10 MeV, one has to rescale the re-
sults of OSSE-BATSE comparison in order to combine them

directly with results obtained using the third BATSE channel,
by a factor:

110 keV−55 keV
3 MeV−110 keV

, (31)

where 3 MeV is the energy at which the contribution of flux
accumulated by OSSE becomes significant. The spectral infor-
mation for GRB 980123 indicate that half of the total flux has
been accumulated in the energy range 3−6 MeV.

One may also increase the sensitivity of the determination
of time lags by using BATSE time-tagged event (TTE) data,
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Table 1.Data on the light curves for GRBs with known redshifts used in this analysis. The third column gives the time lags between the arrivals
of every identical genuine variation points in the third (high-energy) spectral band and the first (low-energy) one. For every light curve, we
give the weighted means of the time lags in 64 ms BATSE domain, combining the genuine variation points for that GRB. Both statistical and
systematic errors are included. The average spread of individual time lags is below the mesurement uncertainty. Also indicated are the results
obtained by combining OSSE 64 ms light curves in the 3–6 MeV energy range with BATSE light curves in the 115–320 keV energy band. In
the case of GRB 980329, the results of BATSE 64 ms and TTE 2.7 ms resolution measurements are combined with the OSSE-BATSE 64 ms
comparisons.

GRB (BATSE Trigger) z Time lag, error (s)

970508 (6225) 0.835 BATSE (64 ms)
∆tBATSE

1 = −0.064± 0.860

971214 (6533) 3.418 BATSE(64 ms)
∆tBATSE

1 = 0.13± 0.860;∆tBATSE
2 = −0.064± 0.860

cobmbined BATSE (64 ms)
∆tBATSE

comb = 0.033± 0.608

980329 (6665) 3.9 BATSE (64ms)
∆tBATSE

1 = 0.064± 0.860;∆tBATSE
2 = 0± 0.860

combined BATSE (64 ms)
∆tBATSE

comb = 0.032± 0.608
BATSE-TTE (2.7 ms)
∆tTTE

1 = −0.34± 0.019
OSSE (64 ms) rescaled

∆tOSSE
1 = −0.048± 0.019;∆tOSSE

2 = 0± 0.038
combined BATSE+OSSE+TTE
∆tBATSE+rmOSSE+TTE

comb = −0.036± 0.013

980425 (6707) 0.0085 BATSE (64 ms)
∆tBATSE

1 = −1.792± 1.705;∆tBATSE
2 = −1.28± 0.860

combined BATSE (64 ms)
∆tBATSE

comb = −1.384± 0.768

980703 (6891) 0.966 BATSE (64 ms)
∆tBATSE

1 = −0.832± 0.860
OSSE (64 ms) rescaled
∆tOSSE

1 = −0.040± 0.019
combined BATSE+OSSE
∆tBATSE+OSSE

comb = −0.041± 0.019

990123 (7343) 1.600 BATSE (64 ms)
∆tBATSE

1 = 0.230± 0.860;∆tBATSE
2 = −0.064± 0.860;∆tBATSE

3 = −0.128± 0.860
combined BATSE (64 ms)
∆tBATSE

comb = 0.013± 0.496
OSSE (64 ms) rescaled

∆tOSSE
1 = −0.049± 0.019;∆tOSSE

2 = −0.046± 0.019;∆tOSSE
3 = −0.045± 0.019

combined BATSE+OSSE
∆tBATSE+OSSE

comb = −0.047± 0.011

990308 (7457) 1.2 BATSE (64 ms)
∆tBATSE

1 = 0± 0.860;∆tBATSE
2 = −0.064± 0.860;∆tBATSE

3 = −0.256± 0.860
∆tBATSE

4 = −1.024± 0.860;∆tBATSE
5 = 0± 0.860;∆tBATSE

6 = 0.064± 0.860
∆tBATSE

7 = 0± 0.860
combined BATSE (64 ms)
∆tBATSE

comb = −0.183± 0.325

990510 (7560) 1.619 BATSE (64 ms)
∆tBATSE

1 = 0.384± 0.860;∆tBATSE
2 = 0.448± 0.860;∆tBATSE

3 = 0± 0.860
∆tBATSE

4 = −0.256± 0.860;∆tBATSE
5 = 0± 0.860;∆tBATSE

6 = −0.528± 0.860
∆tBATSE

7 = −0.128± 0.860;∆tBATSE
8 = −0.256± 0.860;∆tBATSE

9 = 0± 0.860
∆tBATSE

10 = −0.448± 0.860
combined BATSE (64 ms)
∆tBATSE

comb = −0.078± 0.272
OSSE (64 ms) rescaled

∆tOSSE
1 = −0.045± 0.019;∆tOSSE

2 = −0.032± 0.019;∆tOSSE
3 = −0.041± 0.019

combined BATSE (64 ms)
∆tBATSE+OSSE

comb = −0.039± 0.011

991216 (7906) 1.02 BATSE (64 ms)
∆tBATSE

1 = −0.064± 0.860;∆tBATSE
2 = −0.064± 0.860;∆tBATSE

3 = −0.064± 0.860
∆tBATSE

4 = −0.064± 0.860;∆tBATSE
5 = 0.064± 0.860;∆tBATSE

6 = 0± 0.860
∆tBATSE

7 = 0± 0.860;∆tBATSE
8 = 0± 0.860

combined BATSE (64 ms)
∆tBATSE

comb = −0.040± 0.304
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Fig. 7. The combination of 64 ms BATSE
time-lag measurements shown in Fig. 6 with
the measurement obtained from the BATSE-
OSSE comparison and the TTE portion of
the GRB 980329 light curve, with resolu-
tion 2.7 ms.

which record the arrival time of each photon with a precision
of 2 µs, in the same four energy channels. The onboard
memory was able to record up to 32, 768 photons around the
time of the BATSE trigger. Typically, this quota of photons
was filled in 1 or 2 s. For short GRBs, the mean structure of the
whole light curve might be in the TTE data, along with sub-
stantial periods of background emission after the burst, whilst
for the long-duration GRBs that we analyze, as in Table 1,

the TTE data cover only the leading portion of light curve. We
have rebinned with resolution'1 ms the leading portions of
all the GRBs from Table 1 using TTE data. Only one light
curve, that of GRB 980329, yields a signal with clearly iden-
tified isolated singularities in the first and third spectral bands.
The statistics available to detect genuine variation points in this
light curve yield a resolution of 2.7 ms. Combining this TTE
measurement with the 64 ms BATSE measurements and the
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results of our BATSE-OSSE comparisons, we get the follow-
ing results:

∆t = 0.010(±0.022)Kl − 0.053(±0.026) (32)

∆t = 0.003(±0.006)Kq− 0.048(±0.016) (33)

for linear Fig. 7 and quadratic corrections respectively. The
single BATSE point with much higher precision than the oth-
ers does not improve substantially the significance of the fits.
However, including the OSSE-BATSE and TTE measurements

into the overall fit does improve the sensitivity (see the next
section) and makes the result less dependent on the properties
of individual sources.

The leading parts of other light curves from Table 1. Which
do not exhibit coherently variable structures, can be character-
ized as fractal signals without isolated singularities. One can
also analyze such singularities with CWT (e.g. Dremin et al.
2001; Mallat 1998), but such a study lies beyond the scope of
this paper.
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7. Compilation of limits on quantum gravity

We now analyze the likelihood function to derive the results of
our search for a vacuum refractive index induced by quantum
gravity. We establish a 95% confidence-level lower limit on the
scaleM of quantum gravity by solving the equation
∞∫

M

L(ξ)dξ

∞∫
0

L(ξ)dξ

= 0.95 (34)

where∞ symbolizes a reference point fixing the normalization.
In our case, we choose as reference pointM = 1019 GeV, the
Planck mass, which corresponds to the highest possible scale
above which quantum-gravity effects vanish and corrections to
the vacuum refractive index become infinitesimally small. In
practice variations of reference point, even by an order of mag-
nitude, does not influence the final result.

We use the fact that only the coefficient a in Eq. (28) is
related to the quantum-gravity scale, whereasb includes a pos-
sible unknown spectral time lag inherited from the sources,
which we assume to be universal for our data set. With this
assumption, one can shift our data points by an amount−b,
taking b from the best fits Eqs. (29) and (30), and use
L ∝ exp(−χ2(M)/2) (with normalisation appropriately fixed
to unity) as the likelihood function in Eq. (34), where

χ2(M) =
∑
D

[
∆ti − bshift − a(M)Ki

σi

]2

(35)

is calculated for all the possible values ofa(M), defined by the
coefficients ofKl (Kq) in Eqs. (13) and (14), respectively. The
sum in Eq. (35) is taken over the all the data points∆ti , which
are symbolized byD, with σi characterizing the uncertainties
in the measured time lags. The calculatedχ2(ML) for the dif-
ferent combinations of the data sets we use in the case of linear
corrections to the refractive index Eq. (14) is shown in Fig. 8.
The minima ofχ2 correspond the “signal-like” regions, where
the data are better described by a scenario with a refractive in-
dex, induced by quantum gravity. The most robust estimation
on the lower limit of quantum gravity with a linearly energy-
dependent correction is obtained from the combination of all
the data sets, and is indicated by a solid line in Fig. 8:

ML ≥ 6.9× 1015 GeV. (36)

Similar considerations lead to the following lower limit on
quadratic quantum-gravity corrections Eq. (5) to the photon
dispersion relation:

MQ ≥ 2.9× 106 GeV. (37)

To the accuracy stated, we find identical numerical results,
whether we use a logarithmic measure forM cut off atM =

1018,19,20 GeV, as shown in Fig. 8, or a 1/M measure integrated
to infinity,

1/M∫
0

L′(ξ)dξ

∞∫
0

L′(ξ)dξ
= 0.95, (38)

where L′(1/M) is the likelihood function with respective
to 1/M, as shown in Fig. 9.

The key result (36) is significantly stronger than that in
(Ellis et al. 2000b), thanks to the improved analysis technique
using wavelets and the use of a more complete dataset.

8. Discussion

We have investigated in this paper possible non-trivial prop-
erties of the vacuum induced by quantum gravity, by prob-
ing modifications of the dispersion relation for photons. These
features can appear in several approaches to quantum grav-
ity, including Liouville string theory, models with large ex-
tra dimesions (Campbell-Smith et al. 1999) and loop gravity.
Similar modifications of dispersion relations can take place for
the other matter particles, leading to other non-trivial effects
such as changes in the thresholds for some reaction attenuating
ultra-high energy cosmic rays (UHECR), or vacuumČerenkov-
like radiation (see Sarkar 2002 and references therein), which
could have a large influence on the interpretation of the puz-
zling astrophysical data on UHECR.

We have attempted to extract the most complete informa-
tion about the possible vacuum refractive index induced by
quantum gravity, by using wavelets to look for any correla-
tion with redshift of the time lags between the arrival times
of sharp transients in GRB light curves observed in high- and
low-energy spectral bands. This analysis combined continu-
ous wavelet transforms to remove noise and discrete wavelet
transforms to identify sharp transients in different spectral
bands. Eight GRBs with known cosmological redshifts and
light curves available publicly have been used in our analysis.

It is instructive to compare the time lags we find with those
found using cross-correlation analysis (Band 1997; Norris
et al. 2000; Norris 2002). Our measurements of the spectral
time lags in BATSE 64 ms light curves for five GRBs, which
are common for the sample we used and that under consider-
ation in Norris et al. (2000), are consistent in absolute value
with the trend found in Norris et al. (2000) for bursts with
higher luminosities (which are closer, on the average) to have
shorter time lags. Discrepancies are found in two cases out
of five common GRBs. Namely, we found soft-to-hard evo-
lution for GRB 971214 and GRB 990123 (positive time lag),
which is opposite to the hard-to-soft evolution (negative time
lag) found in Norris et al. (2000). These two GRBs havea
complicated structure of emission: GRB 971214 has a wide
“clump” of emission which consists of spikes that are barely
overlapped, while GRB 990123 consists; in two intensive wide
pulses with a quite complicated cluster afterwards. Thus these
two GRBs can be attributed to a lack of morphological clas-
sification power of the cross-correlation technique due to the
problem of interpretation of the CCF pike width (Band 1997).
As an explicit example, we analysed GRB 941119, which has
been assigned, in Band (1987), as the GRB without clear spec-
tral evolution with the respective to cross-correlation analy-
ses. The light curve of GRB 941119 consists in cluster with
several closely spaced spikes protruding from a smooth enve-
lope. We found five pairs of identical genuine variation points
in first and third spectral bands, demonstrating all together the
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soft-to-hard spectral evolution with weghted average time lag
∆t = 0.051± 0.384 s. One can see from Table 1 that in sev-
eral cases different pairs of identical genuine variation points
detected in one and the same GRB’s light curve demonstrate
different kinds of spectral evolution, namely either hard-to-soft
or soft-to-hard. This fact could be connected with a possible in-
trinsic spectral evolution during the burst progress. The exam-
ple of GRB 941119 is one of such cases, demonstrating unclear
spectral evolution with the respect to the cross-correlation anal-
ysis. The wavelet technique we apply classifies more explicitly
a variable spectral evolution and consequently gives more ac-
curate results for the weighted average spectral evolution, as
in case of GRB 941119. The time lags measured between the
BATSE 25–55 keV and OSSE 3–6 MeV light curves exceed
substantially the time lags between the first and third BATSE
energy bands. Without the correction by the ratio Eq. (31), the
BATSE-OSSE time lags we find are'−2 s, in good agree-
ment with Piro et al. (1998), where the time lag between bands
of GRB 970228 with a similar energy difference was estimated
using BeppoSAX data. The wavelet technique is very effec-
tive also to deal with transient signals such as TTE data with
low signal-to-noise ratios, where cross-correlation analyses can
fail.

We believe that there is no regular cosmological evolution
of the sources we use. This fact is already widely accepted
in the literature on other high-redshift sources, namely super-
novae. So there is no effect that can cause any correlation of
weighted average time lags with redshifts of the sources. Thus
any correlation of spectral time lags we may find can be at-
tributed to the effects of propagation.

Finally it should be stressed that the method we applied
is very powerful in the sense of analysing signals with strong
non-linear dynamics behind, as GRBs could be. Of course it
does not pretend to explain the underlying dynamics and phys-
ical origin of GRBs, but it gives a hint of the stage at which the
most variable processes take place and characterize quantita-
tively the degree of instability accompanying those processes.
In our case the radiation from genuine variation points is con-
sidered as the messenger of a fast non-linear dynamics at the
source. The Lipschitz exponents, which characterize quantita-
tively the “degree” of instability of the dynamics, give the in-
formation of whether photons of different energies have been
produced at one and the same event at the source. So this gives
an ideal “time offset” between energy bands to measure any
differences in the speed of light.

It is widely accepted (see Band et al. 1997; Norris et al.
2000, and references therein) that the spectral evolution in
GRBs leads to peaks migrating later in time. These time lags
are not directly connected with the distance to the source, but
are correlated with intrinsic properties of GRBs, such as lumi-
nosity (Norris et al. 2000) or variability (Shaefer et al. 2001).
The quantum-gravity energy-dependent time delay plays the
role of a foreground effect of opposite sign to the usual spec-
tral evolution of GRBs, which increases with distance. Hence
model-independent information about quantum gravity can be
extracted only from a statistical analysis of sources with a
known distance distribution.

We have not found a significant correlation of the mea-
sured time lags with the cosmological redshift that would
indicate any deviation of the vacuum refractive index from
unity. This fact allows us to establish 95% C.L. lower lim-
its on the quantum-gravity scale at the levels 6.9 × 1015 GeV
and 2.8 × 106 GeV for linear and quadratic distortions of the
dispersion relation, respectively. However, despite the lack of
any significant evidence for a quantum-gravity signal, there is
a region of the linear scale parameterM where the data are
better described by a scenario with a refractive index induced
by quantum gravity. This fact indicates that any increase in
the statistics, especially with higher resolution, would be of
the utmost interest for exploring the possibility of a quantum-
gravity correlation of spectral time lags with redshift. For this
reason, we urge the light curves for all GRBs with measured
redshifts to be made generally available, as is already the case
for BATSE data.

It has been observed that, if the dispersion laws for el-
ementary particles differ from the standard ones, the expan-
sion of the Universe may result in the gravitational creation
of pairs of particles and antiparticles with very high energies
(Starobinsky & Tkachev 2002). The expansion of the Universe
(both at present and in the early Universe) gradually redshifts
Fourier modes of a quantum field, and may transport them from
the trans-Planckian region of very high momenta to the sub-
Planckian region where the standard particle interpretation is
valid. Then, if the WKB condition is violated somewhere in the
trans-Planckian region, the field modes enter the sub-Planckian
region in a non-vacuum state containing equal numbers of par-
ticles and antiparticles. The most restrictive upper limit fol-
lows from the number of UHECR created at the present epoch
(Starobinsky & Tkachev 2002). This limit, together with our
measurements of the vacuum refractive index, may rule out the
possibility of detecting imprints of trans-Plankian physics on
the CMB anisotropy, as proposed in (Brandenberger & Martin
2002).

It is a widespread belief that the combination of quan-
tum theory with gravity is an explosive area, to the extent
that it blows up the concrete fabric of space-time, splitting it
into space-time foam. It is true that, as yet, there is no uni-
versally accepted mathematical model of this metamorphosis,
while several attempts at it are characterized by a varying level
of success. However, despite the firm and widely-held opin-
ion that quantum gravity defies experimental tests, it is re-
markable that several such tests have been proposed in recent
years. Some of them have put rather severe constraints on some
quantum-gravity models, whilst some models based on non-
critical strings seem to remain unscathed so far (Ellis et al.
2002; Ellis et al. 2002a). In particular, as we have shown in this
paper, using the most sophisticated technique available, that of
wavelets, to pick up authentic time-lag effects in gamma-ray
bursts, we have been able to put a rather firm lower bound on
the dispersion of light in the vacuum:M > 6.9×1015 GeV. This
approaches the range of scales where we might expect such an
effect to appear. Data able to test further this possibility already
exist, and more data will soon be available.

Une affaire à suivre ....
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Appendix A: Wavelet-based thresholding
estimator

A thresholding estimator of an = 2J-component discrete signal
X[n] decomposed at the resolution levelL (see Sect. 4) in a
wavelet basis can be written (Mallat 1998) as:

F̃ =
J−1∑
j=L

2j−1∑
m=0

ρT (dX
j,m)ψ j,m+

2L−1∑
m=0

ρT(cX
J,m)φJ,m, (A.1)

where the functionρT provides a soft threshold:

ρT (x) =


x− T if x ≥ T
x+ T if x ≤ −T
0 if |x| ≤ T.

(A.2)

If the signalX[n] is contaminated by additional noiseW[n], the
thresholdT is generally chosen so that there is a high prob-
ability that it is just above the maximal level of this noise.
SinceW[n] is a vector ofN independent Gaussian random vari-
ables of varianceσ2, one can prove (Mallat 1998) that the
maximum amplitude of the noise has a very high probability of
being just belowT = σ

√
2 logn.

A signal X[n] of size n has n/2 wavelet coefficients
{dJ−1,m}0≤m<n/2 at the finest scale. The coefficients of f itself,
|df

j,m|, in the sum Eq. (21) are small iff is smooth over the sup-

port of ψJ−1,m, implying dX
J−1,m ≈ dW

J−1,m. In contrast,|df
J−1,m|

is large if f has a sharp transition in the support ofψJ−1,m. A
piecewise-regular signal has few sharp transitions, and hence
produces a number of large coefficients that is small compared
to n/2. At the finest scale, the signalf thus influences the
value of a small portion of large-amplitude coefficientsdJ−1,m,
that are considered to be “outliers”. All the others are approx-
imately equal todW

J−1,m, which are independent Gaussian ran-
dom variables of varianceσ2.

A robust estimator ofσ2 is calculated from the median of
(dX

J−1,m)0≤m<n/2. The median ofP coefficients Med(αp)0≤p<P is
the value of the middle coefficientαn0 of rankP/2. As opposed
to an average, it does not depend on the specific value of coef-
ficientsαp > αn0. If M is the median of the absolute value ofP
independent Gaussian random variables of zero mean and vari-
anceσ2

0, then one can show (Mallat 1998) that the expected
value ofM is 0.6745σ0. Thus the varianceσ2 of the noiseW
is found from the medianMX of (|dX

J−1,m|)0≤m<n/2 by neglecting
the influence off :

σ̃ =
MX

0.6745
· (A.3)

One may say thatf is responsible for few large amplitude out-
liers, and that these have little impact onMX. In practice, it is

more convenient to transform the signal, by scaling it in such
a way that the wavelet coefficients at the finest level of decom-
position have median absolute deviation equal to unity, as seen
in Fig. 2.

Appendix B: Lipschitz regularity

Taylor expansion relates the differentiability of a signal to local
polynomial approximations. Suppose thatf is m times differ-
entiable in [ν − h; ν + h]. Let pν be the Taylor polynomial in
the neighborhood ofν. Themth order of differentiability of f
in the neighborhood ofν yields an upper bound on the error
εν(t) = f (t) − pν(t) whent tends toν. The Lipschitz regularity
extends this upper bound to non-integer exponents. Namely, a
function f is pointwise Lipschitz:α ≥ 0 atν, if there exists a
polynomialpν of degree at mostα such that

| f (t) − pν(t)| ≤ K|t − ν|α (B.1)

whereK is a constant. The polynomialpν(t) is uniquely de-
fined at eachν. If f is m ≤ α times continuously differen-
tiable in a negborhood ofν, then pν is the Taylor expansion
of f at ν. Pointwise Lipschitz exponents can vary arbitrarily
from abscissa to abscissa. Iff is uniform Lipschitz:α > m
in the neighborhood ofν, then one can verify thatf is neces-
sarily m times continuosly differentiable in this neighborhood.
If ν ≤ α < 1, then pν(t) = f (ν), and the Lipschitz condi-
tion Eq. (B.1) becomes

| f (t) − f (ν)| ≤ K|t − ν|α, (B.2)

f is not differentiable atν andα characterizes the singularity
type. For more references to the mathematical literature, see
(Dremin et al. 2001; Mallat 1998).
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