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ABSTRACT

We recently introduced new petrophysical and composi-
tional methods for joint interpretation of multiple conven-
tional well logs. These inversion-based methods are suited
for petrophysical interpretation of rock formations that
exhibit complex solid composition, include thin beds, and
are subject to mud-filtrate invasion. They combine nuclear
and resistivity logs to assess porosity and volumetric/weight
concentrations of mineral and fluid constituents, and are
ideal for the quantitative interpretation of carbonate forma-
tions. We document the successful application of the newly
introduced inversion-based interpretation methods to three
carbonate formations. Interpretation results are compared
to those obtained with commercial software and core/
X-ray diffraction (XRD) data whenever available. For two
of the carbonate field examples where XRD data are avail-
able, nonlinear joint inversion of well logs improves the as-
sessment of porosity by more than 30% and up to 100% in
the presence of thin beds when compared to conventional
interpretation methods.

INTRODUCTION

A preceding paper (Heidari et al., 2012) introduced three new
inversion-based methods to estimate porosity and volumetric/
weight concentrations of mineral and fluid constituents in thinly
bedded formations with complex solid composition. The focus
of this paper is the application of the previously introduced methods
to the petrophysical evaluation of carbonate formations. Conven-
tional compositional evaluation of carbonate formations from well
logs includes commercial multimineral linear/quasilinear methods
(Mayer and Sibbit, 1980; Quirein et al., 1986; Doveton, 1994;

Rabaute et al., 2003), historical matrix identification (MID) cross-
plots (Clavier and Rust, 1976; Schlumberger, 2009), elemental
spectroscopy (Herron and Herron, 1996; Herron et al., 2002),
gamma-ray (GR) spectroscopy, and core measurements (i.e., X-
ray diffraction [XRD]) and core measurements of elemental chem-
istry of the solids such as Fourier transform infrared transmission
(FTIR) spectroscopy and X-ray fluorescence (XRF). Techniques
such as MID crossplots are unreliable and no longer common prac-
tice in formations with complex lithology.
Heidari et al. (2012) show that estimation algorithms included in

commercial multimineral software are not always reliable in the
presence of complex solid composition, thin beds, and mud-filtrate
invasion. Likewise, neutron-capture spectroscopy and GR spectros-
copy measurements can be affected by shoulder beds, which sig-
nificantly influence the assessment of mineralogy in thin beds.
Core measurements are often regarded as the most accurate refer-
ence for petrophysical and compositional assessment. However,
they are limited to small and sparse samples along the wellbore,
which may not be representative of reservoirs with pervasive hetero-
geneity. Additionally, XRD and FTIR spectroscopy measurements
do not always provide consistent evaluation of some minerals such
as clay and quartz (Sondergeld et al., 2010). The inversion-based
interpretation methods introduced by Heidari et al. (2012) were suc-
cessfully tested on challenging synthetic data sets, and are suitable
for the petrophysical and compositional assessment of highly
heterogeneous formations, e.g., carbonates and hydrocarbon-bearing
shale.
Among the three inversion-based interpretation methods intro-

duced by Heidari et al. (2012), the first method takes into account
the effect of radial distribution of fluid saturation on well logs due to
invasion. The second method consists of two steps: (1) separate in-
version of individual well logs to assess bed physical properties,
and (2) joint inversion of bed properties to estimate formation
petrophysical properties. This latter method is best suited for thinly
bedded formations where mud-filtrate invasion is negligible. The
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third method is a depth-by-depth inversion technique that is suitable
for the interpretation of rock formations with thick beds and com-
plex solid composition.
The second estimation method introduced by Heidari et al.

(2012), referred to as fast nonlinear joint inversion of bed physical
properties (bed-by-bed nonlinear joint inversion), estimates bed
properties by inverting each log independently to explicitly reduce
shoulder-bed effects. Next, it uses Schlumberger’s commercial soft-
ware, SNUPAR (Mark of Schlumberger), to assess porosity and
volumetric/weight concentrations of mineral constituents using as
input all bed physical properties separately inverted from each
log. Similarly, the depth-by-depth joint inversion method trans-
forms each well log into physical properties of formations without
correction for shoulder-bed effects and then invokes SNUPAR
(Mark of Schlumberger) to assess petrophysical and compositional
properties.
The following sections document the implementation of the

above described inversion-based petrophysical and compositional in-
terpretation methods to three challenging carbonate field examples.

METHOD

The choice of carbonate examples was based on their complex
solid composition and presence of thin beds, where conventional
interpretation methods are often unreliable. Interpretation is per-
formed with two of the inversion-based methods introduced by Hei-
dari et al. (2012): (1) depth-by-depth nonlinear joint inversion, and
(2) bed-by-bed nonlinear joint inversion.
Carbonate formations studied in this paper consist of quartz, cal-

cite, dolomite, clay minerals, and heavy minerals such as siderite.
We observe negligible separation between apparent resistivity logs
with different radial lengths of investigation, which is an indication
of either negligible or very deep mud-filtrate invasion (Figures 1, 6,
and 7). This behavior prompts us not to include explicit corrections
of well logs for mud-filtrate invasion effects in the interpretation.
Bed-boundary locations are needed in the implementation of bed-

by-bed nonlinear inversion and are detected by the inflection points
of density and photoelectric factor (PEF) logs. In addition to bed-
boundary locations, the choice of initial guess is important when
the inversion is underdetermined (when there are more unknown
properties than measurements). In the case of underdetermined

inverse problems, Heidari et al. (2012) suggested using (1) the
results obtained with depth-by-depth nonlinear joint inversion of
well logs, or (2) core measurements, rock cuttings, or geologic
information as initial guess for bed-by-bed nonlinear inversion to
avoid trapping into local minimums and to expedite convergence.
In field example no. 1, which represents an underdetermined

problem, we implement depth-by-depth and bed-by-bed joint inver-
sion of well logs to assess petrophysical and compositional proper-
ties and compare the results against those obtained with commercial
software. Results obtained with the depth-by-depth joint inversion
method are used as initial guess for the bed-by-bed inversion
method. In field example nos. 2 and 3, we only implement bed-
by-bed nonlinear joint inversion with different criteria to choose
the initial guess. In field example no. 2, the initial guess for inver-
sion is based on core measurements to reduce nonuniqueness in the
estimation. Field example no. 3 represents an even-determined in-
verse problem whereby the inversion is initialized with constant
properties across all beds.
Relative error/improvement of results reported for the three field

examples is calculated via

Relative error∕Improvement ¼
�
�
�
�

pi;ref − pi

pi;ref

�
�
�
�
× 100%; (1)

where pi;ref and pi designate reference and estimated parameters,
respectively. Reference parameters can be core measurements of
estimated parameters, for instance.

FIELD EXAMPLE NO. 1

Field example no. 1 considers a thinly bedded depth interval in a
carbonate formation. The well was drilled with oil-base mud
(OBM) and well logs were sampled at a rate of 0.15 m (0.5 ft);
XRD measurements indicate presence of quartz, dolomite, calcite,
and minor clay minerals (i.e., assumed to be chlorite). Presence of
thin beds in addition to complex solid composition significantly af-
fects the accuracy of estimated petrophysical and compositional
properties. The objective of this field example is to quantify the
reliability of three interpretation methods: (1) nonlinear depth-by-
depth inversion of well logs, (2) nonlinear bed-by-bed inversion
of well logs, and (3) linear/quasilinear commercial multimineral
software.
Table 1 lists the assumed Archie’s parameters and matrix, fluid,

and formation properties, all of which were verified with core mea-
surements. Clay type is assumed to be chlorite (i.e., a combination
of magnesium-based and iron-based chlorite). The assumed clay
type was crossvalidated by matching available well logs with their
numerical simulation across pure shales. Well logs input to the joint
inversion are array induction resistivity, PEF, density, and neutron
porosity. Sonic logs are used for crossvalidation of inversion results.
We did not use the GR log in the joint inversion due to uncertainty
in quantifying Uranium (U), Thorium (Th), and Potassium (K) con-
centration of pure minerals in the formations. Unknown properties
in inversion-based interpretation methods are total porosity, water
saturation, and volumetric concentrations of quartz, dolomite, cal-
cite, and clay. This example of interpretation constitutes an under-
determined inversion problem. Accordingly, results obtained with
commercial software are used to initialize the depth-by-depth non-
linear joint inversion to avoid trapping into local minimums.

Table 1. Carbonate field example no. 1: Summary of
assumed Archie’s parameters and matrix, fluid, and
formation properties.

Variable Value Units

Winsauer factor in Archie’s equation, a 1 —
Archie’s porosity exponent, m 2.5 —
Archie’s saturation exponent, n 3 —
Connate-water salt concentration 230 kppm NaCl

Water density 1 g∕cm3

In situ oil density 0.98 g∕cm3

Formation temperature 320 °F

Wet clay density 2.81 g∕cm3

Wellbore radius 15.5 cm
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Figure 1 compares measured well logs against their numerical
simulations obtained using final results from depth-by-depth non-
linear joint inversion. The same figure describes the volumetric
concentrations of minerals and fluids obtained with commercial
software and depth-by-depth nonlinear joint inversion of well
logs. Relative data misfits are 4.62%, 3.06%, 0.70%, and
0.44% for electrical conductivity, PEF, density, and neutron
porosity logs.
Figure 2 compares results obtained with depth-by-depth nonlin-

ear joint inversion against core/XRD measurements and results ob-
tained with commercial software. Estimated petrophysical and
compositional properties are total porosity, total water saturation,
solid volumetric concentration of quartz, calcite, dolomite, and clay.
Depth-by-depth nonlinear joint inversion improves the assessment
of porosity by approximately 15%. Although both these methods
are based on depth-by-depth joint inversion of logs, depth-by-depth
nonlinear joint inversion gives rise to accurate estimates of depth-
by-depth physical properties by taking into account the chemical
composition and volumetric concentration of each mineral in the
formation.
There are two zones with high PEF values (higher than 5 b∕e),

which cannot be reproduced by numerical simulations (Figure 1)
because none of the assumed minerals in the model exhibits photo-
electric factors higher than 5 b∕e. Because of this, we also observe
fluctuations in the assessment of petrophysical and compositional
properties in the relative depth interval from 10.06 m (33 ft) to
11.28 m (37 ft) shown in Figure 2.

Based on the comparison of measured logs against their numeri-
cal simulations, we infer that (1) there is either a heavy mineral in
the formation which is not reported in XRD measurements, or (2)
well logs are not properly corrected for presence of barite in the
drilling mud. As an aside, the second left track of Figure 1, confirms
the limitation of array-induction resistivity logs in measuring rock
electrical resistivities higher than 2000 ohm-m in this carbonate
field example.
In the next step, we apply bed-by-bed joint inversion to the same

depth interval in field example no. 1. After detecting bed-boundary
locations based on density and PEF logs, separate inversion of logs
yields physical properties for each bed including bed-by-bed den-
sity, migration length, electrical resistivity (or conductivity), and
photoelectric factor (Figure 3). We observe relative differences
as high as 37% in the estimates of migration length compared to
center-bed values from logs in thin beds. Next, we take the results
obtained from depth-by-depth nonlinear joint inversion of well logs
as the initial guess for joint inversion to estimate bed-by-bed pet-
rophysical and compositional properties.
Figure 4 compares measured well logs against their numerical

simulations obtained using final results of bed-by-bed nonlinear
joint inversion; it also compares the volumetric concentrations of
minerals and fluids obtained with commercial software to those
yielded by bed-by-bed nonlinear joint inversion. Borehole acoustic
measurements were invoked to investigate vertical heterogeneity.
The difference between measured compressional-wave slowness
and estimated bed-by-bed values can be used as an indicator of

Figure 1. Carbonate field example no. 1: Comparison of final simulated well logs (black dash-dotted line) and measured logs (solid line).
Results are shown for array induction resistivity (second left panel), PEF (third left panel), density and neutron porosity (water-filled limestone
porosity units, fourth left-hand panel) well logs. The first two right-hand panels describe volumetric concentrations of mineral constituents,
porosity, and fluid saturations obtained with commercial software and nonlinear depth-by-depth joint inversion of resistivity, PEF, density, and
neutron porosity logs. Black dots identify porosity values reported from core measurements.
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heterogeneity which could indicate lack of pore connectivity. We
estimated compressional-wave slowness using Wyllie’s equation
(Wyllie et al., 1956) and compared those estimates to measured val-
ues (Figure 4, second left-hand panel). The agreement between
measured compressional-wave slowness and estimated bed-by-

bed values could, among other things, suggest negligible noncon-
nected porosity in this depth interval. However, reliable assessment
of nonconnected porosity requires improved log interpretation tech-
niques and especial core measurements.
Figure 5 compares results obtained with bed-by-bed nonlinear

joint inversion against core/XRD measurements
and results obtained with commercial software.
We observe a significant improvement in the as-
sessment of porosity with bed-by-bed joint inver-
sion compared to commercial software (relative
improvement of up to 140% in thin beds) and
depth-by-depth joint inversion (relative improve-
ment of up to 100% in thin beds) in the thinly
bedded depth zone. Core photographs from the
top 6.10-m (20-ft) zone confirm the presence
of thin beds of sand and shale. However, neither
commercial software nor depth-by-depth nonlin-
ear inversion accurately detect actual petrophys-
ical properties of this zone because input well
logs do not exhibit high vertical resolution. The
improvement in estimates of porosity using bed-
by-bed joint inversion confirms the significance
of implementing petrophysical and composi-
tional interpretation methods that explicitly ac-
count for shoulder-bed effects on well logs.
However, the uncertainty of inversion products
is not negligible. Error (uncertainty) bars for in-
version products in each bed were calculated by
adding 2% zero-mean Gaussian random noise to
all well logs input to the inversion (Figure 5).
Results from this exercise indicate that the uncer-
tainty in estimates of petrophysical and composi-
tional properties increases with decreasing bed
thickness as well as across subsequent thin beds.

FIELD EXAMPLE NO. 2

Field example no. 2 considers a hydrocarbon-
bearing carbonate formation. Based on sedi-
mentological studies, reservoir facies consist of
sandstone, mixed sandstone, dolostone, pelecy-
pod limestone, foraminiferal limestone-siltstone,
and shale, deposited in a shallow-marine carbon-
ate platform. Presence of a variety of minerals
in the formation makes it difficult to estimate
porosity with conventional methods. Possible in-
accuracies in the estimation of volumetric con-
centrations of mineral constituents may lead to
measurable errors in the assessment of porosity
and water saturation. Drilling mud is water-base
mud (WBM) and well logs were sampled at a rate
of 0.15 m (0.5 ft). Table 2 summarizes the aver-
age petrophysical properties assumed for the oil-
bearing bed in this field example. Average values
of porosity, water saturation, and volumetric con-
centration of shale are used as a uniform, con-
stant guess to initialize the nonlinear inversion.
The rock is also assumed to be composed of pure
dolomite as part of the initialization of nonlinear
inversion.

Figure 2. Carbonate field example no. 1: Comparison of total porosity, total water
saturation, and solid volumetric concentrations of mineral constituents estimated with
the depth-by-depth nonlinear joint inversion method (solid line), commercial software
(dashed line), and core measurements (black circles). Panels from left to right show total
porosity, total water saturation, and solid volumetric concentrations of quartz, calcite,
dolomite, and clay.

Figure 3. Carbonate field example no. 1: Comparison of measured logs (dashed line)
and bed physical properties estimated with separate inversion of well logs (solid line).
Panels from left to right show density, PEF, neutron migration length, and electrical
resistivity.
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Core measurements indicate that the formation exhibits very low
permeability and porosity. On the other hand, the separation be-
tween shallow and deep dual laterolog resistivity logs is negligible
and there is no crossover between neutron porosity and density logs.
We may thus assume that mud-filtrate invasion
is either very deep or very shallow whereby the
corresponding differential effect on well logs
is negligible. Table 3 summarizes the assumed
Archie’s parameters and matrix, fluid, and for-
mation properties. Well logs available for nonlin-
ear inversion are GR, dual laterolog resistivity,
density, and neutron porosity. Due to presence
of barite in the mud, the PEF log is not reliable
in this example.
The mineralogical composition reported from

laboratory measurements indicates that the rock
matrix includes dolomite, quartz, calcite, siderite,
pyrite, and K-feldspar, with illite as the predomi-
nant clay type. This analysis is available at a few
points in the depth zone of interest with an
implicit absolute measurement error of �0.15

for volumetric mineral concentrations. Because
the average weight concentrations of pyrite
and K-feldspar are lower than 0.04 in the depth
zone of interest, we neglect them in the nonlinear
inversion. This choice helps to reduce significant
nonuniqueness in the estimation.
We observe that resistivity values in layers

2 and 6 (Figure 6) suddenly increase to

500 ohm-m, but this sharp change is not detected in other well logs.
Presence of nonconnected porosity could be the reason for such a
behavior. The physics of resistivity measurements is conducive to
the detection of interconnected porosity, while that of density and

Figure 4. Carbonate field example no. 1: Comparison of final simulated well logs (black dash-dotted line) and measured logs (solid line).
Results are shown for array induction resistivity (third left panel), PEF (fourth left panel), density and neutron porosity (water-filled limestone
porosity units, fifth left panel) well logs. The second panel compares compressional-wave slowness against results obtained with Wyllie’s
model. The first two right panels describe volumetric concentrations of mineral constituents, porosity, and fluid saturations obtained with
commercial software and nonlinear bed-by-bed joint inversion of resistivity, PEF, density, and neutron porosity logs. Black dots identify
porosity values reported from core measurements.

Figure 5. Carbonate field example no. 1: Comparison of total porosity, total water sat-
uration, and solid volumetric concentrations of mineral constituents estimated with bed-
by-bed nonlinear joint inversion method (solid line), commercial software (dashed line),
and core measurements (black circles) to corresponding uncertainty bars (calculated by
adding 2% zero-mean Gaussian random perturbations on input well logs). Panels from
left to right show total porosity, total water saturation, and solid volumetric concentra-
tions of quartz, calcite, dolomite, and clay.
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neutron porosity logs is conducive to the detection of total porosity.
Therefore, it is possible that the inversion underestimates resistivity
values across those layers.
Figure 6 compares the measured well logs to those obtained from

final inversion products. The same figure compares volumetric con-
centrations of mineral constituents and petrophysical properties ob-
tained with nonlinear inversion against mineralogical and porosity
measurements performed on core samples and estimations obtained
with commercial linear inversion software. Relative data misfits are
0.87%, 8.99%, 0.19%, and 2.09% for GR, electrical conductivity,
density, and neutron porosity logs, respectively. Table 4 describes
the final estimates of nonshale porosity and water saturation in per-
meable layers.
Even though the PEF log is not available for inversion, estimates

of porosity and volumetric concentrations of mineral constituents
obtained with nonlinear inversion agree well with those of core
measurements. On the other hand, the commercial linear method
overestimates porosity by a factor of three. It is likely that the biased
estimations of petrophysical properties and volumetric mineral
concentrations obtained with commercial linear estimation software
are due to unaccounted shoulder-bed effects or unaccounted non-
linear relationship between formation petrophysical and composi-
tional properties and well logs. Even though the zone of interest

is a hydrocarbon-bearing depth interval with no water production,
the two commercial inversion methods estimate average water
saturation higher than 0.50, which can be due to deep WBM inva-
sion. Nonlinear inversion is also unable to estimate initial water
saturation in this case if mud-filtrate invasion is very deep,
which makes resistivity logs insensitive to dynamic petrophysical
properties.

FIELD EXAMPLE NO. 3

Field example no. 3 is another hydrocarbon-bearing carbonate
formation. Core measurements indicate that porosity and per-
meability vary in the range of 0.15–0.20 and 3–23 md, respectively,
in the zone of interest. Available conventional well logs are PEF,
GR, density, neutron porosity, and laterolog electrical resistivity
with a sampling rate of 0.15 m (0.5 ft). Drilling mud is WBM.
The inversion is initialized with average porosity, water saturation,
and volumetric concentration of shale calculated with conventional
petrophysical interpretation techniques (Table 5). Mineral types are
usually identified based on available XRD data. However, in this
field example, XRD data are not available. Thus, we assume that
the formation contains common rock minerals found in carbonate
formations including quartz, dolomite, and calcite. Clay type is also
assumed to be illite. Initial guesses for volumetric concentrations of
mineral constituents are arbitrarily chosen to be equal to each other.
In this field example, the choice of initial guess is not crucial be-
cause the inverse problem is even-determined (PEF is reliable and,
consequently, the number of available well logs is equal to the num-
ber of unknown properties).
The separation between shallow and deep dual laterolog resistiv-

ity logs is negligible. Consequently, we assume that mud-filtrate
invasion is either very deep or very shallow and that its correspond-
ing differential effect on well logs is not significant. Table 6 lists the
assumed Archie’s parameters and matrix, fluid, and formation prop-
erties in this example.
Figure 7 compares the measured well logs to their numerical sim-

ulations. The same figure shows final petrophysical and composi-
tional estimates obtained with commercial software and those
obtained with nonlinear inversion. Relative data misfits are 0.34%,
2.10%, 3.94%, 0.69%, and 2.18% for GR, PEF, electrical conduc-
tivity, density, and neutron porosity logs, respectively. Table 7 com-
pares final estimates of total porosity obtained with nonlinear
inversion to core measurements in permeable layers where they are
available. Presence of nonconnected porosity in this formation
could be the reason for estimated porosity values to be lower than
those of core measurements.
Estimates of volumetric concentration of mineral constituents ob-

tained with nonlinear joint inversion and commercial software are
different. However, there are no XRD data available to validate ei-
ther set of estimates. Experience shows that mineralogy results ob-
tained with commercial software can be highly dependent on
core/XRD-based calibrations. In the absence of XRD/core data,
petrophysical and compositional properties obtained with commer-
cial software might be unreliable. By contrast, the nonlinear joint
inversion technique implemented in this paper does not require
core/XRD data for calibration. Consequently, the absence of
core/XRDmeasurements does not significantly affect the results ob-
tained with nonlinear joint inversion of well logs.

Table 2. Carbonate field example no. 2: Summary of
calculated average petrophysical properties.

Variable Value Units

Thickness 8.53 (28 ft) m

Absolute permeability, k 0.46 mD

Nonshale porosity, ϕs 0.057 —
Volumetric concentration of shale, Csh 0.25 —

Table 3. Carbonate field example no. 2: Summary of
assumed Archie’s parameters and matrix, fluid, and
formation properties.

Variable Value Units

Winsauer factor in Archie’s equation, a 1.00 —
Archie’s porosity exponent, m 2.00 —
Archie’s saturation exponent, n 2.00 —
Connate-water salt concentration 125 kppm NaCl

Mud filtrate resistivity at 194°F 0.09 ohm-m

Water density 1.00 g∕cm3

Water viscosity 1.00 cp

In situ oil density 0.70 g∕cm3

Formation temperature 194 °F

Wet clay density 2.54 g∕cm3

Wellbore radius 10.63 cm
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DISCUSSION

This paper documents the application of nonlinear joint inversion
methods introduced by Heidari et al. (2012) to three carbonate for-
mations with complex solid composition and thin beds. Results ob-
tained for these examples are compared to results obtained with
commercial software. Inputs to inversion include any combination
of conventional well logs such as density, neutron porosity, electri-
cal resistivity, GR, and PEF, as well as formation properties such as
Archie’s parameters, in situ fluid properties, and type and chemical
formula of available minerals. We show that even in the absence of
PEF logs, comparison of estimates for porosity, water saturation,
and volumetric concentrations of mineral constituents against
core/XRD data indicated relative improvements of more than
30% in the assessment of porosity using the new methods compared
to commercial software (field example no. 2). Estimates of water
saturation, however, are not reliable in the presence of very deep
WBM-filtrate invasion (field example no. 2).
Field example no. 1 shows a significant improvement in the as-

sessment of petrophysical properties in thinly bedded formations
(up to 100% relative improvement in porosity estimates) when us-
ing bed-by-bed joint inversion (which explicitly takes into account
shoulder-bed effects on well logs). Furthermore, we show that joint
inversion methods enable the diagnosis of unreliable well logs and
sources of uncertainty (e.g., presence of minerals that are not taken
into account as input parameters and presence of nonconnected
porosity) in the earth model.
A unique advantage of the nonlinear joint inversion methods

implemented in this paper is their nonreliance on XRD/core data
for calibration. Commercial multimineral software requires XRD

data for calibration when assessing volumetric/weight concentra-
tions of mineral constituents. Interpretation results from commercial
software can be unreliable in the absence of XRD/core measure-
ments and model calibration. Both inversion-based interpretation
methods implemented in this paper, depth-by-depth and bed-by-
bed nonlinear joint inversion, do not require mineral/fluid calibra-
tion. The nonreliance on calibration methods comes from the fact
that we estimate physical properties of minerals/fluids based on
their volumetric concentration and chemical formulas using
SNUPAR.
In field example no. 2, volumetric concentration of clay estimated

with nonlinear joint inversion is greater than values reported by

Table 4. Carbonate field example no. 2: Nonlinear inversion
results obtained for porosity and water saturation in each
layer.

Layer no. Layer thickness (m) ϕs Sw

1 1.07 (3.5 ft) 0.001 0.45

2 0.76 (2.5 ft) 0.08 0.17

3 0.91 (3.0 ft) 0.02 0.64

4 0.61 (2.0 ft) 0.05 0.34

5 1.07 (3.5 ft) 0.09 0.21

6 1.22 (4.0 ft) 0.07 0.15

7 0.76 (2.5 ft) 0.04 0.57

Figure 6. Carbonate field example no. 2: Comparison of final simulated well logs (black dash-dotted line) and measured logs (solid line).
Results are shown for dual laterolog resistivity (left panel), GR (second left panel), density and neutron porosity (water-filled limestone poros-
ity units, third left panel) well logs. The center panel shows solid volumetric concentrations of mineral components obtained with miner-
alogical analysis. The first right panel describes volumetric concentrations of mineral constituents, porosity, and water saturation obtained with
commercial software. The second right panel describes the same properties obtained with nonlinear joint inversion of resistivity, density,
neutron porosity, and GR logs.

Carbonate well-log interpretation D267

D
ow

nl
oa

de
d 

07
/1

2/
13

 to
 1

28
.8

3.
16

7.
22

7.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SE
G

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s 

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/



XRD measurements. Such a difference was expected because XRD
measurements usually underestimate clay concentration (Sonder-
geld et al., 2010). Comparison of results obtained with bed-by-
bed nonlinear joint inversion against commercial software indicates
a significant difference in all the field examples. This behavior can
be explained by the complex solid composition present in the three
field examples as well as thin beds and shoulder-bed effects on well
logs in the first and second field example.
Presence of nonconnected porosity in carbonate reservoirs is

challenging in the assessment of petrophysical properties from well
logs. Even though, in some cases, it is possible to quantify the ef-
fects of nonconnected and interconnected porosity on well logs,
the assessment of nonconnected porosity is not accurate in under-
determined inversion. Inverse problems considered in this study
were underdetermined in field example nos. 1 and 2, and even-
determined in field example no. 3. Including an additional unknown
(e.g., nonconnected porosity) in the estimation renders the inversion
underdetermined thereby giving rise to nonuniqueness of results.
Sonic measurements are good candidates for crossvalidation of es-
timated petrophysical properties to confirm whether the effect of
nonconnected porosity on well logs is negligible (field example
no. 1). If the effect of nonconnected porosity is not negligible, then
nonconnected porosity itself should be considered as one of the un-
known properties in the inversion.
Similar to results reported by Heidari et al. (2012), CPU times

associated with the processing of a 15.24-m (50-ft) formation with
25 beds and sampling depth interval of 0.076 m (0.25 ft) are 10 min
and 1 h for depth-by-depth and bed-by-bed nonlinear joint inversion
methods, respectively, when implemented on a PC with a 3 GHz
processor and 4 GB RAM. The low CPU times for both of these

Table 5. Carbonate field example no. 3: Summary of
calculated average petrophysical properties.

Variable Value Units

Thickness 21.64 (71 ft) m

Absolute permeability, k 20 mD

Nonshale porosity, ϕs 0.19 —
Volumetric concentration of shale, Csh 0.15 —

Table 6. Carbonate field example no. 3: Summary of
assumed Archie’s parameters and matrix, fluid, and
formation properties.

Variable Value Units

Winsauer factor in Archie’s equation, a 1 —
Archie’s porosity exponent, m 1.5 —
Archie’s saturation exponent, n 2 —
Connate-water salt concentration 200 kppm NaCl

Water density 1.0 g∕cm3

Water viscosity 1.0 cp

In situ oil density 0.8 g∕cm3

Formation temperature 210 °F

Wet clay density 2.54 g∕cm3

Wellbore radius 15.5 cm

Water

Gas

Shale

Quartz

Limestone

Delomite

Figure 7. Carbonate field example no. 3: Comparison of final simulated well logs (black dash-dotted line) and measured logs (solid line).
Results are shown for dual laterolog resistivity (left panel), PEF (second left panel), GR (third left panel), density and neutron porosity (water-
filled limestone porosity units, fourth left panel) well logs. The first right panel describes volumetric concentrations of mineral constituents,
porosity, and water saturation obtained with commercial software. The second right-hand panel describes the same properties obtained with
nonlinear joint inversion of resistivity, density, neutron porosity, and GR logs.
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techniques make it feasible to implement them in multiple-well case
studies.
We emphasize that the inversion-based methods documented in

this paper rely on predefined bed-boundary locations. Inaccuracy in
bed-boundary locations leads to uncertainty in final estimates of
volumetric concentrations of minerals and petrophysical properties.
In a previous publication, Heidari et al. (2012) report possible errors
of more than 30% in beds as thick as four times one log-sampling
interval, if the assumed bed boundaries are perturbed by one log-
sampling interval. However, the corresponding effect on inverted
properties depends not only on bed-boundary locations (Heidari
and Torres-Verdín, 2012), but also on bed thickness and the specific
petrophysical and compositional properties of the bed.

CONCLUSIONS

The successful application of our recently introduced inversion-
based interpretation methods of well logs to three challenging
carbonate formations confirms the reliability of these methods
for petrophysical and compositional evaluation of formations with
complex solid composition and thin beds. Comparison of estimates
yields by bed-by-bed nonlinear joint inversion against results ob-
tained with commercial software and core/XRD data emphasizes
the need for correction of shoulder-bed effects on well logs across
thinly bedded formations. Neglecting this correction in thin beds
can lead to 100% and 60% relative error in the assessment of poros-
ity and water saturation, respectively.
Advantages of the new methods over historical and current com-

mercial well-log interpretation and multimineral methods include
(1) the possibility of correcting for shoulder-bed effects on well logs
based on numerical simulation, (2) nonreliance of inversion to
XRD/core measurements for calibration purposes, and (3) evalu-
ation of well-log and model reliability from inversion products.

NOMENCLATURE

a = Winsauer factor in Archie’s equation
Csh = Volumetric concentration of shale
k = Absolute permeability, (mD)
m = Archie’s porosity exponent
n = Archie’s saturation exponent
Sw = Total water saturation
ϕs = Nonshale porosity
CPU = Computer processing unit
DTCO = Delta-T compressional slowness
FTIR = Fourier transform infrared transmission

GR = Gamma ray
kppm = Kilo parts per million
MID = Matrix identification
NL = Nonlinear
OBM = Oil-base mud
PEF = Photo electric factor
K = Potassium
SNUPAR = Schlumberger nuclear parameter code
Th = Thorium
U = Uranium
WBM = Water-base mud
XRD = X-ray diffraction
XRF = X-ray fluorescence
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