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Abstract. In some models of quantum gravity, space-time is thought to have a foamy structure with non-trivial optical prop-
erties. We probe the possibility that photons propagating in vacuum may exhibit a non-trivial refractive index, by analyzing
the times of flight of radiation from gamma-ray bursters (GRBs) with known redshifts. We use a wavelet shrinkage procedure
for noise removal and a wavelet “zoom” technique to define with high accuracy the timings of sharp transitions in GRB light
curves, thereby optimizing the sensitivity of experimental probes of any energy dependence of the velocity of light. We apply
these wavelet techniques to 64 ms and TTE data from BATSE, and also to OSSE data. A search for time lags between sharp
transients in GRB light curves infiierent energy bands yields the lower limvit> 6.9x 10'> GeV on the quantum-gravity scale

in any model with a linear dependence of the velocity of lighE/M. We also present a limit on any quadratic dependence.
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1. Introduction acquires non-trivial optical properties, because of gravitational
A i .. recoil dfects induced by the motion of energetic particles. In
".] standard re_Iat|V|st|c quantum field th_e Ory, Space—time IS CoL ic 1ar. it has been suggested that these may induce a non-
sidered as a f').(e(.j arenain which physmal Processes tak(_a pl ial refractive index, with photons of fferent energies trav-
The chara_cter!stlcs of the propagation O.f light are cons_|derg ng at diferent velocities. Such an apparent violation of
asa cIassmaI_ Input to the. theory. In partlf:ular, thg special afgrentz invariance can be explored by studying the propagation
_genera_ll theories of relativity post_ulate a single universal velo&— particles through the vacuum, in particular photons emit-
ity of light c. quever, starting in the early 196.05 (Whe”e[ed by distant astrophysical sources (Amelino-Camelia et al.
1963), dforts to find a synthesis of general relativity and quang 8). In some quantum-gravity models, light propagation may
tum mechanics, called quantum gravity, have suggested a n ’

A . . N&R depend on the photon polarization (Gambini & Pullin
for greater sophistication in discussing the propagation of lig 99), inducing birefringence. Stochastiteets are also pos-
in vacuum.

. o ._sible, giving rise to an energy-dependentulive spread in
A satisfactory theory of quantum gravity is likely to réquIrge velocities of dierent photons with the same energy (Ford
a drastic modification of our deterministic representation (li 95; Ellis et al. 2000a)
space-time, endowing it with structure on characteristic scales ' : '

approaching the Planck lengfp ~ m;,l. There is at present no One may discuss theffects of space-time foam on the

complete mathematical model for quantum gravity, and the?gase velocity, group velocity or wave-front velocity of light.

are many dierent approaches to the modelling of space—tin{ this paper, we discuss only the signature of a modification of

f S | of th h t that th 6 roup velocity, related to a_non-trivial r(_afractive inahékx):
oam. everal ot tnese approaches stggest that the vacv ) = ¢/n(E). This may be derived theoretically from a (renor-

Send gfprint requests toA. S. Sakharov, malized) d€fective Maxwell actionl'«¢[E, B], whereE and B
e-mail:Alexandre. Sakharov@cern.ch are the electric and magnetic field strengths of the propagating
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wave, in the background metric induced by the quantum gravftgme. In this case, the leading correction to the refractive
model under consideration. Once tHEeetive Maxwell action index takes the form
is known, at least in a suitable approximation, one can analyze E\2
the photon dispersion using thé&ective Maxwell equations f(E) = (—) . (5)
(Ellis et al. 2000b). M

One generally considers the propagation of photons wile assume that the prefactors in both cases are positive, reflect-
energiesE much smaller than the mass scMecharacterizing ing the fact that there should be no superluminal propagation
the quantum gravity model, which may be of the same order@doore & Nelson 2001). This requirement is not necessarily
the Planck mas#p, or perhaps smaller in models with largeespected in some models based on the loop-gravity approach
extra dimensions. In the approximati&n« M, the distortion (Gambini & Pullin 1999a; Alfaro et al. 2000).
of the standard photon dispersion relation may be representedThe study of short-duration photon bursts propagating over

as an expansion i&/M: cosmological distances is a most promising way to probe this
, s ) approach to quantum gravity (Amelino-Camelia et al. 1998):
E” = k(1 + &u(k/M) + &2(k/M)* +..), (1) for a recent review, see (Sarcar 2002). The modification of

o i the group velocity Eq. (2) wouldfgect the simultaneity of the
which implies the following energy dependence of the groufyi 4| times of photons with derent energies. Thus, given a
velocity distant, transient source of photons, one could measure the dif-
@) ferences in the arrival times of sharp transitions in the signals

in different energy bands. Severaffdient types of transient

Here the functionf (E) indicates the dference of the vacuum astrophysical objects can be considered as sources for the pho-
refractive index from unityn(E) = 1 + f(E), which is defined tons used to probe quantum-gravity corrections such as Egs. (4)
by the subleading terms in the series Eq. (1). and (5) to the vacuum refractive index (Amelino-Camelia et al.
Different approaches to the modelling of quantum grail,«ggs; |.E||iS et al. 2000b; Biller et al. 1999; Schafer 1999):
ity suggest corrections with fierent powers of/M. One of These_ include Gamma-Ray Bursters (GRBs), Active Galactic
the better developed is a string-inspired model of quantUiyclei (AGNs) and pulsars.
space—time, in which the corrections in Eq. (1) start with the A key issue in such probes is to distinguish thieets of
third power ofk/M, as suggested by one particular treatmeHt€ quantum-gravity medium from any intrinsic delay in the
of D branes (Ellis et al. 1997; Ellis et al. 1998; Ellis et alemission of particles of dierent energies by the source. Any
2000c). In this approach, the related violation of Lorentz invaf@ntum-gravity ffect should increase with the redshift of the
ance is regarded as spontaneous, and is due to the impac&98fce, whereas sourcéfexts would be independent of the
light but energetic closed—string states on masEigieichlet) redshift in the absence of any cosmological evolutiffiects
particles that describe defects in space—time. In the mod&gHis et al. 2000b). Therefore, in order to disentangle source
view of string theoryD particles must be included in the spec@nd propagationfeects, it is preferable to use transient sources
trum, and hence also their quantum fluctuations should be With & known spread in redshifts At the moment, one of the
cluded in a consistent formulation of the ground-state vacuufiost model-independentways to probe the time lags that might
In the model of Ellis et al. (1997), Ellis et al. (1998), Ellisarise from quantum gravity is to use GRBs with known red-
etal. (2000c), the scattering of the closed—string state oBth&hifts, whichrange upte~ 5. _
particle induces recoil of the the latter, which distorts the Increasing numbers of redshifts have been measured in re-
surrounding space-time in a stochastic manner, reflecting ¢t years, and the spectral time lags of GRB light curves
foamy structure of space—time. have been investigateo! in a number of papers (Norris et .al.
In such a picture, the recoil of the massive space—time défl94; Band 1997; Norris et al. 2000; Ellis et al. 2000b; Norris
fect, during the scattering with a relativistic low—energy prob@P02). It is important to detect quantitatively temporal struc-
such as a photon or neutrino, distorts the surrounding spaéé€s which are identical in flerent spectral bands, to compare

time, inducing an fective net gravitational field of the form their time positions. Unfortunately, pulse fitting is problematic
(Norris et al. 1996; Ellis et al. 2000b; Norris et al. 2000) in the
ki

cases of many bursts, because of irregular, overlapping struc-
Goi =~ (M) ®) tures in the light curves. As a result these studies often lack
the accuracy to characterize short-time features in the bursts
The dispersion-relation analysis (Ellis et al. 2000b) of th@at are evident to the eye. The cross-correlation method (Band
Maxwell equations in the non-trivial background metric perrg97; Norris et al. 2000; Norris 2002) does not use a rigorous
turbed by such a gravitational field results in a linear depegefinition of a spike in a pulse; it relies, instead, on a calcula-

v~c(l-f(E)).

dence of the vacuum refractive index on the energy: tion of the cross-correlation functions (CCFs) betwedfedi
E ent spectral bands directly in the time domain. However there
f(E) = (M) . (4) are some ambiguities in the interpretation of CCF peaks, which

canlead in some cases to unclear conclusions about the spectra
In some other realisations of quantum gravity, odd poweesolution. In particular this is the case when a GRB light curve
of k/M in Eq. (1) may be forbidden (e.g. Burgess et al. 2002pntains an emission cluster of closely spaced spikes (e.g. spac-
by selection rules such as rotational invariance in a preferied of order of the width of a spike); then the width of the
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CCF's central peak, the position of which actually measur@s Light propagation in the expanding Universe

the spectral time lag (Band 1987), may reflect the duration of h tion f te obiects ifected by th

the whole cluster and not of the individual spikes, whereas orgg propagation from remote objects 15eLted by the ex-
i

the narrow individual constituents (spikes) of such an emiss nsion OT the Universe and depends upon the cosmolqglcal
cluster can mark with a good accuracy the arrival time of r 10del (Ellis et al. 2000b). Present cosmological data motivate

P the choice of a spatially-flat Univers@igtq = Qp + Qv = 1
diation, so as to apply for a search for quantum graviigats = . . oo
(Amelino-Camelia et al. 1998). with cosmological constaii2, ~ 0.7: see (Bahcall et al. 1999)

In this paper, we seek to overcome the problems m ehr]d references therein. The correspondirtigcéntial relation
! eqgtween time and redshift is

tioned above by using wavelet transforms to remove noise,
resolve overlapping structures and to classify quantitativel¥ 4 dz

the irregularities of GRB light curves with known redshiftsdt = ~Ho m (7)
The ability of the wavelet technique to characterize burst

morphology allows us to improve significantly the accuracy ayhere

the measurements of time lags, independently of the degree of

spikes separation inside the emission clusters, increasing R = VQa +Qu(l+2° (8)
sensitivity to quantum-gravitational corrections. We analysle-h
the light curves of GRBs with known redshifts triggered by the
Burst And Transient Source Experiment (BATSE) aboard the . udz

Gamma Ray Observatory (GRO) (see the GRO webpage atudt = —Hg A+ 2@’ 9)
http://cossc.gsfc.nasa.gov/cgro/index.html), search-

ing for a redshift dependence of spectral time lags betwegining the following diference in distances covered by two
identical sharp signal transitions detected by wavelet tragmarticles with velocities diering byAu:

forms in diferent spectral bands. For several GRBs among ,

the triggers under consideration, one can compare the BATSE n Audz

light curves with those measured at higher energies by Ak = Ho m (10)
Orientated Scintillation Spectrometer Experiment (OSSE) 0

a_board the GRO'. We also d_emonstrate that the wavelet teWe' consider two photons traveling with velocities very close
nigue can deal with the leading parts of the GRB light CUVes™ . Jhose present day energies 4t and E,. At earlier

recorded by the BATSE _tlme trlgger. event (TTE), Whlc.répochs, their energies would have been blueshifted by a fac-
improves the time resolution substantially. Unfortunately,

| ;o e .
all the cases except GRB 980329, the TTE data do not CO\E;]%'}’1+ 2 DefiningAE = B, — &, we infer from Eq. (2) that

enough of the light curve to exhibit coherent structures in  AE(1 + 2)
different spectral bands, which would increase the sensitivﬁﬁrI T M (11)
to higher quantum-gravity scales.

We find that the combination of all the available datdl the case Eq. (4) of a line&-dependence of the velocity of
when analyzed using wavelet transforms, prefers margindig}”ta and
a linear violation of Lorentz invariance between'1@GeV

us, a particle with velocity travels an elementary distance

2 2
and 106° GeyV, although theféect is not significant. We prefer oy = w (12)
to interpret the data as giving a limit on the linear quantum- M
gravity scale: for the quadratic correction Eq. (5). Inserting the last two ex-
M > 6.9x 10 GeV. (6) pressions into Eq. (10), one finally finds that the induced dif-

ferences in the arrival times of the two photons with energy
which we consider to be the most robust and modeliferenceAE are

independent currently available.

. . . z
The layout of this paper is as follows. In Sect. 2we discuss AE dz
the propagation of light in an expanding Universe, establishifg = Ho™ - ho' (13)
the basic formulae we use subsequently in our analysis of time 0

lags. The fundamental definitions and features of wavelet trans-
forms are reviewed in Sect. 3, and we describe in Sect. 4 h

wavelet shrinkage can be used to remove noise from GRB spec-

tra. The “zooming” technique for localizing variation points\t = Hgl
in GRB light curves is described in Sect. 5, and Sect. 6 uses

this technique to analyze time lags. Our limits on linear and
quadratic quantum-gravity models are obtained in Sect. 7, dodthe linear and quadratic types of correction, respectively.
we discuss our results in Sect. 8. In addition, Appendix A dis- In the following, we look for such time efierences in the
cusses signal threshold estimation in the wavelet approach, andval times of photons with energyftérenceAE propagating
Appendix B recalls some aspects of the Lipschitz characterizasuch a flat expanding Universe with a cosmological constant
tion of singularities. (Bahcall et al. 1999).

2 V4
(E) 1+ 2)dz (14)

M h@2
0
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3. What can Wavelet Transforms do? This is called a discrete wavelet transform (DWT): for a review,

. . ee (Dremin et al. 2001; Mallat 1998).
Wavelet transforms (WT) (for a review, see Dre.mm et a?. The CWT is mostly used for the analysis and detection of
2001) are used to represent signals which require for thgl

r . :

s . : ignals, whereas the DWT is more appropriate for data com-

specification not only a set of typical frequencies (scales), %J? bprop
h

. . ression and signal reconstruction. Combining th W
also knowledge of the coordinate neighbourhoods where t gsso and signal reconstruction. Combining these two types

) ) . . ._.OT wavelet transforms provides an advanced technique for pick-
properties are important. The most important principles distin- P q b

T X . . Ing up the positions of particular breaks in the structures of ob-
guishing a wavelet basis from a windowed Fourier transfor g up pos P

basis are dilatations and translations. Dilatations enable Qi
to distinguish the local characteristics of the signal at varingn
scales, and translations enable one to cover the whole region
over which the signal is studied.

The wavelet transform of a functidnat the scalesand po-
sitionu is computed by convoluting with a wavelet analyzing
function:

here to look for non-trivial mediuntfects on the propaga-
of photons due to quantum gravity.
Orthogonal wavelets Eq. (19) dilated by factofsafe sen-
sitive to signal variations with resolutions2 This property
can be used to make a sequence of approximations to a signal
with improving resolutions (e.g. Mallat 1998). For a function
satisfying the condition Eq. (20), the partial sum of wavelet co-
b efficients), ;> . dj«/jk can be interpreted as thefdirence be-

Wf(u,s) = f f )y (t)dt. (15) tween two approximations tb with resolutions 2** and 2.

Y Adapting the signal resolution allows one to process only the

] ) ] ] ] ) details relevant to a particular task, namely to estimate intensity
The analyzing functiogs is obtained through dilatation by apfiles of GRB light curves preserving the positions of sharp
scale factors and translation by an amountfrom a basic (or signal transients.

mother) waveley: CWTs can detect with very high precision the positions
1 /t-u where the intensity profile of a GRB light curve, as estimated
Yus(t) = %‘P(T) (16) by a DWT, changes its degree of regularity. Sigchas zero

average, a wavelet cfizientW f(u, s) measures the variation
It is obvious thaty must satisfy an admissibility conditionof f in a neighborhood ofi whose size is proportional ta
which guarantees the invertibility of the wavelet transform. I8harp signal transitions create large-amplitude wavelefficoe
most cases, this condition may be reduced to the requiremeiahts. As we see in the following section, the pointwise reg-
thaty is a function with zero mean (Mallat 1998): ularity of f is related to the asymptotic decay of the wavelet
transformW f(u, s) whens goes to zero. Singularities are de-
tected by following across fierent scales the local maxima
of the wavelet transform. We use this “zooming” capability
to define the positions of mathematically similar transients
In addition,y is often required to have a certain number dirregularities) in GRB light curves observed infiégrent en-
vanishing moments: ergy bands. These therefore provide the best information about
the arrival times of photons associated with universal intrinsic
emission features at the sources.

f y(t)dt = 0. (17)

5]

ft”w(t)dt =0, n=0,1,...,p. (18)

—00

4. Extraction of the GRB intensity profiles

In general, this property improves théieiency ofy for de- by wavelet shrinkage

tecting features (singularities) in the signal, since it is blind to i i )
polynomials up to orde. One may say that the action 6n The observed GRB light curves typlca_lly fea_ture a relatlvelly
the functiony, which must be oscillating according to Eq. (17)omogeneous, nonzero background intensity, above which
is a dilatation ifs > 0 or a contraction i < 0. In either case, SOMe inhomogeneous structure is apparent (Kolaczyk 1997).

the shape of the function is unchanged, it is simply spread ¢gthe following, we demonstrate that when such a temporally
or squeezed. inhomogeneous signal as the light curve of a GRB contains

A transform Eq. (15) over a suitable wavelet basis is ushoth structure and noise, the ability of the DWT to compress the

ally called a continuous wavelet transform (CWT). A waveldgformationin this signal leadfiéciently to a simple butféec-
transform whose wavelegsare constructed in such a way thative noise removal procedure. This wavelet shrinkage technique

the dilated and translated family (Donoho 1993; Donoho et al. 1995), based on the thresholding
' of the DWT, allows one to separate the structure of the signal
Wimt) = i(p (t - 2‘m)_ (19) from the noise, whilst retaining information about the position
Lm NG 21 ) of irregularities of the signal, as provided by the support of the

_ ) _ i mother wavelets.
where j, m are integers, is an orthonormal basis for all func- | practice, DWTs break a function down into a coarse
tions f satisfying the condition approximation at a given scale, that can be extended to suc-
5 cessive levels of residual detail on finer and finer scales. The
f|f| (t)dt < +co. (20) full decomposition may be expressed in terms of the scale
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‘ L ‘ ergy band 115-320 keV (top panel), and its

Symmlet-10 (Mallat 1998) discrete wavelet

‘ et s el R ‘ : transform (DWT) at the level = 6. The

ol L » o horizontal axis corresponds to the same time

B L L L scale as in the original burst. Each level

9w LHW‘\‘JM[,‘M ‘wun‘nw\‘, A N A A AT TP e bbbl e ON the vertical axis shows the wavelet co-
efficients at a given resolution level (i.e.,
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" M\m\“ ‘
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|
(o]
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f ety it

-10 b etk Ll b et Ut ettt i o st Lot
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A L M AL L scale). The wavelet céiicients are repre-
11 . . . . . . | | . sented by spikes whose size and direction
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 (up or down) is determined by the magni-
Time (normalized) tude and sign« or —) of the codficient.

function ¢, and the discrete wavelgt;, discussed already.  To reduce the noise level 9¥, while preserving the degree
The scale function looks much like a kernel function, and @& regularity of the intensity profilef, we use a soft thresh-
finite linear combination of dyadic shifts of this function proelding procedure. This procedure sets to zero allffc@ents
vides a generic coarse approximation. Further linear combisanaller in magnitude than some threshd|énd shrinks ca@é-
tions of dyadic shifts of the wavelet function supply the resictients larger thai towards zero by amounts as described in
ual detail. By considering sequences of DWTs with increasimgore detail in Appendix A. This performs an adaptive smooth-
numbers of dyadic dilatations, the detail at each of the coriag that depends on the regularity of the sighaln a wavelet
sponding successive scales is recovered. basi¢ where large-amplitude céiicients correspond to tran-
We represent the light curve of a given GRB by a binnegient signal variations, this means that the estimator discussed
discrete signafXo, X1, ..., Xn-1} of dyadic lengthn = 27, in Appendix A keeps only transients coming from the original
whereJ > 0. The DWT of such a signal results in a vector o$ignal, without adding others due to the noise. After the pre-
lengthn of wavelet coéficients. The signal is said to have beeprocessing, which sets the median value of waveleffimients
sampled at levell. At some coarser resolution level (scaledf the signal at the finest scale to unity, the threshold is esti-
L < J, the wavelet coficient vector contains'2scale coef- mated to bel = /2logn. The example of an intensity profile
ficientscLo, .. .,C 2+ and 2 detail codficientsd;p, . . ., djx estimated by this wavelet shrinkage procedure, as described in
ateach of the levels= L, ..., J—1. Figure 1 displays a typical Appendix A, is shown in Fig. 2.

example with) =11and. =6. In general, the wavelet shrinkage procedure Eq. (A.2) de-
Observations of a given GRB light curve can be representgglined above guarantees with high probability toif| <

by the sum |djf)m| (e.g. Mallat 1998), implying that the estimatbris at

) least as regular as the “original” intensity profflebecause its
wavelet coéficients have smaller amplitudes. Thus we use this

nproperty of the DWT of separating verytectively the struc-

tures in the GRB intensity profiles from noise, in the form
two subsets of wavelet cfiixients, large and small ones.

he thresholding procedure deletes wavelefiodents below

the threshold value, and diminishes the others by the threshold

value. This tends to preserve both broad and narrow features,

F - DX (22) while significantly reducing noise fluctuations, after the recon-

struction of the intensity profile by the inverse DWT.

The “risk” of the estimatoF of f is the average loss, calculated
with respect to the probability distribution of the noise. The
numerical value of the risk is often specified by the signal-to- In general, the thresholding procedure can be applied to any basis
noise ratio (SNR), which is measured in decibels. for the signal decomposition (e.g. Mallat 1998).

X[n] = f[n] + W[n], 21

where the intensity profilé[n] is contaminated by the additio
of noise, which is modelled as a realizatidfin] of a random
process whose probability distribution is known. The intensi
profile f is estimated by transforming the noisy dXfan] with
the “decision operatorD:
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T T T T T T

L L L
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20 40 60 80 100 120
Time (sec)

21

20
£219 . .
= Fig.2. The GRB 990308 light curve after
8 18 preprocessing which sets the median abso-

lute deviation of wavelet cdicients at the
fine scale equal to unity, as described in
more detail in Appendix A. The intensity

17
16

15 | | | profile estimated by the wavelet shrinkage
20 40 60 80 100 120 procedure at the levél = 6 is presented in
Time (sec) the bottom panel.
5. Detection of variation points in GRB light curves local maximum should be a strict local maximum in either the

A lett f f localized sianal struct right or the left neighborhood afy. Any connected curve(u)
wavelet transtorm can focus on localized signal SIrUCUre Vighy, o geaje-time planai(s) along which all points are modu-

a “zooming” procedure that reduces progressively the scale A& maxima, as illustrated in Fig. 3, is called a “maxima line”.

rameter. To identify the variability points of twoftirent light Singularities of a functiorfi are detected by finding the abscissa

curves and characterize their structures, it is necessary to a4Y@Rare the wavelet modulus maxima converge on fine scales
tify precisely the local regularity of the function which repre e.g. Mallat 1998). Only at such points cérbe singular, i.e.,

se_nts the intensity p_rofile .Of the original signals. Th_e aPPith exponentr < 1. This result guarantees that all singular-
priate tO.O|S are the L|psch|tz exponegmtEhese? are defined in ities are detected by following the wavelet transform modulus
Appendlx_B, and can provide uplfor_m regularity measureme xima at fine scales. Figure 3 shows an example where all
of a functionf not only over time intervals, but also at anyy,, significant singularities are located by following the max-

pointv. ) ) ) .. imalines. The positions of these singularities are located by the
We use the Lipschitz exponeatto characterize variation ,qyius maxima lines at the fine scale of decomposition.

points of the reconstructed intensity profiles of GRBs accumu- To be sensitive to both sharp and smooth singularities, one

lated in diferent energy bands. The comparison of the positioHs . o
. . ; . . as to use wavelets with two vanishing moments, so as to gen-
of variation points with the same values @fgives the infor-

mation about the arrival times of photon probes withietent erate the CWT EQ. (15).0f the reconstruct.ed !ntensny proﬂle_s.
. . o The most suitable one is the second derivative of a Gaussian
energies, enabling one to probe for quantum-gravity time-del

a%exican hat) mother wavelet:

phenomena.

The decay of the CWT amplitude as a function of scale ) 5
is related to the uniform and pointwise Lipschitz regularity afs(t) = _ 2 (t_z - 1) exp(—t—z), (23)
the signal. Thus, measuring this asymptotic decay is equivalent 74 V3o \ " 20

to “zooming” into signal structures with a scale that goes to
zero. Namely, when the scaalecreases, the CWW f(u,s) because of the property that the modulus maxim#/d{u, s)
Eq. (15) measures fine-scale variations in the neighborhotigh the wavelet Eq. (23) belong to connected curves that are
of u. One can prove (e.g. Mallat 1998) that f(u, s)| de- not broken as the scakedecreases (e.g. Mallat 1998), which
cays likes*%/2 gver intervals wheré is uniformly Lipschitze. guarantees that all maxima lines propagate to the finest scales.
Furthermore, the decay BV f(u, s)| can be controlled from its The dilatation stesis generally set ts = 2/4, whereA is the
local maxima values. number of intermediate scales (voices) for each octave. Thus,
A “modulus maximum” (e.g. Mallat 1998) is any pointif the voice lattice is sflicientely fine, one can build maxima
(Uo, So) such thatWw f(u, so)| is locally maximal au = uo. This lines with very high precision. Connecting maximainto lines as
in Fig. 3 is a procedure for removing spurious modulus maxima
2 Lipschitz exponents are also calledldér exponents in the math-created by numerical errors in regions where the CWT is close
ematical literature (Dremin et al. 2001; Mallat 1998). to zero.
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Sometimes the CWT may have a sequence of local maserris et al. 1995). We consider a more general class of rel-
ima that converge to a poimton the abscissa, evenfifis per- atively sharp signal transitions, marked by Lipschitz irregular-
fectly regular atv. Thus, to detect singularities it is notfSu ities picked out by the CWT “zoom” technique, which we call
cient merely to follow the wavelet modulus maxima across tlygenuine variation points
scales. One must also calculate the Lipschitz regularity from
the decay of the modulus maxima amplitude. If, for some scale

s < %, all the modulus maxima that convergetare included 6. Analysis of time lags in emissions from GRBs
in a cone: with known redshifts

Once the BeppoSAX satellite began to localize long bursts
in the sky to within a few arcminutes, and distribute their

thenf has an isolated singularity at Conversely, the absencd©cations to observers within hours, it turned to be possible
of maxima below the cone of influence Eq. (24) implies that to discover X-ray, optical, and radio afterglows (Costa et al.

is uniform in the neighborhood of any point: v beyond the 1997;. van Paradijs et al. 1997;_ Frail et al. 1997), and hOSt_
scales. galaxies. Subsequent observations led to the spectroscopic

The Lipschitz regularity atv is given by the slope determination of GRB redshifts, us?ng_ abs_orptiqn lines in the
log, |W f(u, S)| as a function of logs along the maxima lines spectra of the afFergIows and emission lines in the spectra
converging tov, namely of the host galaxies. By now, redshifts have_been measured

for about 20 bursts (see for example Norris et al. 2000;

1 http://www.aip.de/"jcg/grbrsh.html; Amati et al.
log, [W f(u, s)l ~ (a + 5) log, s+ const (25) 2002 and references therein).
Our first aim is to measure the timings of genuine varia-

Actually, the Lipschitz property Eq. (B.1) approximates a fundion points, characterized by Lipschitz exponents as discussed
tion with a polynomialp, in the neighborhood of the poimt above, for diferent spectral bands in the light curves of dis-
The CWT estimates the Lipschitz exponents of the functidgant GRBs. Correlating the time lags betweeffiedent energies
by ignoring the polynomiap, itself. Moreover, if the scalgy  with the GRB redshifts, we then try to extract time delays re-
is smaller then the distance between two consecutive sindated to the refractive index that may be induced by quantum
larities, to avoid having other singularities influence the valigravity.

lu—v|<Cs (24)

of Wf(u, s), and the estimated Lipschitz exponent 1/2 < We use genuine variation points with the same Lipschitz
1.5, the functionf exhibits a break at, which can be detectedexponentsy, measured in dierent energy bands, and assume
by following the modulus maxima chain. that any initial relative time lags attributable to the properties

In this paper, to define significant points in the time sef source are independent of redshift. Thus, the key to dis-
ries of the signal, we do not apply fit functions that seleentangling quantum-gravityfiects is reduced to the problem
only prominent peaks, as was done in (Ellis et al. 2000bf detecting genuine variation points with the highest possible
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precision. The biggest uncertainties in our analysis come from For the selected GRBs in Table 1, we have performed
our procedure for estimating the DWT intensity profiles, whilshe wavelet shrinkage procedure using a Symmlet-10 hasis
the errors generated by the CWT zoom are negligible. The erAdrsufficiently high signal-to-noise ratio levels, this procedure
in the wavelet-shrinkage procedure is defined by the time-tiBnds to preserve the regularity of the light curves. In some
resolution in the analysis of the light curve and the support ohses, namely for GRB 980329 and GRB 970508, we applied
the DWT mother wavelet. the translation-invariant (Mallat 1998) version of the shrink-
As shown in Table 1, we use GRB light curves fronage procedure with reduced threshold. This procedure implies
BATSE, which have been recorded with 64 ms temporal resd/eraging estimates produced from the original signal itself
lution in four spectral channels. Unfortunately, the BATSE ca@&nd from all shifted versions of the signal, and allows one to
alog of light curves includes only about a half of the GRB&void artefacts while preserving the real transient structure.
with known redshifts. The light curves of the other GRBSuUbsequently, we apply the CWT zoom technique for recon-
with known redshifts have been collected by other satellit§fucting intensity profiles to identify the arrival times of gen-
(BeppoSAX, HETE), and the data are not available publiclyine variation points and estimate their Lipschitz exponents in
The BATSE lower-level discriminator edges define the cha@very spectral band. We consider that a genuine variation point
nel boundaries at approximately 25, 55, 115 and 320 keV. \Was been detected if it has Lipschitz exponent 1. Genuine
look for the spectral time lags of the light curves recorded kariation points found in the vicinity of each other, but belong-
the 115-320 keV energy band relative to those in the lowe#1d to two diferent spectral bands, are considered to have been
25-55 keV energy band, providing a maximal lever arm bgenerated at the source if the values of their Lipschitz expo-
tween photon energies. We do not use the fourth BATSE chdients are equal to each other. The other variation points with
nel with energies between 320 keV an@ MeV, as these have a substantially exceeding 1 exhibit only smooth transitions of
ill-defined energies and poorer statistics — see Fig. 4. Instetitg signal, and do not mark sharp transient time structures.
we compare the rather more energetic light curves accumulat¥el recall that only sharp transient structures are important in
by OSSES with the 115-320 keV BATSE light curves, which the search for spectral time lags. For seven GRBs out of nine,
increases the lever arm for probing photon propagation into té detected more than one pair of identical genuine variation
MeV range. point per light curve, as seen in Table 1. The systematic errors
Since we apply the CWT zoom technique to detect the gdifolaczyk 1997) were estimated by usingfdrent resolution
uine variation points of the reconstructed intensity profiles, W@vels L = 6, 5, 4) in the wavelet shrinkage procedure.
impose some conditions on the choice of shrinking wafielet In order to probe the energy dependence of the velocity
In general, when choosing the appropriate wavelet basis, ¢{dight that might be induced by quantum gravity, we have
has to strike a balance between the degree of regularity of f®mpiled the whole available data in Table 1 as functions of
wavelet, the number of its vanishing momeptand the size the variable; andKg, defined by the integrals in Egs. (13)
of its support. It is clear that the size of the support defin@gd (14), respectively. In the case of linear quantum-gravity
uncertainties in the positions of genuine variation points a#orrections, the variable takes the form
ter the reconstruction of intensity profile. This consideration 2
motivates using the DWT basis with the most compact SUp- _ IE (26)
port for the wavelet shrinkage procedure. On the other hand,~ h(2)’
to preserve maximally the regularity of the original signal, one ~ ©
should use wavelets with a high degree of regularity. In adqinilst for the quadratic case we use
tion, one should avoid disturbing significantly the alignment of
peaks of the original light curves, which motivates using sym- p (1+2)dz
metrical discrete wavelets. Kq = W
The discrete wavelet that best reconciles the above require-

ments is that called Symmigi{e.g. Mallat 1998). It is the . o
most symmetric, regular discrete wavelet with minimum su"ce both Egs. (13) and (14) exhibit linear dependences on the

port. The numbep of vanishing moments defines the size ofarables Egs. (26) and (27) respectively, we perform a regres-

the support, and consequently the errors of the position estinii? @nalysis for a linear dependence of the time lags between
tions 1(2p — 1) x bin - size. Moreover the same numhepf Pairs of genuine variation points, in the form
vanishing moments defines the regularity of Symnpekor a —aK4+b
large number of vanishing moments, the Lipschitz regularity éf ’
Symmletp is 0.275p (Daubechies 1991). Thus, to have morgne result of our regression fit to the full 64 ms statistics for
then 2 continuous derivatives should exceed 8. linear quantum-gravity corrections Eq. (4) is shown in Fig. 6.

The best fit corresponding to Fig. 6 is given by
3 We are grateful to M. Strikman for kindly providing us with OSSE
data. At = 0.60(x0.46)K; — 0.72(+0.53). (29)
4 In most cases, discrete wavelets cannot be represented by an ana-
lytical expression or by the solution of somefdrential equation, and ° The codficients of the Symmlet filters are tabulated in WAVELAB
instead are given numerically as solutions of functional equations (e@plbox
Mallat 1998). (http://www-stat.stanford.edu/" wavelab), for example.

(27)

(28)
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Fig.5. The estimated intensity profiles of
GRB 990308 — see Fig. 4 — obtained in
four spectral bands by using a Symmlet-10
(Mallat 1998) basis at leveL = 6.
The signal-to-noise ratios are at the levels
SNRL = 2307,SNR = 2271,SNR =
2358 andSNR} = 23.87 for each band,
respectively. All variation points founded
by CWT zoom are marked by circles. The
behaviours of the Lipschitz exponenrisare
estimated. Seven pairs of genuine variation
points in the first and third spectral bands
have been detected.

Following the same procedure for the quadratic correctiortirectly with results obtained using the third BATSE channel,
one gets by a factor:

110 ke\-55 keV
3 MeV-110 keV’

More precise results can be obtained by combining BATSkhere 3 MeV is the energy at which the contribution of flux
and OSSE data. Four light curves accumulated by OSSE axeumulated by OSSE becomes significant. The spectral infor-
ibit structures that can be compared with similar features ofmation for GRB 980123 indicate that half of the total flux has
served by BATSE, as seen in Table 1. Since the OSSE dh&en accumulated in the energy rang® 31eV.

are at higher energies:15-10 MeV, one has to rescale the re- One may also increase the sensitivity of the determination
sults of OSSE-BATSE comparison in order to combine theof time lags by using BATSE time-tagged event (TTE) data,

At = 0.17(x0.17)Kq — 0.42(+0.32), (30) (31)
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Table 1.Data on the light curves for GRBs with known redshifts used in this analysis. The third column gives the time lags between the arriv
of every identical genuine variation points in the third (high-energy) spectral band and the first (low-energy) one. For every light curve,

give the weighted means of the time lags in 64 ms BATSE domain, combining the genuine variation points for that GRB. Both statistical
systematic errors are included. The average spread of individual time lags is below the mesurement uncertainty. Also indicated are the r
obtained by combining OSSE 64 ms light curves in the 3—-6 MeV energy range with BATSE light curves in the 115-320 keV energy band

the case of GRB 980329, the results of BATSE 64 ms and T.VE® resolution measurements are combined with the OSSE-BATSE 64 ms
comparisons.

GRB (BATSE Trigger) z Time lag, error (s)

970508 (6225) 0.835 BATSE (64 ms)
ABATSE — _0,064.+ 0.860

971214 (6533) 3.418 BATSEB4 ms)
AtPATSE = 0,13 + 0.860; AtBATSE = —0.064+ 0.860
cobmbined BATSE (64 ms)
ABATSE — 0,033+ 0.608

comb

980329 (6665) 3 BATSE (64ms)
AtBATSE 0.064+ 0.860; AtBATSE 0+ 0.860
combined BATSE (64 ms)
AtBTSE = 0,032+ 0.608
BATSE-TTE (2.7 ms)
At]TE = -0.34+0.019
OSSE (64 ms) rescaled
AtOSSE= —0.048+ 0.019; AtSSE= 0 + 0.038
combined BATSE+OSSE+TTE
ABATSE#mOSSETTE — _0,036+ 0.013

980425 (6707) 0.0085 BATSE (64 ms)
AtPATSE = _1792:+ 1.705; AtBATSE = 128+ 0.860
combined BATSE (64 ms)
ABATSE = 1384+ 0.768

980703 (6891) 0.966 BATSE (64 ms)
AtPATSE = _0.832:+ 0.860
OSSE (64 ms) rescaled
AtPSSE= 0,040+ 0.019
combined BATSE+OSSE
tBATSE+OSSE 0,041+ 0.019

comb

990123 (7343) 1.600 BATSE (64 ms)

APATSE = 0.230:+ 0.860; AtBATSE = —0.064+ 0.860; AtEATSE = —0.128:+ 0.860

comblned BATSE (64 ms)

tBATSE 0.013+ 0.496

OSSE (64 ms) rescaled
AtOSSE= 0,049+ 0.019; AtOSSE = —0.046+ 0.019; AtQSSE: —0.045+ 0.019

combined BATSE+OSSE

ABATSE-OSSE = _0,047+ 0.011

990308 (7457) 1.2 BATSE (64 ms)
AtBATSE = 0.+ 0.860; AtBATSE = 0,064+ 0.860; AtBATSE = -0.256+ 0.860
tBATSE =-1.024+0. 860 AtBATSE 0+ 0.860; AtBATSE 0.064+ 0.860
AtBATSE 0+0.860
comblned BATSE (64 ms)
AtBATSE — _0 183+ 0.325

comb

990510 (7560) 1.619 BATSE (64 ms)

AtPATSE = 0.384:+ 0.860; AtBATSE = 0.448+ 0.860; AEATSE = 0+ 0.860
AtffATSE —0.256+ 0.860; AtBATSE 0+ 0.860; AtBATSE —0.528+ 0.860
AtBATSE = _0.128:+ 0.860; AtBATSE - 0,256 0.860; ABATSE = 0.+ 0.860

At%\TSE =-0.448+ 0.860
combined BATSE (64 ms)
AtBATSE = 0,078+ 0.272
OSSE (64 ms) rescaled
At‘fSSE: —0.045+ 0‘019;At§’SSE =-0.032+ 0.019; At?SSE: —0.041+ 0.019
combined BATSE (64 ms)
tBATSE+OSSE ~0.039+ 0.011

comb

991216 (7906) 1.02 BATSE (64 ms)
AtBATSE = _0,064+ 0.860; AtBATSE = —0.064+ 0.860; AtEATSE = —0.064+ 0.860
ABATSE = 0,064+ 0. 860; ABATSE = 0,064 + 0.860; AtBATSE 0=+0.860
AtBATSE = 0.+ 0 860; AtEATSE = 0+ 0. 860
combined BATSE (64 ms)
AtEATSE = —0,040= 0.304
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Fig. 6. Spectral time lags between the ar-
rival times of pairs of genuine variation
points detected in the third and first BATSE
spectral bands. The analysis has been done
for 9 GRB light curves collected with time
resolution 64 ms. The solid line shows the
best linear fit versuk.

Fig. 7. The combination of 64 ms BATSE
time-lag measurements shown in Fig. 6 with
the measurement obtained from the BATSE-
OSSE comparison and the TTE portion of
the GRB 980329 light curve, with resolu-
tion 2.7 ms.

which record the arrival time of each photon with a precisiotme TTE data cover only the leading portion of light curve. We
of 2 us, in the same four energy channels. The onbodndve rebinned with resolutionl ms the leading portions of
memory was able to record up to 32, 768 photons around #lethe GRBs from Table 1 using TTE data. Only one light
time of the BATSE trigger. Typically, this quota of photongurve, that of GRB 980329, yields a signal with clearly iden-
was filled in 1 or 2 s. For short GRBs, the mean structure of thiied isolated singularities in the first and third spectral bands.
whole light curve might be in the TTE data, along with subFhe statistics available to detect genuine variation points in this
stantial periods of background emission after the burst, whilgtht curve yield a resolution of 2.7 ms. Combining this TTE
for the long-duration GRBs that we analyze, as in Table heasurement with the 64 ms BATSE measurements and the
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results of our BATSE-OSSE comparisons, we get the follownrto the overall fit does improve the sensitivity (see the next

ing results: section) and makes the result less dependent on the properties
of individual sources.

The leading parts of other light curves from Table 1. Which

(33) do not exhibit coherently variable structures, can be character-
ized as fractal signals without isolated singularities. One can

for linear Fig. 7 and quadratic corrections respectively. TS0 analyze such singularities with CWT (e.g. Dremin et al.
single BATSE point with much higher precision than the ott#001; Mallat 1998), but such a study lies beyond the scope of
ers does not improve substantially the significance of the fit8iS paper.
However, including the OSSE-BATSE and TTE measurements

At = 0.010£0.022)K, — 0.053(0.026) (32)

At = 0.003(0.006)K, — 0.048(+0.016)
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7. Compilation of limits on quantum gravity where L’(1/M) is the likelihood function with respective

- . . to 1/M, as shown in Fig. 9.
We now analyze the likelihood function to derive the results of The key result (36) is significantly stronger than that in

our search for a vacuum refractive index induced by quantym,. : : .
gravity. We establish a 95% confidence-level lower limit on ttieaIIS et al. 2000b), thanks to the improved analysis technique

) i . ing wavel nd th e of a more complete dataset.
scaleM of quantum gravity by solving the equation USing wavelets and the us P

[ L&)de 8. Discussion

M

© =095 (34) We have investigated in this paper possible non-trivial prop-
JL©de erties of the vacuum induced by quantum gravity, by prob-
0

ing modifications of the dispersion relation for photons. These
whereco symbolizes a reference point fixing the normalizatiorfieatures can appear in several approaches to quantum grav-
In our case, we choose as reference pgiht= 10'° GeV, the ity, including Liouville string theory, models with large ex-
Planck mass, which corresponds to the highest possible sd¢ededimesions (Campbell-Smith et al. 1999) and loop gravity.
above which quantum-gravityffects vanish and corrections taSimilar modifications of dispersion relations can take place for
the vacuum refractive index become infinitesimally small. lthe other matter particles, leading to other non-triviiées
practice variations of reference point, even by an order of magyich as changes in the thresholds for some reaction attenuating
nitude, does not influence the final result. ultra-high energy cosmic rays (UHECR), or vacuGerenkov-

We use the fact that only the déieienta in Eq. (28) is like radiation (see Sarkar 2002 and references therein), which
related to the quantum-gravity scale, whereawxludes a pos- could have a large influence on the interpretation of the puz-
sible unknown spectral time lag inherited from the sourceging astrophysical data on UHECR.
which we assume to be universal for our data set. With this We have attempted to extract the most complete informa-
assumption, one can shift our data points by an ametmt tion about the possible vacuum refractive index induced by
taking b from the best fits Egs. (29) and (30), and usguantum gravity, by using wavelets to look for any correla-

L o« expx2(M)/2) (with normalisation appropriately fixedtion with redshift of the time lags between the arrival times

to unity) as the likelihood function in Eq. (34), where of sharp transients in GRB light curves observed in high- and
2 low-energy spectral bands. This analysis combined continu-
2 At — bshirt — a(M)K; . ;
X (M) = Z (35) ous wavelet transforms to remove noise and discrete wavelet
D 7i transforms to identify sharp transients inffdrent spectral

is calculated for all the possible valuesagM), defined by the bands. Eight GRBs with known cosmological redshifts and
codficients ofK; (Kg) in Egs. (13) and (14), respectively. Thdight curves available publicly have been used in our analysis.
sum in Eq. (35) is taken over the all the data poifits which It is instructive to compare the time lags we find with those
are symbolized by, with o characterizing the uncertaintiefound using cross-correlation analysis (Band 1997; Norris
in the measured time lags. The calculaté@M, ) for the dif- et al. 2000; Norris 2002). Our measurements of the spectral
ferent combinations of the data sets we use in the case of liné@e lags in BATSE 64 ms light curves for five GRBs, which
corrections to the refractive index Eq. (14) is shown in Fig. @€ common for the sample we used and that under consider-
The minima Of)(z Correspond the “signa|_|ike" regionS, Wher@tion in Norris et al. (2000), are consistent in absolute value
the data are better described by a scenario with a refractiveith the trend found in Norris et al. (2000) for bursts with
dex, induced by quantum gravity. The most robust estimatifigher luminosities (which are closer, on the average) to have
on the lower limit of quantum gravity with a linearly energyshorter time lags. Discrepancies are found in two cases out

dependent correction is obtained from the combination of &f five common GRBs. Namely, we found soft-to-hard evo-
the data sets, and is indicated by a solid line in Fig. 8: lution for GRB 971214 and GRB 990123 (positive time lag),

5 which is opposite to the hard-to-soft evolution (negative time

Mc 2 6.9 10°° GeV. (36) lag) found in Norris et al. (2000). These two GRBs havea
Similar considerations lead to the following lower limit orcomplicated structure of emission: GRB 971214 has a wide
guadratic quantum-gravity corrections Eqg. (5) to the photdalump” of emission which consists of spikes that are barely
dispersion relation: overlapped, while GRB 990123 consists; in two intensive wide
ulses with a quite complicated cluster afterwards. Thus these

Mo 2 29 10° GeV. (37) fwo GRBs car? be attributed to a lack of morphological clas-
To the accuracy stated, we find identical numerical resultsfication power of the cross-correlation technique due to the

whether we use a logarithmic measure fércut of at M = problem of interpretation of the CCF pike width (Band 1997).
1081920 GeV, as shown in Fig. 8, or M measure integrated As an explicit example, we analysed GRB 941119, which has

to infinity, been assigned, in Band (1987), as the GRB without clear spec-
/M tral evolution with the respective to cross-correlation analy-
f L’ (&)d¢ ses. The light curve of GRB 941119 consists in cluster with
0 =0.95, (38) several closely spaced spikes protruding from a smooth enve-

lope. We found five pairs of identical genuine variation points
in first and third spectral bands, demonstrating all together the

L@
0
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soft-to-hard spectral evolution with weghted average time lag We have not found a significant correlation of the mea-
At = 0.051+ 0.384 s. One can see from Table 1 that in sewured time lags with the cosmological redshift that would
eral cases dierent pairs of identical genuine variation pointindicate any deviation of the vacuum refractive index from
detected in one and the same GRB’s light curve demonstratety. This fact allows us to establish 95% C.L. lower lim-
different kinds of spectral evolution, namely either hard-to-sdf$ on the quantum-gravity scale at the level8 8 10'° GeV

or soft-to-hard. This fact could be connected with a possible iand 28 x 10° GeV for linear and quadratic distortions of the
trinsic spectral evolution during the burst progress. The exadispersion relation, respectively. However, despite the lack of
ple of GRB 941119 s one of such cases, demonstrating unclaay significant evidence for a quantum-gravity signal, there is
spectral evolution with the respect to the cross-correlation analregion of the linear scale parametdrwhere the data are
ysis. The wavelet technique we apply classifies more explicithetter described by a scenario with a refractive index induced
a variable spectral evolution and consequently gives more &g- quantum gravity. This fact indicates that any increase in
curate results for the weighted average spectral evolution,ths statistics, especially with higher resolution, would be of
in case of GRB941119. The time lags measured between the utmost interest for exploring the possibility of a quantum-
BATSE 25-55 keV and OSSE 3-6 MeV light curves exceagtavity correlation of spectral time lags with redshift. For this
substantially the time lags between the first and third BATSEason, we urge the light curves for all GRBs with measured
energy bands. Without the correction by the ratio Eq. (31), thedshifts to be made generally available, as is already the case
BATSE-OSSE time lags we find are-2 s, in good agree- for BATSE data.

ment with Piro et al. (1998), where the time lag between bands |t has heen observed that, if the dispersion laws for el-

of GRB 970228 with a similar energyfierence was estimatedementary particles fier from the standard ones, the expan-
using BeppoSAX data. The wavelet technique is Veffg®  sion of the Universe may result in the gravitational creation
tive also to deal with transient signals such as TTE data Wi pairs of particles and antiparticles with very high energies
onv signal-to-noise ratios, where cross-correlation analyses {@Rarobinsky & Tkachev 2002). The expansion of the Universe
fail. (both at present and in the early Universe) gradually redshifts
We believe that there is no regular cosmological evolutidrourier modes of a quantum field, and may transport them from
of the sources we use. This fact is already widely acceptdw trans-Planckian region of very high momenta to the sub-
in the literature on other high-redshift sources, namely sup@&anckian region where the standard particle interpretation is
novae. So there is ndfect that can cause any correlation o¥alid. Then, if the WKB condition is violated somewhere in the
weighted average time lags with redshifts of the sources. THtans-Planckian region, the field modes enter the sub-Planckian
any correlation of spectral time lags we may find can be aggion in a non-vacuum state containing equal numbers of par-
tributed to the &ects of propagation. ticles and antiparticles. The most restrictive upper limit fol-

Finally it should be stressed that the method we applié‘a"’s fro_m the number of UHECR cr_eat_ed_ atthe present epoch
is very powerful in the sense of analysing signals with stror{ tarobinsky & Tkachev 2002). Th's_ I'm_'t' together with our
non-linear dynamics behind, as GRBs could be. Of cours asurements of the vacuum refractive index, may rule out the

does not pretend to explain the underlying dynamics and ph ossibility 01_‘ detecting imprints of.trans-PIankian physics on
ical origin of GRBSs, but it gives a hint of the stage at which th e CMB anisotropy, as proposed in (Brandenberger & Martin

most variable processes take place and characterize quan%?z?—z)'

tively the degree of instability accompanying those processes. It is a widespread belief that the combination of quan-
In our case the radiation from genuine variation points is cofm theory with gravity is an explosive area, to the extent
sidered as the messenger of a fast non-linear dynamics atttr@ it blows up the concrete fabric of space-time, splitting it
source. The Lipschitz exponents, which characterize quantitto space-time foam. It is true that, as yet, there is no uni-
tively the “degree” of instability of the dynamics, give the inversally accepted mathematical model of this metamorphosis,
formation of whether photons of flierent energies have beerwhile several attempts at it are characterized by a varying level
produced at one and the same event at the source. So this gifesticcess. However, despite the firm and widely-held opin-
an ideal “time dfset” between energy bands to measure ai§n that quantum gravity defies experimental tests, it is re-
differences in the speed of light. markable that several such tests have been proposed in recen

It is widely accepted (see Band et al. 1997; Norris et years. Some of them have put rather severe constraints on some

2000, and references therein) that the spectral evolution%antum'grav'ty madels, Wh”.St some models based on non-
tical strings seem to remain unscathed so far (Ellis et al.

GRBs leads to peaks migrating later in time. These time Iag% . . e
are not directly connected with the distance to the source, t02’ Ellis etal. 2002a). In particular, as we have shown in this

are correlated with intrinsic properties of GRBs, such as lunf@per. using the most sophisticated technique available, that of

nosity (Norris et al. 2000) or variability (Shaefer et al. 2001£avelets, to pick up authentic time-lagfects in gamma-ray

) : ) . rsts, we have been able to put a rather firm lower bound on
The quantum-gravity energy-dependent time delay plays th%e dispersion of light in the vacuurit > 6.9x10'° GeV. This

role of a foreground féect of opposite sign to the usual spec- X
9 PP 9 P proaches the range of scales where we might expect such an

tral evolution of GRBs, which increases with distance. Hen(‘:?l tt r Data able to test further thi ibility alread
model-independent information about quantum gravity can cct1o appear. ata able to testiurther this possibility aiready
e&qst, and more data will soon be available.

extracted only from a statistical analysis of sources with _ _
known distance distribution. Une gfaire a suivre ...
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tatistics. : N .
statistics Taylor expansion relates theffirentiability of a signal to local

polynomial approximations. Suppose tHais m times difer-
Appendix A: Wavelet-based thresholding entiable in p — h;v + h]. Let p, be the Taylor polynomial in
estimator the neighborhood of. The mth order of diferentiability of f
in the neighborhood of yields an upper bound on the error
&(t) = f(t) — p,(t) whent tends tov. The Lipschitz regularity
extends this upper bound to non-integer exponents. Namely, a
function f is pointwise Lipschitza > 0 atv, if there exists a

A thresholding estimator ofm= 2’-component discrete signal
X[n] decomposed at the resolution level(see Sect. 4) in a
wavelet basis can be written (Mallat 1998) as:

¥ 3‘: polynomialp, of degree at most such that
F= oT (dfm)l/’ im+ ) o1 (Cém)fmm, (A.1) .
Ll Z 1)~ py(B) < Kit — v (8.1)
where the functiopr provides a soft threshold: where is a constant. The polynomial,(t) is uniquely de-
_ fined at eachv. If f is m < « times continuously dieren-
x=Tif x=T tiable in a negborhood of, then p, is the Taylor expansion
pr(¥) =4 x+T if x<-T (A.2) of f atv. Pointwise Lipschitz exponents can vary arbitrarily
0 if X<T. from abscissa to abscissa. fifis uniform Lipschitz:a > m

If the signalX[n] is contaminated by additional noi¥¢ n], the ina:::;r:%igézoggggguo‘ozl;hgfr;:)er:ﬁigslr; \i/r?:ir:)i/stzzitgiﬁbnoerﬁii d
hresholdT i lly ch hat there is a high < :
thresholdT is generally chosen so that there is a high pro ¥V < < 1, thenp,() = (). and the Lipschitz condi-

ability that it is just above the maximal level of this noise..

SinceW[n] is a vector ofN independent Gaussian random variton Eq. (B.1) becomes

ables of variancer?, one can prove (Mallat 1998) that thef(t) — f(v)| < Kt — v, (B.2)
maximum amplitude of the noise has a very high probability of ) ) _ ) )
being just belowT = o +/2Togn. f is not diferentiable av anda characterizes the singularity

A signal X[n] of size n has n/2 wavelet cofficients type. For more references to the mathematical literature, see
{dy_1mlo<mens2 at the finest scale. The diieients of f itself, (Dremin etal. 2001; Mallat 1998).
|djf)m|, in the sum Eqg. (21) are small ffis smooth over the sup-
port of y3_1m, implying d§_l’m ~ d\JAil,m- In contrast,|d;_1’m| References
is large if f has a sharp transition in the supportyofim. A ajfaro, J., Morales-Tecotl, H. A., & Urrutia, L. F. 2000,
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to n/2. At the finest scale, the signdl thus influences the Amelino-Camelia, G., Ellis, J., Mavromatos, N., Nanopoulos, D., &
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imately equal tad! ,  which are independent Gaussian ran- Science, 284, 148hptro-ph/9906463]
> Band, J. P. 1997, ApJ, 486, 928

. ! )
dom variables O,f Va”anaez‘_ . Biller, S. D., Breslin, A. C., Buckley, J., et al. 1999, Phys. Rev. Lett.,
A robust estimator ot is calculated from the median of g3 »10g

(X1 osmens2. The median of coefficients Medép)o<p<p IS Brandenberger, R. H., & Martin, J. 200Bdp-ph/0202142]
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