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In efforts to determine phase transitions in the disintegration of highly excited heavy nuclei, a
popular practice is to parametrise the yields of isotopes as a function of temperature in the form
Y (z) = z−τf(zσ(T − T0)), where Y (z)’s are the measured yields and τ, σ and T0 are fitted to the
yields. Here T0 would be interpreted as the phase transition temperature. For finite systems such
as those obtained in nuclear collisions, this parametrisation is only approximate and hence allows
for extraction of T0 in more than one way. In this work we look in detail at how values of T0

differ, depending on methods of extraction. It should be mentioned that for finite systems, this
approximate parametrisation works not only at the critical point, but also for first order phase
transitions (at least in some models). Thus the approximate fit is no guarantee that one is seeing a
critical phenomenon.

A different but more conventional search for the nuclear phase transition would look for a max-
imum in the specific heat as a function of temperature T2. In this case T2 is interpreted as the
phase transition temperature. Ideally T0 and T2 would coincide. We invesigate this possibility, both
in theory and from the ISiS data, performing both canonical (T ) and microcanonical (e = E∗/A)
calculations.

Although more than one value of T0 can be extracted from the approximate parmetrisation, the
work here points to the best value from among the choices. Several interesting results, seen in
theoretical calculations, are borne out in experiment.

25.70.-z, 25.75.Ld, 25.10.Lx

I. INTRODUCTION

In studies of phase transitions in the disintegration of highly excited heavy nuclei, a popular path for deducing the
occurrence of a phase transition is to examine the yields of composites. These are readily available from experimental
data and hence have been the focus of many theoretical studies [1]. The usual practice is [2] to use a parametrisation

Y (z) = z−τf(zσ(T − T0)) (1.1)

and extract values of τ, σ and T0, which occur in models of critical phenomena [2]. The parameters τ and σ are critical
exponents and T0 is the critical temperature. Alternately, in a microcanonical formalism one would write

Y (z) = z−τf(zσ(e− e0)) (1.2)

Here e = E∗/A, the excitation energy per nucleon, and e0 would be the phase transition energy. Formulae (1.1) and
(1.2) assume that the thermodynamic limit is reached. In practice, in the nuclear case we have a finite system that
disintegrates and thus the above parametrisation is only approximate. Hence the values of the parameters can be
extracted in more than one way and these values may not be the same. We point out that it is largely the Coulomb
force that leads different methods to give two different values for e0, labeled as e1 and e′1.
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Alternative but perhaps more common tools for studies of phase transition in other fields of physics are measure-
ments of compressibility, specific heat etc. Experimental data for specific heat were studied in the nuclear case and
was indeed the cause of great excitement [3].
We have therefore two distinct ways of trying to deduce a phase transition energy: from the distribution of com-

posites as the excitation energy is varied (as explained, even here there can be more than one value) or, what may be
more difficult but achievable, to locate an extremum of the specific heat. We label the excitation energy at which the
specific heat maximises as e2. It is not obvious that the values of e1, e

′
1 and e2 are close, although from the seminal

work of Coniglio-Klein [4] on clusterisation this result could be anticipated.
We have compared both approaches in the nuclear case in the framework of two models. Although the models are

very different and each has its own strengths and weaknesses, both reveal the following interesting features. If we
switch off the Coulomb interaction between protons, the deduced phase transition energies, e1, e

′
1 and e2 are close.

With the inclusion of the Coulomb force, e1 and e′
1
begin to diverge. For a nucleus of the size of 197Au, the case

we study and for which fragmentation data exist, the difference in the e1 and e′1 is significant. Further, one of these
values stays close to the value at which the specific heat maximises and gives a good measure of the phase transition
energy.
The two models we use are the Lattice Gas Model (LGM) [1,5] and a thermodynamic model [6,7]. The second model

is close in spirit to the Statistical Multifragmentation Model of Copenhagen [8]. We choose to use a microcanonical
simulation for LGM. So here the primary quantity is the excitation energy e per particle and a temperature can be
derived afterwards [9]. For the thermodynamic model, we do a canonical calculation so that the temperature is the
primary parameter and an excitation energy e per particle can be derived afterwards.
In section 2 we give details of the LGM calculations. Results of the thermodynamic model are presented in section

3. In section 4 we investigate the ISiS data within those formalisms. We present summary and conclusion in section
5.

II. RESULTS FROM LGM

Numerical techniques for microcanonical simulations with LGM have been published [9]. Calculations are done
for fixed E = Ae where e is the excitation energy per nucleon. This is the primary quantity for simulations. The
temperature for each simulation can be calculated from T =< 2Ekin > /3. This is discussed in detail in [9]. For more
discussions about the LGM with Coulomb force we refer to [10], section II. Bonds due to nuclear forces are taken
to be -5.33 MeV between unlike particles and 0 between like particles. The LGM has several drawbacks, the most
noticeable being the lack of quantum effects, which leads to an incorrect caloric curve near T = 0. The LGM has the
following advantages not shared by several other models. It includes interactions between composites. It incorporates
the Coulomb interaction in a much more basic fashion (at the nucleonic level) than several other models. This is very
important for us since this work points to a new effect brought about solely by the Coulomb interaction. Also the
LGM produces particle-stable composites [10,11] so that the complicated problem of subsequent particle evaporation
is circumvented.
All calculations reported here are for Z = 79 and N = 118 (197Au). At each total energy we compute averages

after 50,000 simulated events. We use 93 (ρ/ρ0 = .27) lattice sites.
The extraction of parameters from yields (Eq.(1.2)) merits consideration. Discussions of this parametrisation can be

found in [2] where it is used to model a continuous phase transition in an infinite system. As already stated, one does
not expect the above parametrisation to be exact except in the thermodynamic limit. For very finite systems as is the
case with disintegrating nuclei formed in very energetic nuclear collisions, the parametrisation is only approximate
and is by no means a signature of a critical phenomenon but rather that of a phase transition in a finite system, first
order or otherwise [12]. Theory demands that z of the yields be not small. In the nuclear case it is also not too big
since the disassembling system itself is very finite. We limit z between 3 and 17, which is similar to most published
work on the subject. Since the fit is expected to be only approximate, there is more than one prescription for getting
the “best” parameters. Here we follow the prescription given in [13]:
(1) If Eq. (1.2) were exact, then at e = e0 we would have

∑
(lnY (z)− lnC + τlnz)2 = 0, as each individual term

in the sum would be zero. Of course Eq.(1.2) is not exact and thus the sum above will not be zero at any value of e.
However, this is a valid question to ask. At any given e how well does the distribution fit a power law and what is the
value of τ that gives a best fit to a power law ? At each e we get a “best” τ by a least-square fit, i.e., by minimising∑

(lnY (z)− lnC + τlnz)2 with respect to τ and C. The “goodness” of fit is given by the smallness of the sum which
we define to be χ2 (there are other definitions of χ2)

χ2
≡

1

N

∑
(lnY (z)− lnC + lnz)2 (2.1)
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Here N is the number of terms in the sum. From this step we have a “best” τ and a χ2 vs. e. One obvious choice of
e0 is that value of e where χ2 is minimum (see [14]). The value of e0 deduced using this criterion will be called e′

1
.

While this is quite reasonable, it does not use the scaling property zσ(e − e0) at this stage at all. That is left upon
an optimum choice of σ afterwards. The more complicated procedure that is followed below is designed to give better
scaling properties.
The “best” τ vs. e curve will usually have a minimum which we call τmin.
(2) Define q = zσ(e− e0); f(q) has a maximum for some value of q = q̃: fmax = f(q̃). For each z the yield Y (z) as

a function of e has a maximum at some value of emax(z). At this excitation energy Y (z)max = z−τfmax where fmax

is a constant independent of z. This allows us to choose values for τ and fmax using a χ2 test.
(3) The value of τ found above will be higher than τmin. This means if we look for e appropriate for τ , two values

are available from the τ vs. e curve (see Fig. 1). The lower value is chosen as the value of e0. The scaling property
is badly violated by the other choice. The value of e0 chosen by this prescription will be labelled by e1.
(4) Now that we know e0 = e1 and emax(z), the excitation at which each z is maximised, we find form a least

squares fit the value of σ from the condition zσ(emax − e1) = const. for all z.
(5) The scaling law can now be tested by plotting Y (z)zτ vs. zσ(e − e1). Plots for all z should fall on the same

graph.
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Fig.1: In this figure we show “best” τ and χ2 vs. e (step (1), section II) and also CV vs. e for the LGM calculation.
The horizontal line below 2 is a straight line drawn at the value of τ from step (2), section II. The locations e1, e2
and e′

1
are the values of e for the scaling fit, maximum of specific heat and the minimum of χ2. The left panel is an

LGM calculation without any Coulomb force, the right panel is with the inclusion of Coulomb. Notice the increase of
∆e = e2 − e1 when Coulomb is included.

Fig.1 depicts graphs (steps (1) to (3)) with and without the inclusion of the Coulomb force. In the graphs we also
plot the specific heat per nucleon. We refer to the location of the maximum of specific heat as e2. The lessons from
LGM that we like to emphasize can be learned from Figs. (1) and (2). In Fig. 1 consider first the no-Coulomb case.
Here e1 is 11.66 MeV, e2 is 12.61 MeV, and e′1 (defined by the minimum of χ2, the prescription of [14], see part (1)
above) is 13.88 MeV. We regard them as close. With Coulomb e1 drops well below e2 and e′

1
; e2 and e′

1
stay close.

Of the three energies e1, e2 and e′1, which one marks phase transition better? Without Coulomb, the Y (z) curves
at the three e-values are quite similar, but with Coulomb, e1 is clearly in the phase co-existence region and is below
the phase transition energy (please see Fig. 2). Looking at yields at e2 and e′1, there is no obvious choice in deciding
which marks the phase transition point better. However, since an extremum in the value of specific heat is a standard
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signature of phase transition, our preference is with e2.
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Fig.2: LGM simulations for Y (z) vs. z at e1, e2 and e′
1
without Coulomb (top panel) and with Coulomb (bottom

panel). In the top panel both e1 and e2 are near the energy, where a maximum in the yield at the high z side has just
disappeared. Qualitatively, this marks the phase transition point. But in the bottom panel where the Coulomb force is
included, e1 marks an energy when there is still a large fragment. Thus this is below the phase transition temperature.
However e2 still marks the location when the maximum at the high z side has just disappeared. At much larger e
values (shown arbitrarily at e = 17.6 MeV and e = 14.8 MeV), Y (z) falls much more rapidly with z.
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Fig.3: For different isotopes z we plot zτY (z) against zσ(e− e1) in the LGM, where the exponent τ is the “best” τ
at e1 and extraction of σ, e1 is described in the text. By scaling one means that curves for different z’s coalesce into
one. This is approximately true for scaling around e1 (left panel) but not around e2 (right panel). Scaling around e′1
is worse (not shown).
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In Fig. 3 we show that the scaling law is rather well obeyed around e1. It is very poorly obeyed around e′
1
. An

interesting plot is a scaling law around e2. This is also shown in Fig. 3. Of course the scaling around e2 is nowhere
as good as around e1 but it is still better than around e′

1
(not plotted).

III. CALCULATIONS WITH A THERMODYNAMIC MODEL

Details of the thermodynamic model can be found in several places [1,6,7]. The physics assumption is that com-
posites are formed at an appropriate temperature at a volume larger than normal nuclear volume dictated solely by
consideration of phase space. Thus the model is close in spirit to the Statistical Multifragmentation Model of Copen-
hagen [8] with the simplification that the freeze-out volume is assumed to be independent of the partitions. This allows
for very quick computation without any Monte-Carlo simulations. The inputs for this calculation are the following.
Apart from neutrons and protons, experimental binding energies and ground state spins are used for deuteron, triton,
3He and 4He. No excited states are included for these. For mass 5 and higher we use the semi-empirical formula for
binding energies with volume term, surface tension term, symmetry energy and Coulomb energy. Excited states for
composites are included in the Fermi-gas approximation. The Coulomb interaction between different composites is
included in the Wigner-Seitz approximation [8].
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Fig.4: Similar to Fig.1 except the calculation is with the thermodynamic model (section III), with a freeze-out density
0.27ρ0. Again note that with the inclusion of the Coulomb force (WC), ∆e = e2 − e1 increases substantially compared
to no Coulomb (NC) case.

Since this is a canonical calculation, calculations are done for fixed temperatures. For each temperature, the average
excitation energy per particle can be calculated. For comparisons with LGM, figures are drawn with energy as the
abscissa. Table I gives both the temperature and energy for relevant quantities.
There is no reason to expect results close to the ones calculated using LGM. For example, e′

1
is lower than e2 in the

thermodynamic model but higher in the LGM. Nonetheless, Fig. 4 shows that ∆e = e2 − e1 increases significantly
with inclusion of the Coulomb force (from 1.24 MeV to 5.28 MeV). Again e1 does not seem to mark the point of phase
transition at all (Fig. 5) and e2 is a much better candidate. This is so in spite of the fact scaling is well obeyed with
respect to e1 and not so well with respect to e2 or e′1 (Fig. 6).
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and without (NC) the Coulomb interaction, e2 continues to be a better mark for the point of phase transition energy.
Without the Coulomb both e1 and e2 are acceptable. At higher energies (chosen arbitrarily at e=10.8 MeV and 13.45
MeV) the drops of yields with z are much faster.
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Fig.6: Similar to Fig.3 except that the thermodynamic model is used and scaling is tested around e1, e2 and e1’.

IV. 8 GEV/C π− ON AU DATA

It is of interest to check if the conclusions reached in the theoretical models are verified in experimental data [15,16].
Several non-trivial issues need to be clarified before this can be attempted. Because the power-law fit is not exact,
the extraction of τ from data or theoretical calculation has some ambiguity. In previous sections we calculated τ by
minimising the quantity defined as χ2 in eq.(2.1) at each e. But one could also minimise
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χ̃2
≡

∑
(Y (z)− Cz−τ )2. (4.1)

If one is using experimental data, a more standard practice would be to minimise [17]

χ̂2
≡

∑ (Y (z)− Cz−τ )2

σ(z)2
, (4.2)

where often the σ’s are statistical errors. The difference in the value of τ extracted by minimising Eq.(2.1) or Eq.(4.1)
can be significant or small. In theoretically calculated values of Y (z) the difference is small. But it is not so in the
experimental values of Y (z). For the experimental data of 8 GeV/c π− on gold, the results of using Eqs. (2.1), (4.1)
and (4.2) are shown in Fig. 7. One can give crude arguments that minimising (2.1) rather than (4.1) means that
Y (z)’s of higher z’s are preferentially fitted. In [18], Eq. (4.2) was chosen.
In order to compare the experimental results to the theoretical calculations we have taken the experimental yields

Y (z)’s, ignored all errors and repeated the calculations described in section II. We show in Fig. 7 the results of
this analysis. Qualitatively, the results are similar to the theoretical results (Figs.1 and 4). In those two figures
the minimum in τ occurs at very low excitation energy for the WC case. For the experimental data the minimum,
if it exists, is also at a low value, below 1.5 MeV. More interesting is the right panel of Fig. 7 where we plot the
experimental specific heat and find the maximum in specific heat coincides quite well with the minimum of χ2 (this is
e′
1
). This agrement is also quite close to the theoretical predictions. The specific heat was extracted by differentiating

with respect to T , the experimental caloric curve obtained for the same data set by A. Ruangma et al. [19].
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Fig.7: The left panel shows the values of τ extracted from the ISiS data using three different fomulae: (a) by min-
imising the right hand side of Eq.(2.1) at each e value, (b) by minimising the right hand side of Eq.(4.1) and (c) by
minimising the right hand side of Eq.(4.2). In the right panel CV from data and χ2 (Eq.(2.1)) calculated from data
are plotted. The minimum of χ2 and maximum of CV coincide within experimental uncertainty.

We also test the scaling around e′
1
(Fig. 8) although some qualifying comments need to be made about this figure.

In experiments, the source size as well as the charge of the thermal source, depend upon e. The scaling law, which
spans e values on either side of e′

1
, assumes constant source size as well constant charge. Thus the scaling law can

not be directly tested without additional corrections renormalising the yields Y (z) to compensate for changes in the
source size and charge. This was not done here. (However the τ values and the values of χ2 should be insensitive
to such changes although we do require that for a given e, the source size and charge remain unchanged. This last
condition is approximately obeyed.)
We can summarise the results of the comparison with experimental data as follows. In the data the maximum of

specific heat (e2) and the minimum of χ2, e′
1
both are e ≈ 4MeV with a value of τ about 2.1 and σ about 0.53 . This
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is very close to to the results of Elliott et al. [20] for the same data set using Fisher’s droplet model approach and
Berkenbusch et al. [21] using a percolation model. For percolation, the excitation energy was defined as the critical
excitation energy in the sense of a second order phase transition. The thermodynamic model, which has no adjustable
parameters and only a first order phase transition, reproduces trends of the data very well although both e2 and σ
are higher, 6 MeV and 0.96 respectively.
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Fig.8: Scaling behavior associated with the ISiS data, around e′
1
.

Since source sizes change with excitation per particle, we tested the sensitivity of model calculations with regard
to size using the thermodynamic model. Table II gives the results. Within the range of variation of relevance to the
experimental data the changes are small, though not negligible.

V. SUMMARY AND CONCLUSION

We have discussed three characteristic excitation energies (equivalently temperatures): two of them have their origin
in Eq.(1.2) (e1= value of e0 which gives best scaling and e′

1
=value of e0 where deviation from power-law is the least)

and the third, e2, is obtained from an extremum in specific heat. In an ideal situation, all three would have the same
value. In theoretical models they are close if the Coulomb force is omitted. The Coulomb force makes a substantial
splitting between e1 and e′1, indicating the sensitivity of the extracted thermodynamic quantities to this interaction.
We find that e′

1
gives a better measure of the phase transition energy and it stays close to e2. In the experimental

data that we considered e′1 and e2 follow this pattern.
The quantitative results are dependent upon freeze-out densities and the source sizes but not sensitively so.
Lastly, we have not discussed the order of phase transition but the model calculations in sections 2 and 3 imply a first

order phase transition. In this interpretation, depending upon the excitation energy, most fragments are emitted while
inside the co-existence region of the phase diagram (and possibly the spinodal region) and the extracted “critical”
excitation energy indicates the boiling point. As pointed out earlier, the boiling point is at a similar excitation energy
as the critical point found by Elliott et al. [20] from an analysis based on the Fisher droplet model and Berkenbusch
et al. [21] based on percolation theory. Further discussions of critical phenomena [20,21] in disassembly of hot nuclei
as opposed to first order phase transition in the disassembly can be found in [12,22,23]
A first order phase transition is consistent with recent observations by the ISiS collaboration [16,24,25] of a strong

increase in fragment production probability, a strong decrease in fragment emission time, and the onset of collective
radial expansion above 4A MeV of excitation energy, which were interpreted as signatures for bulk emission. It is also
consistent with the flattening of the caloric curve from which the heat capacity was extracted [19].
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TABLE I. The values of the parameters e1, e2 and e′1, corressponding T1, T2 and T ′
1; and τ ’s at these e1, e2, e

′
1 at e1 as

obtained in LGM and thermodynamic models, for freeze-out density of 0.27ρ0. Values are shown for calculations with (WC)
and without (NC) Coulomb interactions.

Parameters LGM (NC) LGM (WC) THDM (NC) THDM (WC)

e1 11.66 3.60 6.77 0.75
T1 4.46 1.95 7.53 2.94

τ (e1) 1.964 1.771 2.77 2.36
e2 12.61 8.38 8.01 6.03
T2 4.62 3.38 7.715 6.445

τ (e2) 1.824 1.251 2.44 1.55
e′1 13.88 10.5 7.54 4.94
T ′
1 4.88 3.82 7.65 6.05

τ (e′1) 2.544 1.851 2.53 1.42
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TABLE II. The values of the parameters for two different sizes of the fragmenting source as obtained in the thermodynamic
model, for a freeze-out density of 0.27ρ0.

Parameters N=118 N=101
Z=79 Z=68

e1 0.75 1.01
T1 2.94 3.46

τ (e1) 2.36 2.35
e2 6.03 5.90
T2 6.445 6.40

τ (e2) 1.55 1.49
e′1 4.94 4.91
T ′
1 6.05 6.05

τ (e′1) 1.42 1.41
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