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Abstract. This work presents semi-analytic solutions to a radiation-
hydrodynamics problem of a radiation source driving an initially cold medium.
Our solutions are in the equilibrium diffusion limit, include material motion
and allow for radiation-dominated situations where the radiation energy is
comparable to (or greater than) the material internal energy density. As such, this
work is a generalization of the classical Marshak wave problem that assumes no
material motion and that the radiation energy is negligible. Including radiation
energy density in the model serves to slow down the wave propagation. The
solutions provide insight into the impact of radiation energy and material motion,
as well as present a novel verification test for radiation transport packages. As
a verification test, the solution exercises the radiation—matter coupling terms
and their v/c treatment without needing a hydrodynamics solve. An example
comparison between the self-similar solution and a numerical code is given.
Tables of the self-similar solutions are also provided.
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1. Introduction

This study deals with a new, self-similar solution to the equations of radiation hydrodynamics
(RHD) in the high-energy density regime. In particular it is an extension of the classic Marshak
wave problem [1], as solved in detail by Petschek [2]. This problem has been reprised in several
monographs that cover RHD [3-5]. The numerical solution of Marshak wave problems was
covered in detail by Nelson and Reynolds [6]. It is also worth pointing out that the theory of
admissible self-similar solutions is covered in some detail in Coggeshall and Axford [7].

The Marshak wave is a special, soluble problem in RHD, and can arise in high-energy-
density experiments where radiation strikes a cold material (e.g. when radiation emitted from
a hohlraum strikes a fusion target). As we will demonstrate below, the classical version of this
problem is valid in the regime where the radiation energy flux is high, but the radiation energy
density is negligible in regard to the material internal energy. Also, the material is considered to
be stationary, that is, radiation energy impinges on a quiescent material and drives a radiation
wave that travels faster than the speed of sound in the material. Recently, there has been a
renewal of interest in RHD solutions. Lowrie and co-workers [8, 9] have published several
studies of radiating shock waves using different radiation models, and there has also been
developments in the theory of such shocks in different regimes [10-12].

Part of the motivation for these recent papers on RHD behavior has been the necessity of
verifying numerical simulation codes for RHD. Verification in this sense means demonstrating
that the code is solving the intended equations and that numerical errors behave as expected
(e.g. going to zero at the correct rate as the mesh is refined). Our solutions below, besides
their inherent interest as novel solutions, can be used to this end in the verification of the
radiation—matter coupling part of a simulation code. Our solutions can be used in code
verification, regardless of the radiation transport model employed in the code (e.g. flux-limited
diffusion, discrete ordinates, Monte Carlo, etc) because our solution is given in the equilibrium
diffusion limit, an asymptotic limit of the RHD equations that is possessed by nearly all
approximate transport models [13-16].

In the following section we review our RHD model and then derive the equilibrium
diffusion model. In section 4 we pose the problem of radiation impinging on a cold slab and
present an approach to estimating the location of the wavefront. Solution profiles are evaluated
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in section 5, and we demonstrate the usefulness of these solutions for code verification in
section 6.

2. Radiation hydrodynamics model

We begin with the equations for RHD as given by Lowrie and Morel previously [17]. The
hydrodynamics equations, in non-dimensional form under the condition of local thermodynamic
equilibrium [5] are

ap +V - (pB) =0 (1a)
- . V) = ,

ot P “
a - - - =

3 (pv)+V - (pv@V)+Vp =—PSg, (1b)
8 -

P (PE)+V - [(pE+p)v] =—-PCSg, (lc)

where p is the material density, v is the relative velocity and p is the pressure. E, the total
specific energy is given by

E=e+1v? 2)

where v = || and e is the internal specific energy with a simple equation of state ¢ = ¢, T. The
specific heat, c,, is a uniform and constant parameter. The non-dimensionalization we use as

x =xl, f=1l/0ss, P =pPPo0s V=V,
ﬁ:ppooago T=TT, Ga=0/l, é=a’e, Cy=CyCyoo,

where hatted variables are dimensional, / is a characteristic length scale, p., is a characteristic
density and T, is a reference temperature. The reference sound speed, a.., is given using the
constant, reference specific heat ¢, as

oo = v/ Cyoo Too- (3)
Also, in our model we have included the non-dimensional parameters

coC__ ¢ _ a; T2 _ aT2

Aoo Cyoo Too ’ /Oooago poocvoo ,
where ¢ is the speed of light and a, =4o0sg/c is the radiation constant with ogsg the
Stefan—Boltzmann constant. The interpretation of these parameters is as follows: C is a measure
of how relativistic the flow is and [P is a measure of how much energy is in the radiation field
compared with the material internal energy.

In particular, equations (la)—(1c) represent the conservation of mass, momentum and
energy of the fluid, respectively. We have yet to define the momentum and energy sources in
these equations. Before doing so we will introduce the radiation model.

For the radiation transport we will employ a P; model [17, 18] that uses a P, = E,/3 closure
model:

“4)

J0E, >
o7 +CV .- F, =CSg, (5a)
aF. 1 R

+-CVE, =CSp, (5b)
ar 3
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where
Se =0 (T* — Ey) +o~% . Fy, (6a)
S = —aﬁro+a%(T4—Er), (6b)
Fo=F,— (BEr+ gE) /C. (6¢)

The non-dimensionalization used here has

A

E.=aTlE, F =caT.

-
re

|

In these equations E, is known as the radiation energy density and it is proportional to the
zeroth angular moment of the radiation specific intensity. F; is known as the radiation flux and
it is proportional to the first angular moment of the radiation specific intensity. The material
absorption opacity (with units of inverse scale length) is given by o. For convenience we have
ignored scattering in our radiation transport model.

3. Asymptotic analysis of radiation model

In typical applications the RHD model (i.e. the coupled Euler and radiation equations) are solved
in an operator split fashion where the P, equations (or some other transport model) is solved
coupled with a material internal energy equation that contains the radiation—-matter coupling
terms only:

dpe

o = PCSg. (7)
The other terms in the material energy equation are updated during the hydrodynamics solve,
along with a correction to take into account momentum exchange. As part of the operating
splitting procedure, the radiation solve is undertaken with the density and velocity terms
evaluated at a particular time level. It is these radiation equations with a quasi-static material
velocity and density that we will perform an asymptotic analysis on.

Consider a small, positive parameter €. The P; equations above, coupled to equation (7),

are to be scaled under the conditions that the absorption cross-section is very large:

o
o— —
€

and where the ratio of the speed of light to the speed of sound is also very large:

C— §
€
These substitutions indicate that we are considering asymptotic solutions to the transport
equation for a system where the absorption opacity is large compared to our reference length
scale and the material reacts much quicker to changes in radiation than any material effects such
as sound waves.
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Substituting these relationships into the P; equations and equation (7) gives

0E, >
€ 57 +CV - F.=CSg, (8a)
8F

(8b)
dpe
— = —PCSg, 8
€ a1 E (8c)

where the sources are now given by
o v -

SE:E(T4—Er)+aE-FrO, (9a)
- o - 0
Se=——Fg+0— (T*—E,), 9
F c 10 G(C( ) (9b)
FoeF— < (3E+ E 9¢)
00 =1Ly — S | VEr+ 5Ly ) . c
0 C 3

All dependent variables, (E,, ﬁr and T), in equations (8a)—(8c) are now expanded with a formal
power series of the scaling constant €. For example

E = Ze E(") Ze iy

We will now look at the coefficients for each power of €. The three orders of Sg are

S (T4, — E©), (10a)
U
SO =0 (T4 — ED) 4o 2 g, (100)
S =0 (18~ ) vo g R (100
Similarly for Sg:
Se) = _g F,©, (11a)
> - v
S = —o g vo o (T — 7). (115)
> > v
S = =0 Fo®+o = (T4 — ). (11c)

After inspecting equations (8a)—(8¢), it can be seen that no terms involve €~ L. This shows
that the O(e~") equations are equal to zero, therefore S{ " = Sp! = 0. Because of this,
equation (10a) gives

T(‘(‘)) = E(O) (12)
and equation (11a) gives
Fo® =0. (13)
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Gathering only the terms involving no power of € in the P; equations, also known as O (1)
equations, is as follows:

CvV-F® =csY, (14a)
ICVE® = CS$:©, (14b)
Fo® =F© =o. (14c)

Equation (14a) reduces to S =0 due to equation (14c). Furthermore, this simplifies
equation (10b) to

T4 =ED". (15)

The first-order equation for F?O is
- - 1 N 1

Fo" = K" -5 [ EO+ %Er(o)] . (16)
Substituting this relationship and equation (115) into equation (14b) gives

1 - 4v

~VE? = —oFV+-—0EY 17

C L Veh ("

after some algebra. Solving for ﬁr(l) provides a version Fick’s Law, relating the radiation flux to
the gradient of the energy density, with an additional drift term

- 40 1
FOV=——FEO_ __vVE®©, 18
3C 7 30 (18)
Next, we look at the O (¢) equations arising from equations (8a)—(8c):
OEO - I
a; +CV-FY =cCs, (19a)
1 0pe® |
—— =Csy. 19h
P o E (19b)
Substituting equation (18) into equation (19a) gives
0E© 1 - C
L +-V.|4E® - ZVE©® | =Csy. (20)
ot 3 o
Subtracting equation (19b) from equation (20) and rearranging gives
10pe® QE© 4 _ C
e O VIV.GEO =V. —VEO. @1)
P ot o 3 30

Finally, this can be given in terms of material temperature due to equation (12) and our equation
of state:

dpc, T® _aT§ 4 CP
POl PO pIv. Tt = V. VT (22)
dt dt 3 © 30 ©

For a known density and material velocity (as in the case of an operator split solution), the only
dependent variable in this equation is the material temperature. This equation is the equilibrium
drift-diffusion limit. The drift term would be absent without material motion. Though we
derived these equations starting from a P; model for radiation transport, previous asymptotic
analyses show that equilibrium diffusion is the asymptotic limit of the most general transport
model [19].
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4. The problem of radiation impinging on a cold slab

We will now consider equation (22) in one-dimensional slab geometry with constant ¢, and an
opacity dependent on temperature to some power. This makes equation (22), dropping the (0)’s,
dpe, T _oT* 49 _, 9 CPo _,

+P—+P—— 7" = — ——T". (23)
ot ot 30x ox 3o dx

We note that our model equation, equation (23), can be simplified to the equation solved in
several previous studies of Marshak waves [2, 4, 6, 20]. Those studies consider problems where
PP is negligibly small and the quantity CIP = 1. It is interesting that one need not assume that
v = 0 to arrive at the standard Marshak wave solution, only that PP is negligible.

The problem we will solve has an initially cold, semi-infinite material located at x > 0. At
time ¢+ = 0 a radiation source is turned on at x = 0, heating the material there to a temperature
of T = 1. We obtain a self-similar solution to this problem with the similarity transformations

£ Ax o oU

NN
where A and U are constants to be defined later and 6 is a parameter that gives the magnitude of
the material velocity, & is the scaled independent variable and u is the scaled material velocity.
Note that we have prescribed the relationship between the independent variables x and ¢, and
prescribed a form for the material velocity. We do not consider how such a form for the velocity
might be formed, rather we assert that if the velocity has such a 1/4/t dependence our self-
similar solutions are possible. Also, the material velocity is constant in space and is only a
function of time.

Implementing these transforms results in

d 8 d 2A’°CP d 1 d
—&— (pe+PTY) + - AUOP—T* = ———T" (24)
dé 3 dé 3 déodé
Formally introducing the temperature-dependent cross section
o=koT™" (25)
and substituting into equation (23), and setting pc, = 1 gives
d 8 d 8ACP d?
—E— (T+PT*) + ZAUOP—T* = ——— T, (26)
dé 3 dé 3(n+4)Kk d&?
At this point the following constants will be defined to simplify the arithmetic:
3 (n+ 4) Ko
A= 27
8CP @7)
3 3cp 1V
U=—=|—"--— (28)
8A 8(n+4)k
Using these relationships, equation (26) simplifies to
d d d?
—&— (T+PTH+PO_—T*= —T". (29)

dé dé dg?
Once again we point out that this equation in the limit P — 0 is equivalent to the classical
Marshak wave result.
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We will solve equation (29) with the boundary condition that 7 (0) = 1 and the condition
that the temperature in front of the wave is cold (i.e. T = 0). We refer to the value of & beyond
which T' = 0 as &,.x. For a particular value of &,,,«, there are an infinite number of solutions that
tend to zero. However, only one of these solutions maintains a zero flux in the limit & — &,.«.
Castor [4] outlines an iterative numerical procedure beginning with an initial guess for &« to
determine the wave temperature profile. This value for &,,,x must be adjusted through trial and
error until an integration from &.,,, back to 0 gives 7'(0) = 1.

4.1. An approximation to &,y

To find the &nqx We begin by integrating both sides of equation (29) over & < &' < &nay, giving

—£ (T(E)+PT*(&)) E + /g i (T(E)+PTHE")) dg’' +POTH(E) ?" _ %Tom) &) i“‘
(30)

Simplifying using T (£ma) = 0 yields

£(TE) +PT*(€)) + L (T @)+ BTHEN) d —BOTHE) = —%T“*‘” ®). 31)

For conciseness, the function g(&) = T (§) +PT*(£) is defined. From this, the mean value of
g(&) from & to &, can also be defined as

1 Emax
g = "y dE'. 32
2 gmax_gfé ¢(&) ds (32)

Using this relationship allows one to write the first two terms of equation (31) as
émax
£g(8) +/ 8¢ d&" = £nng(5) — (bmax —6) (8(5) — 2(6)) . (33)
3

Then, due to the fact that (§,.x — &) < &nax near the radiative wave front, the second term can
be neglected. Therefore, equation (33) reduces to

Emax
Eg(e)+ L (&) dE' ~ Enng (&), (34)

Nelson and Reynolds illustrate the previous approximation in [6, equations (6), (7)] and state
that the relative error is of order (§yax — &) /&max- Modulo this error, equation (31) reduces to

d

Emax T () +PT(E)] —POTH(§) = —£T("+4)(S)~ (35)

Notice that through the chain rule
d d
(n+3) (g _ Y e

(n+4T (é)dsT(é)—dST (). (36)

Because of this, equation (35) can be rewritten as
d
Emax [T (§) +PT(E)] —POT*(E) = —(n +4)T("+3)(S)ET(§)- (37)
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Dividing both sides by 7' (§) gives

Enax[1 +PT?(§)] = POT’(§) = —(n +4)T("+2)(€)%T(S)- (38)
Now, applying a reverse application of the chain rule gives
3 . 3ey _(”+4)i (n+3)
Emax[1 +PT7(§)] —POT (§) = (n+3) dgT (é). (39)
This reduces to
B 3 (n +4) d 7043
Emax + [Emax —O1PT (§) = "+ ds (). (40)

A final integration over £ and again taking advantage of the fact that 7' (§,,,x) = 0 gives
(n+4)
(n+3)

Furthermore, evaluating the remaining integral using right-hand Riemann sums yields

Emax
Emax (Emax — &) + P [Emax —9]/ T dg' = T"(E). (41)
§

Smax
f T3(€/) dé/ = (Smax - %-)Tg)(gmax) =0 (42)
&

due to T3(£max) = 0. This method maintains accuracy to order (&max — &) /Emax. Equation (41)
now reduces to

+4)
Smax (gmax %-) = —3) (n+3)(g) (43)
Solving this equation for 7 (£) provides an initial temperature approximation which is defined

as T1(§):

(n+3)
T (€) =
1) [( )

With this temperature approximation we can evaluate the integral in equation (41) instead of
using right-hand Riemann sums. This will generate a more accurate expression in which we
will explicitly solve for 7 (£) below. Substituting 77 (£) into the integral term gives

1/(n+3)
Emax (Emax — & )} : (44)

Smax [y 43 , 3/@+3) , on+d
Smax (‘é;-:max - é) + P [‘i:max - 0] / _Smax (Smax - S ) dg —T (S) (45)
£ n+4 n+3
Evaluating the integral and simplifying yields
n+3 n+3 w3 _n+4d
‘izmax (Smax - 5) +P [%'max - 0] - (Smax 5) Smax (Smax %') =——=T (S) (46)
n+6 n+3

Solving explicitly for 7' (&) gives a more accurate approximation, defined as 7, (&)

n+3 n+3 n+3 3 T
TZ(g) = |:m (émax - é) (Smax + Pm (Smax - 0) <m5max (Smax - S)) ):| . (47)

This expression allows for a more accurate approximation of the radiation wave front moving
through the cold medium. In the next section, &.,,x will be determined and tabulated for various
values of IP and 6 under both » = 0 and 3.
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Looking at the case when P — 0, i.e. radiation energy is negligible, equation (47)
becomes

3 1/(n+3)
Ty(E) = [%smax (Emex — s)] , (48)

which is identical to 7;(§) and the approximation given by Castor [4]. In comparison, Nelson
and Reynolds [6] derive a more accurate expression for the approximate wave front.

5. Evaluated the self-similar solution profiles

To obtain solution profiles, 7'(§) and &, for different problems we used the computer software
Wolfram Mathematica 9. The solution procedure is as follows. We begin with an initial guess
for £.,.x and then solve equation (26) using the boundary conditions 7 (§yax — ) = T2 (Emax — 6)
and 7' (Emax — 8) = T, (Emax — 6). Then, based on whether 7' (0) from this solution is greater than
or less than 1, we adjust our guess for £,,,. In our case we used § = 107'°, and the function
NDSolve and FindRoot to integrate the ordinary differential equation and find the converged
&max. Our calculations using NDSolve and FindRoot were performed with better-than machine
precision arithmetic by setting the parameter WorkingPrecision to 32. To verify our solution
procedure we computed &, using P =0 for n = 0 and 3 and compared with the results from
Nelson and Reynolds. Our solutions agree with theirs to six significant digits.

Using our solutions we can look at the impact of including the radiation energy density
terms in a stationary material, i.e. having P > 0 and 6 = 0. To do this, we look at a typical
Marshak wave solution that has appeared several times in the literature [16, 21, 22]. It has
Cvoo =0.1GT g keV ™!, poo =3.0gcm ™3, ko =300, Ty = 1.0keV and I = 1 cm. Using these
parameters, C = 948.027 and P = 0.04573. Based on our solutions for this problem &,,x =
1.221 16 in the n = 0 case and &,,x = 1.106 22 in the n = 3 case. This compares to the ‘low P’
solution given by Nelson and Reynolds of &,,,x = 1.231 17 inthe n = 0 case and &,,,x = 1.11993
in the n = 3 case. For both of these the difference is about 1%. As shown in table 1, with no
material motion the radiation wave travels slightly slower in the similarity variable & (but not
necessarily in physical distance x) when P increases (the radiation energy relative to material
energy density increases). Based on numerical results from P ranging from O to 2, we find that,
for 6 =0, &, behaves as

Emax ~ 0.032P* —0.19P+1.23117, n=0, (49)
Emax 2 0.046P* — 0.25P+1.10622, n =3. (50)

Note we have not included more decimals in the linear and quadratic coefficients of the model
because the least-squares fit indicated that these were the only digits that were significant with
respect to the standard error in the coefficients.

In table 1 we also show the effect of having a moving material in the entries having a
non-zero 6. It is apparent, as would be expected, that having the material moving toward the
right proportional to ~!/2 causes the wave to move farther. The effect of material motion is also
related to P: the larger the value of P the farther the wave travels. This is due to the fact that the
advection term in equation (26) is scaled by . In the P = 0.045 73 case increasing 6 to 10 from
0 has about a 15% effect in &, for n = 3. The same change at P = 1 leads to over 450% eftect

ln Smax .
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Table 1. &,,.x for motion problems.

gmax
P 0 n=>0 n=3

10 136449 1.28213

5 1.28845 1.18959

2 1.24712 1.13852

0.04573 1 1.23399 1.12220
0.1 1.22243 1.10780

0 122116 1.10622

10 3.57574 3.52816

5 207107 2.01057

05 2 140900 131516
’ 1 125937 1.14168

0.1 1.14910 1.00925
0 1.13806 0.99582

10 5.19830 5.16451
5 2.83272 276374
2 1.57627 147967
1 1.28225 1.15790
0.1 1.08784 0.93103
0 1.06966 0.90932

In figure 1 we show thermal wave profiles for P =0.04573 with n =0 and 3. In these
figures we can see the impact of increasing 6 discussed above. The value of & does not appear
to affect the steepness of the solution at the wavefront. We did not show the smaller values of 6
in these figures because their curves are very close to that for 6 = 1.

6. Self-similar solutions for code verification

Above we have explored the impact of including both radiation energy and material motion
on the classical Marshak wave problem. We also believe these solutions are useful for test
problems for RHD codes. This can be accomplished by making the code fix the material velocity
everywhere to have u(¢) = 6U /+/t and performing the radiation solve with this prescribed u(z).
In principle there could be an issue with evaluating u(0) because of the singularity, but in
practice most radiation solvers expect to receive the velocity evaluated at either the end of the
time step or some intermediate time level.

To demonstrate this is indeed possible we took an existing radiation solver based on the
spherical harmonics approximation for slab geometry problems [16, 23] and ran a problem
with P =0.04573 and 6 = 10 and n = 3. Because the code works in dimensional units we
picked ¢yoo =0.1GJ g™} keV™L, poo = 3.0gem™3, kg =300, T, = 1.0keV,n =3 and [ = 1 cm.
In running the problem we evaluated u at the middle of each time step. The results from this
numerical solution are compared with the self-similar profiles computed in the previous section
in figure 2. In this figure we show the solution for three different times: 10, 20 and 50 ns.
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Figure 1. Self-similar thermal wave profiles for P = 0.045 73 with n = 0 (top)
and n = 3 (bottom).

For illustration of the difference between our solution and that without material motion we have
also plotted the solution when 6 = 0; this demonstrates that the material motion is noticeably
affecting the solution, and if the code did not have any treatment of the relativistic terms in the
coupling, the solution would be noticeably different. The numerical solution, obtained using
30 spatial cells and a time step size of 1.6667 x 10~*ns follows the self-similar profiles very
closely.

We also did a simple convergence study for this problem by looking at the relative error at
50 ns between the numerical and semi-analytic solutions at x = 0.2 cm as a function of the mesh
spacing Ax; see figure 3. Convergence results for a transport code can be misleading because the
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Figure 2. Comparison of numerical solution to analytic self-similar solution
to a Marshak-like wave problem that has material motion and non-negligible
radiation energy. The 6 =0 curve is the solution without material motion.
This problem has a driving temperature of 1keV, and o =3007 > cm™!, and
pcy =0.3 Glem > keV ™.

0.01

Relative Error

0.0001 L
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=
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Figure 3. Convergence of the relative error in the Marshak-like wave problem
shown in figure 2 at t = 50 ns and x = 0.2 cm and a Courant-Freidrichs—Lewy
number (CA—AX’) of 0.3. We observe first-order convergence before the mesh
resolution pushes the numerical solution outside the asymptotic drift-diffusion
limit. See the text for further discussion.
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Table 2. Solutions 7' (§) for a problem with P = 0.04573 and n = 0.
& 6 =10 6=5 0=2 =1 6=0.1 0=0

0.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
0.02843 0.99534 0.99427 0.99359 0.99336 0.99316 0.99313
0.05685 0.99054 0.98840 0.98705 0.98659 0.98617 0.98612
0.08528 0.98562 0.98239 0.98035 097966 097903 0.97896
0.11371 098056 0.97623 0.97351 0.97258 097174 0.97165
0.14213 097535 0.96991 0.96650 0.96534 0.96429 0.96417
0.17056  0.97000 0.96344 0.95933 0.95793 0.95667 0.95652

0.19899 0.96450 0.95680 0.95199 0.95035 0.94887 0.94870
0.22742 095883 0.94999 094446 094259 094089 0.94070
0.25584 0.95300 0.94300 0.93675 093464 093272 0.93251
0.28427 094700 0.93582 092885 0.92649 0.92435 0.92412
0.31270 0.94082 0.92844 0.92074 091813 091578 091551
0.34112 0.93445 0.92086 091241 0.90956 0.90698 0.906 69
0.36955 092788 091306 0.90387 0.90076 0.89795 0.89764

0.39798 092111 0.90503 0.89508 0.89172 0.88868 0.88834
042640 091412 0.89677 0.88604 0.88242 0.87915 0.87878
0.45483 090691 0.88826 0.87674 0.87286 0.86935 0.86896
048326 0.89946 0.87949 0.86716 0.86301 0.85926 0.85884
0.51168 0.89176 0.87043 0.85729 0.85287 0.84887 0.84842
0.54011 0.88379 0.86109 0.84710 0.84240 0.83815 0.83767
0.56854 0.87556 0.85143 0.83658 0.83159 0.82708 0.82658

0.59697 0.86702 0.84143 0.82571 0.82042 0.81564 0.81511
0.62539 0.85818 0.83109 0.81445 0.80885 0.80380 0.80324
0.65382 0.84901 0.82036 0.80278 0.79687 0.79153 0.79094
0.68225 0.83948 0.80923 0.79067 0.78443 0.77880 0.778 17
0.71067 0.82958 0.79766 0.77808 0.77150 0.76556 0.76490
0.73910 0.81928 0.78561 0.76497 0.75803 0.75176 0.75107
0.76753 0.80855 0.77306 0.75129 0.74397 0.73736 0.73663

0.79595 0.79735 0.75994 0.73699 0.72927 0.72229 0.72151
0.82438 0.78565 0.74622 0.72200 0.71384 0.70647 0.705 65
0.85281 0.77341 0.73182 0.70624 0.69762 0.68983 0.68896
0.88123 0.76057 0.71668 0.68962 0.68050 0.67223 0.67131
090966 0.74708 0.70071 0.67204 0.66235 0.65357 0.65259
0.93809 0.73287 0.68380 0.65335 0.64303 0.63367 0.63262
096652 0.71786 0.66583 0.63338 0.62234 0.61231 0.61119

099494 0.70196 0.64664 0.61190 0.60004 0.58923 0.58802
1.02337 0.68506 0.62603 0.58864 0.57580 0.56405 0.56274
1.05180 0.66701 0.60374 0.56320 0.54916 0.53625 0.53480
1.08022 0.64764 0.57943 0.53502 0.51946 0.50506 0.50343
1.10865 0.62672 0.55262 0.50329 0.48570 0.46925 0.46738
1.13708 0.60398 0.52262 0.46669 0.44621 0.42672 0.42448
1.16550 0.57901 0.48837 0.42290 0.39782 0.37313 0.37023

1.19393 0.55127 0.44808 0.36705 0.33301 0.29652 0.29196
1.22236 0.51995 0.39832 0.28479 0.22073 0.04126 -
1.25078 0.48378 0.33076 - - - -
1.27921 0.44055 0.20740 - - - -
1.30764 0.38573 - - - - -
1.33607 0.306 86 - - - - -
1.364 49 - - - - - -
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Table 3. Solutions 7' (§) for a problem with P = 0.04573 and n = 3.
& 6 =10 6=5 0=2 =1 6=0.1 0=0

0.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
0.02671 0.99729 0.99677 0.99643 0.99632 0.99622 0.99620
0.05342 0.99452 0.99346 0.99279 0.99255 0.99234 0.99232
0.08013 0.99168 0.99007 0.98905 0.98870 0.98838 0.98834
0.10684 0.98877 0.98660 098522 098475 098432 0.98427
0.13356 098579 0.98305 0.98130 0.98070 0.98016 0.98010
0.16027 098273 0.97940 097728 0.97655 097589 0.97582

0.18698 0.97960 097567 097316 097229 097151 097142
0.21369 097638 0.97183 0.96892 0.96792 0.96701 0.96691
0.24040 0.97308 0.96789 0.96457 0.96343 0.96239 0.96228
026711 096968 0.96384 096010 0.95881 0.95764 0.95751
0.29382 0.96619 0.95967 0.95549 095406 095275 0.95260
0.32053 0.96261 0.95538 0.95075 094916 0.94771 0.94755
0.34724 095891 0.95097 094587 094412 094252 0.94234

0.37396 095511 0.94642 094083 0.93891 093716 0.93696
0.40067 095119 094172 093563 0.93354 093162 0.93141
042738 094715 0.93687 0.93026 0.92798 0.92589 0.92566
0.45409 094298 0.93186 0.92470 0.92222 091996 091971
0.48080 0.93867 0.92668 091893 091626 091381 091354
0.50751 093421 092131 091296 091007 0.90743 0.90713
0.53422 092960 0091574 090675 090364 0.90079 0.90047

0.56093 0.92483 0.90996 0.90029 0.89694 0.89387 0.89353
0.58764 091987 0.90394 0.89356 0.88996 0.88665 0.88628
0.61435 091473 0.89767 0.88653 0.88266 0.87910 0.87870
0.64107 090938 0.89114 0.87918 0.87501 0.87119 0.87076
0.66778 0.90381 0.88430 0.87147 0.86699 0.86287 0.86240
0.69449 0.89800 0.87714 0.86336 0.85854 0.85410 0.85360
0.72120 0.89193 0.86962 0.85481 0.84962 0.84482 0.84429

0.74791 0.88558 0.86170 0.84577 0.84016 0.83498 0.83440
0.77462 0.87893 0.85335 0.83617 0.83011 0.82449 0.82386
0.80133 0.87193 0.84449 0.82594 0.81936 0.81325 0.81257
0.82804 0.86456 0.83508 0.81498 0.80782 0.80115 0.80039
0.85475 0.85678 0.82503 0.80318 0.79534 0.78801 0.78718
0.88147 0.84852 0.81424 0.79037 0.78174 0.77364 0.77272
090818 0.83975 0.80260 0.77637 0.76679 0.75775 0.75672

0.93489 0.83038 0.78995 0.76089 0.75015 0.73994 0.73877
096160 0.82032 0.77608 0.74358 0.73137 0.71965 0.71830
0.98831 0.80948 0.76072 0.72388 0.70973 0.69595 0.69435
1.01502 0.79770 0.74348 0.70094 0.68408 0.66729 0.66531
1.04173 0.78481 0.72379 0.67335 0.65235 0.63063 0.62801
1.06844 0.77058 0.70078 0.63837 0.61010 0.57849 0.57445
1.09515 0.75467 0.67293 0.58960 0.54424 0.47872 0.46807

1.12187 0.73661 0.63734 0.50300 0.26230 - -
1.14858 0.71569 0.58696 - - - -
1.17529 0.69073 0.49328 - - - -
1.20200 0.659 64 - - - - -
1.22871 0.61787 - - - - -
1.25542  0.55197 - - - - -
1.28213 0.01824 - - - - -
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diffusion limit is only an asymptotic limit of the full transport system. In this problem the scaling
parameter ¢ is on the order of 10~ and once the mesh and time step start to resolve a mean-
free path or the mean-free time, the numerical method no longer is equivalent to the asymptotic
drift-diffusion equation. Therefore, we expect that beyond some level of resolution, the solution
will no longer converge to the self-similar profile we obtained. This is evident in our results:
below a certain mesh resolution the error begins to increase. Before this point we do observe
first-order convergence as we would expect for a problem with a non-smooth solution. We know
of no prior work on the correct behavior of transport numerical methods in the transition region
between the drift-diffusion limit. It is well known, however, that if a numerical method did not
possess the proper diffusion limit, the solution would not show convergence until a mean-free
path was resolved (see, for instance, [23]).

To allow other to use these solutions for code verification we have included 7' (£) for
various values 6 at P = 0.045 73 in tables 2 and 3.

7. Conclusion

We have generalized the classic Marshak wave problem to include both radiation energy density
terms and material motion. The material motion in our solutions is uniform in space and
proportional to ~!/2, In problems without any material motion, we observe that the greater
the radiation energy density, as measured by the parameter P, the slower the wave moves
with respect to the similarity variable £. We phenomenologically quantified this effect with a
quadratic in [P model. Besides providing insight into the effects of radiation energy and material
motion on Marshak waves, our solution can also be used to verify the radiation—material
coupling treatment in a simulation code.
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