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Abstract

Arabidopsis CTD-PHOSPHATASE-LIKE 1 (CPL1) is a protein phosphatase that can dephosphorylate RNA polymerase II C-
terminal domain (CTD). Unlike typical CTD-phosphatases, CPL1 contains a double-stranded (ds) RNA-binding motif (dsRBM)
and has been implicated for gene regulation mediated by dsRNA-dependent pathways. We investigated the role of CPL1
and its dsRBMs in various gene silencing pathways. Genetic interaction analyses revealed that cpl1 was able to partially
suppress transcriptional gene silencing and DNA hypermethylation phenotype of ros1 suggesting CPL1 is involved in the
RNA-directed DNA methylation pathway without reducing siRNA production. By contrast, cpl1 reduced some miRNA levels
at the level of processing. Indeed, CPL1 protein interacted with proteins important for miRNA biogenesis, suggesting that
CPL1 regulates miRNA processing. These results suggest that CPL1 regulates DNA methylation via a miRNA-dependent
pathway.
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Introduction

Plant gene expression is transcriptionally and post-transcrip-

tionally regulated by a population of small RNAs. The small RNA

biogenesis involves diverse factors that determine levels of specific

type of small RNA [1–4]. Micro RNAs (miRNA) are 21-base long

and their biogenesis starts from the transcription of MIR genes by

RNA polymerase II (Pol II). The resulting pri-miRNAs are

processed by a complex containing Dicer-like 1 (DCL1) [5],

HYPONASTIC LEAVES1 (HYL1) [6,7] and SERRATE (SE) [8]

leading to the production of a miRNA-miRNA* duplex [9,10].

siRNAs are generated from long dsRNAs, which are derived from

transcription of inverted repeats, transposable elements, and

conversion of single stranded RNAs by RNA-dependent RNA

polymerases (RDRs) [11], and subsequent processing by various

DCL proteins [12].

Among various roles of small RNAs, siRNA can promote DNA

methylation via the canonical RNA-mediated DNA methylation

(RdDM) pathway [13]. siRNAs bind to ARGONAUTE4, which

in turn forms a complex with various factors, such as RNA

polymerase V and KTF [14–17], required for defining RdDM

targets loci, where DRM2 is recruited to catalyze DNA

methylation [18,19]. Other factors such as RNA polymerase II

(pol II) [20], mediator [21], splicing machineries [22], and DCL1

[23,24] also contribute to the establishment of the DNA

methylation. Steady-state level of DNA methylation is determined

by antagonizing activities of methylation and demethylation. In

plants, some DNA demethylations are mediated by ROS1, which

cleaves the DNA backbone to remove methyl-cytosine from the

DNA double strand [25]. The ros1 plants exhibit DNA

hypermethylation and enhanced transcriptional gene silencing

(TGS) in various loci including promoter region of a transgene

RD29A-LUC and its endogenous counterpart [25].

We have previously identified an Arabidopsis C-terminal

domain (CTD)-phosphatase-like 1 (CPL1) by forward genetic

screening using the RD29A-LUC reporter gene [26,27]. cpl1 causes

hyperactivation of RD29A-LUC, opposite to ros1 in the same

background [25]. CPL1 and its paralog CPL2 can dephosphor-

ylate CTD of the pol II largest subunit specifically at the Ser5 of

heptad repeat sequence (Y1S2P3T4S5P6S7) suggesting their role in

transcription elongation and mRNA maturation [28,29]. CPL1

regulates gene expression in various biological processes, including

osmotic stress and iron deficiency [26,27,30]. However, little is

known about how CPL1 regulates gene expression. Here we

report roles of CPL1 in small RNA-mediated gene expression.

Materials and Methods

Primer sequences were listed in Table S1.

Plant Materials, Growth Condition, and Stress Treatments
Arabidopsis thaliana cpl1-2 (formerly fry2-1), and ros1–1 mutants

[25–27] in ecotype C24 carrying an RD29A-LUC reporter gene

[31], and L1 line carrying post-transcriptionally silenced 35S-GUS
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reporter (ecotype Columbia) [32] were used in this study. cpl1-2

transformed with gCPL1-FLAG transgene will be described

elsewhere. Plants were grown on agar plates containing 1/

26Murashige and Skoog salts and 1% sucrose. Cold and ABA

treatments were applied to 2-week-old plants as described [26].

Arabidopsis cell culture was induced and maintained as described

[33]. Heat treatment was applied as described [34].

Reporter Gene Assays
In vivo luciferase activity was documented as described [26].

Cold stress (0uC, 48 hr) treated plants were sprayed with luciferin

solution (0.01% TritonX-100, 1 mM Luciferin) and kept for 5 min

in the dark. Image acquisition and processing were performed with

Electron Multiplying Charge-Coupled Device camera (Cascade II,

Photometrics) and the WinView software (Roper Scientific). b-

Figure 1. cpl1 partially suppresses ros1 gene silencing phenotype. RD29A-LUC luminescence image after cold treatment (0uC, 48 hr, A) and
photograph showing kanamycin resistance (50 mg/ml, B) of WT, ros1, cpl1 ros1, and cpl1. (C) RT-qPCR analysis of the transcript levels of RD29A-LUC,
endogenous RD29A and COR15A (left) and NPT II (right). (D) RT-qPCR analysis of the transcript levels of retrotransposons (left) and DNA transposons
(right). Bars indicate standard errors of the mean (SEM) from three biological replicates. (E) RT-qPCR analysis of the transcript levels of ONSEN. Bars
indicate standard errors of the mean (SEM) of two biological replicates. Different letters show significant differences (p,0.05, one-way ANOVA
followed by Tukey’s HSD post hoc test).
doi:10.1371/journal.pone.0074739.g001
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glucuronidase assay was performed as described [35]. Plants were

transferred into staining solution that contains 0.5 mM

K3Fe(CN)6, 0.5 mM K4Fe(CN)6, 0.3% v/v Triton X-100 and

2 mM X-gluc (Sigma-Aldrich), vacuum infiltrated for 5 min, and

incubated at 37uC overnight. After staining, tissues were washed

with 70% ethanol.

RNA Analysis
The total RNA and small RNA were extracted from 10-day-old

seedlings using E.Z.N.A.H PF Micro RNA Kit and E.Z.N.A.

miRNA Isolation Kit (Omega Biotek), respectively. For RT-qPCR

analysis, small RNA samples were converted to cDNA using

NCodeTM miRNA First-Strand cDNA Synthesis Kit (Life

Technologies) and were subjected to qPCR analysis. qPCR were

performed and analyzed as described [30] using the primers listed

in Table S1.

Small RNA Northern blotting analysis was performed as

described [1]. The small RNA samples (80 mg) were resolved on

17% polyacrylamide gel containing 7 M Urea in 16TBE buffer

and were transferred onto nylon filters. The filters were hybridized

by 32P-labeled small RNA probes at 42uC in PerfectHybTM Plus

buffer (SIGMA). The filters were then washed three times with 26
SSC, 0.1% SDS at 42uC for 20 min and exposed to X-ray film.

The sequence of oligonucleotide probes used for small RNA

Northern blotting analysis are listed in Table S1.

DNA Methylation Analysis
DNA methylation analysis EpiTectH Bisulfite Kit (QIAGEN)

was performed as described [25]. Endogenous and transgene

RD29A promoter fragments were amplified by PCR using the

bisulfite-treated genomic DNA samples (2 mg) as template. The

PCR products of two amplified promoters were cloned into

pGEM-T easy vector (Promega) and 15 individual clones were

sequenced for each sample. The primers used for bisulfite

sequencing are listed in Table S1. PCR-based DNA methylation

assays were performed as described [1,36]. Genomic DNA

(500 ng) was digested with the methylation-sensitive restriction

enzyme Hae III overnight at 37uC or the methylated DNA-

digesting enzyme McrBC for 1 hr at 37uC. The digested DNA was

used to amplify the RdDM targets, including AtSN1, AtGP1, and

AtMU1. The undigested genomic DNA was simultaneously

amplified as control. PCR conditions were 3 min at 94uC,
followed by 30 cycles of 94uC for 30 s, 53uC for 30 s, and 72uC
for 40 s, and a final extension step at 72uC for 10 min. Three

independent experiments were performed for AtMU1 and two

independent experiments were performed for AtSN1 and AtGP1.

PCR-based DNA methylation assays was performed using specific

primers listed in Table S1.

Co-immunoprecipitation Assay
Arabidopsis calli expressing gCPL1-FLAG were homogenized in

an extraction buffer containing 100 mM Tris–HCl pH 7.5, 2 mM

EDTA, 25% glycerol, 2 mM DTT, 1 mM PMSF, 100 mg/l
DNase, 50 mg/ml RNase, and 16 complete protease inhibitor

cocktail. Protein extracts were centrifuged twice at 16,000 rpm at

4uC for 15 min, and protein concentration in the supernatant was

determined by Bradford reagent assay. The cleared protein extract

(110 mg protein) was incubated with 5 ml anti-FLAG antibody (or

anti-HYL1) for 5 min and, the immunocomplex was precipitated

after incubation with 7 ml of protein A agarose resin overnight at

4uC with gently shaking and collected by centrifugation. After

washing the immunoprecipitated proteins by TTBS were subject-

ed to SDS-PAGE and specific proteins were detected by Western

blotting using specific antibodies (anti-HYL1 and anti-FLAG).

Figure 2. The cpl1 mutation influences DNA methylation. (A)
Bisulfite sequencing results of endogenous RD29A and RD29A-LUC
transgene promoters. The ratio of cytosine methylation in percentage
was determined at CG, CHG, and CHH sites on endogenous (left) and
transgenic (right) RD29A promoters. H represents A, T, or C. (B) PCR-
based cytosine methylation assay on RdDM target loci using
methylation-sensitive enzymes. The amplifications using undigested
DNA templates (-) were used as controls.
doi:10.1371/journal.pone.0074739.g002

CPL1 Role in Small RNA-Mediated Gene Expression
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Bimolecular Fluorescence Complementation (BiFC) Assay
cDNA fragments encoding a full-length CPL1 and a full-length

HYL1 were cloned into BiFC vectors [37] to produce pCPL1-

nYFP and pHYL1-cYFP. The transformation DNA mixtures

contained the indicated combinations of 5 mg of each DNA

preparation. Polyethylene glycol-mediated transformation of

Arabidopsis protoplasts were performed as described [28].

Luciferase Complementation Imaging (LuCI) Assay
LuCI was performed as described [38]. CPL1, CPL11–714,

CPL1699–967, HYL11–223 and SE fragments were cloned in

pDONRzeo (Life Technologies) by Gateway BP reaction and

then transferred into pDEST-NLUCGW or pDEST-CLUCGW

[38] by Gateway LR reaction (Life Technologies). Resulting

NLUC/CLUC constructs and a 35S-P19 construct (provided by

Dr. Baulcomb) were introduced into Agrobacterium tumefaciens

GV3101 cells [39].

To test interactions, GV3101 cells carrying the various NLUC/

CLUC constructs were prepared as follows. Cells grown on solid

LB medium supplemented with 50 mg/ml kanamycin were

inoculated in 10 ml of liquid LB kanamycin medium. After 20 h

incubation, cells were harvested by centrifugation at 4000 rpm for

10 min and re-suspended in fresh activation medium containing

10 mM MES/KOH (pH 5.6), 10 mM MgCl2 and 150 mM
acetosyringone. Cell suspensions were mixed to achieve a final

OD600 of 0.4 for NLUC/CLUC constructs and 0.15 for the P19

helper strain, respectively. The 100 ml of NLUC, CLUC and P19

cell suspension mixtures were infiltrated into leaves of 4- to 7-

week-old Nicotiana benthamiana plants. Luminescence images were

taken 3d after infiltration. Leaves were infiltrated with luciferin

solution (10 mM MES/KOH, pH 5.6, 10 mM MgCl2 and

100 mM luciferin) and images were acquired using an EMCCD

camera and processed by WinView software.

Yeast two-hybrid Assays
For the yeast two-hybrid analysis, CPL1, HYL1 and SE

fragments were amplified by PCR and cloned into pDONRzeo

by the Gateway BP reaction. Gateway compatible two-hybrid

vectors, pBUTEGW and pGADGW, were prepared by inserting

Gateway cassette A (Life Technologies) into the SmaI site of pBute

[40] or pGAD.c1 [41], and were used to clone CPL1, HYL1 and

SE fragments by Gateway LR reactions. Lithium acetate-mediated

transformation of yeast strain PJ69-4A was performed as described

[42]. After transformation, yeast were plated on synthetic dropout

media (SD) composed of nitrogen base, 2% glucose and a dropout

supplement without uracil and leucine (-UL) and incubated at

28uC for 48 hr. 26105 cells of colonies growing on SD/2UL and

their diluted cells (26104 cells) were transferred onto SD

composed of nitrogen base, 2% glucose, a dropout supplement

without uracil, leucine, histidine and adenine (-ULHA) and

incubated at 28uC for 48 h.

Results and Discussion

The cpl1 Suppresses Transcriptional Gene Silencing by
ros1
Overexpression of the cold-stress-inducible RD29A-LUC re-

porter is a hallmark phenotype of cpl1 mutants. The expression

level of RD29A-LUC is controlled by many factors including

transcriptional gene silencing via RdDM. Since CPL1 has

dsRBMs at its C-terminus, we tested if CPL1 is involved in

dsRNA mediated gene regulations, i.e., transcriptional and post-

transcriptional gene silencing (TGS and PTGS). The cpl1-2 line

(hereafter referred as cpl1) was crossed with RD29A-LUC ros1–1

plants (hereafter referred as ros1) and with 35S-GUS L1 plants,

representative systems to test TGS and PTGS in plants,

respectively. As shown in Figures 1A to C, the expression levels

of RD29A-LUC and 35S-NPTII were substantially decreased in

Figure 3. Differential accumulation of small RNAs in cpl1 under cold stress. (A) Northern blotting analyses of small RNAs in WT and cpl1
under stress conditions. Two-week-old plants were treated with cold (0uC) for 48 h or with 100 mM ABA for 3 h. U6 was used as loading controls. The
different letters on the right side indicate independently prepared membrane blots. (B and C) Time course analyses of cold response of select pri-
miRNA (B) and mature miRNA (C) levels by RT-qPCR. Bars indicate standard errors of the mean (SEM) of two biological replicates. *p,0.05, Student’s t-
test between mean values of cpl1 and Col-0 for the same conditions.
doi:10.1371/journal.pone.0074739.g003

CPL1 Role in Small RNA-Mediated Gene Expression
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ros1 plants, resulting in lack of cold-induced luminescence and

kanamycin sensitivity. Interestingly, in cpl1 ros1 double mutants,

expression of RD29A-LUC but not 35S-NPTII and kanamycin

resistance phenotype was partially restored. These results indicate

that cpl1 suppresses gene silencing caused by ros1, but in a target

specific manner.

To test the specificity of antagonistic interaction between ros1

and cpl1, expression levels of various transposable elements that

are targets of gene silencing in ros1 were analyzed. Consistent with

the previous report [43], ros1 downregulates expression of both

transposons (Figure 1D, right) and retrotransposons (Figure 1D,

left) tested. Individual transposable elements produced a unique

expression profile in the different genetic backgrounds tested. In

general, retrotransposons were down and up-regulated in ros1 and

cpl1, respectively, and show intermediate levels in cpl1 ros1. This is

indicative of an antagonistic effect of CPL1 and ROS1.

Interestingly, expression of ONSEN, a heat inducible copia-like

retrotransposon [34], was enhanced in cpl1 but was not affected in

ros1 (Figure 1E). By contrast, both increases and decreases in cpl1

were observed for transcripts encoded by DNA transposons

Figure 4. CPL1 interacts with HYL1-SE complex in nucleus. (A) Immunoprecipitation with (+) or without (2) anti-HYL1 was performed using a
crude extract of calli containing gCPL1-FLAG transgene. CPL1-FLAG was detected by immunoblot using anti-FLAG1 antibody. (B) Immunoprecipitation
with (+) or without (2) anti-FLAG was performed using a crude extract of calli containing gCPL1-FLAG transgene. HYL1 was detected by immunoblot
using anti-HYL1 antibody. (C) BiFC visualization of CPL1-HYL1 interaction. Epifluorescence (YFP) and bright field images of protoplasts that were
transfected with plasmids encoding nYFP-CPL1 and cYFP-HYL1 fusion proteins and NLS-RFP. NLS-RFP was used as a positive control for nuclear
localization. Yellow signals on merged images indicate co-localization of YFP and nuclear-localized RFP proteins. Scale bars indicate 10 mm. (D)
Luminescence images of N. benthamiana leaves infiltrated with NLUC-HYL1 (top panel) or NLUC-SE (bottom panel) with CLUC-CPL1 fragments. LUC
images were obtained 3 days after infiltration. MYB75, CLUC-MYB75 used as a negative control. (E) Yeast two-hybrid assay. Growth of PJ69-4A co-
expressing GAL4 DNA binding domain (BD) fused with CPL1 (BDCPL1) and GAL4 activation domain (AD) fused with HYL1 and SE (ADHYL1 and ADSE).
Cells were grown on synthetic dropout (SD) media lacking uracil and leucine (-UL) or SD medium lacking uracil, leucine, histidine and adenine (-
ULHA). 26105 cells were used for (1) and diluted 10-fold for (1/10). Photographs were taken after incubation at 28uC for 48 hours. ADv and BDv
indicate vector controls.
doi:10.1371/journal.pone.0074739.g004

CPL1 Role in Small RNA-Mediated Gene Expression
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(Figure 1D, right). cpl1 ros1 showed an expression profile similar to

that of cpl1, indicating likely epistasis of cpl1 over ros1. These results

indicate that the effect of cpl1 is unique to individual genes, and

RD29A-LUC transgene and retrotransposons are similarly regu-

lated by CPL1.

The role of CPL1 in PTGS was evaluated using the L1 line,

which carries a 35S-GUS transgene that undergoes PTGS [32,44].

Since GUS activity staining of L1 wild type and L1 cpl1 did not

differ (Figure S1), we concluded that CPL1 is not necessary for

PTGS of L1 transgene.

DNA Methylation Level at RdDM Target Loci is Reduced
in cpl1
In ros1, RD29A-LUC is silenced by DNA methylation. To test if

cpl1 ros1 restores RD29A-LUC expression by decreasing DNA

methylation levels, we performed bisulfide sequencing analysis of

the endogenous and the transgene RD29A promoters. As shown in

Figure 2A, extensive cytosine methylation of both RD29A

promoters in all sequence contexts (CG, CHG, and CHH; H

represents A, T, or C) were observed in ros1. In cpl1 ros1, the CG

methylation level was reduced 25% in transgene RD29A promoter

and 16% in endogenous RD29A promoter. The partial reversion

of DNA methylation is consistent with the partial release of gene

silencing at these loci.

DNA methylation of RD29A promoter occurs via RdDM. We

therefore tested DNA methylation levels of other RdDM targets,

i.e., AtMU1, AtGP1 and AtSN1 using PCR-based assays (Figure 2B).

As reported previously, a DNA transposon AtMU1 is heavily

methylated in wild type and ros1. However, consistent with the

higher expression levels, cpl1 and cpl1 ros1 mutants showed

decrease in AtMU1 methylation level. By contrast, no alteration

was detected in methylation levels of AtGP1 and AtSN1 in cpl1.

Together, these results indicate that cpl1 mutation affect DNA

methylation of some but not all RdDM targets.

cpl1 Affects Small RNA Levels
Since silencing of RD29A/RD29A-LUC in ros1 is dependent on

production of RD29A promoter siRNA, we tested if cpl1 decreases

RD29A promoter siRNA level during cold stress and ABA

treatment (hormonal inducer of RD29A) by Northern blotting

(Figure 3A). Unexpectedly, the siRNA level was slightly decreased

in cold-treated wild type but not in cpl1. Similar decreases were

observed only in wild type for several additional small RNAs, such

as siRNA1003 and REP2, and miRNA160, 161, 164, 168, and

171 (Figure 3A) but not other small RNAs tested (miR157, 159,

167, 173, 390, and TAS1, 2, and 3, (Figure S2)).

Time course analysis of select miRNA and pri-miRNA levels

using RT-qPCR revealed that cold treatment increased the level of

pri-miRNA171a expression but not other pri-miRNAs tested

(Figure 3B). Consistent with the Northern blotting analysis, levels

of several miRNA were decreased upon cold treatment regardless

of the pri-miRNA levels (Figure 3C). Interestingly, some miRNA

levels in cpl1 were lower than those in wild type even before cold

treatment, and remained low during the cold treatment.

The inconsistency in miRNA levels in cpl1 detected by Northern

blotting (maintain untreated WT levels) and RT-qPCR (always

low) was recently explained by Manavella et al [45]; RT-qPCR

reflects the levels of correctly processed miRNA, whereas

Northern blotting detects both correct and incorrect forms of

miRNA in cpl1. Based on this model, in wild type, cold stress

decreases overall miRNA levels, although most of them are

correctly processed. Interestingly, miR171a level decreases even its

precursor pri-miR171A level increased. This is indicative that

processing of pri-miRNA to mature miRNA rather than

transcriptional induction of pri-miRNA is a regulatory step for

defining miRNA levels during cold stress. This regulation appears

impaired in cpl1, because correct processing of miRNA is

constitutively lower in cpl1 and total miRNA level remained

largely unchanged regardless of the cold stress.

cpl1 Interacts with HYL1 and SERRATE
The above results indicated that CPL1 is required for proper

biogenesis of some miRNAs. Since miRNA are produced from

hairpin-shaped dsRNA precursors and CPL1 contains dsRBMs in

its C-termini, CPL1 may interact with dsRNA or other dsRBM

proteins involved in production of small RNA. However, we did

not detect reproducible dsRNA-binding activity in CPL1 dsRBM

(data not shown). To test if CPL1 C-terminus functions in protein-

protein interaction with dsRBM proteins, we performed co-

immunoprecipitation assays using epitope-tagged CPL1 expressed

at endogenous level (gCPL1-FLAG) and antibodies against dsRBM

proteins, namely, HYL1, DRB2, DRB3, DRB4, DRB5, DCL1,

DCL3, and DCL4. Bi-directional co-immunoprecipitation suc-

cessfully detected CPL1 interacting with HYL1, but not with other

dsRBM proteins (Figures 4A, B, and data not shown). This

interaction was further confirmed by BiFC and LuCI analyses,

establishing that the CPL1-HYL1 complex was localized in nuclei

(Figures 4C, D), and CPL1699–957 containing C-terminal dsRBMs

but not CPL11–714 containing the catalytic domain was sufficient.

Interestingly, no CPL1-HYL1 interaction was detected using yeast

two-hybrid analysis (Figure 4E). By contrast, SE, an interactor of

HYL1 [46], could bind to CPL1 with the same specificity to HYL1

in planta, and did so in yeast as well (Figures 4D, E). Together,

CPL1 forms a complex with HYL1 and SE via the C-terminal

dsRBM-containing region, therefore is a part of miRNA

producing complex. Interestingly, cpl1 mutants do not exhibit

typical miRNA-deficient phenotype like hyl1 and se mutants, and

the expression levels of miRNA target genes were similar to wild

type (data not shown). The mild phenotype of cpl1 plants may be

due to overlapping function of CPL1 and its paralog CPL2. The

cpl1 cpl2 double mutant is lethal, perhaps partially due to the lack

of essential miRNA/siRNA similar to severe dcl1 allele [47].

According to the classification of DNA methylation levels in

various Arabidopsis RdDMmutants [48], the cpl1 phenotype likely

belongs to ‘‘weakly reduced’’ or ‘‘affect only small proportion’’

category. It is rather surprising that cpl1 affects DNA methylation

and expression levels of RdDM targets since RdDM is generally

mediated by siRNA. However, Laubinger et al [24] reported that

dcl1, which predominantly affects miRNA biogenesis, also affects

DNA methylation. Since HYL1 and SE affect DCL1 function

[49], it seems likely that weakly reduced DNA methylation in cpl1

ros1 plants is due to a compromised DCL1-dependent DNA

methylation mechanism. Further analyses of target specificity of

CPL1-dependent DNA methylation may reveal different branch

of DNA methylation pathways.

Supporting Information

Figure S1 Post-transcriptional silencing of 35S-GUS transgene

was intact in cpl1-2. GUS activity of 24 -day-old L1 and L1 cpl1-2

plants were visualized by X-gluc.

(PDF)

Figure S2 Northern blotting analyses of small RNAs in WT and

cpl1 under stress conditions. Two-week-old plants were treated

with cold (0uC) for 48 h or with 100 mM ABA for 3 h. U6 was

used as loading controls. The different letters on the right side

indicate independently prepared membrane blots.

(PDF)
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Table S1 Oligonucleotide primers used in this study.

(PDF)
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