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Abstract

A consistent truncation of IIB on S5 has been obtained in the sector of the

metric and the 4-form potential. The ansatz contains 20 scalars and all 15

gauge fields of N = 8 gauged supergravity in five dimensions. With this fully

non-linear ansatz, the calculations for n-point correlators of super Yang-Mills

(SYM) theory via AdS/CFT are simpler than those in the literature that use the

linear ansatz followed by non-linear field redefinitions. We work out the SYM

operators that couple to the scalars by expanding the Dirac-Born-Infeld (DBI)

action plus Wess-Zumino (WZ) terms around an AdS5 × S5 background with

the metric fluctuations. The resulting operators agree with those based on a

superconformal symmetry argument. We discuss the significance of our results.

http://arxiv.org/abs/hep-th/0010116v2


1 Introduction

Recently, a consistent fully non-linear reduction of IIB supergravity on S5 has been

obtained [1, 2] for the SL(2, R)-singlet sector comprising the metric and the 4-form

potential. In particular, the ansatz contains the scalars Tab in the 20’ representation of

SO(6) and the 15 gauge fields Aab
(1), of N = 8 five-dimensional gauged supergravity.

The advantage of having a non-linear ansatz becomes obvious when it comes to

computing SYM correlators via AdS/CFT: it is no longer necessary to introduce the

non-linear field redefinitions that appeared in the literature as a consequence of using a

linear ansatz. Another application of the ansatz we discuss here is to the determination

of SYM operators that correspond to given supergravity modes.

In AdS/CFT [3, 4, 5], there are two known ways to determine the SYM operators

that correspond to given supergravity modes. In the first approach [5, 6], one considers

the representations of the super Lie algebra, SU(2, 2|4), of the fields in SYM theory

and IIB supergravity respectively, and matches the supergravity modes with the SYM

operators by comparing the various quantum numbers. The other approach, which we

will follow in this article, was proposed by Das and Trivedi [7], where they considered

the lowest KK mode of the NS-NS 2-form fields polarized along the D3-brane world

volume. They worked out the corresponding SYM operators by expanding the DBI

action plus WZ terms around an AdS5×S5 background. They noted that the expansion

arund this background, as opposed to a flat background, is crucial in order to obtain

the correct SYM operators. A similar method was used in [8, 9]

The relevance of curved backgrounds in AdS/CFT was already noticed in [10, 11]

and was further motivated in [12]. It is one of the aims of the present work to consider

another supergravity mode, and to work out the SYM operators by following steps

that are analogous to those in [7].

The rest of the paper is organized as follows. In section 2, we set the gauge fields

Aab
(1) to zero for the purposes of concrete computations, although keeping them does

not cause any essential additional complications. The conditions Aab
(1)

= 0 then induce

fifteen constraints on the scalars Tab, since setting the Yang-Mills fields to zero implies

that the scalar currents that would excite them must vanish. These constraints can

be solved by introducing a diagonal parameterization for Tab, with five independent
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diagonal modes. We then compute the action for these diagonal modes. We note that

the calculations for the n-point correlators are simpler than those in the literature that

make use of the linearized ansatz, and which then require non-linear field redefinitions.

In section 3, the ansätze for the metric and the 4-form potential are substituted in the

Abelian DBI action plus WZ terms1. We work out the CFT operators by expanding

them to linear order in the diagonal modes. At the end of the section we relax the

condition Aab
(1)

= 0, and obtain the CFT operators that correspond to the full set of

20 scalars Tab. We conclude in section 4 with a discussion of the significance of our

results.

2 Correlators

Type IIB supergravity can be consistently truncated in D = 10 such that only the

metric and the self-dual 5-form field strength remain, since these are the fields that

are singlets under SL(2, R). The non-linear Kaluza-Klein S5 reduction ansatz for this

sector has been obtained in [1], and is given by

dŝ210 = ∆1/2 ds25 + g−2∆−1/2 T−1
ab DµaDµb , (1)

Ĥ(5) = Ĝ(5) + ∗̂Ĝ(5) , (2)

Ĝ(5) = −g U ǫ(5) + g−1 (T−1
ab ∗DTbc) ∧ (µcDµa)

−1
2
g−2 T−1

ac T−1
bℓ ∗F(2)

ab ∧Dµc ∧Dµℓ , (3)

∗̂Ĝ(5) =
1

5!
εa1···a6

[

g−4U ∆−2Dµa1 ∧ · · · ∧Dµa5 µa6

−5g−4∆−2Dµa1 ∧ · · · ∧Dµa4 ∧DTa5b Ta6c µ
b µc

−10g−3∆−1 F a1a2
(2)

∧Dµa3 ∧Dµa4 ∧Dµa5 Ta6b µ
b
]

, (4)

where

U ≡ 2Tab Tbc µ
a µc −∆Taa , ∆ ≡ Tab µ

a µb ,

F ab
(2) = dAab

(1) + g Aac
(1) ∧ Acb

(1) ,

DTab ≡ dTab + g Aac
(1) Tcb + g Abc

(1) Tac ,

µa µa = 1 , Dµa ≡ dµa + g Aab
(1) µ

b , (5)

1To the leading order in the momentum expansion, the contributions come only from the DBI

action.
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and ǫ(5) is the volume form on the five-dimensional spacetime, whilst εa1···a6 is the tensor

density in six dimensions. Tab is a symmetric unimodular matrix. The ansatz given

above is for a general S5 reduction, but later we shall choose the spacetime ds25 to be

a five-dimensional anti-de Sitter space, AdS5.

The resulting Lagrangian and the field equations for Tab and F ab
(2)

are given in [1].

For simplicity, we consider configurations with Aab
(1) = 0, which in turn enables one to

use a diagonal parameterization for Tab, as we shall see below. The Lagrangian is

L = R ∗ 1l− 1

4
T−1
ab ∗ dTbc ∧ T−1

ce dTea −
1

2
g2(2TabTba − T 2

aa) ∗ 1l, (6)

and the field equations are

T−1
c[a ∗ dTb]c = 0,

d(T−1
ac ∗ dTba) = −2g2(2 TacTcb − Tab Tcc)ǫ(5) +

1

3
g2(2 TceTec − T 2

cc)ǫ(5). (7)

Since the first equation in (7) imposes fifteen constraints, one can put Tab into the

diagonal form

Tab = diag(X1, X2, X3, X4, X5, X6) ;
6
∏

a=1

Xa = 1. (8)

We now adopt the parameterization used in [2]

Xa = exp
(

−1

2
~ba.~ϕ

)

, (9)

where ~ba are the weight vectors of the fundamental representation of SL(6,R) and

~ϕ = (ϕ1, ϕ2, ϕ3, ϕ4, ϕ5) are five independent scalars. The explicit expressions for ~ba can

be taken as follows2

~b1 =

(

2,
2√
3
,
2√
6
,

2√
10

,
2√
15

)

, ~b2 =

(

−2,
2√
3
,
2√
6
,

2√
10

,
2√
15

)

,

~b3 =

(

0,− 4√
3
,
2√
6
,

2√
10

,
2√
15

)

,~b4 =

(

0, 0,−
√
6,

2√
10

,
2√
15

)

,

~b5 =

(

0, 0, 0,− 8√
10

,
2√
15

)

, ~b6 =

(

0, 0, 0, 0,− 10√
15

)

. (10)

2They also satisfy the following relations: ~bi.~bj = 8δij − 4

3
,
∑

6

i=1
~bi = 0, and

∑

6

i=1
(~u.~bi)~bi = 8~u

where ~u is an arbitrary vector.
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With the diagonal form of Tab, the Lagrangian and equations of motion up to fourth

order in ~ϕ are3

e−1L = −1

2
(∂~ϕ).(∂~ϕ) + 12g2 +

1

4
g2

6
∑

c=1

(~bc.~ϕ)
2 +

1

24
g2

6
∑

c=1

(~bc.~ϕ)
3

− 5

192
g2

6
∑

c=1

(~bc.~ϕ)
4 +

1

128
g2
[

6
∑

c=1

(~bc.~ϕ)
2

]2

= −1

2
∂µ~ϕ · ∂µ~ϕ+ 12g2 + 2g2~ϕ · ~ϕ+ V3 + V4,

✷~ϕ = −4g2~ϕ− 1

8
g2

6
∑

a=1

~ba (~ba.~ϕ)
2 +

5

48
g2

6
∑

a=1

~ba (~ba.~ϕ)
3

−1

4
g2~ϕ

6
∑

a=1

(~ba.~ϕ)
2, (11)

where V3 and V4 are third-order and fourth-order polynomials in ~φ respectively. Their

explicit forms are presented in the appendix.

In [13], two-point and three-point correlators for various chiral primary operators

were computed using a linear ansatz in [14]. As a consequence of using the linear

ansatz, non-linear field redefinitions were required. The advantage of having a non-

linear ansatz is obvious from (11): it renders such field redefinitions unnecessary. One

can easily read off two-point and three-point functions using the formulae in [15, 16].

3 CFT Operators from the Dirac-Born-Infeld Ac-

tion

D-branes are the objects on which open strings can end. They also appear as solitonic

solutions of supergravities and string theory. Since these solutions carry mass and

charge, one may have to view the open strings as propagating in the curved background

produced by the branes to which they are attached [12]. The low-energy effective action

for D-branes should then be considered in the same curved background.

The authors of [7] considered the s-wave of the NS-NS B-field with non-zero compo-

nents along the world volume of the D3-brane. They noted that to obtain the correct

SYM operators, it is crucial that one expand the DBI action around an AdS5×S5 back-

3We dropped the Einstein action treating the metric as an AdS5 background.
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ground. In this section, we follow [7] and expand the DBI action plus the WZ-terms4

around an AdS5 × S5 vacuum, with the fluctuations parameterized by the diagonal

modes ϕa. We then identify the CFT operators, roughly speaking, as the coefficients

of ϕa.

Keeping only the terms linear in ϕ, the metric ansatz is given by

ds210 ≃
(

1− 1

4

∑

i

(µa)2~ba · ~ϕ
)

ds25

+
1

g2

(

1 +
1

4

∑

c

~bc · ~ϕ(µc)2
)

∑

a

(

1 +
1

2
~ba · ~ϕ

)

(dµa)2. (12)

As previously mentioned, the ansatz quoted in Eq. (1) is for general S5 reductions.

However, we shall choose the five-dimensional spacetime to be AdS5 for our discussion.

The structure of the D3-brane solution of type IIB supergravity in the near-horizon

region is such that the “radius” of the AdS5 is the same as that of the internal sphere.

Therefore we choose ds25 to be an AdS5 of radius 1
g
. Then we have

ds25 +
1

g2

∑

a

(dµa)2 = g2r2
∑

i

(dxi)2 +
1

g2r2

(

dr2 + r2
∑

a

(dµa)2
)

. (13)

The metric ansatz (12) in its written form, i.e. in the µ-coordinate system, does not

make manifest the SO(6) covariance of the conformal field theory. A more suitable

coordinate system is one that reveals the brane structure more transparently; not

surprisingly, such a coordinate system is of Cartesian type,

µa =
Φa

r
and r2 =

6
∑

a=1

(Φa)2. (14)

Using the Φ-coordinate system, one can rewrite (12) in the form

ds210 = g2r2f
∑

i

(dxi)2 +
1

g2r2

6
∑

a,b=1

gab dΦ
adΦb, (15)

where

f ≡ 1− 1

4r2
∑

a

~ba · ~ϕ (Φa)2,

gab ≡ 1

g2r2

[

δab +
1

2
~ba · ~ϕ δab −

1

r2
~ba · ~ϕΦaΦb +

1

4r2
∑

c

~bc · ~ϕ (Φc)2 δab

]

. (16)

4It turns out, as we discuss below, that only the DBI action is relevant to the leading order in the

derivative expansion.
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The action for D3 branes in a general type IIB background was studied in [17, 18, 19,

20]. For our discussion, it is enough to keep the metric and the 4-form field since the

scalars come only from these. The relevant part of the action is

I = −
∫

d4ξ
√

−det(Gij + Fij) +
∫

Ĉ(4), (17)

where

Gij =
∂ZM

∂ξi
∂ZN

∂ξj
EA

MEB
NηAB,

Cijkl = CMNPQ ∂iZ
M∂jZ

N∂kZ
P∂lZ

Q. (18)

It is the 4-form potential C(4) that appears in (17), whereas the ansatz in Eq. (3) and

(4) was obtained in terms of the 5-form field strength, Ĥ . To obtain C(4), consider the

metric ansatz in (1). With Aab
(1)

= 0, it becomes

ds2 = ∆
1
2ds25 +

1

g2
∆−

1
2

∑

a

X−1
a dµ2

a, (19)

where ∆ =
∑

a e
−

1
2
~ba·~ϕµ2

a. After some algebra, one can show that the correct C(4) is

given by

C(4) =
1

2g

(

X−1
a ∗ dXa(µ

a)2
)

− 1

4!g4
Xa1µ

a1µa2

∆
εa1···a6dµ

a3 ∧ · · · ∧ dµa6 . (20)

Acting with the exterior derivative, the first term gives Ĝ(5) up to the field equation

(7), which is sufficient for our purposes. The second term gives ∗Ĝ(5) plus an extra

term, which can be cancelled by adding an appropriate term to C(4). However, this

term is independent of ϕ and can therefore be dropped in our discussion.

We can in fact also drop the first two terms of equation (20), since we shall even-

tually consider only the leading order in the derivative expansion. From now on, we

may therefore concentrate solely on the contributions coming from the DBI action.

To obtain Gij , we substitute (15), (16) and the super vielbeins obtained in [21, 22]

into the first equation of (18). For simplicity, we keep only the bosonic fields,

Gij = g2r2f ηij + gab ∂iΦ
a∂jΦ

b + Fij (21)

7



After some algebra, one can show that the relevant part of the action is given by

I[φ] = −
∫

−g4r2

2

∑

a

~ba · ~φ (Φa)2 +
1

2

∑

ab

(

1

2
~ba · ~φ δab −

1

r2
~ba · ~φΦaΦb

)

∂iΦ
a∂iΦb

(22)

where the ellipses refer to the terms with higher numbers of derivatives.

The discussion of the full 20 scalars Tab, without imposing Aab
(1) = 0, goes very

similarly, since eventually one will be interested only in terms that are coupled to Tab,

but do not have any factors of Aab
(1)
. In fact the computation is almost identical, except

that one needs the new parameterization

Tab ≡ (eS)ab, (23)

where Sab is symmetric and traceless. Using this parameterization, one gets

I[Sab] = −
∫

g4r2ΦaΦbSab +
1

2

(

−∂iΦ
a∂iΦb +

1

r2

[

ΦaΦc∂iΦ
b∂iΦc + a ↔ b

]

)

Sab

− (trace). (24)

To leading order in the derivative expansion, we have

I[Sab] = −
∫

g4r2
(

ΦaΦb − 1

6
δabΦcΦc

)

Sab + · · · . (25)

As one can easily show, Sab ∼ 1
r2

in the boundary region, i.e. r → ∞. Therefore we

impose the following boundary condition,

Sab ≡
1

r2
So
ab, (26)

which leads to the correct CFT operator.

Oab ≡
(

ΦaΦb − 1

6
δabΦcΦc

)

+ · · · (27)

4 Conclusion

In this paper, we considered the 20 of scalars in N = 8 SO(6)-gauged supergravity in

D = 5. We showed that using the non-linear Kaluza-Klein ansatz considerably simpli-

fies the calculation of n-point CFT correlators in the AdS/CFT correspondence. Then

we substituted the ansatz into the Abelian DBI action (plus WZ terms). By expanding
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the action, we could identify the CFT operators that couple to the supergravity modes.

The result is given in eq (25) above, and it is in agreement with the CFT operators

obtained based on the conformal symmetry argument.

Our work, together with [7], provides evidence for the viewpoint taken in [12].

It might be also viewed as in accordance with the claim made in [24]. These authors

argued that the supergravity modes are dual to the “extended” chiral primary operators

(CPOs), which contain, in addition to CPOs, their descendents, since the ellipses in

(27) will include such quantities.

One may also apply the method of [7] and the present paper to the cases of the

M2-brane and M5-brane. Another interesting application will be to the deformations

of SYM theory. So far in the literature, one first deforms the N = 4 SYM theory by

adding some operators, and then tries to find the corresponding supergravity solution.

However, our results suggest that the procedure may be reversed in those cases where

a complete Kaluza-Klein ansatz is known; one may substitute the KK ansatz into the

DBI action plus WZ terms, and then work the operators that deform the CFT theory.

We hope to report on these issues in the near future.
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Appendix : V3 and V4

The cubic and quartic terms V3 and V4 in the scalar potential in equation (11) are

given by

V3 =
1

45
g2(30

√
3ϕ2

1 ϕ2 − 10
√
3ϕ3

2 + 15
√
6ϕ2

1 ϕ3 + 15
√
6ϕ2

2 ϕ3 − 10
√
6ϕ3

3

+9
√
10ϕ2

1 ϕ4 + 9
√
10ϕ2

2 ϕ4 + 9
√
10ϕ2

3 ϕ4 − 9
√
10ϕ3

4 + 6
√
15ϕ2

1 ϕ5

+6
√
15ϕ2

2 ϕ5 + 6
√
15ϕ2

3 ϕ5 + 6
√
15ϕ2

4 ϕ5 − 8
√
15ϕ3

5), (28)

V4 = − 1

36
g2(30ϕ4

1 + 60ϕ2
1 ϕ

2
2 + 30ϕ4

2 + 60
√
2ϕ2

1 ϕ2 ϕ3 − 20
√
2ϕ3

2 ϕ3

+30ϕ2
1 ϕ

2
3 + 30ϕ2

2 ϕ
2
3 + 35ϕ4

3 + 12
√
30ϕ2

1 ϕ2 ϕ4 − 4
√
30ϕ3

2 ϕ4

+12
√
15ϕ2

1 ϕ3 ϕ4 + 12
√
15ϕ2

2 ϕ3 ϕ4 − 8
√
15ϕ3

3 ϕ4 + 18ϕ2
1 ϕ

2
4 + 18ϕ2

2 ϕ
2
4

+18ϕ2
3 ϕ

2
4 + 39ϕ4

4 + 24
√
5ϕ2

1 ϕ2 ϕ5 − 8
√
5ϕ3

2 ϕ5 + 12
√
10ϕ2

1 ϕ3 ϕ5

+12
√
10ϕ2

2 ϕ3 ϕ5 − 8
√
10ϕ3

3 ϕ5 + 12
√
6ϕ2

1 ϕ4 ϕ5 + 12
√
6ϕ2

2 ϕ4 ϕ5 + 12
√
6ϕ2

3 ϕ4 ϕ5

−12
√
6ϕ3

4 ϕ5 + 12ϕ2
1 ϕ

2
5 + 12ϕ2

2 ϕ
2
5 + 12ϕ2

3 ϕ
2
5 + 12ϕ2

4 ϕ
2
5 + 42ϕ4

5),

+
1

2
g2(ϕ2

1 + ϕ2
2 + ϕ2

3 + ϕ2
4 + ϕ2

5)
2 (29)

References
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