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Candida rugosa is a poorly known fungal species occasionally involved in human infections. A molecular analysis of the se-
quences of the D1/D2 domains and the internal transcribed spacer (ITS) region of the ribosomal genes of 24 clinical isolates phe-
notypically identified as C. rugosa demonstrated that only 10 (41.6%) isolates belonged to that species. The other isolates were
identified as Candida pararugosa (41.6%) and Candida pseudorugosa (8.3%). The remaining two isolates, from human and
equine infections, respectively, were clearly different from the others and represent a new species proposed here as Candida neo-
rugosa. The closest species by D1/D2 sequences was the type strain of C. rugosa, with only 92.3% similarity. C. neorugosa can
also be differentiated from all other species of the C. rugosa complex by phenotypic features. The eight antifungal drugs tested
showed high in vitro activity against the 24 isolates included in the study.

he incidence of Candida infection has increased in recent

years, representing an important cause of morbidity and mor-
tality. Although candidiasis is caused mainly by Candida albicans,
Candida glabrata, Candida parapsilosis, Candida tropicalis, and
Candida krusei (15), infections caused by rarer species have in-
creased in recent years (7, 18). Among these less common species,
Candida rugosa has been recognized as an emerging fungal patho-
gen capable of causing invasive infection in immunocompro-
mised patients (12), mostly related to the use of catheters but also
by other modes of nosocomial acquisition (6, 8, 12). This spe-
cies represents only 0.2% of the Candida isolates in the global
ARTEMIS DISK Antifungal Surveillance Program (18) but shows
a high prevalence in Latin America (18) and India (19). The fun-
gus has decreased susceptibility to fluconazole (FLC) (17, 18),
amphotericin B (AMB) (7), and the echinocandins (7). Consider-
ing its increasing pathogenic role and the potential development
of resistance to antifungals, the reliable identification of C. rugosa
is an important issue. However, the biochemical systems currently
used for yeast identification in clinical laboratories commonly fail
to identify the less frequent Candida spp. (23). Some genetic het-
erogeneity in C. rugosa has been reported (2, 13, 21), and the novel
species Candida pseudorugosa, closely related to C. rugosa, has
been recently proposed (11).

We have analyzed the D1/D2 domains and the intergenic tran-
scribed spacer (ITS) sequences of the rRNA genes of a set of clin-
ical isolates phenotypically identified as C. rugosa in order to assess
the genetic heterogeneity of the species.

MATERIALS AND METHODS

Fungal isolates. A total of 24 clinical isolates, received as C. rugosa by the
Fungus Testing Laboratory in the Department of Pathology at the Uni-
versity of Texas Health Science Center (UTHSC) at San Antonio, TX, for
identification and/or antifungal susceptibility determination, were in-
cluded in the study. In addition, several ITS and D1/D2 sequences from
type or reference strains, retrieved from GenBank, were also included in
the phylogenetic analyses (Table 1).
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DNA extraction, amplification, and sequencing. The fungal isolates
were grown on potato dextrose agar (PDA) (Pronadisa, Madrid, Spain) at
28°C for 24 h, and DNA was extracted using a PrepMan Ultra sample prepa-
ration reagent (Applied Biosystems, Foster City, CA) according to the man-
ufacturer’s protocol. The DNA was quantified using GeneQuant Pro (Amer-
sham Pharmacia Biotech, Cambridge, England). The D1/D2 domains of the
24 isolates and the ITS regions of two isolates from the different clades ob-
tained in the D1/D2 phylogenetic analysis were amplified with the primer
pairs NL1/NL4 and ITS5/ITS4, respectively, following the protocols de-
scribed by Cano et al. (4) and Gilgado et al. (10). The PCR products were
purified and sequenced with the same primers used for amplification at Mac-
rogen Europe Inc. (Amsterdam, The Netherlands) with a 3730XL DNA ana-
lyzer (Applied Biosystems). The program SeqMan (Lasergene, Madison, WI)
was used to obtain consensus sequences.

Alignment and phylogenetic analysis. The sequences were aligned
using the ClustalX (version 1.8) computer program (22) with default pa-
rameters, followed by manual adjustments with a text editor. The phylo-
genetic analysis was performed with the software program MEGA 5.0
(20), using Maximum Likelihood (ML) with General-Time-Reversible
(GTR) as a substitution model. Gaps were treated as pairwise deletion.
Support for internal branches was assessed by a search of 1,000 boot-
strapped sets of data.

Phenotypic studies. Morphological, biochemical, and physiological
characterization of a representative number of isolates of the different
clades obtained in the molecular study was performed using methods and
protocols previously described (24). The tests included growth on Sab-
ouraud chloramphenicol agar (Bio-Rad, Marnes-LaCoquette, France) at
30°C, 37°C, and 45°C; growth in liquid culture medium; germ tube tests;
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TABLE 1 Isolates and sequences of C. rugosa species complex included in the study

GenBank accession no.

Species Isolate” Origin ITS D1/D2

C. rugosa CBS 613" Feces of man AY500374" GU246244°

C. pseudorugosa CBS 104337 Sputum, Tianjin, China DQ234792° DQ234791°

C. catenulata NRRL Y-1508" Feces of man, Puerto Rico AY493436" CCU45714°
Clavispora lusitaniae CBS 4413" Cecum of pig, Portugal EU568907" AY190538”

C. pararugosa NRRL Y-17089" Feces of man AF421856" CPU62306"

C. rugosa LYSM3 Soil from forest, Thailand AB498988”

C. rugosa EB2 Water in mangrove forest, Thailand AB436404"

C. rugosa EF1 Water in mangrove forest, Thailand AB436406"

C. rugosa STC4 Blood, Kuala Lumpur, Malaysia HQ412590"

C. rugosa STC1 Blood, Kuala Lumpur, Malaysia HQ412589"

C. rugosa L154 Feces of man, Brazil FJ768915° g
C. rugosa 12683B Blood, Brazil FJ768918" E
C. rugosa L387A Rectal swab, Brazil FJ768920° =3
C. rugosa 1412D Catheter, Brazil FJ768919° o
C. rugosa L69D Blood, Brazil FJ768917° 8_
C. pseudorugosa MZKI K-259 Coastal Arctic, Norway EU056285" 8
C. pseudorugosa MZKI K-269 Coastal Arctic, Norway EU056286" —_
C. pararugosa CBS 9121 Saliva, sarcoma patient, Japan AB112430" 8
C. pararugosa CBS 9122 Saliva, sarcoma patient, Japan AB112432° 3
C. rugosa UTHSC 01-2568 Toe, USA HE716177 =5
C. rugosa UTHSC 05-205 Blood, USA HE716180 =
C. rugosa UTHSC 05-646 Jackson-Pratt drain, USA HE716182 -E
C. rugosa UTHSC 05-1919 Ankle, USA HE716179 —;
C. rugosa UTHSC 06-3729 Ear, USA HE716760 HE716180 3
C. rugosa UTHSC 06-3931 Stool, USA HE716181 QD
C. rugosa UTHSC 06-3976 Sputum, USA HE716178 w0
C. rugosa UTHSC 09-1289 Dolphin, USA HE716183 3
C. rugosa UTHSC 09-1402 Blood, USA HE716176 o
C. rugosa UTHSC R-3412 Unknown HE716759 HE716175 (3
C. pararugosa UTHSC 03-344 Bronchial wash, USA HE716167 5
C. pararugosa UTHSC 03-1143 Blood, USA HE716170 S
C. pararugosa UTHSC 04-1051 Blood, USA HE716173 wn
C. pararugosa UTHSC 05-1693 Bronchial wash, USA HE716172 ®
C. pararugosa UTHSC 06-538 Blood, USA HE716174 =
C. pararugosa UTHSC 07-2797 Blood, USA HE716171 g
C. pararugosa UTHSC 07-3133 Blood, USA HE716169 o
C. pararugosa UTHSC 08-442 Urine, USA HE716757 HE716166 Q
C. pararugosa UTHSC 09-2953 Vaginal, USA HE716758 HE716165 =
C. pararugosa UTHSC 10-2648 Blood, USA HE716168 N
C. pseudorugosa UTHSC 06-3641 Catheter urine, USA HE716755 HE716163 N
C. pseudorugosa UTHSC 08-707 Knee, USA HE716756 HE716164 o
C. neorugosa SK75 Ulcerated lesion, Brazil GQ176145° GQ176145" '8
C. neorugosa UTHSC 10-2054" Leg wound, USA HE716762 HE716185 o
C. neorugosa UTHSC 10-121 Wound on left forelimb of horse, USA HE716761 HE716186 <
@ CBS, Centraalbureau voor Schimmelcultures, Utrecht, The Netherlands; UTHSC, Fungus Testing Laboratory, University of Texas Health Science Center at San Antonio, San %
Antonio, TX; NRRL, National ARS Culture Collection, Peoria, IL. D
b Sequences retrieved from GenBank database. Eﬁ'_

assessment of chlamydospore and ascospore production; hydrolysis of
esculin; and the urease test. The ability of the isolates to assimilate carbo-
hydrate source compounds was determined for glucose, b-xylose, melib-
iose, L-arabinose, D-ribose, L-sorbose, galactose, salicin, raffinose, sucrose,
D-mannitol, trehalose, glycerol, 2-ceto-p-gluconate, ribitol, xylitol, inosi-
tol, sorbitol, a-metil-p-glucoside, N-acetyl-p-glucosamine, cellobiose,
lactose, maltose, melezitose, and citric acid. Chromogenic testing of the
colonies was performed on Chromagar Candida (Chromagar Company,
Paris, France). The API ID 20C yeast identification kit (bioMérieux SA,
Lyon, France) was also used for identification according to the manufac-
turer’s instructions.

In vitro studies. We evaluated the antifungal susceptibility of the fungal
isolates to AMB, FLC, itraconazole (ITC), posaconazole (PSC), voriconazole
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(VRC), caspofungin (CAS), micafungin (MCF), and anidulafungin (AND).
The tests were performed in duplicate using a broth microdilution method
according to the M27-A3 guidelines for yeasts (5). MIC results for echinocan-
dins and FLC were read after 24 h and the others after 48 h of incubation. Two
reference strains, C. parapsilosis ATCC 22019 and C. krusei ATCC 6258, were
included as quality controls for all testing.

Nucleotide sequence accession numbers. The new DNA sequences
generated in this study were deposited in the GenBank database (Table 1).

RESULTS

Molecular analysis. The phylogenetic tree inferred from the ML
analysis of the D1/D2 sequences revealed that the 24 isolates tested
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FIG 1 ML tree obtained from the D1/D2 domains of the 28S rRNA gene sequences of the strains of C. rugosa and related taxa. Bootstrap support values above
70% are indicated at the nodes. Clinical isolates from UTHSC are indicated in boldface. The bar indicates genetic distance. Sequences retrieved from GenBank

are marked with a superscript “a.”

were distributed in four statistically well-supported groups, each
representing a phylogenetic species (Fig. 1). The first group (boot-
strap support [bs], 81%) was formed by 10 clinical isolates, the
sequence of the type strain of C. rugosa, and several sequences of
clinical and environmental strains retrieved from GenBank, some
of which were previously reported as atypical isolates of C. rugosa
(21). The isolates’ sequence similarities ranged from 99.3 to 100%.
The second group (bs, 100%) was comprised of three identical
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sequences; two belonged to our clinical isolates (UTHSC 10-2054
and UTHSC 10-121) and the third (SK75; GQ176145), retrieved
from GenBank, was from an ulcerated lesion in Brazil. The mem-
bers of that group showed low similarity to the type strains of the
species C. rugosa (92.3%), C. pseudorugosa (92%), and C. pararu-
gosa (67.3%). The third group (bs, 99%) consisted of two clinical
isolates, the type strain of C. pseudorugosa, and sequences of two
environmental isolates retrieved from GenBank. The sequence
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FIG 2 ML tree obtained from the ribosomal ITS sequences of several isolates of C. rugosa and related taxa. Bootstrap support values above 70% are indicated at
the nodes. Clinical isolates from UTHSC are indicated in boldface. The bar indicates genetic distance. Sequences retrieved from GenBank are marked with a
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similarity of the members of this group ranged from 99.2 to 100%.
Finally, 10 clinical isolates were nested with the type strain of C.
pararugosa, along with two sequences from clinical isolates depos-
ited in GenBank (bs, 100%).

The phylogenetic tree inferred from the ML analysis of the ITS
sequences (Fig. 2) showed topology and genetic relationships sim-
ilar to those seen in the D1/D2 tree.

Physiology. Four of the physiological tests used were useful to
distinguish the three phylogenetically most closely related species,
i.e., C. rugosa, C. pseudorugosa, and the unidentified species rep-
resented by the isolates UTHSC 10-2054 and UTHSC 10-121. The
two isolates of each species tested showed identical results (Table
2). C. rugosa was differentiated from C. pseudorugosa by the utili-
zation of D-xylose, glycerol, and sorbitol. Clinical isolates UTHSC
10-2054 and UTHSC 10-121 differ from C. rugosa by their ability
to assimilate ribitol and from C. pseudorugosa by their ability to
assimilate D-xylose, glycerol, ribitol, and sorbitol. API ID 20C re-
sults confirmed those findings. On Chromagar, C. pseudorugosa
and C. rugosa yielded dark blue-green and from white to light-blue
colonies, respectively, while the isolates UTHSC 10-2054 and
UTHSC 10-121 showed white to dark-blue colonies.

TABLE 2 Key physiological features useful to distinguish the species of
the C. rugosa complex

Assimilation test”

Species Isolate” D-Xylose Glycerol Ribitol Sorbitol
C. pseudorugosa  UTHSC 06-3641 — - - -
UTHSC 08-707 — - - -
C. rugosa UTHSC 06-3729 + + - +
UTHSCR-3412  + + - +
C. neorugosa sp. UTHSC 10-121  + + + +
nov. UTHSC 10-2054 + + + +

“ UTHSC, Fungus Testing Laboratory, University of Texas Health Science Center at San
Antonio, Texas, USA.
b +, positive; —, negative.
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Antifungal susceptibility. The eight drugs tested showed high
in vitro activity against all the isolates, with no significant differ-
ences noted among the different species. MIC ranges were <0.03
to 2 pg/ml for the azoles, 0.25 to 1 pg/ml for AMB, and 0.03 to 0.5
pg/ml for the echinocandins (Table 3).

Origins and clinical data of the isolates UTHSC 10-2054 and
UTHSC 10-121. UTHSC 10-2054 was originally recovered from a
female patient who sustained leg injuries while in Africa. A culture
from the initial wound debridement there yielded yeast that was
identified as C. rugosa. The patient was subsequently transferred
to Johns Hopkins Hospital, Baltimore, MD, where an isolate iden-
tified as C. rugosa using the API ID 20C kit (profile 2442104,
97.1%) was also recovered from a surgical wound. The wound
infection was finally resolved without antifungal therapy.

UTHSC 10-121 was isolated from a 22-month-old male Ara-
bian horse that was presented to the Veterinary Medical Teaching
Hospital at Texas A&M University, College Station, TX, for eval-
uation of a laceration and puncture wound on the palmar medial
aspect of the left forelimb. The lesion was surgically debrided, and
cultures collected at 24 days of hospitalization grew Pseudomonas
aeruginosa and a yeast identified as C. tropicalis using a commer-
cial identification system (Vitek II YBC; bioMérieux, Durham,
NC). The organism was also cultured from the wound 1 week
later, along with Enterococcus spp. and Stenotrophomonas malto-
philia. At 56 days of hospitalization, yeast was again isolated from
the site and identified as C. rugosa (Vitek II YBC; bioMérieux,
Durham, NC). The patient was taken to surgery for ankylosis of
the joint and started with a daily oral dose of FLC (4 mg/kg of body
weight) and broad-spectrum antibiotic therapy. After 79 days of
hospitalization, the horse was discharged. C. tropicalis was not
recovered again.

TAXONOMY

Based on molecular and phenotypic data, it is concluded that the
isolates UTHSC 10-2054 and UTHSC 10-121 represent a novel
species of the genus Candida, for which the name Candida neoru-
gosa sp. nov. is proposed.

Journal of Clinical Microbiology

1sanb Aq 8T0zZ ‘2T Jequaldas uo /610 wse woly/:dny wouy papeojumod


http://jcm.asm.org
http://jcm.asm.org/

TABLE 3 Results of in vitro antifungal susceptibility testing

Species Antifungal MIC (pg/mb

(no. of isolates) agents Range GM 90

C. pseudorugosa (2) Amphotericin B 0.5-1 0.71 -
Fluconazole 1 1 -
Posaconazole 0.06 0.06 -
Voriconazole <0.03-0.03 0.04 -
Itraconazole 0.12 0.12 -
Caspofungin 0.06-0.5 0.17 -
Micafungin 0.12-0.25 0.17 -
Anidulafungin 0.03-0.06 0.04 -

C. rugosa (10) Amphotericin B 0.25-1 0.66 1
Fluconazole 0.25-2 0.81 2
Posaconazole 0.03-0.12 0.07 0.12
Voriconazole <0.03-0.03 0.02 0.03
Itraconazole 0.03-0.5 0.06 0.12
Caspofungin 0.06-1 0.38 1
Micafungin 0.06-0.5 0.17 0.5
Anidulafungin 0.03-0.5 0.12 0.25

C. pararugosa (10) Amphotericin B 0.25-1 0.47 1
Fluconazole 0.25-2 0.76 2
Posaconazole 0.03-0.12 0.08 0.12
Voriconazole <0.03-0.06 0.03 0.06
Itraconazole 0.03-0.25 0.07 0.12
Caspofungin 0.03-0.25 0.13 0.25
Micafungin 0.06-0.12 0.1 0.12
Anidulafungin 0.03-0.12 0.06 0.12

C. neorugosa sp. Amphotericin B 0.25-1 0.5 -

nov. (2) Fluconazole 1-2 1.41 —

Posaconazole 0.12 0.12 -
Voriconazole 0.06 0.06 -
Itraconazole 0.25 0.25 -
Caspofungin 0.12-0.25 0.17 -
Micafungin 0.06 0.06 -
Anidulafungin 0.03-0.06 0.04 -

%90, MICy, the minimal concentration of drug capable of inhibiting the growth of
90% of assayed isolates; GM, geometric mean; —, value not calculated.

Candida neorugosa Paredes, D. A. Sutton, Cano, Guarro, sp.
nov. (Fig. 3).

MycoBank MB 564807. In medio liquido YPD post dies 3 ad
25°C sedimentum et annulus formatur, cellulae elipsoideae,
ovoidae, 5 to 7 by 3 to 4 wm, singulae, binae et adhaerents aut in
racemis brevibus. Per gemmationem multipolarem reproducents.
In agaro PDA post dies 2 ad 25°C, coloniae convexa, involvit,
album ad cremea. Germina tubulata non formantur. Chlamy-
dosporas et pseudohyphas non fert. Ascosporae non fiunt. As-
similat glucosum, trehalosum, galactosum, D-xylosum, ribitolum,
sorbitolum et glycerolum. Fermentatio nulla. Ureum et aesculi-
num non hydrolysatur. Holotypus ex humana crus vulnus in col-
lectione CBS deposita est, CBS H-20946 (cultura viva UTHSC
10-2054, CBS 12627).

Etymology: Refers to its similarity to C. rugosa.

Candida neorugosa Paredes, D. A. Sutton, Cano, Guarro, sp.
nov. On YPD broth, after 3 days at 25°C, sediment is formed and
turbidity of the medium is visible; the cells are ellipsoidal or ovoid,
5to 7 pm by 3 to 4 pm, single, in pairs, chains or small groups,
with multilateral budding. On PDA, the colonies are convex,
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folded, and white to cream colored. Germ tubes and chlamy-
dospores are not formed. Abundant pseudohyphae are formed on
rice agar. Ascospores are not detected in acetate agar or Gorod-
kowa medium incubated at 25°C for up to 4 weeks. Assimilation of
trehalose, glucose, D-xylose, galactose, ribitol, sorbitol, and glyc-
erol is produced. No sugars are fermented. Susceptible to cyclo-
heximide. Unable to hydrolyze esculin and urea.

The type strain CBS 12627 (= UTHSC 10-2054) was isolated in
2010 in the Johns Hopkins University School of Medicine, Balti-
more, MD, from a human leg wound. The strain CBS 12628 (=
UTHSC 10-121) was isolated in 2010 in the Veterinary Medical
Teaching Hospital at Texas A&M University, College Station, TX,
from the left forelimb of an Arabian horse.

DISCUSSION

Our molecular analysis revealed that the 24 isolates initially iden-
tified as C. rugosa belonged to at least four species, three of which
were phylogenetically close to each other, i.e., C. rugosa, C. pseu-
dorugosa, and the undescribed species, while a fourth species, C.
pararugosa, was very distant from the other three. The lack of
agreement between phenotypic and molecular identification of
the isolates included in this study can be explained, as indicated
above, by the limitations of the commercial identification systems
used in clinical laboratories, which do not allow the identification
of uncommon yeasts (1,23). This can lead to an overestimation of
the incidence of some species to the detriment of others that are
less common.

Of'the 24 isolates investigated, only 10 that nested with the type
strain of C. rugosa were identified as that species. An identical
number of isolates were identified as C. pararugosa. The latter
species was first isolated from human feces and, after the initial
description, has been recovered from the oral cavity of a denture
wearer (9) and the saliva of a sarcoma patient (14), suggesting its
contribution to the oral microbiota. In both cases, the isolates
were misidentified by using phenotypic methods, and their true
pathogenic role was not established. Our study has expanded the
host range of C. pararugosa, with several additional isolates recov-
ered from various anatomical sites. The present study also identi-
fied two isolates, one recovered from a urine catheter and the
other from a wound infection of the knee, as C. pseudorugosa. This
is the first report of this species from clinical specimens, as the only
two other isolates are from subglacial ice from arctic coastal envi-
ronments (3). It is also remarkable that two of the isolates tested,
UTHSC 10-2054 and UTHSC 10-121, were clearly genetically dif-
ferent from known species of Candida whose sequences have been
deposited in GenBank, Centraalbureau voor Schimmelcultures
(CBS), or National Institute of Technology and Evaluation Bio-
logical Resource Center (NITE) databases. The D1/D2 sequences
of these two isolates clustered in the D1/D2 phylogenetic tree with
a third sequence of a Candida sp. from a Brazilian patient with an
ulcerated lesion. The three sequences were identical and formed a
clearly separated branch. Unfortunately, the last isolate is not
available for comparative studies. The ITS sequence analysis
confirmed those results. Previously, divergent ITS2 sequences
(30 to 35 bp), obtained by pyrosequencing, were reported in
some clinical isolates of C. rugosa (2, 13). Our studies con-
firmed such variability and showed that C. pseudorugosa also
displays divergence in that fragment, i.e., a different sequence
for each isolate (CBS 613", GTCAAAAGTGGTTAGTCGGCGA
CTTACTTGA; UTHSC 06-3729, GTCGATATTGGTTAGTCTG
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FIG 3 (A) C. rugosa UTHSC 06-3729. (B) C. pseudorugosa UTHSC 06-3641. (C to E) C. neorugosa sp. nov. UTHSC 10-2054. (A, B, and C) Colonies on PDA after
2 days of incubation at 25°C. (D) Pseudohyphae on rice Tween agar after 3 days of incubation at 28°C. (E) Yeast cells on YPD broth after 3 days of incubation at

37°C.

CGACTTACTTGA; and UTHSC R-3412, GTCAACATCTAAAA
GTCGGCGACTTACTTGA), and all were different from those of
C. rugosa and C. neorugosa. The three strains of C. neorugosa
showed the same sequence (GTCGACGTTCAAAAGCCGGCGA
CTACACTAA) for the referred fragment, which suggests that this
new species could be identified by pyrosequencing.

While there are no data on the in vitro antifungal susceptibility
of C. pseudorugosa and C. pararugosa, several in vitro susceptibility
studies have reported reduced susceptibility of C. rugosa to AMB
(6, 7), FLC and VRC (17, 18), and the echinocandins (7). How-
ever, in our case, all the antifungal drugs tested, with the exception
of CAS against C. rugosa, were active against the 24 isolates. Al-
though C. rugosa is notincluded in the proposed CLSI breakpoints
for antifungal susceptibility testing, its GM MIC (0.38 mg/liter)
and MIC,, (1 mg/liter) would be interpreted as inferring resis-
tance to CAS (16), as opposed to the other species of the C. rugosa
complex, which exhibit lower CAS MICs.

In conclusion, the present study confirmed the value of molec-
ular tools for the identification of cryptic species within the C.
rugosa species complex. Prior to this evaluation, only C. rugosa
had been documented as a human etiologic agent. This study con-
firms that a significant number of isolates of other species have
also been recovered from clinical samples. Now that reliable
methods for the identification of these species are available, an
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important objective for future studies would be to elucidate the
true prevalences, susceptibilities, and clinical roles of these spe-
cies.
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