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Spin Hall effect and irreversible thermodynamics:
Center-to-edge transverse current-induced voltage
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We examine the Dyakonov and Perel theory of the Spin Hall effect (SHE) from the viewpoint of irreversible
thermodynamics, which is more constraining than the symmetry arguments of pure phenomenology. As
thermodynamic driving forces we include the thermal gradient, the gradient of the electrochemical potential
(rather than the potential gradient and density gradient separately), and the “internal” magnetic field that is
thermodynamically conjugate to the magnetization. In turn, we obtain the form of bulk transport coefficients
relating the fluxes to the thermodynamic forces. Relative to Dyakonov and Perel, in addition to the new terms due
to thermal gradients, the Onsager relations require three new (nonlinear) terms in the current density, and minor
revisions in the current density and spin current density. For a longitudinal current along a strip, the center-to-edge
transverse voltage difference, due both to the −β �P× �E term of of the number current density �q and to one of
the new current density terms, is calculated. An ac capacitative probe likely would not significantly disturb this
effect. An appendix explicitly relates the anomalous Hall Effect to the term in the (vector) number flux that is
Onsager related to the SHE term in the (tensor) spin flux.
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I. INTRODUCTION

The spin Hall Effect (SHE), based on spin-orbit scattering
off atoms (even for scattering off spinless atoms) [1,2]
was first proposed by Dyakonov and Perel [3,4], both for
semiconductors and metals. However, not until the SHE was
independently recognized and named by Hirsch [5]—at a time
when it was realized that spin manipulation had the prospect
of being integrated with the practical world of electronic
devices—did the SHE become a subject of intense interest [6].
In the SHE a longitudinal electric current in zero magnetic
field causes a transverse spin current that is spin polarized in
the second transverse direction. Unlike the Hall effect (HE),
the SHE is not identical to its inverse; in the inverse spin Hall
effect (ISHE) a longitudinal spin current causes a transverse
electric current.

The ISHE was observed in the 1980s [7], and (with �S the
spin density) the Onsager-related �∇×�S term in the electric
current [8], but the SHE has been observed only within
the last decade [9–11]. The transported spin that cannot
escape the transverse walls of the sample leads to an excess
spin (beyond the equilibrium value) that is called the spin
accumulation [3,4]; one of the predictions of the theory is
that spin will accumulate along the sides of the sample in the
presence of a longitudinal electric current.

For a system with a negative charge carrier, Dyakonov
and Perel applied their theory to a sample in the shape of
a wire, which at the time was the geometry most likely to
be studied [3,4,12]. More recently Dyakonov rewrote his
equations to use spin polarization density �P rather than the
spin (accumulation) density

�S = (�/2) �P

*wsaslow@tamu.edu

as a variable. He then studied, for the now commonly available
planar geometry, magnetic field dephasing (Hanle effect)
on the spin accumulation, which leads to a magnetoresis-
tance [13]. Lifshits and Dyakonov, motivated by a microscopic
view of a scatterer yielding both ordinary and spin-orbit
scattering, have have used the spin Boltzmann equation to
study in detail two terms in the spin current [14], called
spin-swapping terms because the spatial index (flow direction)
and the spin index (spin direction) are interchanged. The
spin-swapping terms were included phenomenologically in
Ref. [4].

At least some aspects of this work by Dyakonov et al.
[3,4,13,14] are consistent with the Onsager principle, but
the work as a whole has not yet been approached from
the viewpoint of irreversible thermodynamics, of which the
Onsager principle is a part. It is the purpose of the present
work to provide such an approach. We also include the effect
of temperature gradients, thus touching on the area of “spin
caloritronics” [15].

We find that, with a few additions, Refs. [3,4,13,14] are
consistent with irreversible thermodynamics. Specifically, the
Onsager principle predicts three new nonlinear terms in the
electric current. One of these new terms reduces (see Sec. VIII)
a predicted current-induced center-to-edge transverse voltage
�V⊥ by a factor of 2. Table I gives a �V⊥ as large as 10−4 V
for GaAs, but 10−8 V for Pt.

A. Dyakonov and Perel, and Hirsch

Both Dyakonov and Perel (DP), and Hirsch, have in mind
the same physical mechanism of spin-orbit scattering. DP
develop a theory for the electric current and spin current,
with an underlying kinetic theory. Hirsch employs subtle
physical arguments to estimate the SHE for a paramagnet,
using an analogy to the anomalous Hall effect (AHE) for a
ferromagnet. Such reasoning is valid because the ferromagnet
and the paramagnet are related by a continuous transformation
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of a single order parameter. Therefore certain properties of the
ferromagnet can be applied perturbatively to the paramagnet
(in Hirsch’s case, the AHE). DP remark, without proof, that
their theory implies the AHE; Appendix A shows this explic-
itly. Hirsch also explicitly predicts the ISHE (implicit in DP),
which has become a valuable tool.

B. Phenomenology vs irreversible thermodynamics

The present work is based on the methods of irreversible
thermodynamics, rather than being a pure phenomenology,
or being based on a Boltzmann equation. To illustrate the
distinction between these three types of theory, we consider
the bulk spin transfer torque (STT) and spin pumping (SP) in
ferromagnets with nontrivial equilibrium configurations (e.g.,
a domain wall, so with �M the magnetization it has ∂i

�M �= 0).
In STT a spin-polarized current drives the magnetic dynam-
ics; in SP magnetic disequilibrium drives a spin-polarized
current.

For both STT and SP, there are two such terms. Pure phe-
nomenology gives four unconstrained coefficients. However,
irreversible thermodynamics relates two pairs of these terms,
leading to only two unconstrained terms. In addition, irre-
versible thermodynamics shows that the so-called adiabatic
terms are dissipative (they are adiabatic in space but not
in time), and contribute to the rate of entropy and heat
production, whereas the so-called nonadiabatic terms are
nondissipative, and do not contribute to the rate of entropy
and heat production [16]. Transport theories can obtain these
properties of the irreversible thermodynamics and also give
specific values for the corresponding transport coefficients.
Reference [17] develops a transport theory for the spin
Hall effect in ferromagnets, but restricts itself to diagonal
components for the spin, and thus does not consider certain
transport coefficients of interest in the present work. Note
also Ref. [18], which presents a sophisticated phenomenology
for magnetic semiconductors, and applies it to the spin Hall
effect. DP present certain relationships between their transport
coefficients, obtained via kinetic theory. See Sec. V.

The above examples apply to the case of so-called off-
diagonal dissipation coefficients. Irreversible thermodynamics
has also been used to study diagonal dissipation coefficients.
This is particularly relevant to ferromagnetic damping. There
are two phenomenological theories of magnetic damping,
one due to Landau and Lifshitz, and one due to Gilbert.
However, three independent derivations of near-equilibrium
magnetic damping each yields Landau-Lifshitz damping. This
and related issues are discussed in Appendix B.

C. Outline

Section II gives the equations employed in Ref. [14] and
points out that the spin polarization density �P is employed, in
the context of irreversible thermodynamics, in three ways—a
clarification necessary for appreciating the complexity of the
theory. Section III presents the thermodynamic variables and
the thermodynamics of the system. Section IV presents the
equations of motion for the system, and the constraint on the
rate of entropy density production Rs � 0. Section V shows
that, in the absence of temperature gradients (not considered

in Ref. [14]) the equations of Ref. [14] are not quite consistent
with Rs � 0, and gives three additional terms that must be
present in the number flux qi . Section VI gives all of the fluxes,
including the entropy flux (which has the same symmetry as
the number flux), that are consistent with Rs � 0. Section VII
applies two of the nonlinear terms in qi—the ( �P× �E) term
and the “new” Pj∂iPj term to the strip geometry, finding
that there is a small transverse voltage difference between the
center and the edges of the strip. Section VIII gives a summary
and conclusions. Appendix A determines the AHE resistivity
ρAHE using the theory of Dyakonov and Perel, and Ap-
pendix B discusses irreversible thermodynamics and magnetic
damping.

II. ON THREE USES OF THERMODYNAMIC VARIABLES

Theories of the SHE have employed any of the equivalent
variables spin density �S, spin polarization density �P (units
of density), or magnetization �M (units of magnetic moment
density); they are all proportional with “universal” constants.
Following Ref. [13] we will employ �P . We point out that �P
appears in the theory in three roles: (1) dynamical variable; (2)
“structure constant” used to construct thermodynamic forces
and sources with the correct number of vector indices and the
correct spatial inversion properties; and (3) thermodynamic
driving force.

To be specific, we consider the equations employed in
Ref. [13]. The number density n is associated with the number
flux �q, which is proportional to the electric current density
�j , and �P is associated with the polarization flux qij . With
carrier charge −e (electrons), electric field �E, mobility μ, and
parameter (rather than variation) δ, Ref. [13] gives for �q and
qij ,

�q = −
�j
e

= −[μn �E + D �∇n] − β �E× �P − δ �∇× �P , (1)

qij = −μEiPj − D∂iPj + εijk[βnEk + δ∂kn]. (2)

(In qij the first index is real space and the second index is
spin space.) Observe that �q and qij satisfy the equations of
motion

∂tn + �∇ · �q = 0, (3)

∂tPj + ∂iqij = −( ��× �P )j − τ−1
s Pj , (4)

where the angular frequency �� = γ �B ( �B = μ0 �H is in units
of Tesla, where μ0 is the permeability of free space and the
applied field �H is in units of A/m). Note that �� and �P have
signatures under time reversal T : t → −t that are both odd.
In both (1) and (2), the terms in β and δ were introduced in
Ref. [3], and are due to spin-orbit scattering. Their signature
under time reversal is opposite the signature of the usual
(dissipative terms), and therefore they are nondissipative.

In qij , which was the focus of Refs. [3,4], the εijk(βnEk +
δ∂kn) terms are responsible for the SHE. In �q the �P× �E
term, which is required by the Onsager principle from the
SHE terms in qij , leads to an AHE in the presence of an
out-of-plane magnetic field that is strong enough to overcome
the demagnetization field acting on �P . This is shown in
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Appendix A. (Dyakonov and Perel did not invoke the Onsager
principle in obtaining their results.) The �∇× �E term in �q is
responsible for the ISHE.

With these equations at hand, we can now comment on the
three types of usage of �P :

(1) �P is a dynamical variable in the ∂tPj term of (4).
(2) �P is used twice as an order-parameter-related structure

term: in �q the term proportional to �E× �P , and in qij the term
proportional to EiPj . Systems for which Pi = 0 have no such
order and no such structure term.

(3) �P is used three times as a stand-in for the as-yet-
undefined thermodynamic driving force �ψ , to which it is
proportional: In �q the term in �∇× �P and in qij the term in
∂iPj both serve as thermodynamic forces that yield fluxes;
and in ∂tPj the Pj term serves as a thermodynamic force that
leads to a source. We will show that �ψ is the same as the
(properly defined) spin accumulation potential �μs :

�ψ ≡ �μs.

Because �S ∼ �P ∼ �μs , spin accumulation is often used for spin
accumulation potential.

Note that the density operator matrix in spin space ñ can be
written as [13]

ñ = 1
2 (nσ0 + �n · �σ ),

where σ0 is the unit 2-by-2 matrix, �σ is the set of Pauli spin
matrices, and

�n ≡ �P .

Nevertheless we continue to use �P of Ref. [13]. Other notations
have also been employed for n̂ and the variables it contains,
sometimes without the factor of 1

2 .
Reference [14] adds four (nonlinear) terms �qij to the qij

given above:

�qij = −κsoμ(PiEj − δij
�P · �E) − κsoD(∂jPi − δij

�∇ · �P ),

(5)

where κso is due to spin-orbit scattering (Ref. [14] uses κ ,
which we will reserve for the thermal conductivity, later).
qij + �qij contains three terms bilinear in �P and �E. They are
all dissipative.

Our use of irreversible thermodynamics leads to a theory
with the same structure as that of Dyakonov and Perel, with
two exceptions:

(1) Wherever the electric field �E appears by itself, it should
be accompanied by a density gradient �∇n with coefficient such
that the combination may be condensed to a single effective
electric �E∗ (see Sec. IV) that includes both [19]. This density
gradient correction is significant for semiconductors but not
for metals. For a Rashba potential where a true field �E shifts
the particle energy in a nearly two-dimensional situation, this
comment does not hold because there �E serves as a structure
constant rather than as a thermodynamic force [20].

(2) By Onsager, the three terms in qij + �qij bilinear in
�P (as a structure term) and �E (as a thermodynamic force)

lead to three additional terms in qi that are bilinear in �P
(as a structure term) and the gradient of its thermodynamic
driving force �ψ ≡ �μs . Because, as shown by Dyakonov and

Perel, �P is produced by �E, these new terms are nonlinear in
deviations from equilibrium. Section VIII presents the example
of a transverse voltage whose value is reduced by a factor of 2
by one of the new terms.

In principle we treat the three-dimensional (3D) case,
where there is bulk inversion asymmetry, normally associated
with the Dresselhaus [21] interaction. However we also
have in mind the two-dimensional case (2D), where there is
surface inversion asymmetry, which can be due to either the
Dresselhaus [21] or Rashba interaction [20].

III. METHOD OF IRREVERSIBLE THERMODYNAMICS

Although the method of irreversible thermodynamics is
well established [22–27], often it is not applied, even
when it is relevant. (It took some 30 years before irre-
versible thermodynamics was applied to distinguish between
two proposed phenomenologies for magnetic damping—see
Appendix B.) In the present case of the SHE, there has
been a time interval of over 40 years between the initial,
seminal, work [3,4] and the present application of irreversible
thermodynamics to test its consistency. (A number of recent
works [16,28,29] have applied irreversible thermodynamics to
magnetic systems, but they have not considered the SHE). The
method, briefly, is as follows:

(1) Define the appropriate variables for the system and give
its thermodynamics, typically for the energy density in terms
of intensive thermodynamic variables (such as temperature T )
and the density of the conjugate extensive variable (such as
entropy density s). This depends on the order, or symmetry, of
the system.

(2) For each thermodynamic density X write down the
conservation law or (when not appropriate, as for spin density,
which is not conserved) the equation of motion in terms of an
unknown flux jX

i and (if X does not correspond to a conserved
quantity) an unknown source RX. It is the goal of irreversible
thermodynamics to obtain these quantities:

∂tX + ∂ij
X
i = RX. (6)

(3) Using the thermodynamics and the equations of motion,
determine the rate of entropy density production Rs as a
sum of products of fluxes (such as entropy flux j s

i ) with
their appropriate thermodynamic forces (such as temperature
gradient ∂iT ) and as a pure divergence involving fluxes.

(4) Determine the forms of the fluxes and sources, linear
in the thermodynamic forces, and subject to the symmetries
appropriate to the particular system being studied (for example,
entropy flux proportional to temperature gradient and gradient
of electrochemical potential). In the present case we will use
the fluxes given above.

(5) Enforce the condition that the rate of entropy density
production Rs � 0. At this point we apply the Onsager
relations for the transport coefficients to ensure that: (1) the
dissipative contributions to the rate of entropy production
with the same form are equal (e.g., from entropy current
driven by the gradient in electrochemical potential and from
electric current driven by the gradient in temperature); and
(2) nondissipative terms cancel. We now follow the specified
procedure.
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IV. THERMODYNAMICS

A. Definitions

For our magnetic system, with no spontaneous magnetiza-
tion �M , the differential of the energy density ε will be written
in terms of an entropy density s, a number density n, and
(following Ref. [13]) a spin polarization density Pi directed
along the direction Ŝi of the local spin density Si . In terms of
up and down spin number densities n↑ and n↓, we have

n = n↑ + n↓, Pi = Ŝi(n↑ − n↓). (7)

Thermodynamically conjugate to s is the temperature T ,
and thermodynamically conjugate to n is the electrochemical
potential

μ̃ = μc − eV, (8)

where μc is the chemical potential of electrons with charge −e

(with subscript c to distinguish μc from the mobility μ), e is
the magnitude of the electronic charge, and V is the electrical
potential. From this one can define the effective potential V ∗,
whose negative gradient gives the effective electric field �E∗:

V ∗ = V − 1

e
μc = − μ̃

e
, (9)

�E∗ = 1

e
�∇μ̃ = −�∇V ∗ = −�∇V + 1

e
�∇μc. (10)

We employ �E∗ rather than �̃E because the latter is awkward.
Considering μc to be a function only of n, we may take

δμc = (∂μc/∂n)δn, and write

�E∗ = �E + 1

e

∂μc

∂n
�∇n. (11)

As observed earlier, when a field �E appears in the equations as
a thermodynamic force, it should be in the above combination
with �∇n [19]. Note that a temperature-dependent term leads to
thermoelectric and magnetothermoelectric effects, which we
obtain below.

With gyromagnetic ratio

γ ≡ |g|μB

�
, μB ≡ e�

2me

, (12)

where g ≈ −2 is the g -factor and μB is the Bohr magneton
(me is the bare electron mass), the magnetization �M and spin
density �S are related by

�M = −γ �S. (13)

Further, �S and the polarization density �P are related by

�S = �

2
�P , (14)

and thus

�M = −|g|μB

2
�P = −a �P , a ≡ |g|μB

2
= γ �

2
. (15)

Note that for the common case where |g| ≈ 2 we have a ≈ μB .
In SI units �M is given in A/m.

B. Thermodynamics

The thermodynamics of the system alone is given by

dεsys = T ds + μ̃dn + μ0 �Hint · d �M, (16)

where T is the temperature, s is the entropy density, μ0 is the
magnetic permeability of free space, and �Hint is the (internal)
field (in A/m) that is conjugate to �M .

Note that the energy density of interaction of �M and an
applied field �H is

εI = −μ0 �M · �H, (17)

and that in equilibrium �Hint = �H .
The magnetic induction is

�B = μ0( �H + �M), (18)

and is in units of Tesla. Note that �M× �B = μ0 �M× �H .
For paramagnetic systems (our present concern)

�M ≈ χ �Hint, (19)

with χ dimensionless; �M , like �H , is in units of A/m. For
fixed s and n, integration of (16) with (19) gives an energy
of magnetization μ0M

2/2χ , as expected. The total energy,
including the field interaction energy, satisfies

dε = T ds + μ̃dn − μ0 �H ∗ · d �M, �H ∗ ≡ �H − �Hint. (20)

In equilibrium �Hint = H , so �H ∗ = �0. We now shift thermo-
dynamic variable from �M to �P via (15), which requires a shift
from conjugate thermodynamic variable �H ∗ to

�ψ = gμB

2
(μ0 �H ∗) = γ �

2
(μ0 �H ∗), (21)

so that μ0 �M · �H ∗ = �P · �ψ . Then the thermodynamics is

dε = T ds + μ̃dn + �ψ · d �P . (22)

For a paramagnetic system,

�ψ ≈ μ0a
2

χ
�P + μ0a �H = λ �P + μ0a �H, λ ≡ μ0a

2

χ
. (23)

For dimensional checks note that μ0a
2 has units of energy

volume, �ψ has units of energy, and �P has units of density.

C. On notation

We now compare the present notation �H ∗ for a conducting
ferromagnet, introduced by Johnson and Silsbee [30] and
earlier used by the author [16], with the (vector) spin
chemical potential �μs employed by Refs. [31,32]. We will
find that �H ∗ ∼ �ψ = �μs . Paramagnets and ferromagnets can
be compared because they are related by a single continuous
order parameter; when a paramagnet has a nonzero polariza-
tion (magnetization), that gives it the same symmetry as a
ferromagnet. We will find that a term in the current that does
not normally appear for paramagnets is what enables us to
make the identification �H ∗ ∼ �ψ = �μs .

Although Refs. [31,32] do not employ thermodynamics,
they do present the electric current, which can then be
compared with the current of Ref. [16], which also does
the thermodynamics. We take the majority spin current to be
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down, and the down-spin conductivity σ↓ to exceed the up-spin
conductivity σ↑. Let

σ ≡ σ ↑ + σ ↓, P ≡ (−σ ↑ + σ ↓)/σ,

where P is the polarization of the spin current (not the
magnitude of the spin polarization). Reference [32] gives (we
restore a factor of e) the electric current density ji as

eji = σ∂iμ − Pσ∂i(M̂ · �μs). (24)

The second term in the current does not normally appear
for a paramagnet. Reference [17], which uses the spin-
diagonal Boltzmann equation to study the spin Hall effect
in a ferromagnet, also obtains this second term, among others.

On the other hand, Ref. [16], which does both the thermo-
dynamics and irreversible thermodynamics of a ferromagnet,
gives its Eqs. (A15) and (A16) for the number currents. The
sum of the number currents yields, on neglecting all but the
most essential terms,

j↑i + j↓i = −σ↑
e2

∂iμ
∗
↑ − σ↓

e2
∂iμ

∗
↓ + · · · . (25)

Here the magnetoelectrochemical potentials μ∗
↑ and μ∗

↓ are
given in terms of the electrochemical potentials

μ̃↑ ≡ μ↑ − eV, μ̃↓ ≡ μ↓ − eV,

where μ↑ and μ↓ are the chemical potentials and V is the
voltage, via

μ∗
↑ ≡ μ̃↑ + μ0(γ �/2)M̂ · �H ∗, μ∗

↓ ≡ μ̃↓ − μ0(γ �/2)M̂ · �H ∗.

(26)

Setting μ̃↑ = μ̃↓ = μ we then obtain for e times the electric
current density ji = −e(j↑i + j↓i) that

eji = σ∂iμ − Pσ∂i[M̂ · (−γ �/2)(μ0 �H ∗)]. (27)

Comparison with (21) yields that

�μs = γ �

2
(μ0 �H ∗). (28)

This is identical with (21). Henceforth we will employ �μs of
Refs. [31,32] rather than continue to use �ψ . By (23) we then
have

�μs ≈ μ0a
2

χ
�P + μ0a �H = λ �P + μ0a �H, λ ≡ μ0a

2

χ
. (29)

V. IRREVERSIBLE THERMODYNAMICS DERIVATION

What follows refers only to the nonequilibrium parts of
the spin currents, thus assuming that any equilibrium spin
currents [33] are not subject to dissipation. Following Ref. [13]
we employ �P rather than �S or �M . We employ jε

i , j s
i , jn

i , and qij

for the energy flux, entropy flux, number flux, and polarization
flux. For the source terms for the nonconserved entropy s and
polarization Pi we employ Rs � 0 and Rj .

If, as we assume, the field source is constant in time, its
energy does not change (dεfield = 0), so with

εtot = ε + εfield, (30)

the thermodynamics is given by (20).

The equations of motion for ε, n, s, and Pj are

∂tε + ∂ij
ε
i = 0, (31)

∂t s + ∂ij
s
i = Rs, (32)

∂tn + ∂iqi = 0, (33)

∂tPj + ∂iqij = −γμ0( �P× �H )j + Rj . (34)

Use of (31)–(34) in the time derivative of Eq. (30) leads to
an equation for the non-negative quantity Rs . We rewrite this
equation, using partial integration as needed, so that it is a sum
of two types of terms. First is a divergence; second is a sum
over each flux times its corresponding thermodynamic force.
Specifically, we have (on dropping the term involving �P× �H
since, by (29), �μs · ( �P× �H ) = 0)

0 � Rs = −∂i

[
jε
i − Tjs

i − μ̃qi − qijμs,j

]
− j s

i ∂iT − qi∂iμ̃ − qij ∂iμs,j − Rjμs,j . (35)

The fluxes of Dyakonov and Perel in the language
of irreversible thermodynamics

For later reference, we rewrite the fluxes of Dyakonov
and Perel, �q and qij (appended by �qij ) in the language
of irreversible thermodynamics, where E∗

i is replaced by
(1/e)∂iμ̃ [34], and (where appropriate) �P is replaced by �μs/λ.
Equations (1), (2), and (5) then become

�q = −μn �E∗ − β �E∗× �P − δ �∇× �P
= −μn

e
�∇μ̃ − β

e
( �∇μ̃× �P ) − δ

λ
�∇×�μs, (36)

qij = −μE∗
i Pj − D∂iPj + εijkβnE∗

k

= −μ

e
∂iμ̃Pj − D

λ
∂iμs,j + εijk

βn

e
∂iμ̃, (37)

�qij = −κsoμ(PiE
∗
j − δij

�P · �E∗)

− κsoD(∂jPi − δij
�∇ · �P )

= −κsoμ

e
Pi(∂j μ̃) + κsoμ

e
δij

�P · �∇μ̃

− κsoD

λ
∂jμs,i + κsoD

λ
δij

�∇ · �μs. (38)

Comparison of (4) and (34) yields

Rj = − 1

τs

Pj = − 1

τsλ
μs,j . (39)

The equations above distinguish between �P used as a structure
term and used to form the thermodynamic force source �μs . (We
will see that μs,i is a source associated with spin-flip and ∂jμs,i

is a force associated with diffusion.)
Note that β has units of mobility and δ has units of diffusiv-

ity. The spin-orbit-related parameter κso is dimensionless; [14]
gives values of 0.3 (InSb) and 0.003 (GaAs). Reference [3],
which uses �S rather than �P , gives the relationship

β = eδ

kBT
; (40)
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that relationship still holds, although both β and δ now have
different units than in Ref. [3]. Further, Ref. [3] gives

γso = β

μ
= δ

D
, (41)

where γso is a dimensionless measure of the effect of the spin-
orbit interaction (Ref. [13] actually uses γ , rather than γso),
and is about 10−2 for GaAs and 0.37×10−2 for Pt at room
temperature. The fact that (40) and (41) were given by
Dyakonov and Perel is an indication of the Boltzmann equation
approach underlying their papers [3,4].

VI. SYMMETRY-ALLOWED STRUCTURE OF FLUXES

We now derive the irreversible thermodynamics. For clarity,
we will present the fluxes (in this usage we consider the source
Ri to be a generalized type of flux) in three stages. First, we give
the usual fluxes when there is no spin-orbit interaction. Second,
we include terms when there are spin-orbit interactions, but we
do not use Pj in constructing the fluxes. Third, we construct
the fluxes with spin-orbit interactions and with Pj . For qn

i , j s
i ,

and qij each term must be odd under spatial inversion, but for
Ri each term must be even under spatial inversion. After the
fluxes are constructed we will compare with the forms given
above, due to DP.

Using Onsager coefficients L (superscripts are associated
with the “flux” to the left, subscripts are associated with the
“force” to the right), the first set of linearized thermodynamic
fluxes is given by

q
(1)
i = −Ln

T ∂iT − Ln
μ̃∂iμ̃, (42)

j
s(1)
i = −Ls

T ∂iT − Ls
μ̃∂iμ̃, (43)

q
(1)
ij = −LP 1

μs
∂iμs,j , (44)

R
(1)
i = −LP

μs
μs,i . (45)

Comparison with (36), (37), (38), and (39) yields

Ln
μ̃ = μn

e
= σ

e2
, σ ≡ neμ, (46)

LP 1
μs

= D

λ
, LP

μs
= 1

τsλ
. (47)

With κ the thermal conductivity, S the Seebeck coefficient,
and � the Peltier coefficient, comparison of (42) and (43)
with conventional definitions yields

Ls
T = κ

T
, Ln

T = −σS
e

, Ls
μ̃ = −�σ

eT
. (48)

The second set of linearized thermodynamic fluxes is

q
(2)
i = −Ln

μs
εijk∂jμs,k = −Ln

μs
( �∇×�μ)s,i , (49)

j
s(2)
i = −Ls

μs
εijk∂jμs,k = −Ls

μs
( �∇×�μ)s,i , (50)

q
(2)
ij = −LP

T εijk∂kT − LP
μ̃εijk∂kμ̃

−LP 2
μs

∂jμs,i − LP 3
μs

δij ∂kμs,k, (51)

R
(2)
i = 0. (52)

Except for those associated with the entropy flux, these all
have corresponding terms in Ref. [13]. Comparison with (36),
(37), (38), and (39) yields

Ln
μs

= δ

λ
, LP

μ̃ = −βn

e
, LP 2

μs
= κsoD

λ
, LP 3

μs
= −κsoD

λ
.

(53)

Two (thermal) terms were not discussed in Ref. [13]:

Ls
μs

, LP
T .

The third set of linearized thermodynamic fluxes is

q
(3)
i = −Ln1

μsP
Pj∂iμs,j − Ln2

μsP
Pj∂jμs,i − Ln3

μsP
Pi∂jμs,j

−Ln
T P ( �P×�∇T )i − Ln

μ̃P ( �P×�∇μ̃)i , (54)

j
s(3)
i = −Ls1

μsP
Pj∂iμs,j − Ls2

μsP
Pj∂jμs,i − Ls3

μsP
Pi∂jμs,j

−Ls
T P ( �P×�∇T )i − Ls

μ̃P ( �P×�∇μ̃)i , (55)

q
(3)
ij = −LP 1

μ̃P Pj∂iμ̃ − LP 2
μ̃P Pi∂j μ̃ − LP 3

μ̃P δijPk∂kμ̃

−LP 1
T P Pj∂iT − LP 2

T P Pi∂jT − LP 3
T P δijPk∂kT , (56)

R
(3)
i = 0. (57)

Only the terms in q
(3)
ij associated with gradients of μ̃ are already

contained in Ref. [14]. In addition to the sets of terms involving
the entropy flux and involving temperature gradients, the terms
associated with the number flux are new. Of these sixteen new
terms, the theory of Dyakonov and Perel makes statements
about four of them:

Ln
μ̃P = − β

e
, LP 2

μ̃P = μ

e
, LP 3

μ̃P = κsoμ

e
, LP 1

μ̃P = − κsoμ

e
.

(58)

The others remain undetermined:

Ln1
μsP

, Ln2
μsP

, Ln3
μsP

, Ls1
μsP

, Ls2
μsP

, Ls3
μsP

,

×Ln
T P , Ls

T P , Ls
μ̃P , LP 1

T P , LP 1
T P , LP 1

T P .

Nevertheless, because of various Onsager relations—soon
to be derived—the three new terms associated with �q—
Ln1

μsP
, Ln2

μsP
, Ln3

μsP
—can be related to various coefficients

determined by Ref. [14].

VII. RATE OF BULK ENTROPY PRODUCTION

We now turn to the rate of bulk entropy (density) production
Rs of (35). A term in qij ∂iμs,j involving (∂iμs,j )(∂jμs,i) will
have to be rewritten to enable us to “complete the square.” To
this purpose we employ the identity

(∂jAi)(∂iAj ) = ∂i(Aj∂jAi − Ai∂jAj ) + ( �∇ · �A)2 (59)

for Ai = μs,i . When used later, this enables us to write the
rate of entropy production in terms of ( �∇ · �A)2 and (∂iμs,j )2

without any (∂iμs,j )(∂jμs,i) terms. This is relevant to ensuring
that, after the fluxes have been expressed in terms of forces,
none of the off-diagonal terms in Rs are too large—otherwise
they could dominate, thus permitting Rs to take on either sign,
contrary to Rs � 0. In what follows we will assume that �Ba
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is uniform, so its gradient is zero. A uniform but nonzero �Ba

will affect the equilibrium value of �μs and �P , which can be
handled as appropriate.

Now note that the divergence term, involving unknown
fluxes, must be zero, since divergences can be of either sign.
Therefore, no matter what the coefficients in the fluxes, setting
the divergence to zero gives jε

i in terms of the other fluxes (and
an unphysical curl term, whose divergence is zero).

After using the identity (59) to modify the divergence term
in (35) we find that the energy flux in (35) takes the form

jε
i = Tjs

i + μ̃qi + qijμs,j − (μs,j ∂jμs,i − μs,i∂jμs,j ). (60)

Substitution of the fluxes of the previous section into (35)
yields 28 terms. Specifically, qi contributes eight terms, j s

i

eight terms, qij eleven terms, and Ri one term. Of these,
six terms directly involve the squares of the thermodynamic
forces, two are identically zero because they involve self-cross

products, and the remaining 20 have the form of products of
different thermodynamic forces, with ten repeats. It is to these
repeats that the Onsager principle applies, reducing the number
of off-diagonal terms to ten, for a total of 16 independent
transport coefficients.

For the on-diagonal terms in Rs we find

0 � Rs = Ls
T ( �∇T )2 + Ln

μ̃( �∇μ̃)2 + LP 1
μs

(∂iμs,j )2

+ (
LP 2

μs
+ LP 3

μs

)
( �∇ · �μs)

2 + LP
μs

( �μs)
2 + · · · . (61)

All of these diagonal terms must have non-negative coeffi-
cients, so

Ls
T � 0, Ln

μ̃ � 0, LP 1
μs

� 0,

LP 2
μs

+ LP 3
μs

� 0, LP
μs

� 0. (62)

For the off-diagonal terms in Rs we find

0 � Rs = (∂iT )(∂iμ̃)
(
Ls

μ̃ + Ln
T

) + ( �∇T · �∇×�μs)
(
Ls

μs
+ LP

T

) + ( �∇T · �P×�∇μ̃)
(
Ls

μ̃P − Ln
T P

)
+ (∂iT )(Pj∂iμs,j )

(
Ls1

μsP
+ LP 1

T P

) + (∂iT )(Pj∂jμs,i)
(
Ls2

μsP
+ LP 2

T P

) + (∂iT )(Pi∂jμsj
)
(
Ls3

μsP
+ LP 3

T P

)
+ ( �∇μ̃ · �∇×�μs)

(
Ln

μs
+ LP

μ̃

) + (∂iμ̃)(Pj∂iμs,j )
(
Ln1

μsP
+ LP 1

μ̃P

) + (∂iμ̃)(Pj∂jμs,i)
(
Ln2

μsP
+ LP 2

μ̃P

)
+ (∂iμ̃)(Pi∂jμsj

)
(
Ln3

μsP
+ LP 3

μ̃P

) + · · · . (63)

The terms even (odd) under time reversal are dissipative
(nondissipative). In effect, the Onsager principle states that the
two contributions to Rs from a product of two thermodynamic
forces are equal (or equal and opposite) if the combined
term (including structure terms, like Pi) is even (or odd)
under time reversal. The Onsager principle thus ensures that
the nondissipative terms (which can change sign under time
reversal) do not contribute to the rate of entropy production,
and that the “force” A acting on the flux b conjugate to the
force B causes the same rate of dissipation as the force B

acting on the flux a conjugate to the force A.
Application of the Onsager principle then leads to

Ls
μ̃ = Ln

T , Ls
μs

= −LP
T , Ls

μ̃P = Ln
T P , Ln

μs
= −LP

μ̃ ,

Ls1
μsP

= LP 1
T P , Ls2

μsP
= LP 2

T P , Ls3
μsP

= LP 3
T P ,

Ln1
μsP

= LP 1
μ̃P , Ln2

μsP
= LP 2

μ̃P , Ln3
μsP

= LP 3
μ̃P . (64)

The first of these leads to

Ln
T = −σS

e
= Ls

μ̃ = −�σ

eT
, (65)

so

� = T S, (66)

a thermoelectric relation due to Kelvin.

In terms of coefficients that have been defined in Ref. [14]
we have

Ln1
μsP

= LP 1
μ̃P = μ

e
, (67)

Ln2
μsP

= LP 2
μ̃P = κsoμ

e
, (68)

Ln3
μsP

= LP 3
μ̃P = −κsoμ

e
, (69)

Ln
μs

= −LP
μ̃ =>

δ

λ
= βn

e
. (70)

The last of these is consistent with the relationship (40), on
using λ of (29) and the appropriate χ .

If we neglect the terms involving temperature gradients,
there are four diagonal coefficients and four off-diagonal
coefficients. We do not write down the nine inequalities,
obtained by completing the squares, necessary to ensure that
the products of the off-diagonal terms (which can be of either
sign, according to the direction of a given thermodynamic
force) do not overwhelm the corresponding diagonal terms.
Some of them require transport coefficients that are higher
order in �P , which we do not consider.

Neglecting the effects of temperature gradients in q
(3)
i , the

new terms augment (36) by

�qi = −Ln1
μsP

Pj∂iμs,j − Ln2
μsP

Pj∂jμs,i − Ln3
μsP

Pi∂jμs,j

= −μ

e
λPj∂iPj − κsoμ

e
λPj∂jPi − κsoμ

e
λPi∂jPj , (71)
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where the second equality arises on using (58) and (29). In
what follows we will need only the first of these terms.

VIII. CENTER-TO-EDGE VOLTAGE:
A SECOND-ORDER EFFECT

Consider a long strip of width L with normal along z, in
a uniform field �E0 along x, and −L/2 � y � L/2. We now
show that this leads to a center-to-edge voltage, whose value
is affected by the first term in (71).

Because the spin-orbit term βεijkE
∗
k in qyz is nonzero, to

satisfy the boundary conditions

qyz|y=±L/2 = 0 (72)

requires a polarization Pz(y). The δ �∇× �P term in �q then leads
to a small correction �qx(y) to the number current density qx ,
which in turn leads to a small correction �R to the resistance
R measured along x. For this geometry, including an applied
field Ha normal to the plane, Ref. [13] calculated �qx(y)
and then the magnetoresistance R(Ha) that arises from the
accumulation of Pz at the edge.

A. Nonzero Ey and �V⊥ = V (L/2) − V (0)

For Pz �= 0, the β �P× �E∗ term in �q of (36) leads to a nonzero
qy . Thus (recall that Dyakonov’s number flux is �q), to satisfy

qy |y=±L/2 = 0 (73)

at the edges requires an E∗
y . This leads to a small but not

insignificant nonzero transverse voltage difference

�V⊥ = V (±L/2) − V (0) = −
∫ L/2

0
Eydy, (74)

which might be observable by ac capacitative techniques (these
do not change the boundary conditions on either the current
qy or the spin current qyz).

The new term −(μ/e)Pz∂yPz from (71) is of the same order
of magnitude as the β �P× �E∗ term in (36), so its effect must be
included. Since Ref. [13] does not present Pz(y), we derive it
now. We employ a perturbation theory approach in powers of
E0.

B. Evaluating Pz( y)

To lowest order we take

qy ≈ 0, qx ≈ −μnE0. (75)

In the bulk, but not necessarily near the leads along x, ∂xn = 0.
Assuming that Pz depends only on y, we consider only qyz

to be nonzero. To lowest order it is, by (37),

qyz = −D∂yPz + βnE0. (76)

From (4) with ∂tPz = 0 we have

∂iqiz = ∂yqyz = −Pz

τs

. (77)

Combining (76) and (77) yields

−D∂2
yPz = −Pz

τs

. (78)

With Ls the spin-flip-diffusion time, the solution of this is
given by

Pz = A sinh

(
y

Ls

)
+ B cosh

(
y

Ls

)
, L2

s ≡ Dτs, (79)

for arbitrary A and B. Application of the boundary condi-
tions (72) at y = ±L/2 leads to A and B, and thence

Pz = βnE0Ls

D

sinh
(

y

Ls

)
cosh

(
L

2Ls

) . (80)

C. Evaluating Ey and �V⊥

By (36) and the first term of (54) we have, with (67) and
μs,z = λPz,

qy = −μnE∗
y + βE0Pz − μ

e
Pz∂yμs,z. (81)

The last term is the correction due to the new term in (71).
Because qx is nearly constant in space, the �∇ · �q = 0

condition also leads to qy being constant in space. Since
qy = 0 at y = ±L/2, we have qy = 0 for all y, a condition
that determines Ey and �V⊥. Specifically, from (81) with
qy = 0, and using ∂yPz explicitly (but not yet Pz) we find that

E∗
y = βE0

μn
Pz

(
1 − μλn

eD

cosh
(

y

Ls

)
cosh

(
L

2Ls

)
)

. (82)

By (70) and (41) we have

μλn

eD
= 1.

Then, substituting Pz yields

E∗
y = Ē sinh

(
y

Ls

) (
1 −

cosh
(

y

Ls

)
cosh

(
L

2Ls

)
)

,

Ē ≡ β2E2
0Ls

μD cosh(L/2Ls)
. (83)

Use of E∗
y above in Gauss’s law in the form

�∇ · �E = 1

ε
(−eδn), (84)

where ε is the dielectric constant, with (11) leads to an equation
for δn:

∂yE
∗
y = − e

ε

(
δn − l2

D∂2
y δn

)
, l2

D ≡ ε

e2

∂μc

∂n
. (85)

Here lD is the electrical screening length.
With cI1 ≡ (1 − l2

D/L2
s )−1 and cI2 ≡ (1 − 4l2

D/L2
s )−1, the

inhomogeneous solution δnI is given by

δnI = − Ēε

eLs

cI1 cosh
y

Ls

+ Ēε

eLs

cI2

cosh 2y

Ls

cosh L
2Ls

. (86)

Requiring that the homogeneous solution be symmetric about
y = 0, it must have the form

δnH = K cosh

(
y

lD

)
, (87)
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TABLE I. Table with estimated experimental values. ρGaAs estimated via ρ = (neμ)−1, with n = 1022/m3 from Ref. [35]. jGaAs
max estimated

by scaling jPt
max by ρPt/ρGaAs. Emax

0 ≡ ρjmax.

Material γso μ (m2/V s) τs (s) ρ (ohm m) jmax (A/m2) Emax
0 (V/m) �V max

⊥ (V)

GaAs 0.01 0.54 (Ref. [35]) 10−7 (Ref. [36]) 0.00117 0.86×106 0.54×104 7.0×10−5

Pt 0.0037 0.01 (Ref. [37]) 10−12 (Ref. [38]) 9.6×10−8 (Ref. [39]) 1.0×1011 (Ref. [40]) 1.0×104 6.8×10−9

where the overall charge neutrality requirement∫ L/2

−L/2
dy(δnI + δnH ) = 0 (88)

gives

K = εĒ

elD
(cI1 − cI2)

sinh
(

L
2Ls

)
sinh

(
L

2lD

) . (89)

Note that the dimensionless coefficient cI1 − cI2 is of order
l2
D/L2

s , which is very small. Comparison of Ē and K shows
that δnH is smaller than δnI by a factor of lD/Ls .

With δn = δnI + δnH we solve Gauss’s law for Ey :

Ey = Ē sinh

(
y

Ls

) (
cI1 − cI2

cosh
(

y

Ls

)
cosh

(
L

2Ls

)
)

−K
elD

ε
sinh

(
y

lD

)
. (90)

As just noted, typically lD 
 ls , so we now can take cI1 ≈
cI2 ≈ 1 for the term in Ē.

For the term in K , although the integral over K sinh(y/lD)
grows exponentially in L/lD , this is compensated by a sim-
ilarly exponentially growing denominator in K . The integral
over y multiplies the Ē term by a factor on the order of Ls ,
whereas it multiplies the K term by a factor of only lD . The
net effect is that the transverse voltage produced by δnH ∼ K

is smaller by l2
D/L2

s than the transverse voltage produced by
δnI ∼ Ē. We thus neglect the effect of δnH on the transverse
field and voltage.

Performing the integral of (74) using only the Ē term in (90)
yields

�V⊥ ≈ − (βE0Ls)2

μD

⎡
⎣1 − 1

cosh
(

L
2Ls

) − 1

4

cosh
(

L
Ls

) − 1[
cosh

(
L

2Ls

)]2

⎤
⎦ .

(91)

The last of the three terms in the brackets is due to the new
term—the correction due to the application of irreversible
thermodynamics. In the limit where L � Ls , this becomes

�V⊥ ≈ − (βE0Ls)2

2μD
= −γ 2

so

μτsE
2
0

2
. (92)

Without the new term, for L � Ls , �V⊥ would have been
twice as large as in (92).

Table I gives estimated experimental values, where jmax is
the maximum current before the sample burns up, and we take

Emax
0 = ρjmax.

For GaAs the estimated maximum center-to-edge transverse
voltage �V⊥ is on the order of 10−4 V, but for Pt it is on
the order of 10−8 V. The former holds much more promise of
measurement.

IX. SUMMARY AND CONCLUSIONS

We have applied the methods of irreversible thermodynam-
ics to the theory of nonmagnetic conductors with a spin-1/2
degree of freedom and spin-orbit scattering. In addition to
the terms of Refs. [13,14], we find three additional terms that
enter the electric current. When applied to a transverse voltage
difference that is second order in the applied electric field,
we find that the additional term cancels half of the voltage
computed in its absence, and that together the two terms
yield a measurable voltage. Such measurement, however,
cannot be done with conventional probes because they might
draw current and/or spin accumulation, but a capacitative
measurement—perhaps one that is done with a longitudinal
ac field—might be effective as a detection method.
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APPENDIX A: THE ANOMALOUS HALL EFFECT
RESISTIVITY FROM THE SPIN HALL EFFECT

COEFFICIENT

For our geometry, with �B = Bẑ strong enough to align �M
along �B, application of Pugh’s empirical result for the HE
resistivity of ferromagnetic materials [41,42] takes the form

ρH ≡ Ey

jx

= R0B + R1M. (A1)

Here Pugh employed emu, so B and M have the same units; and
R0 and R1 are material-dependent constants. The second term
is what is known as the AHE. Dyakonov and Perel remark that
this form follows from the −β �P× �E term in their �q. Because
this result is not well known, we present it here.

As a start, we rewrite (A1) as

ρH = ρH,O + ρAHE. (A2)

To derive each term, we first add the Lorentz force �v× �B to �E∗
in �q of (1). If �B is strong enough to pull �M out of the plane,
so �M is directed along �B, then �P is opposite to �B. Moreover,
the �∇× �P term is now negligible.
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We now focus on qy , which in steady state will go to zero:

qy ≈ −μn(E∗
y + vxB) − βE∗Pz. (A3)

Using σ = neμ, �P = −(2/γ �) �M , �j = −e�q, and

jx = σE∗
x = −nevx,

(A3) leads to

�jy ≈ σ

[
E∗

y − σ

ne
E∗

x

(
B + 2βne2

σ 2γ �
M

)]
. (A4)

Setting jy = 0 gives

E∗
y = σ

ne
E∗

x

(
B + 2βne2

σ 2γ �
M

)
. (A5)

Now note that the transverse (Hall) voltage VH is actually
determined by the electron chemical potential, and therefore
VH = E∗

yd yields E∗
y . From this we find that

ρH ≡ E∗
y

jx

= B

ne
+ 2

σ

(
β

μ

)(
M

γ �n

)
. (A6)

In the above equation the second two ratios are dimensionless,
so this obviously is a resistivity. Comparison with (A2) then
yields the ordinary and anomalous Hall resistivities.

ρH,O = B

ne
, ρAHE = 2

σ

(
β

μ

)(
M

γ �n

)
. (A7)

We have thus seen how the theory of Dyakonov and Perel
predicts an AHE, and gives a specific form for the anomalous
Hall resistivity.

APPENDIX B: MAGNETIC DAMPING AND
IRREVERSIBLE THERMODYNAMICS

The original proposal for the magnetic damping part
∂t

�Md of ∂t
�M , by Landau and Lifshitz (LL) [43], was a

phenomenology of the form

∂t
�MLL,d = −λM̂×( �M× �Ba), (B1)

where �Ba includes the applied and anisotropy fields, and (if
present) a nonuniform exchange field.

However, Kelly’s rotational hysteresis measurements on
permalloy with in-plane anisotropy K found unusually large
damping at low frequencies, which Gilbert could not fit with

the Landau-Lifshitz form [44]. Gilbert then proposed the
magnetic damping form

∂t
�MG,d = αM̂×∂t

�M, (B2)

which he could fit to the data with a frequency-dependent
α (as large as 9 for a frequency of 150 kHz in a field
“above saturation” of about 10 Oe, or 10−3 T) and a fixed
gyromagnetic ratio.

A later study by Mayfield [45] concluded that the excess
damping at low frequency was, “as first pointed out by
J. C. Slonczewski,” due to “abrupt reorientations of M ,
which must occur when K/M � H � 2K/M .” Here K is
the in-plane uniaxial anisotropy constant that develops on
cooling the system through the Curie temperature; this leads
to two local minima in the indicated field range. (One may
consider that H = Ba/μ0.) In other words, the dissipation
that Kelly observed, and which prompted Gilbert to develop
an alternate phenomenology that, like Ref. [43], assumed small
variations in magnetization space, likely was due to the system
undergoing large variations in magnetization space. The
possibility of explaining such damping quantitatively awaited
a Fokker-Planck theory of statistical fluctuations, which was
not provided until a few years later by Brown [46,47].

Besides the theory of Gilbert, a number of alternate
theories of magnetic damping were developed, including one
by Callen [48] that assumed the LL form for transverse
damping but added a longitudinal damping term that he
studied using magnons. However, Landau-Lifshitz damping
is supported by many independent derivations using irre-
versible thermodynamics, where M̂× �Ba is the thermodynamic
driving force [49–51]. Thus irreversible thermodynamics
has distinguished unambiguously between the two distinct
phenomenologies of Landau and Lifshitz and of Gilbert.

From the viewpoint of irreversible thermodynamics the
primary objection to Gilbert damping is that it is not driven by
a thermodynamic force (which would have a unique signature
under time reversal)—here �M× �Ba . It is also somewhat pecu-
liar in that the damping term itself (M̂×∂t

�M) is proportional to
the quantity whose time derivative (∂t

�M) is to be determined.
Most systems are not uniform. Nonuniformity can in-

troduce two-magnon scattering (inhomogeneous) linewidths
[52]; further, surface scattering is not included in (bulk)
Landau-Lifshitz damping [53]. Modern samples have small
values of λ/γ = α, making the LL and Gilbert forms of
damping nearly the same; theories based on α have been rather
successfully applied to real materials [54,55].
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