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In this paper we propose a general series method to estimate a
semiparametric partially linear varying coefficient model. We estab-
lish the consistency and

√
n-normality property of the estimator of

the finite-dimensional parameters of the model. We further show that,
when the error is conditionally homoskedastic, this estimator is semi-
parametrically efficient in the sense that the inverse of the asymptotic
variance of the estimator of the finite-dimensional parameter reaches
the semiparametric efficiency bound of this model. A small-scale sim-
ulation is reported to examine the finite sample performance of the
proposed estimator, and an empirical application is presented to il-
lustrate the usefulness of the proposed method in practice. We also
discuss how to obtain an efficient estimation result when the error is
conditional heteroskedastic.

1. Introduction. Semiparametric and nonparametric estimation techniques
have attracted much attention among statisticians and econometricians. One
popular semiparametric specification is a partially linear model as consid-
ered by Robinson (1988), Speckman (1988) and Stock (1989), among others,
via

Yi = v′iγ + δ(zi) + ui, i = 1, . . . , n,(1)

where the prime denotes transpose, v′iγ is the parametric component and
δ(zi) is an unknown function and, therefore, is the nonparametric component
of the model; see Green and Silverman (1994), Härdle, Liang and Gao (2000)
and the references therein for more detailed discussion of this model. This
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model can be generalized to the following semiparametric varying coefficient
model:

Yi = v′iγ(zi) + δ(zi) + ui, i = 1, . . . , n,(2)

where γ(z) is a vector of unknown smooth functions of z. Define xi = (1, v′i)
′

and β(z) = (δ(z), γ(z)′)′. Then (2) can be written more compactly as

Yi = x′
iβ(zi) + ui, i = 1, . . . , n.(3)

The varying coefficient model is an appropriate setting, for example, in the
framework of a cross-sectional production function where vi = (Labori,Capitali)

′

represents the firm’s labor and capital inputs, and zi = R&Di is the firm’s
research and development expenditure. The varying coefficient model sug-
gests that the labor and capital input coefficients may vary directly with the
firm’s R&D input, so the marginal productivity of labor and capital depend
on the firm’s R&D values. While the partially linear model (1) only allows
the R&D variable to have a neutral effect on the production function, that
is, it only shifts the level of the production frontier, it does not affect the
labor and/or capital marginal productivity. Li, Huang, Li and Fu (2002) use
the nonparametric kernel method to estimate the semiparametric varying
coefficient model (2) and apply the method to China’s nonmetal mineral
manufacturing industry data; their results show that the semiparametric
varying coefficient model (2) is more appropriate than either a parametric
linear model or a semiparametric partially linear model for studying the
production efficiency in China’s nonmetal mineral manufacturing industry.

The time-series smooth transition autoregressive (STAR) model is an-
other example of the varying coefficient model. It is given by yt = x′

tβ(yt−d)+
ut, where β(yt−d) is a vector of bounded functions; see Chen and Tsay (1993)
and Hastie and Tibshirani (1993). They consider an autoregressive model
of the form yt = f1(yt−d)yt−1 + f2(yt−d)yt−2 + · · ·+ fp(yt−d)yt−p + ut, where
the functional forms of the fj(·)’s (j = 1, . . . , p) are not specified. Chen and
Tsay (1993) and Hastie and Tibshirani (1993) discuss the identification of
fj(·) and suggest some recursive algorithms to estimate the unknown func-
tion fj(·). More recent work on varying coefficient models can be found in
Carroll, Fan, Gijbels and Wand (1997) and Fan and Zhang (1999), who pro-
pose a two-step procedure to accommodate varying degrees of smoothness
among coefficient functions. See also Hoover, Rice, Wu and Yang (1998),
Xia and Li (1999), Cai, Fan and Yao (2000), Cai, Fan and Li (2000), Fan
and Huang (2002) and Zhang, Lee and Song (2002) on efficient estimation
and inference of semiparametric varying coefficient models by using the local
polynomial method and Fan, Yao and Cai (2003) on adaptive estimation of
varying coefficient models.

The semiparametric varying coefficient model has the advantage that it
allows more flexibility in functional forms than a parametric linear model
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or a semiparametric partially linear model, and, at the same time, it avoids
much of the “curse of dimensionality” problem, as the nonparametric func-
tions are restricted only to part of the variable z. However, when some of
the β coefficients are indeed constants, one should model them as constants
and, in this way, one can obtain more efficient estimation results by incor-
porating this information. Consider again the production function example:
if one further separates the capital into liquid capital and fixed capital, it
is likely that the level of R&D will affect the marginal productivity of fixed
capital, but not that of liquid capital. This gives rise to a partially linear
varying coefficient model as follows:

Yi = w′
iγ + x′

iβ(zi) + ui, i = 1, . . . , n,(4)

where wi is a vector of variables whose coefficient γ is a vector of constant
parameters, and say, w is the firm’s liquid capital in the above production
example.

In this paper we propose to estimate the partially linear varying coef-
ficient model (4) using the general series method, such as spline or power
series. We show that the series method leads to efficient estimation for the
finite-dimensional parameter γ under the conditional heteroskedastic error
condition. Recently, Fan and Huang (2002) suggested using the kernel-based
profile likelihood approach to estimate a partially varying coefficient model
[this paper was brought to our attention after the first submission of our
paper], and they show that their approach also leads to efficient estima-
tion of the finite-dimensional parameter γ when the error is conditional ho-
moskedastic. In this paper we also argue that the efficient estimation result
of the series-based method can be extended to the conditional heteroskedas-
tic error case in a straightforward way. It is more difficult to obtain efficient
estimation results using the kernel-based method when the error is con-
ditional heteroskedastic. Moreover, the series estimators have well-defined
meanings as estimating the best approximation function for the unknown
conditional mean regression function even when the model is misspecified.
The payoff of using the general series estimation methods is that it is difficult
to establish the asymptotic normality result for the nonparametric compo-
nents under optimal smoothings (i.e., balance the squared bias and variance
terms). Thus, the series method should be viewed as a complement to the
kernel method in estimating a partially linear varying coefficient model.

2. Estimation. Consider the following partially linear varying coefficient
model:

Yi = w′
iγ + x′

iβ(zi) + ui, i = 1, . . . , n,(5)

where wi is a q × 1 vector of random variables, γ is a q × 1 vector of un-
known parameters, xi is of dimension d×1, zi = (zi1, . . . , zir) is of dimension
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r, β(·) = (β1(·), . . . , βd(·))′ is a d × 1 vector of unknown varying coefficient
functions, and ui is an error term satisfying E(ui|wi, xi, zi) = 0.

With the series estimation method, for l = 1, . . . , d, we approximate the
varying coefficient function βl(z) by pkl

l (z)′αkl

l , a linear combination of kl

base functions, where pkl

l (z) = [pl1(z), . . . , plkl
(z)]′ is a kl × 1 vector of base

functions and αkl

l = (αl1, . . . , αlkl
)′ is a kl ×1 vector of unknown parameters.

The approximation functions pkl

l (z) have the property that, as kl grows,

there is a linear combination of pkl

l (z) that can approximate any smooth
function βl(z) arbitrarily well in the sense that the approximation mean
square error can be made arbitrarily small.

Define the K × 1 matrices pK(xi, zi) = (xi1p
k1
1 (zi)

′, . . . , xidp
kd

d (zi)
′)′ and

α = (αk1′
1 , . . . , αkd′

d )′, where K =
∑d

l=1 kl. Thus, we use a linear combination
of K functions, pK(xi, zi)

′α, to approximate x′
iβ(zi). Hence, we can rewrite

(5) as

Yi = w′
iγ + pK(xi, zi)

′α + (x′
iβ(zi)− pK(xi, zi)

′α) + ui
(6)

= w′
iγ + pK

i (xi, zi)
′α + errori,

where the definition of errori should be apparent.
We introduce some matrix notation. Let Y = (Y1, . . . , Yn)′, u = (u1, . . . , un)′,

W = (w1, . . . ,wn)′, G = (x′
1β(z1), . . . , x

′
nβ(zn))′ and P = (pK(x1, z1), . . . , p

K(xn, zn))′.
Hence, model (6) can be written in matrix notation as

Y = Wγ + Pα + error.(7)

Let γ̂ and α̂ denote the least squares estimators of γ and α obtained by

regressing Y on (W,P ) from (7). Then we estimate βl(z) by β̂l(z)
def
= pkl

l (z)′α̂l

(l = 1, . . . , d). We will establish the
√

n-normality result for γ̂ and derive the

rate of convergence for β̂l(z).
We present an alternative form for γ̂ and α̂ that is convenient for the

asymptotic analysis given below. In matrix form, (5) can be written as

Y = Wγ + G + u.(8)

Define M = P (P ′P )−P ′, where (·)− denotes any symmetric generalized
inverse of (·). [Under the assumptions given in this paper, P ′P is nonsingular
with probability one. In finite sample applications, if P ′P is singular, one can
remove the redundant regressors to make P ′P nonsingular.] For an n × m

matrix A, define Ã = MA. Then premultiplying (8) by M leads to

Ỹ = W̃γ + G̃ + ũ.(9)

Subtracting (9) from (8) yields

Y − Ỹ = (W − W̃ )γ + (G− G̃) + u− ũ.(10)
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γ̂ can also be obtained as the least squares regression of Y − Ỹ on W −W̃ ,
that is,

γ̂ = [(W − W̃ )′(W − W̃ )]−(W − W̃ )′(Y − Ỹ ).(11)

And α̂ can be obtained from (7) with γ being replaced by γ̂,

α̂ = (P ′P )−P ′(Y −Wγ̂),(12)

from which we obtain β̂l(z) = pkl

l (z)′α̂kl

l , l = 1, . . . , d.

Under the assumptions given below, both (W − W̃ )′(W − W̃ ) and P ′P
are asymptotically nonsingular. Hence, γ̂ and α̂ given in (11) and (12) are
well defined and they are numerically identical to the least squares estimator
obtained by regressing Y on (W,P ).

Next we give a definition and some assumptions that are used to derive
the main results of this paper.

Definition 2.1. g(x, z) is said to belong to the varying coefficient class
of functions G if:

(i) g(x, z) = x′h(z) ≡∑d
l=1 xlhl(z) for some continuous functions hl(z),

where h(z) = (h1(z), . . . , hd(z))′.
(ii)

∑d
l=1 E[x2

ilhl(zi)
2] <∞, where xl (xil) is the lth component of x (xi).

For any function f(x, z), let EG [f(x, z)] denote the projection of f(x, z)
onto the varying coefficient functional space G (under the L2-norm). That
is, EG [f(x, z)] is an element that belongs to G and it is the closest function
to f(x, z) among all the functions in G. More specifically (xl is the lth
component of x, l = 1, . . . , d),

E{(f(x, z)−EG [f(x, z)])(f(x, z)−EG [f(x, z)])′}
(13)

= inf∑
l
xlhl(z)∈G

E

{(
f(x, z)−

d∑

l=1

xlhl(z)

)(
f(x, z)−

d∑

l=1

xlhl(z)

)′}
.

Thus,

E[(f(x, z)−EG [f(x, z)])(f(x, z)−EG [f(x, z)])′]

(14)
≤ E

[(
f(x, z)−

d∑

l=1

xlhl(z)

)(
f(x, z)−

d∑

l=1

xlhl(z)

)′]
,

for all g(x, z) =
∑d

l=1 xlhl(z) ∈ G. Here for square matrices A and B, A≤ B
means that A−B is negative semidefinite.

Define θ(x, z) = E[w|x, z] and m(x, z) = EG [θ(x, z)]. The following as-
sumptions will be used to establish the asymptotic distribution of γ̂ and
the convergence rates of β̂(z).
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Assumption 2.1. (i) (Yi,wi, xi, zi)
n
i=1 are independent and identically

distributed as (Y1,w1, x1, z1) and the support of (w1, x1, z1) is a compact
subset of Rq+d+r; (ii) both θ(x1, z1) and var[Y1|w1, x1, z1] are bounded func-
tions on the support of (w1, x1, z1).

Assumption 2.2. (i) For every K there is a nonsingular matrix B such
that for PK(x, z) = B pK(x, z) the smallest eigenvalue of E[PK(xi, zi)P

K(xi, zi)
′]

is bounded away from zero uniformly in K; (ii) there is a sequence of con-
stants ζ0(K) satisfying sup(x,z)∈S ‖PK(x, z)‖ ≤ ζ0(K) and K = Kn such that

(ζ0(K))2K/n → 0 as n →∞, where S is the support of (x1, z1), and for a
matrix A, ‖A‖ = [tr(A′A)]1/2 denotes the Euclidean norm of A.

Assumption 2.3. (i) For f(x, z) =
∑d

l=1 xlβl(z) or f(x, z) = mj(x, z)

(j = 1, . . . , q), there exist some δl > 0 (l = 1, . . . , d), αf = αfK = (αk1′
1 , . . . , αkd′

d )′,

such that sup(x,z)∈S |f(x, z)−PK(x, z)′αf | = O(
∑d

l=1 k−δl

l ); (ii) for min{k1, . . . , kd}→
∞,

√
n(
∑d

l=1 k−2δl

l ) → 0 as n→∞.

Assumption 2.1 is a standard assumption being used on series estimation
methods. Assumption 2.2 usually implies that the density function of (x, z)
needs to be bounded below by a positive constant. Assumption 2.3 says that
there exist some δl > 0 (l = 1, . . . , d) such that the uniform approximation

error to the function shrinks at the rate
∑d

l=1 k−δl

l . Assumptions 2.2 and 2.3
are not the easiest conditions, but it is known that many series functions
satisfy these conditions, for example, power series and splines.

Under the above assumptions, we can state our main theorem.

Theorem 2.1. Define εi = wi−m(xi, zi), where m(xi, zi) = EG(wi), and

assume that Φ ≡ E[εiε
′
i] is positive definite. Then under Assumptions 2.1–

2.3 we have:

(i)
√

n(γ̂−γ)→ N(0,Σ) in distribution, where Σ = Φ−1ΩΦ−1, Ω = E[σ2(wi, xi, zi)εiε
′
i]

and σ2(wi, xi, zi) = E[u2
i |wi, xi, zi].

(ii) A consistent estimator of Σ is given by Σ̂ = Φ̂−1Ω̂Φ̂−1, where Φ̂ =

n−1∑n
i=1(wi − w̃i)(wi − w̃i)

′, Ω̂ = n−1∑n
i=1 û2

i (wi − w̃i)(wi − w̃i)
′, w̃i is the

ith row of W̃ and ûi = Yi −w′
iγ̂ − pK(xi, zi)

′α̂.

The proof of Theorem 2.1 is given in the Appendix. [One may prove The-
orem 2.1 based on the general result of Shen (1997) and Ai and Chen (2003)
which requires one to establish stochastic equicontinuity of the objective
function. However, for the specific partially linear varying semiparametric
model, it is easier to use a direct proof as given in the Appendix.]
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Under the conditional homoskedastic error assumption E[u2
i |wi, xi, zi] =

E(u2
i ) = σ2, the estimator γ̂ is semiparametric efficient in the sense that the

inverse of the asymptotic variance of
√

n(γ̂ − γ) equals the semiparametric
efficiency bound. From the result of Chamberlain (1992) [the concept of semi-
parametric efficient bound we use here is discussed in Chamberlain (1992),
which gives the lower bound for the asymptotic variance of an (regular)
estimator satisfying some conditional moment conditions; see also Bickel,
Klaassen, Ritov and Wellner (1993) for a more general treatment of efficient
and adaptive inference in semiparametric models], the semiparametric effi-
ciency bound for the inverse of the asymptotic variance of an estimator of
γ is

J0 = inf
g∈G

E[(wi − g(xi, zi))(var[ui|wi, xi, zi])
−1(wi − g(xi, zi))

′].(15)

Under the conditional homoskedastic error assumption var[ui|wi, xi, zi] =
σ2, then (15) can be rewritten as (m(xi, zi) = EG(wi))

J0 =
1

σ2
inf
g∈G

E[(wi − g(xi, zi))(wi − g(xi, zi))
′]

=
1

σ2
E[(wi −m(xi, zi))(wi −m(xi, zi))

′](16)

=
1

σ2
E[εiε

′
i] =

Φ

σ2
.

Note that the inverse of (16) coincides with Σ = σ2Φ−1, the asymptotic
variance of

√
n(γ̂ − γ) when the error is conditional homoskedastic. Hence,

Σ−1 = J0 and γ̂ is a semiparametrically efficient estimator under the condi-
tional homoskedastic error assumption.

The next theorem gives the convergence rate of β̂l(z) = pkl

l (z)α̂kl

l to βl(z)
for l = 1, . . . , d.

Theorem 2.2. Under Assumptions 2.1–2.3, let Sz denote the support

of zi. Then we have, for l = 1, . . . , d:

(i) supz∈Sz
|β̂l(z)− βl(z)| = Op(ζ0(K)(

√
K/

√
n +

∑d
l=1 k−δl

l )).

(ii) 1
n

∑n
i=1(β̂l(z)− βl(z))2 = Op(K/n +

∑d
l=1 k−2δl

l ).

(iii)
∫
(β̂l(z) − βl(z))2 dFz(z) = Op(K/n +

∑d
l=1 k−2δl

l ), where Fz is the

cumulative distribution function of zi.

The proof of Theorem 2.2 is given in the Appendix.
Newey (1997) gives some primitive conditions for power series and B-

splines such that the Assumptions 2.1–2.3 hold. We state them here for the
readers’ convenience.
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Assumption 2.4. (i) The support of (xi, zi) is a Cartesian product of
compact connected intervals on which (xi, zi) has an absolutely continu-
ous probability density function that is bounded above by a positive con-
stant and bounded away from zero; (ii) for l = 1, . . . , d, fl(x, z) is continu-
ously differentiable of order cl on the support S , where fl(x, z) = xlβl(z) or
fl(x, z) = ml(x, z).

Assumption 2.5. The support of (xi, zi) is [−1,1]d+r .

Suppose that a smooth function η(z) (z ∈ Rr) is continuously differen-
tiable of order c. It is well established that the approximation error by using
power series or B-splines is of the order of O(K−c/r); see Lorentz (1966),
Andrews (1991), Newey (1997) and Huang (1998). Therefore, Assumption

2.3(i) holds for power series and B-splines if
√

n(
∑d

l=1 k
−cl/r
l ) = o(1) (i.e.,

δl = cl/r). Newey (1997) shows that, for power series or splines, Assump-
tion 2.4 implies that the smallest eigenvalue of E[PK(xi)P

K(xi)
′] is bounded

for all K. Also, Assumptions 2.4 and 2.5 imply that Assumptions 2.2 and
2.3 hold for B-splines with ζ0(K) = O(

√
K ). Hence, we have the following

results for regression splines.

Theorem 2.3. For splines, if Assumptions 2.1, 2.4 and 2.5 are satisfied,

and k2
l /n → 0 as n→∞ for l = 1, . . . , d, then:

(i) The conclusion of Theorem 2.1 holds.

(ii) The conclusion of Theorem 2.2 holds with
√

K replacing ζ0(K).

Theorem 2.2 only gives the rate of convergence of the series estimator for
the varying coefficient function β(z). As we mentioned in the Introduction,
it is difficult to obtain asymptotic normality results for the series estima-
tor of β(z) under optimal smoothings. The reason is that the asymptotic
bias of the series estimator is unknown in general. Recently, Zhou, Shen
and Wolfe (1998) have obtained an asymptotic bias for univariate spline
regression functions that belong to Cp (i.e., the regression functions have
continuous pth derivatives) under somewhat stringent conditions such as
the knots are asymptotically equally-spaced, and the degree of the spline
m is equal to p − 1. See Huang (2003) for a more detailed discussion on
the difficulty of obtaining the asymptotic bias for general cases with splines.
Alternatively, one may choose to undersmooth the data. In this case the
bias is asymptotically negligible. Huang (2003) has obtained the asymptotic
distribution of spline estimators under quite general conditions (provided
the data are slightly undersmoothed). Huang, Wu and Zhou (2002, 2004)
have further provided asymptotic distribution results for spline estimation
of a varying coefficient model. Their results can be directly applied to obtain
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the asymptotic distribution of β̂(z) in a partially linear varying coefficient
model. This is because γ̂ − γ = Op(n

−1/2), which converges to zero faster

than any nonparametric estimation convergence rate. Therefore, β̂(z) has
the same asymptotic distribution whether one uses the estimator γ̂ or the
true γ, the latter becomes a varying coefficient model (when γ is unknown)
and the results of Huang, Wu and Zhou (2002, 2004) apply.

3. Monte Carlo simulations. In this section we report some simulation
results to examine the finite sample performance of our proposed estima-
tor, and also compare it with the kernel-based profile likelihood estimator
suggested by Fan and Huang (2002). We first consider the following data
generating process (DGP):

DGP1 :yi = 1 + 0.5wi + xiβ1(zi) + ui, i = 1, . . . , n,(17)

where

β1(zi) = 1 + (24zi)
3 exp(−24zi)(18)

is taken from Hart (1997), β0 = 1 and γ = 0.5. The error ui’s are i.i.d. normal
with mean 0 and variance 0.25, zi is generated by the i.i.d. uniform[0,2]
distribution, wi = v1i +2v3i and xi = v2i + v3i, where vji, j = 1,2,3, are i.i.d.
uniform[0,2].

We also consider a second data generating process:

DGP2 :yi = 4 + 0.5wi + xi1β1(zi) + xi2β2(zi) + ui, i = 1, . . . , n,(19)

where β1(zi) is the same as in DGP1, β2(zi) = zi+sin(zi), zi is i.i.d. uniform[0,2],
ui is i.i.d. normal with mean 0 and variance 0.25, wi = v1i + 2v3i, x1i =
v2i+v3i, and x2i = v4i+0.5v3i, where vji (j = 1,2,3,4) are i.i.d. uniform[0,2].

The sample sizes are n = 100 and n = 200, and the number of replications
is 5000 for all cases. We compare the estimated mean squared error (MSE)
of γ̂ defined by MSE(γ̂) = 1

5000

∑5000
j=1 (γ̂j − γ)2, and estimated mean average

squared error (MASE) of β̂l(·) defined by MASE(β̂l(·)) = 1
5000

∑5000
j=1 [ 1

n

∑n
i=1(β̂l,j(zi)−

βl(zi))
2 (l = 1 for DGP1, l = 1,2 for DGP2), where γ̂j and β̂l,j(zi) are, re-

spectively, the estimates of γ and βl(zi) from the jth replication based on
one of the two methods: the B-spline method and the kernel-based profile
likelihood method. We use a univariate cubic B-spline basis function defined
by

B(z|t0, . . . , t4) =
1

3!

4∑

j=0

(−1)j
(

4
j

)
[max(0, z − tj)]

3,(20)

where t0, . . . , t4 are the evenly-spaced design knots. The kernel estimator of γ
is discussed at the end of Section 2. The number of terms K in series estima-
tion and the smoothing parameter h in kernel estimation are both selected
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Table 1
MSE (γ̂) by spline and kernel methods

DGP1 DGP2

n = 100 n = 200 n = 100 n = 200

Cubic B-spline MSE (γ̂) 0.00278 0.00133 0.00357 0.00153
Profile likelihood MSE (γ̂) 0.00315 0.00145 0.00443 0.00178

by leave-one-out least squares cross-validation. As discussed in Bickel and
Kwon (2002), the estimation of the parametric component does not very
sensitively depend on the choice of smoothing parameters, as long as the
selected smoothing parameters do not create excessive bias in the estima-
tion of the nonparametric components. In this regard, the cross-validation
method usually performs well. (Other data driven methods in selecting K in
series estimation include the following: the generalized cross-validation cri-
terion [Craven and Wahba (1979) and Li (1987)] and Mallows’ Cp criterion
[Mallows (1973)].)

The simulation result is presented in Table 1. From Table 1, first we
observe that as the sample size doubles, the estimated MSE for all three
different estimators reduces to about half of the original values; this is con-
sistent with the fact that all of them are

√
n-consistent estimators of γ. Sec-

ond we observe that the B-spline method gives slightly smaller estimated
MSE of γ̂ for both DGPs. Under the conditional homoskedastic error con-
dition, both methods are semiparametrically efficient. Therefore, they have
the same asymptotic efficiency. The results in Table 1 may reflect small sam-
ple differences of the two estimation methods for the chosen data generating
processes (DGP). It is possible that for some other DGPs the kernel method
may have better small sample performance. In fact, a few simulated exam-
ples cannot differentiate the finite sample performance of the two methods.

Table 2 reports MASE(β̂(z)) for the spline and the profile likelihood meth-
ods. The spline and the kernel methods give similar estimation results for
MASE(β̂(z)) for both DGPs.

The results of Tables 1 and 2 are based on the least-squares cross-validation
selection of K (for spline) and h (for the profile likelihood method). To ex-
amine whether our findings only reflect a particular way of selecting the
smoothing parameters (the cross-validation method), we also compute the

MSE (γ̂) and MASE(β̂(·)) for a range of different values of K and h without
leave-one-out in the estimation. Figures 1 and 2 plot the estimation results.

In Figure 1(a) the dashed line plots the leave-one-out cross-validation
function for a range of K for the spline method (DGP1, n = 100, average
over the 5,000 replications). We observe that the cross validation function
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(a)

(b)

(c)

Fig. 1. (a) CV function and SSR (spline, DGP1, n = 100). (b) MSE(γ̂) (spline, DGP1,
n = 100). (c) MASE(β̂(z)) (spline, DGP1, n = 100).
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(a)

(b)

(c)

Fig. 2. (a) CV function and SSR (kernel, DGP1, n = 100). (b) MSE(γ̂) (kernel, DGP1,
n = 100). (c) MASE(β̂(z)) (kernel, DGP1, n = 100).
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is minimized around K = 10. The solid line in Figure 1(a) is the sum of
squared residuals computed without using the leave-one-out estimator; as
expected, it decreases as K increases.

Figure 1(b) graphs the MSE(γ̂) computed using all observations (not us-
ing the leave-one-out method). We see that MSE (γ̂) takes minimum values

around K = 10 and K = 11. Figure 1(c) plots the MASE(β̂(z)), again com-

puted using all observations. MASE(β̂(z)) assumes minimum values around
K = 10. The average of 5,000 cross-validation selected K’s is 10.42.

From Figure 1 we can see that, on average, the least squares cross-
validation method performs well in selecting K that is close to values of
K that minimize MSE(γ̂) and MASE(β̂(z)). Note that both Figures 1(b)
and 1(c) do not use the leave-one-out estimator. Therefore, unlike the sum of

squared residuals, MSE (γ̂) and MASE(β̂(z)) do not monotonically decrease
as K increases.

Figure 2 gives the corresponding cases for the profile kernel method.
Figure 2(a) shows that the cross-validation function is minimized around
h = 0.04, while the sum of squares of residuals monotonically increases with
h.

Figures 2(b) and 2(c) show that both MSE(γ̂) and MASE(β̂(z)) are min-
imized around h = 0.04. Note that Figures 2(b) and 2(c) are computed using
all observations (without using the leave-one-out method). Therefore, similar

to the spline case, MSE (γ̂) and MASE(β̂(z)) do not decrease monotonically
with h, but rather they are both minimized around the value of h that
minimizes the cross-validation function.

Summarizing the results of Figures 1 and 2, we find that the cross-
validation method performs adequately for the simulated data. The sim-
ulation results reported in this section show that both the spline and the
kernel methods can be a useful tool in estimating a partially linear varying
coefficient model.

4. An empirical application. In this section we consider estimation of
a production function in China’s manufacturing industry to illustrate the

Table 2
MASE(β̂(·)) by spline and kernel methods

DGP1 DGP2

MASE(β̂1(·)) MASE(β̂1(·)) MASE(β̂2(·))

n = 100 n = 200 n = 100 n = 200 n = 100 n = 200

Cubic B-spline 0.0162 0.00764 0.0576 0.0245 0.0635 0.0326
Profile likelihood 0.0224 0.0110 0.0815 0.0356 0.0593 0.0318
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application of the partially linear varying coefficient model. The data used
in this paper are drawn from the Third Industrial Census of China con-
ducted by the National Statistical Bureau of China in 1995. The Third
Industrial Census of China is currently the most comprehensive industrial
survey in China. To avoid heterogeneity across different industries and also
to maintain enough observations in the sample for accurate semiparametric
estimation, we include firms from the sector of food, soft drink and cigarette
manufacturing in this study. After removing firms with missing values, the
sample size we use is 877. We estimate a benchmark parametric linear model
as follows:

lnY = β0 + γ lnw + βl lnL + βk lnK + βz lnz + u,(21)

where Y is the sales of the firm, w is the liquid capital, L is the labor input,
K is the fixed capital and z is the firm’s R&D (all monetary measures are
in thousand RMB, the Chinese currency).

The partially linear varying coefficient model is given by

lnY = γ lnw + β0(z) + βl(z) lnL + βk(z) lnK + u.(22)

Here we choose liquid capital as the w variable whose coefficient does not
depend on the firm’s R&D spending (z). We have given some theoretical
arguments for this model specification in the Introduction; to justify this
choice statistically, we test both models (21) and (22) against a more general
semiparametric varying coefficient model,

lnY = γ(z) lnw + β0(z) + βl(z) lnL + βk(z) lnK + u.(23)

Obviously, (23) includes (22) as special case when γ(z) is constant for all z.
We use quadratic and cubic splines and the number of knots is chosen by the
least squares cross-validation method. The cross-validation method selected
the quadratic spline. Our test for the null models (21) and (22) is based
on (RSS 0 − RSS )/RSS , where RSS 0 is the residual sum of squares from
the null model, and RSS is from the alternative model (23). We obtain the
critical values of our test based on 1,000 residual-based bootstrap procedures
where we first obtain the residuals from the null model, from which we
generate two point wild bootstrap errors, which in turn are used to generate
bootstrap lnY ’s (using the estimated null model); the bootstrap statistic
is (RSS ∗

0 − RSS ∗)/RSS ∗, where RSS ∗
0 is the residual sum of squares from

the null model computed using the bootstrap sample and RSS ∗ is computed
from the alternative model also using the bootstrap sample. Note that the
bootstrap sample is generated according to the null model. Therefore, the
bootstrap statistic approximates the null distribution of the original test
statistic even when the null hypothesis is false. When testing the parametric
null model, we firmly reject the null model with a p-value of 0.001. For
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testing the partially linear varying coefficient model (22), we cannot reject
this null model at conventional levels (a p-value of 0.162). Therefore, both
economic theory and the statistical testing results support our specification
(22).

The estimated value of γ based on (22) is 0.481, with a standard error
of 0.0372 (the t-statistic is 12.91). The goodness-of-fit R2 is 0.566 [R2 =
1−RSS/

∑
i(yi− ȳ)2, yi = lnYi]. The estimated varying coefficient functions

are plotted in Figures 3(a) to 3(c). β0(z) is plotted in Figure 3(a). Figure 3(b)
shows that the marginal productivity of labor βl(z) is a nonlinear function of
z (R&D). The marginal productivity of labor first increases with z and then
decreases as z increases further. The bell shape of the curve suggests that,
while modest R&D can improve labor productivity, higher R&D leads to
lower labor productivity. Figure 3(c) shows that the marginal productivity
of (fixed) capital is also nonlinear in z. It exhibits a general up trend with z,
indicating that firms with large R&D spending yield relative higher marginal
(fixed) capital productivity. These results are not surprising given that most
of the firms in our sample are state-owned. It is typical in these firms that
capital is scarce while labor is excessive. Thus, most of the R&D expenses are
used to improve equipment performance, but not to train labor. In Figure
3(d) we graph the return to scale function γ + βl(z) + βk(z). The return to
scale is well below one (the constant return to scale level) for firms with
small R&D, and it increases to a range between 0.8 to 0.9 for firms with
large R&D expenditures. The results indicate that most of the firms in our
sample exhibit decreasing returns to scale in production. It partly reflects the
fact that the firms included in the survey are large firms, most of which are
state-owned firms. These firms typically have a production scale larger than
ideal. In particular, there are usually too many employees in these firms. It
was not until several years after the survey we use in this paper, as a result
of fierce competition from foreign firms and the passage of bankruptcy law
in China, that the food, soft drink and cigarette sector witnessed a string of
reorganizations, mergers and acquisitions. Further discussion is beyond the
scope of this paper.

We have also applied the kernel profile likelihood method to this data
set. The estimation results are quite similar to those obtained by the spline
method. For example, the estimated γ is 0.489 with a t-statistic of 13.20.
The β(z) functions all have similar shapes as those obtained by the spline
method. Therefore, we do not report the kernel estimation results here.

5. Possible extension. In this section we briefly discuss (without provid-
ing technical details) efficient estimation of a partially varying coefficient
model when the error is conditional heteroskedastic.

Theorem 2.1 holds even when the error is conditional heteroskedastic,
say, E(u2

i |vi) = σ2(vi), where vi = (wi, xi, zi). However, in this case γ̂ is not
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(a)

(b)

(c)

Fig. 3. (a) b0(z) (spline). (b) b1(z) (spline). (c) bk(z) (spline).
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(d)

Fig. 3 (continued). (d) Return to scale (spline).

semiparametric efficient. An efficient estimator can be obtained by dividing
each term in (5) by σi =

√
σ2(vi):

Yi

σi
=

w′
i

σi
γ +

x′
iβ(zi)

σi
+

ui

σi
.(24)

We estimate (γ′, β(zi)
′) by the least squares regression of Yi/σi on (wi/σi, p

K(xi, zi)
′/σi).

The transformed error ui/σi becomes conditional homoskedastic. Under the
assumption that 0 < η1 ≤ infv σ2(v) ≤ supv σ2(v) ≤ η2 <∞ for some positive
constants η1 < η2, by the same arguments as in the proof of Theorem 2.1,
one can show that

√
n(γ̃ − γ)→ N(0, J−1

0 A0J
−1
0 ) = N(0, J−1

0 ) in distribution,

where

J0 = inf
ξ∈G

E{[wi − x′
iξ(zi)][wi − x′

iξ(zi)]
′/σ2(vi)}(25)

and

A0 = inf
ξ∈G

E{[wi − x′
iξ(zi)][wi − x′

iξ(zi)]
′u2

i /σ
4(vi)}

= inf
ξ∈G

E{[wi − x′
iξ(zi)][wi − x′

iξ(zi)]
′/σ2(vi)}= J0.

Therefore, by the result of Chamberlain (1992), we know that γ̃ is semi-
parametrically efficient. Note that if we let a(x, z) = x′ξ(z) ∈ G denote the
solution of the minimization problem of (25), that is, E{[wi − a(xi, zi)][wi −
a(xi, zi)]

′/σ2(vi)} = infξ∈G E{[wi−x′
iξ(zi)][wi−x′

iξ(zi)]
′/σ2(vi)}, then a(x, z),

in general, differs from m(x, z) = EG(wi) defined in (16) because of the
weighting function 1/σ2(vi).
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It is unlikely that σ2(vi) is known in practice. Let σ̂2(vi) denote a generic
nonparametric estimator of σ2(vi), and write σ̂i =

√
σ̂2(vi). Then one can ob-

tain feasible estimators for γ and β(z) by regressing Yi/σ̂i on [w′
i/σ̂i, p

K(xi, zi)/σ̂i].
The resulting estimator of γ will be semiparametric efficient provided that
σ̂(v) converges to σ(v) uniformly with a certain rate for all v in the compact
support of v.

For the kernel-based profile likelihood approach, it is more difficult to
obtain efficient estimation when the error is conditional heteroskedastic.
Recall that EG(Ai) denotes the projection of Ai on the varying coefficient
functional space G. From (5) we have

yi −EG(yi) = (wi −EG(wi))
′γ + ui.(26)

Dividing each term in (26) by σi, we get

yi −EG(yi)

σi
=

(wi −EG(wi))
′

σi
γ +

ui

σi
.(27)

Let γ̄ denote the least squares estimator of γ based on (27). By the Lin-
deberg central limit theorem, we have

√
n(γ̄ − γ) → N(0,{E[(wi −EG(wi))(wi −EG(wi))

′/σ2
i ]}−1)

(28)
in distribution.

However, γ̄ is not semiparametrically efficient because

E[(wi −EG(wi))(wi −EG(wi))
′/σ2

i ]

6= inf
g∈G

E[(wi − g(xi, zi))(wi − g(xi, zi))
′/σ2(vi)]

due to the weight function 1/σ2
i . [EG(wi) is defined as the (un-weighted) pro-

jection of wi on the varying coefficient functional space G. It differs from the
weighted projection in general.] We conjecture that some iterative procedure
(similar to the backfitting algorithm) is needed in order to obtain an efficient
kernel-based estimator for γ when the error is conditional heteroskedastic.

APPENDIX

Throughout this Appendix, C denotes a generic positive constant that
may be different in different uses,

∑
i =

∑n
i=1. The norm ‖ · ‖ for a matrix

A is defined by ‖A‖ = [tr(A′A)]1/2. Also, when A is a matrix and an is a
positive sequence depending on n, A = Op(an) [or op(an)] means that each
element of A is Op(an) [or op(an)]. Also, when we write A≤ C for a constant
scalar C, it means that each element of A is less or equal to C.

Proof of Theorem 2.1. Recall that θ(xi, zi) = E[wi|xi, zi], m(xi, zi) =
EG(wi) = EG(θ(xi, zi)) and εi = wi − m(zi, xi). Define vi = wi − θ(xi, zi)
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and ηi = θ(zi, xi) − m(xi, zi). We will use the following short-hand nota-
tion: θi = θ(xi, zi), gi = x′

iβ(zi) and mi = m(xi, zi). Hence, vi = wi − θi,
εi = θi + vi − mi, ηi = θi −mi. Finally, the variables without subscript rep-
resent matrices, for example, θ = (θ1, . . . , θn)′ is of dimension n× 1.

Also recall that for any matrix A with n rows, we define Ã = P (P ′P )−P ′A
[P is defined below (6)]. Applying this definition to θ,m, g, η, u, v, we get
θ̃, m̃, g̃, η̃, ũ, ṽ.

Since wi = θi + vi and θi = mi + ηi, we get wi = ηi + vi + mi and w̃i =
η̃i + ṽi + m̃i. In matrix notation,

W = η + v + m and W̃ = η̃ + ṽ + m̃.

Therefore, we have

W − W̃ = η + v + (m− m̃)− ṽ − η̃.(29)

For scalars or column vectors Ai and Bi, we define SA,B = n−1∑
i AiB

′
i

and SA = SA,A. We also define the scalar function SA = n−1∑
i A

′
iAi, which

is the sum of the diagonal elements of SA. Using ab ≤ (a2 + b2)/2, it is
easy to see that each element of SA,B is less or equal to SA + SB . When
we evaluate the probability order of SA,B, we often write SA,B ≤ SA + SB .
The scalar bound SA + SB bounds each of the elements in SA,B . There-
fore, if SA + SB = Op(an) (for some sequence an), then each element of
SA,B is at most Op(an), which implies that SA,B = Op(an). Similarly, using

the Cauchy–Schwarz inequality, we have SA,B ≤ (SASB)1/2. Here again, the
scalar bounds all the elements in SA,B .

Note that if S−1

W−W̃
exists, then, from (10) and (11), we get

√
n(γ̂ − γ) =

[
n−1

∑

i

(wi − w̃i)(wi − w̃i)
′

]−1

(30)
×
√

n

{
n−1

∑

i

(wi − w̃i)(gi − g̃i + ui − ũi)

}

= S−1

W−W̃

√
nS

W−W̃ ,g−g̃+u−ũ
,

where gi = x′
iβ(zi).

For the first part of the theorem, we will prove the following: (i) S
W−W̃

=

Φ+op(1), (ii) S
W−W̃ ,g−g̃

= op(n
−1/2), (iii) S

W−W̃ ,ũ
= op(n

−1/2) and (iv)
√

nS
W−W̃ ,u

→
N(0,Ω) in distribution.

Proof of (i). For a matrix A and scalar sequence an, A = Op(an)
(op(an)) means that each element of A has an order of Op(an) (op(an)).
Using (29), we have

S
W−W̃

= Sη+v+(m−m̃)−ṽ−η̃ = Sη+v + S(m−m̃)−ṽ−η̃ + 2Sη+v,(m−m̃)−ṽ−η̃.(31)



20 I. AHMAD, S. LEELAHANON AND Q. LI

The first term Sη+v = 1
n

∑
i(ηi + vi)(ηi + vi)

′ = 1
n

∑
i εiε

′
i = Φ + op(1) by

virtue of the law of large numbers.
The second term S(m−m̃)−ṽ−η̃ ≤ 3(S(m−m̃) + Sṽ + Sη̃) = op(1) by Lemmas

A.3, A.4(i) and A.5, stated and proved at the end of this Appendix.
The last term Sη+v,(m−m̃)−ṽ−η̃ ≤ {Sη+vS(m−m̃)−ṽ−η̃}1/2 = (Op(1)op(1))

1/2 =
op(1) by the preceding results, where for an m × m matrix A, Diag(A) is

an m × 1 matrix with the diagonal elements of A, and A1/2 has the same
dimension as A by taking the square root for each element of A. �

Proof of (ii). Using (29), we have

S
W−W̃ ,g−g̃

= Sη+v+(m−m̃)−ṽ−η̃,g−g̃

(32)
= Sη+v,g−g̃ + Sm−m̃,g−g̃ − Sṽ,g−g̃ − Sη̃,g−g̃.

For the first term, by noting that ηi + vi is orthogonal to the vary-
ing coefficient functional space G, and gi − g̃i belong to G, we have us-
ing Lemma A.3, E[‖Sη+v,g−g̃‖2] = n−2∑n

i=1 E[(ηi + vi)(ηi + vi)
′(gi − g̃i)

2] ≤
Cn−1(

∑d
l=1 k2δl

l )×E[‖η1 +v1‖2] = O(n−1∑d
l=1 k2δl

l ) = o(n−1), which implies

that Sη+v,g−g̃ = Op(n
−1/2∑d

l=1 k−δl

l ).

The second term Sm−m̃,g−g̃ ≤ (Sm−m̃Sg−g̃)
1/2 = Op(

∑d
l=1 k−2δl

l ) by Lem-
ma A.3.

The third term Sṽ,g−g̃ ≤ (S ṽSg−g̃)
1/2 = Op((K/n)1/2)Op(

∑d
l=1 k−δl

l ) by

Lemmas A.3 and A.4(i). The last term Sη̃,g−g̃ ≤ (S η̃Sg−g̃)
1/2 = Op((k/n)1/2)×

Op(
∑d

l=1 k−δl

l ) by Lemmas A.3 and A.5.

Combining the above four terms we have S
W−W̃ ,g−g̃

= Op((n
−1/2+(K/n)1/2)(

∑d
l=1 k−δl

l )+
∑d

l=1 k−2δl

l ) = op(n
−1/2) by Assumption 2.3. �

Proof of (iii). Using (29), we have

S
W−W̃ ,ũ

= Sη+v+(m−m̃)−ṽ−η̃,ũ = Sη+v,ũ + Sm−m̃,ũ − Sṽ,ũ − Sη̃,ũ.(33)

The first term Sη+v,ũ ≤ (Sη+vSũ)1/2 = Op(K/n) by Lemma A.4(ii). The

second term Sm−m̃,ũ ≤ (Sm−m̃Sũ)1/2 = Op(
∑d

l=1 k−δl

l )Op(
√

K/
√

n ) by Lem-
mas A.3 and A.4(ii).

The third term Sṽ,ũ ≤ (S ṽSũ)1/2 = Op(K/n) by Lemma A.4(i), (ii). The

last term Sη̃,ũ ≤ (Sη̃Sũ)1/2 = Op(K/n) by Lemmas A.4(ii) and A.5.

Combining all four terms, we get S
W−W̃ ,ũ

= Op(K/n+n−1/2∑d
l=1 k−δl

l ) =

op(n
−1/2) by Assumption 2.3. �

Proof of (iv). Using (29), we have
√

nS
W−W̃ ,u

=
√

nSη+v+(m−m̃)−ṽ−η̃,u

(34)
=
√

nSη+v,u +
√

n(Sm−m̃,u − Sṽ,u − Sη̃,u).
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The first term
√

nSη+v,u =
√

n
∑n

i=1(ηi + vi)ui =
√

n
∑n

i=1 εiui → N(0,Ω)
in distribution by the Lindeberg–Feller central limit theorem.

The second term E[S2
m−m̃,u|X,Z] = 1

n2 tr{(m−m̃)(m−m̃)′E[uu′|X,Z]} ≤
(C/n) tr[(m−m̃)′(m−m̃)/n] = (C/n)Sm−m̃ = op(n

−1) by Lemma A.3. Hence,

Sm−m̃,u = op(n
−1/2).

The third term E[S2
ṽ,u|X,Z] = 1

n2 tr(P (P ′P )−1P ′vv′P (P ′P )−1P ′E[uu′|X,Z]) ≤
(C/n2) tr[P (P ′P )−1P ′vv′P (P ′P )−1P ′] = (C/n) tr(ṽṽ′/n) = (C/n)Sṽ = op(n

−1)

by Lemma A.4(i). Hence, Sṽ,u = op(n
−1/2).

The last term Sη̃,u = op(n
−1/2) by the same proof as Sṽ,u = op(n

−1/2) by
citing Lemma A.5, rather than citing Lemma A.4(i). �

Combining proofs of (i)–(iv) with (30), we conclude that
√

n(γ̂ − γ) →
N(0,Φ−1ΩΦ−1) in distribution.

For the second part of the theorem, we need to show that Σ̂ = Σ + op(1),

where Σ̂ = Φ̂−1Ω̂Φ̂−1. But Φ̂ = S
W−W̃

= Φ + op(1) is proved in the proof

of (i) above. By a similar argument, it is easy to show that Ω̂ = Ω + op(1).

Therefore, Σ̂ = Σ + op(1). �

Proof of Theorem 2.2. We will prove Theorem 2.2 by replacing
β̂(z) and β(z) by ĝ(x, z) = x′β̂(z) and g(x, z) = x′β(z), respectively, because

|ĝ(x, z)− g(x, z)|2 = |x′(β̂(z)−β(z))|2 ≤ d
∑d

l=1 x2
l (β̂l(z)−βl(z))2, which has

the same order as ‖β̂(z) − β(z)‖2 under the bounded support assumption.
Hence, the rate of convergence for ĝ(x, z) − g(x, z) is the same as that of

β̂(z)− β(z).
The proof is similar to the proof of Theorem 1 in Newey (1997). Define an

indicator function 1n which equals 1 if (P ′P ) is nonsingular and 0 otherwise.
We first find the convergence rate of 1n‖α̂ − α‖. By (12) and (7), and if
(P ′P )−1 exists, we have

α̂ = (P ′P )−1P ′(Y −Wγ̂)

= (P ′P )−1P ′(Y −Wγ −W (γ̂ − γ))

= (P ′P )−1P ′(Pα + (G− Pα) + u−W (γ̂ − γ))(35)

= α + (P ′P/n)−1P ′(G−Pα)/n + (P ′P/n)−1P ′u/n

− (P ′P/n)−1P ′W (γ̂ − γ)/n.

Hence,

1n‖α̂− α‖ ≤ 1n‖(P ′P/n)−1P ′(G−Pα)/n‖

+ 1n‖(P ′P/n)−1P ′u/n‖(36)

+ 1n‖(P ′P/n)−1P ′W (γ̂ − γ)/n‖.
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The first term 1n‖(P ′P/n)−1P ′(G − Pα)/n‖ = Op(
∑d

l=1 k−δl

l ) by Lem-
ma A.2.

The second term

E[1n‖(P ′P/n)−1P ′u/n‖|X,Z]

= 1nE[((u′P/n)(P ′P/n)−1(P ′P/n)−1(P ′u/n))1/2|X,Z]

≤ Op(1)1n tr(P (P ′P )−1P ′E[uu′|X,Z]/n)1/2

≤ Op(1)1nC
√

K/
√

n

by Lemma A.1 and Assumption 2.1. Hence, 1n‖(P ′P/n)−1P ′u/n‖ = Op(
√

K/
√

n ).
As for the last term, note that W = η + v + m = ε + m and γ̂ − γ =

Op(n
−1/2) by Theorem 2.1. Therefore,

E[1n‖(P ′P/n)−1P ′W/n‖|X,Z]

= 1nE[‖(P ′P/n)−1P ′(ε + m)/n‖|X,Z]

≤ 1nE[‖(P ′P/n)−1P ′ε/n‖|X,Z] + 1nE[‖(P ′P/n)−1P ′m/n‖|X,Z].

Also,

1nE[‖(P ′P/n)−1P ′ε/n‖|X,Z]

= 1nE[‖(ε′P/n)(P ′P/n)−1(P ′P/n)−1(P ′ε/n)‖|X,Z]

≤Op(1)1n tr(P (P ′P )−1P ′E[εε′|X,Z]/n)1/2

≤Op(1)1nC
√

K/
√

n

by Lemma A.1 as in the proof of Theorem 2.1. Hence, 1n|(P ′P/n)−1P ′ε/n|=
Op(

√
K/

√
n ) = op(1).

1n‖(P ′P )−1P ′m‖= 1n‖(P ′P/n)−1P ′m/n‖= Op(1) by Lemma A.2.
Combining the above results, also noting that 1n → 1 almost surely, we

have

‖α̂− α‖ = Op

(
d∑

l=1

k−δl

l +
√

K/
√

n

)
.(37)

To prove part (i) of Theorem 2.2, using (37) and Assumption 2.3, and

also noting that ĝ(x, z) = x′β̂(z) = pK(x, z)′α̂, we have

sup
(x,z)∈S

|ĝ(x, z)− g(x, z)| ≤ sup
(x,z)∈S

|pK(x, z)′(α̂− α)|+ |pK(x, z)′α− g(x, z)|

≤ ζ0(K)‖α̂− α‖+ O

(
d∑

l=1

k−δl

l

)
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= Op

(
ζ0(K)

(
d∑

l=1

k−δl

l +
√

K/
√

n

))
.

Proofs for (ii) and (iii) are similar, and we only prove (ii),

n−1
n∑

i=1

[ĝ(xi, zi)− g(zi, zi)]
2

= n−1‖Pα̂−G‖2

≤ 2n−1{‖P (α̂ −α)‖2 + ‖Pα−G‖2}
= 2(α̂−α)′(P ′P/n)(α̂−α) + 2 sup

(x,z)∈S
[pK(x, z)α− g(x, z)]2

= Op

(
K/n +

d∑

l=1

k−2δl

l

)

by (37), Lemma A.1 and Assumption 2.3(i). Thus, we have proved Theorem
2.2.

�

We now present some lemmas that are used in the proofs of Theorems 2.1
and 2.2. We will omit the indicator function 1n below since Prob(1n = 1) → 1
almost surely. Following the arguments in Newey (1997), we can assume
without loss of generality that B = I (B is defined in Assumption 2.2).
Hence, PK(X,Z) = pK(X,Z), and Q = E[pK(xi, zi)p

K(xi, zi)
′] = I (I is an

identity matrix of dimension K); see Newey (1997) for the reasons and more
discussion of these issues. Recall that pK(x, z) is a K ×1 matrix and rewrite
each component of this matrix as pK(x, z) = (p1K(x, z), . . . , pKK(x, z))′.

Lemma A.1. ‖Q̂− I‖ = Op(ζ0(K)
√

K/
√

n ) = op(1), where Q̂ = P ′P/n.

Proof. This is Theorem 1 in Newey (1997). �

Lemma A.2. ‖α̃f −αf‖ = Op(
∑d

l=1 k−δl

l ), where α̃f = (P ′P )−1P ′f , αf sat-

isfies Assumption 2.3 and f = G or f = m.

Proof. By Lemma A.1, Assumption 2.3 and the fact that P (P ′P )−1P ′

is idempotent,

‖α̃f −αf‖ = ‖(P ′P )−1P ′(f −Pαf )‖

= ‖(f − Pαf )′P (P ′P )−1Q̂P ′(f −Pαf )/n‖1/2

≤ Op(1)‖(f −Pαf )′P (P ′P )−1P ′(f −Pαf )/n‖1/2
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≤ Op(1)‖(f −Pαf )′(f −Pαf )/n‖1/2 = Op

(
d∑

l=1

k−δl

l

)
.

�

Lemma A.3. Sf−f̃ = Op(
∑d

l=1 k−2δl

l ), where f = G or f = m.

Proof. Note that f̃ = Pα̃f . By Assumption 2.3 and Lemmas A.1 and
A.2,

Sf−f̃ =
1

n
|f − f̃ |2 ≤ 1

n
(|f − Pαf |2 + |P (αf − α̃f )|2)

= O

(
d∑

l=1

k−2δl

l

)
+ (αf − α̃f )′(P ′P/n)(αf − α̃f )

≤ O

(
d∑

l=1

k−2δl

l

)
+ Op(1)|αf − α̃f |2 = Op

(
d∑

l=1

k−2δl

l

)
.

�

Lemma A.4. (i) Sṽ = Op(K/n), (ii) Sũ = Op(K/n).

Proof. (i) This proof is similar to the proof of Theorem 1 of Newey
(1997),

E[Sṽ|X,Z] =
1

n
E[v′P (P ′P )−1P ′v|X,Z]

=
1

n
E[tr(P (P ′P )−1P ′E[vv′|X,Z])]

≤ C

n
tr(P (P ′P )−1P ′) = C

(
K

n

)
.

Hence, Sṽ = Op(K).
(ii) follows as in the proof of Lemma A.4(i). �

Lemma A.5. Sη̃ = Op(K/n).

Proof. First we show that (P ′η/n) = Op(
√

K/
√

n ). Recall that θ(xi, zi) =
E(wi|xi, zi) and ηi = θ(xi, zi) − EG [θ(xi, zi)]. Note that pK(xi, zi) ∈ G and
EG(ηi) = 0 (i.e., η ⊥G). Hence, E‖P ′η/n‖2 = n−2∑

i E[pK(xi)
′‖ηi‖2pK(xi)]≤

C
n E[pK(Xi)

′pK(xi)] = C
n tr{E[pK(Xi)p

K(xi)
′]} = (CK/n) = O(K/n), which

implies that (P ′η/n) = Op(
√

K/
√

n ).
Thus, Sη̃ = n−1η̃′η = (η′P/n)(P ′P/n)−1(P ′η/n) = Op(K/n)Op(1) = Op(K/n)

by Lemma A.1 and the fact that P ′η/n = Op(
√

K/
√

n ) as shown above. �
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