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ABSTRACT

The Maxwell algebra is a non-central extension of the Poincaré algebra, in which the

momentum generators no longer commute, but satisfy [Pµ, Pν ] = Zµν . The charges Zµν

commute with the momenta, and transform tensorially under the action of the angular

momentum generators. If one constructs an action for a massive particle, invariant under

these symmetries, one finds that it satisfies the equations of motion of a charged particle

interacting with a constant electromagnetic field via the Lorentz force. In this paper, we

explore the analogous constructions where one starts instead with the ISim subalgebra of

Poincaré, this being the symmetry algebra of Very Special Relativity. It admits an analogous

non-central extension, and we find that a particle action invariant under this Maxwell-Sim

algebra again describes a particle subject to the ordinary Lorentz force. One can also

deform the ISim algebra to DISimb, where b is a non-trivial dimensionless parameter. We

find that the motion described by an action invariant under the corresponding Maxwell-

DISim algebra is that of a particle interacting via a Finslerian modification of the Lorentz

force. In an appendix is it shown that the DISimb algebra is isomorphic to the extended

Schrödinger algebra with b = 1
1−z .

http://arxiv.org/abs/0910.3220v2
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1 Introduction

A popular line of thought in theoretical physics is to start with a Lie algebra g or Lie

group G, and then to construct from it the space or spacetime in which physical objects,

for examples p-branes, move. Typically the spaces or spacetimes are cosets G/H. The

dynamics of p-branes is then described as a map from the (p+1)-dimensional world volume

into G/H [1, 2, 3, 4, 5]. In the case of point particles, the dynamics is often thought of

as geodesic motion, or some modification thereof by “forces,” such as the Lorentz force

on electrically charges particles in electromagnetism, with respect to a metric on G/H

that is invariant under the left action of G on G/H. More generally, one is interested in

invariant Lagrangians L(x, v) on the tangent space T (G/H), or Hamiltonians H(x, p) on

the cotangent space T ⋆(G/H). For a recent statement of this viewpoint in the context of

quantum field theory see [6].

An alternative construction of a p-brane action in the space G/H is to consider the

quotient (G/H)/K, where K is the stabilizer of the p-brane. The action of lowest order

in derivatives is obtained by considering the pull-back to the world-volume of a (p + 1)-

form invariant under K [7] (see also [8], where one can find further references). The action

contains extra Goldstone fields associated with the broken “rotations.” In order to make

contact with the geometrical Lagrangian L(x, v), we should eliminate the extra fields by

their non-dynamical equations of motion, or more generally, by the inverse Higgs mechanism

[9].

An early example of this programme followed the discovery of the three congruence

geometries; hyperbolic or Lobachevsky space H3, Euclidean space E
3, and spherical space

S3. Helmholtz characterised these three possibilities physically in terms of axioms of the

free mobility of rigid bodies [10]. Such bodies permit rotations about any point in space,

and translations to any point in space. Thus he demanded that H = SO(3) and that G act

transitively on G/H. He arrived, after some additional arguments, at the three possibilities

G = SO(3, 1) : G/H = H3 , (1.1)

G = E(3) : G/H = E
3 , (1.2)

G = SO(4) : G/H = S3 . (1.3)

An equivalent way of looking at this is to say that the configuration space Q of a rigid

body with one point fixed admits a simply-transitive left action by SO(3), and may thus

be identified with SO(3). Free motion of a rigid body is given by geodesic motion on

SO(3) with respect to a left-invariant metric. If the body moves in ordinary Euclidean
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space, Q is enlarged to become the Euclidean group E(3). If the body moves in an inviscid

fluid, conservation of momentum and angular momentum will still hold and the metric is

then given by a general left-invariant metric on E(3). Correspondingly, geodesic motion on

SO(3, 1) or SO(4) with respect to a left-invariant metric gives the motion of a rigid body

moving in a fluid in H3 or S3 respectively.

A slightly different strand of thought begins with the observation (originally due to

Lambert [11]) that passing to S3 or H3 introduces a new parameter into physics: the radius

of curvature. This new parameter is associated with the fact that the translations in SO3, 1)

or SO(4) no longer commute. Expressed mathematically, the Lie algebras so(3, 1) and so(4)

are continuous deformations of e(3), and this suggests that in seeking new physical laws,

a fruitful procedure is to look for continuous deformations of existing laws. In algebraic

terms, this translates into looking for continuous deformations of the Lie algebra g that one

begins with. Given that one has introduced a new physical parameter whose magnitude is

arbitrary, it is natural to enquire whether it might be time-dependent. In the case of spatial

curvature, just such a suggestion was made by Calinon long before General Relativity and

the Robertson-Walker metric [12].

The group theory viewpoint came into its own with Einstein’s theory of Special Relativ-

ity, for which G = E(3, 1) = ISO(3, 1), the Poincaré group. Indeed only retrospectively was

the Galilei group recognised as its Wigner-İnönü [13] contraction. As with the Euclidean

group, the Poincaré group admits two continuous deformations, to SO(4, 1) or SO(3, 2),

for which spacetime translations fail to commute. It was perhaps only the early death of

Minkowski which delayed until after the advent of Einstein’s General Relativity the im-

plementation of Calinon’s idea. de Sitter, seeking a covariant version of Einstein’s Static

Universe, introduced their cosets, de Sitter and anti-de Sitter respectively.

Einstein did not scruple to break boost invariance with his static universe [14], and this

is a feature of all Robertson-Walker metrics except those of de Sitter [15]. A natural ques-

tion, answered by Bacry and Levy-Leblond [16], is what other 10-dimensional kinematical

algebras exist, that contain rotations, translations in time and space and boosts. All can

be regarded as Wigner-İnönü contractions of the de Sitter and anti-de Sitter algebras.

Invariance under the local Lorentz group is extremely well attested by experiment,

but nevertheless Cohen and Glashow [17] observed that if it is broken down to its four-

dimensional maximal subgroup Sim(2) ⊂ SO(3, 1) it leaves invariant no spurion fields,

merely leaving fixed a null direction nν ≡ λnν , λ 6= 0, where ηµνn
µnν = 0. It may

play a role linking small neutrino masses, and is compatible with all present day tests
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of violations of Lorentz invariance. Thus they proposed in their Very Special Relativity

theory that the fundamental local symmetry group is the semi-direct product of Sim(2)

and the translations, known as ISim(2) ⊂ ISO(3, 1). In recent work, in an attempt to

obtain non-commuting translations, and hence spacetime curvature [18], we studied the

continuous deformations of ISim(2) and found a two-parameter family, one of which was

rejected because the deformation of the SO(2) rotation generator ceased to be compact. The

remaining one-parameter deformed group DISim(2)b depends on a dimensionless parameter

b, and coincides with one introduced by Bogoslovsky [19] in his proposal for an anisotropic

Finslerian spacetime.

It is straight forward to generalise the DIsim(2)b group to k + 2 spacetime dimensions.

We denote the resulting group DISimb(k). It is interesting to note [20] that the DISimb(k)

is then isomorphic to the extended Schrödinger group ˜Sch(k) [21] which has resurfaced

in recent studies of non-relativistic holography in k spatial dimensions (see e.g. [22] and

references therein). Since this topic is not strictly connected with the Maxwell algebra

which is the main concern of the present paper, we relegate the details to appendix B.

Since Maxwell’s equations are invariant under DISim(2)b, the dispersion relation for

photons is the standard one, and hence these theories are consistent with the recent high-

precision test of Lorentz violation using the gamma-ray burst GRB090510 [23].

The advent of quantum mechanics led to the realisation that not only are deformations

of algebras important, but so also are extensions, especially central extensions. The Ur-

example is the Heisenberg algebra

[q̂j, p̂i] = i~δji . (1.4)

However, a more relevant example for our purposes is the motion of a particle of charge e

in a uniform time-independent magnetic field. The minimally-coupled Lagrangian is

L = T + eAi ẋ
i , (1.5)

where Ai = −1
2Fij x

j , and T is the kinetic energy. If pi ≡ ∂T/∂ẋi (sometimes called the

mechanical momentum), then the canonical momentum is

πi ≡
∂L

∂ẋi
= pi + eAi = pi − 1

2eFij x
j . (1.6)

Assuming that πi and xj satisfy the standard Poisson algebra {xi, πj} = δij, {xi, xj} =

{πi, πj} = 0, then pi and xj satisfy the centrally-extended algebra

{xi, pj} = δij , {xi, xj} = 0 , {pi, pj} = eFij . (1.7)
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The action associated to (1.5) is invariant, up to a boundary term, under constant

translations:

xi −→ xi + ai . (1.8)

The Noether charges associated with these spatial translations are

p̃i = πi − 1
2eFij x

j = pi − eFij x
j . (1.9)

It follows from the equations of motion that dp̃i/dt = 0. One finds the following non-trivial

Poisson brackets:

{p̃i, p̃j} = −eFij , {xi, p̃j} = δij . (1.10)

Note that the p̃i and pi momenta Poisson commute:

{p̃i, pj} = 0 . (1.11)

The constancy of the p̃i is now seen to follow from the fact that the Hamiltonian obtained by

taking the Legendre transform of the Lagrangian (1.5) is a function only of the mechanical

momentum pi, and independent of the spatial coordinates xi.

One can think of e as a central element −Z̄ in a finite-dimensional Poisson algebra,

which commutes with all other generators. The moment maps pi and Z̄ generate a group

of transformations on phase space, whose Lie algebra is

[Pi,Pj ] = ZFij , [Pi,Z] = 0 . (1.12)

(The relative sign between Lie algebra brackets and Poisson brackets is a consequence of

our general conventions, which are detailed in appendix A.) Note that whereas the “central

term” in the Poisson algebra (1.12) is cohomologically trivial (it can be removed by the

local redefinition of generators that maps from xi and pi to xi and πi), the central term in

the Lie algebra (1.12) is cohomologically non-trivial. The reason for the difference is that

the xi are included as generators in the Poisson algebra, but not in the Lie algebra.

Inclusion of a uniform time-independent electric as well as a magnetic field generalises

(1.12) to the Lorentz-covariant Lie algebra

[
Pµ,Pν

]
= ZFµν . (1.13)

This five-dimensional algebra has as group manifold G the five-dimensional space with

coordinates xµ and θ, conjugate to Pµ and Z respectively. It turns out, in Kaluza-Klein

fashion, that geodesic motion on G projects down onto the coset G/H, where H ≡ R is
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generated by the central element Z, and electric charge is the conserved momentum in that

direction. Particles with magnetic as well as electric charge (dyons) may also be catered

for, by passing to six dimensions and replacing (1.13) by

[
Pµ,Pν

]
= ZFµν + Z⋆F ⋆

µν , (1.14)

where F ⋆
µν = 1

2ǫµναβF
αβ is the Hodge dual of Fµν .

A different approach is to consider non-central extensions of the fundamental algebra

g. This is by now standard in supersymmetric p-brane theories, following the pioneering

work of van Proeyen and van Holten [24]. However the simplest example, which is purely

bosonic and predates their work, is the 16-dimensional Maxwell algebra, which is a non-

central extension of the Poincaré algebra with six tensorial charges Zµν arising through a

non-commutativity of the momentum generators,

[Pµ,Pν ] = Zµν . (1.15)

One now introduces six angles conjugate to Zµν . These angles are dynamical variables with

a non-trivial evolution.

Note that for any particular solution of the relevant equations of motion, Z̄µν = −eFµν ,

spontaneous symmetry breaking will occur and the symmetry will be reduced to the subgroup

of the Poincaré group leaving the background Fµν invariant. This is the kinematical group

in this context.

The aim of this paper is to study in the framework of the Very Special Relativity [17],

or its deformation [18], the motion of a bosonic charged massive particle in the presence of

a constant electromagnetic field. This will done by constructing the non-central extensions

and deformations of ISim(2). As we shall see, the Maxwell-Sim algebra is constructed from

the translation generators Pµ and the non-central extension Zµν = [Pµ,Pν ], together with

the Sim(n) generators (M+i,M+−,Mij).

Later we study the deformations of the Maxwell-Sim algebra. In general dimensions

we find two deformations, with parameters b and c. The deformation parametrized by c is

analogous to the k deformation of the Maxwell algebra found in [25] (now restricted to the

14 generators of Maxwell-Sim(2)), which gave SO(3, 2) × SO(3, 1) or SO(4, 1) × SO(3, 1),

depending on the sign of k. The b-deformation of Maxwell-Sim produces the Maxwell

extension of the DIsimb algebra, which is related to Finslerian geometry.

In order to construct the particle models with the previous symmetries, we use two

different approaches: one based in the Lagrangian formalism and the non-linear realization
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approach [26], and the other based on the Hamiltonian formalism constructed from the

momentum maps.

In the case of Maxwell-DISimb the motion is given by a Finslerian Lorentz force, while

for the undeformed Maxwell-Sim we obtain the ordinary Lorentz force. Therefore the study

of anisotropies of a massive particle in an electromagnetic field could provide a test of a

possible Finsler geometry.

The organization of the paper is as follows. In section 2 we review the Maxwell algebra,

and in section 3 we recall the basic facts about the ISim algebra. In section 4 we construct

the Maxwell-Sim algebra, and then in section 5 we the study its deformations. The particle

Lagrangians are constructed in section 6, and in section 7 we perform the Hamiltonian

analysis. The paper ends with conclusions. There is also an appendix about the Hamiltonian

formalism and momentum maps.

2 The Maxwell Algebra

The name Maxwell algebra appears to originate with Glashow, as reported in [27] in con-

nection with the behaviour of matter in extremely strong magnetic fields such as are found

in neutron stars. Nowadays one might think of magnetars. However it is Schrader [28] who

seems to have been the first to study it systematically. Other earlier work applying group

theoretic methods to uniform electromagnetic fields is in [29, 30]. This often-cited work as-

sumes a constant c-number background field Fµν , and is largely concerned with what they

called the kinematical group, i.e. with the 6-dimensional subgroup of the Poincaré group

that leaves Fµν invariant, generated by Pµ and two commuting Lorentz generators

G = 1
2F

µν Mµν , G⋆ = 1
2F

⋆µν Mµν . (2.1)

This gives the algebra

[
G,G⋆

]
= 0 (2.2)

[
G,Pµ] = FµνP

ν (2.3)
[
G⋆,Pµ] = F ⋆

µνP
ν , (2.4)

where we have defined F ⋆
µν = 1

2ǫµνρσ F
ρσ. We shall refer to these 6-dimensional kinematical

algebras as the Bacry-Combe-Richards or BCR-algebras. The BCR group is E(2)×E(1, 1),

the product of the two-dimensional Euclidean group E(2) with the two-dimensional Poincaré

group E(1, 1).
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If we use light-cone coordinates where xµ = (x−, x+, xi), define ǫ+−12 = +1, and take

the Maxwell field to be zero except for F+− = 1, then G = M+−, G
⋆ = M12, and the

algebras associated with the two factors are generated by

E(2) : {P1,P2,G
⋆} ,

E(1, 1) : {P+,P−,G} . (2.5)

For more details on the BCR group, the reader may consult [31].

According to [32], the BCR algebra has three central extensions, so that

[
G,G⋆

]
= a ,

[
Pµ,Pν ] = ZelecFµν + ZmagF

⋆
µν . (2.6)

There also four other non-central charges Zµν (in the complement of Zelec
µν = ZelecFµν and

Z
mag
µν = ZmagF

⋆
µν):

[
Pµ,Pν ] = ZelecFµν + ZmagF

⋆
µν + Zµν . (2.7)

In total there are six extensions which we can decompose in representations of G and G⋆.

The difference with respect to the Maxwell case to be treated later is the presence of two

central charges. The central charges are present because the Lorentz group has been reduced

to the abelian subgroup G2 generated by G and G⋆. (Note that this 2-dimensional abelian

group G2 is not to be confused with the 14-dimensional non-abelian simple Lie group of the

Cartan/Dynkin classification!)

In [32, 33] arguments are given to the effect that if the rotation in G,G⋆ is to be

a compact generator then a should vanish. That leaves Zelec and Zmag which, as the

notation suggests, may be identified with electric and magnetic charge respectively. In what

follows we shall refer to the 8-dimensional doubly-extended kinematic algebra generated by

{Pµ,G,G⋆,Zelec,Zmag} as the EBCR algebra.

The EBCR algebra is a direct sum of two subalgebras, each of which has a non-

trivial quadratic Casimir. In the case where the only non-vanishing component of Fµν

is given by F+− = 1, the generators of the two subalgebras are {G⋆,P1,P2,Zmag} and

{G,P+,P−,Zelec}. The two Casimirs are

Cmag = 1
2P

2
i + ZmagM12 , Celec = P+ P− − Zelec M+− . (2.8)

By contrast, the Maxwell algebra is a 16-dimensional extension of the Poincaré algebra
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with the non-vanishing brackets

[
Mαβ ,Pγ

]
= ηαγPβ − ηβγPα , (2.9)

[
Mαβ,Mγδ

]
= ηαγMβδ − ηαδMβγ + ηβδMαγ − ηβγMαδ , (2.10)

[
Mαβ ,Zγδ

]
= ηαγZβδ − ηαδZβγ + ηβδZαγ − ηβγZαδ , (2.11)

[
Pα,Pβ

]
= Zαβ , (2.12)

where Zαβ = −Zβα. There are two generic Casimirs (which exist for the Maxwell algebra

in any dimension) [28],

C1 =
1
2

(
PµPµ +MµνZ

µν
)
, C2 =

1
2ZµνZ

µν , (2.13)

and a third quadratic Casimir that exists only in the special case of four dimensions:

C3 =
1
2ZµνZ

⋆µν . (2.14)

The Casimirs are, of course, elements of the universal enveloping algebra of the Maxwell

Lie algebra.

The six additional generators Zµν are on the same footing as the Poincaré generators

Pµ and Mµν , in that they are dynamical; depending upon the equations of motion of the

theory under consideration, the associated momenta may vary with time. The Zµν are

associated with the Maxwell 2-form. In specific solutions of any equations of motion, there

may occur spontaneous symmetry breaking in which the associated momenta Z̄µν take

constant values, Z̄µν = −eFµν .
1 The relevant algebra will then reduce to the EBCR algebra

that leaves invariant the background field Fµν .

A set of left-invariant 1-forms are (we omit those for the Lorentz sub-algebra)

Pµ = dxµ (2.15)

Zµν = dθµν − 1
2(x

µdxν − xµdxµ) , (2.16)

with generators of right actions being given by

Pµ =
∂

∂xµ
− 1

2x
ν ∂

∂θµν
(2.17)

Zµν =
∂

∂θµν
. (2.18)

they satisfy
[
Pµ, Pν

]
= Zµν .

1More precisely, in a Hamiltonian treatment the Z̄µν are the moment maps. See section 7 for further

details.
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The 1-forms (2.15) are invariant under

δxµ = ǫµ ,

δθµν = ǫµν + 1
2(ǫ

µxν − ǫνxµ) , (2.19)

which are generated by the vector fields

Pµ =
∂

∂xµ
+ 1

2x
ν ∂

∂θµν
,

Zµν =
∂

∂θµν
. (2.20)

The ten-dimensional subalgebra, which is obtained by taking the quotient with respect to

the Lorentz subalgebra, is spanned by Pµ and Zµν , and closes on the generalised Heisenberg

algebra. The associated coset is thus also a group manifold, sometimes called a superspace,

and has as coordinates xµ and θµν . This 10-dimensional superspace, which is fibred over

Minkowski spacetime with flat six-dimensional fibres, carries a natural Lorentz-invariant

metric:

ds210 = ηµνP
µP ν + 1

2Z
µνZµν . (2.21)

2.1 Quantisation

The obvious approach to quantisation is to consider wave functions Ψ(xµ, θµν) depending

upon both xµ and θµν . A generalised Klein-Gordan or Dirac equation may readily be

written in the usual way using the differential operators

Pµ , Zµν . (2.22)

The equations can be solved using Fourier transforms, and the solutions used to construct

one-particle Hilbert spaces. The Maxwell group acts on these wave functions by pull-back,

and in this way one obtains a projective representation of the Maxwell group. For details

of the procedure, including the calculation of the relevant co-cycles, the reader is referred

to Schrader’s paper [28].

2.2 Deformations and Contractions

In general dimensions, the Maxwell algebra admits a unique deformation parameter k. For

k > 0 we have so(D − 1, 2) ⊕ so(D − 1, 1) = (Mµν ,Pµ;Jµν). If instead k < 0, we have

so(D, 1)⊕so(D−1, 1), where D = n+2 is the dimension of space time, [34, 25]. Conversely,
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it may be regarded as a Wigner-İnönü contraction [25] such that

Mµν = Mµν ± Jµν , (2.23)

Pµ = lim
k→∞

Pµ

|k| (2.24)

Zµν = lim
k→∞

−Mµν

k2
(2.25)

where k has the dimensions of length and the sign choice is made depending on whether we

consider the AdS or dS part.

3 The ISim Algebra

We may consider a generalisation of the discussion of the Maxwell algebra of [35], where

the starting point is taken to be the ISim algebra rather than the Poincaré algebra. The

ISim generators are

Pµ , M+i , M+− , Mij . (3.1)

The ISim algebra, with the conventions we are using, is given in [18].

We define left-invariant 1-forms λ as in (A.1), but now, for convenience, we denote them

by λa = (Pµ,M+i,M+−,M ij), and so

g−1dg = PµPµ +M+iM+i +
1
2M

ij Mij +M+−M+− . (3.2)

In terms of these, the ISim(n) algebra is given by

P+ = M+i ∧ P i +M+− ∧ P+ , dP− = −M+− ∧ P− ,

dP i = M ij ∧ P j −M+i ∧ P− ,

dM+i = M ij ∧M+j +M+− ∧M+i ,

dM+− = 0 , dM ij = M ik ∧Mkj . (3.3)

4 The Maxwell-Sim Algebra

The Maxwell-Sim algebra can be constructed in complete analogy to the Maxwell algebra

discussed previously. One way to describe this it that we start with the Pµ generators

alone, obtain the central extension in which [Pµ,Pν ] = Zµν , and then append the Sim(n)

generators (M+i,M+−,Mij) to form the Maxwell-Sim(n) algebra. At the level of the left-
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invariant 1-forms, this means that we augment the ISim(n) relations (3.3) by

dZ+i = −P+ ∧ P i +M+− ∧ Z+i +M ij ∧ Z+j +M+i ∧ Z−+ −M+j ∧ Zij ,

dZ−i = −P− ∧ P i −M+− ∧ Z−i +M ij ∧M+j ,

dZ−+ = −P− ∧ P+ +M+i ∧ Z−i ,

dZij = −P i ∧ P j −M+i ∧ Z−j +M+j ∧ Z−i . (4.1)

5 Deformations of Maxwell-Sim(n)

We follow the method for finding the general non-trivial deformation of an algebra that

is described in [18] (see [36] for further details). This entails first finding the second co-

homology class H2(g, g), which determines the non-trivial deformations at the linear level.

If H3(g, g) is trivial, then there must exist, possibly after making (trivial) redefinitions,

an extension of the linearised deformations that is valid to all orders. (This is checked by

verifying that the deformed algebra satisfies the Jacobi identities.) If, on the other hand,

H3(g, g) is non-trivial, then the extension beyond the linearised level may not be possible.

For the generic case of the Maxwell-Sim(n) algebra, we find that there are two dis-

tinct 1-parameter non-trivial deformations. We denote these by the b-deformation and the

c-deformation, where b and c are the respective constants parameterising the two deforma-

tions.2

5.1 The b-deformation

In the b-deformation, the Maxwell-Sim(n) algebra defined by (3.3) and (4.1) is modified by

the following additions to dPµ and dZµν :

dPµ = bM+− ∧ Pµ + · · · ,

dZµν = 2bM+− ∧ Zµν + · · · , (5.1)

where the “· · · ” terms represent the usual right-hand sides of the undeformed Maxwell-

Sim(n) algebra. The Sim(n) relations in (3.3) are unmodified.

2We have performed some of the calculations with differential forms with the aid of the EDC Mathematica

package [37].
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5.2 The c-deformation

In the c-deformation, the Maxwell-Sim(n) algebra defined by (3.3) and (4.1) is modified by

the following additions to dPµ and dZµν :

dPµ = cPν ∧ Zµν + · · · ,

dZµν = −cZµ
ρ ∧ Zρν + · · · , (5.2)

where again the “· · · ” terms represent the usual right-hand sides of the undeformedMaxwell-

Sim(n) algebra. The Sim(n) relations in (3.3) are again unmodified.

It is not possible to turn on the b and c deformations simultaneously. (This agrees with

the fact that there are no de Sitter or anti-de Sitter deformations of the ISim algebra [18].)

In the special case of Maxwell-Sim(2), we find that there is an additional non-trivial

deformation characterised by a parameter a, which can be turned on simultaneously with

the b-deformation. Thus in place of the b-deformation given by (5.1), for Maxwell-Sim(2)

we may have

dPµ = aM12 ∧ Pµ + bM+− ∧ Pµ + · · · ,

dZµν = 2aM12 ∧ Zµν + 2bM+− ∧ Zµν + · · · . (5.3)

A calculation of the cohomology group H3(g, g) for Maxwell-Sim(2) shows that it is

non-trivial, and of dimension 3.

Note that the deformation parameterised by c in (5.2) is analogous to the k deformation

of the Maxwell algebra found in [25], now restricted to the 14 generators of Maxwell-Sim(2),

which gave SO(3, 2) × SO(3, 1) or SO(4, 1) × SO(3, 1) depending on the sign of k.

The deformations associated with the parameters a and b are the Maxwellian extensions

of the a and b deformations of the ISim(2) algebra obtained in [18].

6 Lagrangians

6.1 The Maxwell case

A particle model can be derived geometrically by the techniques of non-linear realisations,

[26]. Let us first consider the coset (Maxwell)/(Lorentz). In order to construct a Lorentz

invariant Lagrangian from the Maurer-Cartan forms (2.15), one possibility is to introduce

new dynamical variables fµν that transform covariantly under the Maxwell group [38]. The

Lagrangian becomes

L = −m
√
−ẋ2 +

1

2
fµν

(
θ̇µν − 1

2
(xµẋν − xν ẋµ)

)
. (6.1)
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The equations of motion in the proper time gauge are

ḟµν = 0, (6.2)

θ̇µν =
1

2
(xµẋν − xν ẋµ), (6.3)

mẍµ = fµν ẋ
ν . (6.4)

Integration of (6.2) gives fµν = f0
µν , and such a solution spontaneously breaks the Lorentz

symmetry into a subalgebra of the Maxwell algebra (namely the EBCR algebra discussed

earlier). Substituting this solution into equation (6.4) gives the motion of a particle in a

constant electromagnetic field.

Alternatively, since we know how to construct Lorentz scalars, we can construct a La-

grangian without the introduction of the new dynamical variables fµν as

L = mẋ2 +
α

2

(
θ̇µν − 1

2
(xµẋν − xν ẋµ)

)2

. (6.5)

The quantities θ̇µν + 1
2(x

µẋν − xν ẋµ) are constants of motion. If we choose them equal to

1
2f

0
µν , we recover the same equation of motion of a particle moving in a constant electro-

magnetic field that we obtained above.

Another way to construct the Lagrangian is to consider the coset (Maxwell)/(Rotations).

This coset is useful for the construction of massive particle Lagrangians when the tensor

calculus is not known. (For example, in the case of ISim, we may consider the coset

(ISim)/(Rotations), rather than (ISim)/(Sim), because we do not know a priori what is

the length element; in order words, we do not have an obvious tensorial calculus. A more

striking example is the case of the deformed ISim algebra DISimb, discussed in [18]. We

obtain left-invariant 1-forms, by first defining

g = g0 U , (6.6)

where

g0 = ex
µPµ e

1
2 θ

µνZµν , U = ew
iM0i , (6.7)

and wi, i = 1, 2, 3, are the Goldstone bosons associated with the broken boost generators.

The left-invariant 1-forms λ may then be read off from

g−1dg = U−1 g−1
0 dg0 U + U−1 dU ,

= λµ
P Pµ + λµν

Z Zµν + λi
M M0i + λij

R Mij . (6.8)

Defining

g−1
0 dg0 = λ

µ
P Pµ + λ

µν
Z Zµν , (6.9)
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we have

λ
µ
P = dxµ , λ

µν
Z = dθµν − 1

2(x
µ dxν − xν dxµ) . (6.10)

The Lorentz transformations generated by U may be used to define Λν
µ(w

i):

U−1 PµU = Λν
µ(w

i)Pν . (6.11)

The left-invariant 1-forms λµ
P , λ

ij
R and λµν

Z are then given by

λµ
P = Λµ

ν λ
ν
P = Λµ

ν dx
ν ,

λµν
Z = Λµ

ρΛ
ν
σ λ

ρσ
Z = Λµ

ρΛ
ν
σ [dθ

ρσ − 1
2 (x

ρ dxσ − xσ dxρ)] . (6.12)

The 1-forms λi
M , are given by

λi
M = dwi + dwj(δij − wi wj)(

sinhw

w
− 1)

λij
R = (

dwi wj − dwj wi

w2
)(coshw − 1) (6.13)

A particle Lagrangian that is invariant under SO(3) is

L =
[
αλ0

P + 1
2 f̂µν(τ)λ

µν
Z

]∗
, (6.14)

where the ∗ indicates that the 1-forms are pulled back onto the world-line: [dxµ]∗ ≡ ẋµ(τ) dτ ,

etc. The coefficient α is constant, whilst f̂µν(τ) is a dynamical field that depends upon τ .

We see that (6.14) may be written as

L = αΛ0
µ ẋ

µ + 1
2fµν [θ̇

µν − 1
2 (x

µ ẋν − xν ẋµ)] , (6.15)

where Λµ
ν is a general Lorentz boost transformation and depends on the non-dynamical

coordinates wi. We have also introduced the tensor field fµν , which is related to f̂µν by

fµν = Λρ
µ(w

i)Λσ
ν(w

i) f̂ρσ . (6.16)

We now define the particle momentum pµ in the canonical way:

pµ =
∂L

∂ẋµ
= αΛ0

µ + 1
2
fµν x

ν . (6.17)

Because Λ0
µ is a timelike Lorentz vector, we have

(pµ − 1
2fµν x

ν)2 = −m2 . (6.18)
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Introducing e as a Lagrange multiplier to enforce the mass-shell condition (6.18), we arrive

at the Lagrangian

L = (pµ− 1
2fµν x

ν) ẋµ+ 1
2fµν [θ̇

µν− 1
2(x

µ ẋν−xν ẋµ)]− 1
2e [(pµ− 1

2fµν x
ν)2+m2] . (6.19)

Varying with respect to pµ gives

ẋµ = e(pµ − 1
2f

µ
ν x

ν) . (6.20)

Substituting for pµ in (6.19), and then varying with respect to e to obtain

e = −
√
−ẋ2

m
, (6.21)

we finally arrive at the Lagrangian (6.1). In section 7 we shall see how the non-linear

realisation method and coadjoint orbit technique gives the same results.

6.2 The Maxwell-Sim Lagrangian

We start with the coset (Maxwell-Sim)/SO(2), and then construct the left-invariant 1-forms

from the coset representative

g = g0 U , (6.22)

with

g0 = ex
µPµ e

1
2θ

µνZµν , U = ew
iM+i ewN . (6.23)

Following the same steps as in the Maxwell case, we have

g−1dg = λµ
P Pµ + λµν

Z Zµν + λi
M M+i + λN N . (6.24)

The left-invariant 1-forms λµ
P and λµν

Z are then given by

λµ
P = Λµ

ν λ
ν
P = Λµ

ν dx
ν ,

λµν
Z = Λµ

ρΛ
ν
σ λ

ρσ
Z = Λµ

ρΛ
ν
σ [dθ

ρσ − 1
2 (x

ρ dxσ − xσ dxρ)] , (6.25)

where

λ
µ
P = dxµ , λ

µν
Z = dθµν − 1

2(x
µ dxν − xν dxµ) . (6.26)

The Lorentz transformation Λµ
ν(w

i, w) is given by

Λµ
ν =




e−w 0 0

−1
2e

w wkwk ew ew wi

−wj 0 1


 , (6.27)
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where we order the spacetime coordinates in the sequence xµ = (x−, x+, xi), i = 1, 2.

The 1-forms λi
M and λN are given by

λi
M = ew dwi , λN = dw . (6.28)

A particle Lagrangian that is invariant under SO(2) (generated by J = M12) is given

by

L =
[
αλ+

P − βλ−
P + 1

2 f̂µν(τ)λ
µν
Z

]∗
. (6.29)

As in the Maxwell case the coefficients α and β are constants, whilst f̂µν(τ) is a dynamical

field that depends upon τ . We see that (6.29) may be written as

L = αΛ+
µ ẋ

µ − β Λ−
µ ẋ

µ + 1
2fµν [θ̇

µν − 1
2(x

µ ẋν − xν ẋµ)] , (6.30)

where

fµν = Λρ
µ(w,w

i)Λσ
ν(w,w

i) f̂ρσ . (6.31)

The particle momentum pµ is given by

pµ =
∂L

∂ẋµ
= αΛ+

µ − β Λ−
µ + 1

2fµν x
ν . (6.32)

Noting that Λ+µΛ+µ = Λ−
µ Λ

−µ = 0 and Λ+
µ Λ

−µ = 1, we see that

(pµ − 1
2fµν x

ν)2 = −m2 , (6.33)

where we have defined the mass parameter as

m =
√
2α β . (6.34)

Introducing e as a Lagrange multiplier to enforce the mass-shell condition (6.33), we arrive

at the Lagrangian

L = (pµ− 1
2fµν x

ν) ẋµ+ 1
2fµν [θ̇

µν− 1
2(x

µ ẋν−xν ẋµ)]− 1
2e [(pµ− 1

2fµν x
ν)2+m2] . (6.35)

Varying with respect to pµ gives

ẋµ = e(pµ − 1
2f

µ
ν x

ν) . (6.36)

Substituting for pµ in (6.35), and then varying with respect to e we get the Lagrangian

(6.1). Thus the undeformed Maxwell-Sim algebra gives the same particle Lagrangian as the

Maxwell algebra based on the full Poincaré group.
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6.3 The Maxwell-DISimb Lagrangian

The left-invariant 1-forms λµ
P of the DISimb algebra are given by

λµ
P = Λ̃µ

ν dx
ν , (6.37)

where the matrix Λ̃ is

Λ̃µ
ν =




e−w(1−b) 0 0

−1
2e

w(1+b) wkwk ew(1+b) ew(1+b) wi

−wj 0 1


 . (6.38)

The 1-forms λi
M and λN are given by

λi
M = ew dwi , λN = dw . (6.39)

We wish to construct a particle Lagrangian that is invariant under SO(2) (generated by

J = M12). Thus we begin by writing

L =
[
αλ+

P − βλ−
P

]∗
, (6.40)

where as before the ∗ indicates that the 1-forms are pulled back onto the world-line. The

coefficients α and β are constants. We see that (6.40) may be written as

L = α Λ̃+
µ ẋ

µ − β Λ̃−
µ ẋ

µ , (6.41)

where Λ̃µ
ν depends on the non-dynamical coordinates w and wi, and is given by (6.38).

We now define the particle momentum pµ in the canonical way:

pµ =
∂L

∂ẋµ
= α Λ̃+

µ − β Λ̃−
µ . (6.42)

Noting that Λ̃+µ Λ̃+µ = Λ̃−
µ Λ̃

−µ = 0 and

Λ̃+
µ Λ̃

−µ = e2wb , (6.43)

we have the constraint

p2 = −2αβ
(p+
α

) 2b
1+b

= −2αβ
(nµpµ

α

) 2b
1+b

. (6.44)

With α = −m(1− b) and β = −1
2m(1 + b) we obtain equation (18) of [18]:

p2 +m2(1− b2)
(
− nνpν

m(1− b)

)2b/(1+b)
= 0 . (6.45)
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Introducing e as a Lagrange multiplier to enforce the mass-shell condition (6.45), we arrive

at the Lagrangian

L = pµ ẋ
µ− 1

2e
[
p2+m2(1−b2)

(
− nνpν
m(1−b)

)2b/(1+b)]
. (6.46)

Varying with respect to pµ gives

ẋµ = e
[
pµ − bm

(
− nνpν

m(1− b)

) b−1

b+1

nµ
]
. (6.47)

If we solve for pµ and substitute into (6.46), we obtain

L = 1
2

ẋ2

e
− 1

2m
2(1−b2)

(
− nν ẋν
m(1−b)

)2b/(1+b)
e(1−b)/(1+b) . (6.48)

Varying this with respect to e we get

e =
1

m(1− b)

(
− ẋ2

) 1+b
2

(
− nν ẋν

)−b
, (6.49)

from which we obtain the Finslerian Lagrangian of [18]

L = −m(−ηµν ẋ
µẋν)(1−b)/2 (−nρẋ

ρ)b . (6.50)

For the Maxwell-DISimb case, following the same steps as for the Maxwell-Sim case, we

get

L = −m(−ηµν ẋ
µẋν)(1−b)/2 (−nρẋ

ρ)b +
1

2
fµν

(
θ̇µν − 1

2
(xµẋν − xν ẋµ)

)
. (6.51)

7 Hamiltonian Viewpoint

7.1 Kaluza-Klein interlude

Before dealing with the Maxwell algebra approach, it may be helpful to contrast the six

“angles” θµν with the single angle θ introduced in Kaluza-Klein approaches to motion in

a homogeneous electromagnetic field, considered as geodesic motion in the 5-dimensional

Heisenberg group. The Maurer-Cartan forms are

Pµ = dxµ , Z = dθ − 1
2Fµνx

µdxν , (7.1)

with the non-trivial algebra

dZ = −1
2FµνP

µ ∧ P ν , (7.2)

and metric

ds25 = ηµνdx
µdxν +

(
dθ − 1

2Fµνx
µdxν

)2
. (7.3)
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The metric (7.3) is invariant under the left action of the Heisenberg group, and an additional

outer action of the abelian subgroup G2 ⊂ SO(3, 1) generated by G and G⋆. We may

identify Z with Zelec introduced earlier. If we consider the coset (EBCR)/(G2, Zmag), then

the quadratic combination P 2+Z2 is invariant under the stability group. The corresponding

metric is (7.3) and therefore it is invariant under the whole EBCR group.

A convenient matrix representation of the Heisenberg group is given by




x′µ

θ′

1


 =




δµν 0 aµ

−1
2Fνλ a

λ 1 α

0 0 1







xν

θ

1


 . (7.4)

The phase or cotangent space T ⋆(G) ≡ G× g of the Heisenberg algebra has coordinates

(xµ, θ, pµ, pθ). (P̄µ, M̄µν , Z̄) are the corresponding moment maps generating right actions,

and are given by

P̄µ = pµ − 1
2 pθ Fµνx

ν , Z̄ = pθ . (7.5)

The non-vanishing Poisson brackets of the generators of the right actions of the Heisen-

berg group are
{
P̄µ, P̄ν

}
= −Fµν Z̄ . (7.6)

The geodesic Hamiltonian associated to the metric (7.3) is

H =
1

2m
P̄µP̄

µ +
1

2m
Z̄2 , (7.7)

so that

˙̄Z = 0 ,

˙̄Pµ = − 1

m
Z̄Fµν P̄

ν . (7.8)

(Note that although the Z̄2 term in (7.7) is needed for the correspondence with the metric

(7.3), however it plays no rôle in the dynamics.) The xµ equation of motion is

ẋµ =
1

m
P̄µ . (7.9)

The equation for θ, conjugate to Z̄µν is

θ̇ =
1

m
Z̄ . (7.10)

The moment maps that generate left translations are given by

P̄µ + Z̄ Fµν x
ν , Z̄ , (7.11)
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These are constant for a Hamiltonian such as (7.7), which depends only on the moment

maps that generate right translations.

The mechanical momentum pi and Noether momentum Pi in our discussion in the Intro-

duction correspond to momentum maps generating right translations and left translations

respectively.

We have obtained the standard Lorentz force equation, and the electric charge cor-

responds to the conserved momentum −Z̄ in the extra dimension. The externally-given

Maxwell field Fµν is constant throughout, and is non-dynamical. Note that we could obtain

the same result with a more general Hamiltonian of the form

H =
1

2m
P̄µP̄

µ + βZ̄2 , (7.12)

where β is an arbitrary constant.

We may also include a magnetic charge by adding an extra central extension

Z⋆ = dθ⋆ − 1
2F

⋆
µν x

µdxν . (7.13)

The Hamiltonian

H =
1

2m
P̄µP̄

µ (7.14)

will now lead to the constancy of both Z̄ and Z̄⋆ and the equation of motion

˙̄Pµ = − 1

m

(
Z̄Fµν + Z̄⋆F ⋆

µν

)
P̄ ν . (7.15)

If we identify Z⋆ with Zmag , then then the six-dimensional Heisenberg algebra with

two central charges may be identified with the coset (EBCR)/G2. Note that the presence of

magnetic and electric charges is due to the presence of central charges in the 8-dimensional

EBCR algebra. These central charges are absent in the Maxwell algebra.

7.2 The Maxwell algebra

The phase space, or cotangent space, T ⋆(G) ≡ G × g of the Maxwell algebra has coor-

dinates (xµ, θµν , pµ, fµν). The left-invariant Maurer-Cartan forms are given by (2.15) and

(P̄µ, M̄µν , Z̄µν) are the corresponding moment maps generating right actions. They are

given by

P̄µ = pµ − 1
2 fµνx

ν , Z̄µν = fµν , (7.16)
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The non-vanishing Poisson brackets are

{
M̄αβ , P̄γ

}
= ηβγP̄α − ηαγP̄β , (7.17)

{
M̄αβ, M̄γδ

}
= ηβγM̄αδ − ηβδM̄αγ + ηαδM̄βγ − ηαγM̄βδ , (7.18)

{
M̄αβ , Z̄γδ

}
= ηβγZ̄αδ − ηβδZ̄αγ + ηαδZ̄βγ − ηαγZ̄βδ , (7.19)

{
P̄α, P̄β

}
= −Z̄αβ . (7.20)

There are two generic Casimir functions,

C1 =
1
2

(
P̄µP̄µ + M̄µν Z̄

µν
)
, C2 =

1
2 Z̄µν Z̄

µν . (7.21)

For the Hamiltonian, we take

H =
1

2m
ηµν P̄µP̄ν . (7.22)

Thus the Euler equations imply

˙̄Zµν = 0 , ⇒ Z̄µν = −eFµν = constant , (7.23)

˙̄Pµ =
1

m
{P̄µ, P̄ν}P̄ ν = −Z̄µν̄ P

ν = eFµν P̄
ν , (7.24)

and the xµ equation of motion is

ẋµ =
1

m
P̄µ . (7.25)

The equation for θµν, conjugate to Z̄µν is

θ̇µν = 1
2(x

µẋν − xν ẋµ) . (7.26)

Thus we obtain the motion of a particle in a constant electromagnetic field, for which the

momentum vector P̄µ(τ) undergoes a constant Lorentz transformation

P̄µ(τ) =
[
exp

(
eτF

)]µ
ν P̄

ν(0) . (7.27)

By contrast with the Kaluza-Klein approach, which gives the same equations for the xµ

variables with an externally imposed constant Maxwell field Fµν , in the Maxwell algebra

approach we find that the Maxwell field must be constant as a consequence of the equations

of motion. The equations for the six angles θµν are also richer. They may be interpreted

geometrically as follows. The curve in spacetime xµ = xµ(τ) has a projection onto each µ-ν

2-plane. The curve sweeps out area at a rate

dAµν

dτ
= 1

2(x
µẋν − xν ẋµ) . (7.28)
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Thus (7.26) may be re-written as
dθµν

dτ
=

dAµν

dτ
. (7.29)

In other words θµν(τ) is the total area Aµν(τ) swept out during the motion.

The canonical Lagrangian that reproduces the previous equation of motion is

L = P̄µ ẋ
µ+ 1

2fµν [θ̇
µν− 1

2 (x
µ ẋν−xν ẋµ)]− 1

2e P̄
2 , (7.30)

which, apart from a constant piece, is obtained from the diffeomorphism-invariant La-

grangian (6.19) by choosing the proper-time gauge e = m.

One may choose different Hamiltonians. For example,

H =
P̄µP̄

µ

2m
+ 1

2αZ̄µν Z̄
µν . (7.31)

The equations of motion are the same as before except for those of the variables θµν , which

now satisfy

θ̇µν = 1
2 (x

µẋν − xν ẋµ) + α fµν . (7.32)

The canonical Lagrangian

L = P̄µ ẋ
µ+ 1

2fµν [θ̇
µν− 1

2(x
µ ẋν−xν ẋµ)]− 1

2e P̄
2−α

2
fµνf

µν (7.33)

gives, after eliminating the non-dynamical field Fµν , the Lagrangian (6.5).

7.3 Other Hamiltonians

Those which admit a constant Z̄µν = Fµν and are Lorentz-invariant are of the form

2mH = P̄µP̄
µ + 1

2αZ̄µν Z̄
µν − βZ̄µνM̄

µν . (7.34)

The second term does not contribute, since it commutes with everything, and so we drop

it. Hamilton’s equations then give

˙̄Pµ =
1

m
(1− β)Fµν P̄

ν . (7.35)

Note that in the special case β = 1, we find ˙̄Pµ = 0. This is not surprising, because in that

case the Hamiltonian is bi-invariant, i.e. it is a Casimir, and hence generates no motion at

all.

24



7.4 Maxwell-Sim and Maxwell-DISimb

The Maurer-Cartan forms of the coset (Maxwell-Sim)/(Sim) are the same as in the Maxwell

case (2.15), and the moment maps are also given by

P̄µ = pµ − 1
2 fµνx

ν , Z̄µν = fµν . (7.36)

The geodesic Hamiltonian is given by

H =
P̄µP̄

µ

2m
+ 1

2αZ̄µν Z̄
µν , (7.37)

and therefore reproduces the same dynamics as in the Maxwell case.

For the case of the coset (Maxwell-DISimb)/(Sim), the Maurer-Cartan forms and the

momenta are the same as for the Maxwell case.

7.5 Hamiltonian Treatment of the Bogoslovsky-Maxwell algebra

In previous work [18] we obtained a Finslerian Lagrangian invariant under DISim(2)b, where

b is the deformation parameter constructed from the Finslerian line element

ds2 = −F (vµ)2 dτ2 , (7.38)

where the Finsler function F (vµ) is homogeneous of degree 1 in the four-velocity vµ =

dxµ/dτ . In general, if we were to use a multiple of the Finlser function F (vµ) as a Lagrangian

L(vµ), then its Legendre transform would vanish, since a Lagrangian which is homogeneous

of degree k in velocities gives, on taking a Legendre transform, a Hamiltonian

H(pµ) = vµpµ − L(vµ) , (7.39)

= vµ
∂L

∂vµ
− L (7.40)

= (k − 1)L , (7.41)

which is homogeneous of degree k
k−1 in momenta pµ . If k = 2 we have

H(p) = L(v) , (7.42)

and both are of degree two. Therefore it is customary in Finsler geometry to set

L(vµ) = −1
2mF 2(vµ) . (7.43)

For the case of Bogoslovsky’s Finslerian geometry we would then have

L = −1
2m (−nρv

ρ)2b(−ηµνv
µvν)1−b , (7.44)
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where nµ = ηµνnν is a constant future-directed null vector. The minus signs appear in (7.44)

because vµ is assumed to be future-directed and timelike. With our signature convention,

the inner product n · v = nµv
µ is then negative. We find that

pµ = bmnµ(−n · v)2b−1(−v2)1−b + (1− b)mvµ(−n · v)2b(−v2)−b , (7.45)

and

H = − 1

2m

(
− p2

1− b2

)1+b(
− n · p
1− b

)−2b
. (7.46)

Imposing the mass-shell condition H = −1
2m, i.e. F (v)2 = 1, leads to equation (18) of [18].

In this case, the parameter τ coincides with the Finslerian measure of proper time along

the world-line of the particle.3 Equation (7.46) is also equivalent to the expression (6.44)

(with α = −m(1− b) and β = −1
2m(1 + b)).

We may also give the expression for vµ = ∂H/∂pµ, finding

vµ = e
[
pµ − bm

(
− nνpν

m(1− b)

) b−1

b+1

nµ
]
, (7.47)

where

e = −(1 + b)m

p2
. (7.48)

Again, this is in agreement with the corresponding expression (6.47) obtained in the La-

grangian treatment.

The Lorentz force equation follows from (7.47), and ˙̄Pµ = {P̄µ,H}, which implies

˙̄Pµ = −Z̄µν vν . (7.49)

8 Conclusions

We have constructed the non-central extensions and deformations of the ISim algebra. The

Maxwell-Sim algebra is obtained from the translation generators Pµ and the non-central

extension Zµν = [Pµ,Pν ], together with the Sim(n) generators (M+i,M+−,Mij).

In general dimensions, the deformations of Maxwell-Sim algebra are characterised by two

parameters b and c. The deformation parameterised by c is the analogue of the k deformation

of the Maxwell algebra found in [25], which gave SO(3, 2)×SO(3, 1) or SO(4, 1)×SO(3, 1)

depending on the sign of k. The b-deformation of Maxwell-Sim produces the Maxwell

extension of the DISimb algebra, which is related to Finslerian geometry.

3We could instead impose the gauge condition v
2 = −1, but this is less natural in the Finslerian frame-

work.
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We have also studied the motion of a massive particle interacting with a constant elec-

tromagnetic field with these symmetries. In the case of Maxwell-DISimb, the motion is

given by a Finslerian Lorentz force, whilst by contrast for the undeformed Maxwell-Sim

algebra we obtain the ordinary Lorentz force.
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A Conventions

In this appendix we record some of our conventions and notation when working with Lie

groups, Lie algebras and Poisson algebras.

Given a Lie group G, with coordinates xµ, i.e. group elements G ∋ g = g(xµ), and left

and right invariant Cartan-Maurer forms

g−1dg = λaea , dgg−1 = ρaea , (A.1)

with ea a basis for the Lie algebra g such that

[ea, eb] = Ca
c
b ec , (A.2)
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the Maurer-Cartan equations are

dλc = −1
2Ca

c
b λ

a ∧ λb , dρc = 1
2Ca

c
b ρ

a ∧ ρb . (A.3)

The left and right invariant vector fields Lµ
a and Rµ

a dual to λa
µ and ρaµ respectively,

λa
µL

µ
b = δab , ρaµR

µ
b = δab , (A.4)

satisfy

[La, Lb] = Ca
c
b Lc [Ra, Lb] = 0 , [Ra, Rb] = −Ca

c
b Rc , (A.5)

and respectively generate right and left translations on G.

Quantum mechanically, one often inserts i’s so that if R̂a = 1
iRa, L̂a = 1

iLa then

[R̂a, R̂b] = iCa
c
b R̂c , (A.6)

[L̂a, L̂b] = −iCa
c
b L̂c . (A.7)

The R̂a and L̂a vector fields are then operators acting on complex-valued functions of the

group coordinates xµ.

Thinking of G as a configuration space, we can pass to the phase space or cotangent

space TG⋆ ≡ G × g, with coordinates (xµ, pν). The actions of G on G then lift to TG⋆

as

canonical transformations, leaving the natural symplectic form dpµ ∧ dxµ invariant. Given

the symplectic form, we can introduce the Poisson bracket as usual. In local Darboux

coordinates (xµ, pν), it is given by

{f, g} =
∂f

∂xµ
∂g

∂pµ
− ∂g

∂xµ
∂f

∂pµ
, (A.8)

so that

{xµ, pν} = δµν . (A.9)

Infinitesimally, the lifts of left and right actions are canonical transformations generated by

“generating functions” or “moment maps.” Because, in general, we have both left and right

actions to take into account, we define two sets of moment maps into g⋆, the dual of the

Lie algebra,

Ma = pµL
µ
a , Na = pµR

µ
a , (A.10)

with Poisson brackets which are readily seen to be

{Ma,Mb} = −Ca
b
cMb {Ma, Nb} = 0 , {Na, Nb} = Ca

b
cNb . (A.11)
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The moment maps Ma generate the lifts of right translations and the moment maps Na

generate the lifts of left translations.

A Hamiltonian H = H(xµ, pµ), which is left-invariant, satisfies

Ṅa = {Na,H} = 0 , (A.12)

and so the moment maps Na are constants of the motion. By contrast, the moment maps

Ma generating right actions are time-dependent,

Ṁa = {Ma,H} 6= 0 . (A.13)

A left-invariant Lagrangian may be constructed from combinations of left-invariant ve-

locities or angular velocities

ωa = λa
µẋ

µ . (A.14)

Thus the Hamiltonian is a combination of the momenta maps Ma,

H = H(Ma) . (A.15)

Thus (A.13) provide an autonomous 1’st-order system of ODEs on g⋆ for the moment maps

Ma, called the Euler equations. To obtain the motion on the group, one uses the equation

ẋµ =
∂H

∂pµ
. (A.16)

Now

pµ = Maλ
a
µ , (A.17)

and so

ẋµ = Lµ
a

∂H

∂Ma
. (A.18)

B Lifshitz and Schrödinger algebras

In this appendix we shall describe the connection between the deformed inhomogeneous

Sim algebra disimb(k) and the Lifshitz, Schrödinger and extended Schrödinger algebras,

lifz, schz(k) and s̃ch(k) respectively. We start with

B.1 Lifshitz scaling

In non-relativistic theories with k spatial dimensions, one is interested in the behaviour of

physical quantities under what has come to be called Lifshitz scaling, i.e. under

t → λzt , x → λx (B.1)
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where t is the time variable and x = (x1, x2, . . . , xk) is the spatial position vector.

If D generates scalings or dilatations we may combine this with space translations Pi,

spatial rotations, Mij and time translations H, to obtain the Lifshitz Algebra, lifz(k) in k

spatial dimensions,

[
D,Mij

]
= 0 ,

[
D,Pi

]
= Pi ,

[
D,H

]
= zH , (B.2)

where the obvious brackets for Mij have been omitted. The Lie algebra spanned by D,

Pi, and H is therefore invariant under the adjoint action of the rotation subalgebra so(k)

generated by Mij . If i = 1, 2, . . . , k, then lifz(k) has dimension 1
2k(k+1)+2 and the quotient

lifz(k)/so(k) has dimension k + 2.

B.2 Lifshitz spacetime

This is a k+2 dimensional spacetime equipped with a metric invariant under the left action

of the (k + 2)-dimensional group generated by Pi, H and D. A Maurer-Cartan basis for

this solvable group is

er =
dr

r
, ei =

dxi

r
, e0 =

dt

rz
. (B.3)

The Lifshitz metric is then

ds2k+2 = L2
{
−dt2

r2z
+

dxidxi
r2

+
dr2

r2

}
, (B.4)

with Killing vector fields corresponding to

Mij = −(xi∂j − xj∂i) , Pi = −∂i , H = −∂t , D = −(zt∂t + xi∂i + r∂r) . (B.5)

• As r → ∞ we approach a singular horizon (IR limit) .

• As r → 0 we approach infinity (UV limit)

The boundary metric at infinity is obtained by taking out a factor of r2 and letting

r → 0:

ds2k+2 =
L2

r2

{
− dt2

r2(z−1)
+ dxidxi + dr2

}
(B.6)

Thus

ds2boundary = dxidxi − r2(1−z)dt2 , (B.7)

the speed is c(r) = r(1−z), and

• If z > 1, we obtain infinite speed (the boundary lightcone opens out to a plane)
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• If z = 1, we obtain finite speed (the boundary lightcone remains a cone)

• If z < 1, we obtain zero speed (the boundary lightcone closes up to a half line )

Strictly speaking, in the z > 1 case, we need to consider the inverse metric when taking the

limit r → 0.

B.3 The boost-extended Lifshitz algebra

One may extend the Lifshitz algebra to include boosts Ki. The scaling dependence of Ki

is then determined by its commutation relations. Since Ki is a vector we have

[
Kk,Mij

]
= −

(
δkiKj − δkjKi

)
(B.8)

For the Galilei group,

[
Ki, Pj

]
= 0 , (B.9)

[
Ki,H

]
= Pi , (B.10)

which implies that we must take

[
D,Ki

]
= (1− z)Ki . (B.11)

For the Carroll group

[
Ki, Pj

]
= δijH , (B.12)

[
KiH

]
= 0 , (B.13)

which implies that we must take

[
D,Ki

]
= (z − 1)Ki . (B.14)

In the case of the Poincaré group there is no choice, and one must take z = 1.

B.4 DISimb(k)

Recall that DISimb(k) is a deformation of the ISim(k) subgroup of the Poincaré group in

(k + 2) spacetime dimensions, depending on a parameter b, which may be regarded as a

subgroup of the inhomogeneous Weyl group or Causal group (i.e the semi-direct product of

Poincaré with dilatations), in which the actions of a boost and dilations are identified up

to a factor [18]. It is thus of dimension 1
2k(k + 1) + k + 3.
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If the translations are P+, P−, Pi, and the boosts are M+i, M+−, then the non-trivial

Lie brackets are given by

[M+−, P±] = −(b± 1)P± , [M+−, Pi] = −bPi ,

[M+−,M+i] = −M+i , [M+i, P−] = Pi ,

[M+i, Pj ] = −δijP+, (B.15)

The so(k) rotations have the standard brackets and act on Pi and M+i as vectors. The

boost generator M+− acts on (k + 2)-dimensional Minkowski spacetime as

xi → λ−b xi , x− → λ1−b x− , x+ → λ−1−b x+ .

If b = 0, then M+− acts as an ordinary boost..

B.5 The Schrödinger and Extended Schrödinger algebras

In k spatial dimensions, the centrally extended (12k(k+1)+ k+3) dimensional Schrödinger

algebra (in current terminology [22]), which we denote s̃chz(k), is obtained by adjoining

Galilean boosts Ki, and a central term N to the Aristotelian algebra of translations, rota-

tions and time translations, such that

[
Mij ,Kk

]
=

(
δikKj − δjkKi

)
, (B.16)

[
Pi,Kj

]
= −δijN , (B.17)

[
H,Ki

]
= −Pi . (B.18)

The result is the (12k(k + 1) + k + 2) dimensional Bargmann algebra, a central extension of

the (12k(k + 1) + k + 1) dimensional Galilei algebra. One then adjoins a dilatation D,

[
D,Ki

]
= (1− z)Ki ,

[
D,N

]
= (2− z)N . (B.19)

If k = 3 this is 12-dimensional, whereas what has been called the Schrödinger group, i.e.

the conformal symmetry group of the free Schrödinger equation (corresponding to z = 2) is

13-dimensional4. This is because the special conformal or temporal inversion operator has

been left out.

One may consistently drop the central extension N from the Bargmann algebra to

get the Galilei algebra, and then the extended Schrödinger algebra s̃ch(k) reduces to the

4The reader should note the difference with the Galiean Conformal algebra obtained by contraction from

the relativistic conformal algebra, which has 15 generators (see, for example, [39] [40]).
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(12k(k + 1) + k + 2) dimensional unextended Schrödinger algebra sch(k). If one then drops

the boost generator Ki one gets the Lifshitz algebra lifz(k).

It is well known that non-relativistic symmetries and non-relativistic conformal sym-

metries (Schrödinger algebras) in k spatial dimensions may be thought of as subgroups

of relativistic or conformal symmetries in k + 2 dimensional Minkowski spacetime which

commute with light-like translations. Thus it is no surprise that

s̃chz(k) ≡ disimb(k) , b =
1

1− z
. (B.20)

To see this, one must identify the generators as follows;

H ↔ P− , N ↔ −P+ Pi ↔ Pi , Ki ↔ M+i . (B.21)

and

D ↔ (z − 1)M+− . (B.22)

Note that it is also possible to obtain the Lifshitz algebra lif(k) as a truncation of the

disimb(k) algebra by discarding the Pi generators and making the identifications

H ↔ P− , Pi ↔ M+i , D ↔ M+− , (B.23)

and

z = (b− 1) . (B.24)

However this is perhaps less useful than the identification (B.20).

B.6 Schrödinger spacetime

This is (k + 3)-dimensional, and has metric

ds2k+3 = L2
{
−dt2

r2z
− 2dtdv

r2
+

dxidxi
r2

+
dr2

r2

}
(B.25)

with Killing vectors

Ki = −(t∂t + xi∂v) , N = −∂v , (B.26)

Pi = −∂i , Mij = −(xi∂j − xj∂i) D = −(zt∂t + xi∂i + (2− z)v∂v + r∂r) . (B.27)

A Cartan-Maurer basis for this solvable group manifold is given by

er = dr/r , ei =
dxi

r
, ev =

dv

r2−z
, et =

dt

rz
. (B.28)
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B.7 Lifshitz spacetime as a null reduction of Schrödinger spacetime

If we identify points in the Schrödinger spacetime under the R action generated by the the

null Killing field ∂v , i.e., under the action of the “central” element N , we obtain the Lifshitz

spacetime. On the boundary we have the metric

ds2boundary = dxidxi − 2dtdv − r2(1−z)dt2 . (B.29)

In the cases z > 1, we may regard the boundary as the (k+2)-dimensional Duval-Kunzle

spacetime whose null reduction produces the (k+1)-dimensional Newton-Cartan spacetime.

Strictly speaking we need to consider the inverse metric when taking the limit.
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