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Abstract. Predicting population dynamics is a fundamental problem in applied ecology.
Temperature is a potential driver of short-term population dynamics, and temperature data
are widely available, but we generally lack validated models to predict dynamics based upon
temperatures. A generalized approach involves estimating the temperatures experienced by a
population, characterizing the demographic consequences of physiological responses to
temperature, and testing for predicted effects on abundance. We employed this approach to
test whether minimum winter temperatures are a meaningful driver of pestilence from
Dendroctonus frontalis (the southern pine beetle) across the southeastern United States. A
distance-weighted interpolation model provided good, spatially explicit, predictions of
minimum winter air temperatures (a putative driver of beetle survival). A Newtonian heat
transfer model with empirical cooling constants indicated that beetles within host trees are
buffered from the lowest air temperatures by ;1–48C (depending on tree diameter and
duration of cold bout). The life stage structure of beetles in the most northerly outbreak in
recent times (New Jersey) were dominated by prepupae, which were more cold tolerant (by
.38C) than other life stages. Analyses of beetle abundance data from 1987 to 2005 showed
that minimum winter air temperature only explained 1.5% of the variance in interannual
growth rates of beetle populations, indicating that it is but a weak driver of population
dynamics in the southeastern United States as a whole. However, average population growth
rate matched theoretical predictions of a process-based model of winter mortality from low
temperatures; apparently our knowledge of population effects from winter temperatures is
satisfactory, and may help to predict dynamics of northern populations, even while adding
little to population predictions in southern forests. Recent episodes of D. frontalis outbreaks in
northern forests may have been allowed by a warming trend from 1960 to 2004 of 3.38C in
minimum winter air temperatures in the southeastern United States. Studies that combine
climatic analyses, physiological experiments, and spatially replicated time series of population
abundance can improve population predictions, contribute to a synthesis of population and
physiological ecology, and aid in assessing the ecological consequences of climatic trends.
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INTRODUCTION

A fundamental problem in applied population biology

is the development of validated models to predict

population dynamics. Accurate predictions are impor-

tant for setting harvest targets of fish and game

populations (Georgiadis et al. 2003), directing control

of pest populations (Shirley et al. 2001), predicting

disease occurrence (Pascual et al. 2000), and managing

the risks for threatened and endangered species (Kokko

et al. 1997). Because many species have widespread

distributions with spatially heterogeneous dynamics

(Lele et al. 1998, Bjørnstad et al. 1999, Sharov et al.

1999, Gurney et al. 2001), there is often a need for

models that can generate spatially explicit population

predictions.

Population models can be based upon endogenous

feedbacks (depending on abundance or density) and/or

exogenous drivers (operating independently of abun-

dance or density) (Turchin et al. 1991, Turchin and

Taylor 1992, Aanes et al. 2000, Jenouvrier et al. 2003,

Ahumada et al. 2004). There is an almost infinite

number of theoretically possible exogenous drivers, but

temperature is a common general candidate. Environ-

mental temperature has universally strong effects on

animal physiology (Huey and Hertz 1984, Nedved et al.

1998, Brown et al. 2004) and widespread effects on
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populations (Sæther et al. 2000, Aars and Ims 2002,

Altwegg et al. 2005, Carrillo et al. 2005a). In many parts

of the world, air temperatures are carefully monitored

and efficiently reported. This creates an opportunity for

developing spatially extensive models to predict the

trajectory of population abundance based upon local

temperatures, but examples in the literature are rare.

A generalized approach for modeling climatic effects

on population dynamics involves three components.

1) Accurate prediction of the physiological effects of

temperature on the study organisms. The literature

contains thousands of empirical studies that provide

such data (Stevenson and Bryant 2000, Bale 2002,

Humphries et al. 2004, Lourdais et al. 2004, Freon et al.

2005, Helmuth et al. 2005). This is a rich resource for

managers, although application of these data can be

complicated by the potential for local adaptation and

acclimatization (Kukal et al. 1991, Ayres and Scriber

1994, Dittman 1997, Layne et al. 1999, Broggi et al.

2004).

2) Accurate prediction of temperatures experienced by

the study organism in its immediate environment.

Commonly, this may involve micro-meteorological

models to go from routinely collected records at

established weather stations to microsite temperatures

within the appropriate habitats (Bolstad et al. 1997,

Régnière and Sharov 1999, Kearney and Porter 2004).

3) Testing for predicted population effects. Demo-

graphic predictions from 1 and 2 should be confronted

with empirical time series of abundance. All population

models are simplifications. A good model is one that

includes drivers that are important enough to influence

population dynamics. Evidence of physiological effects

on individuals is not sufficient to infer demographic

importance because other forces might be more impor-

tant than the hypothesized driver.

Consideration of components 1 to 3 above can permit

the validation, refutation, or refinement of theoretical

models that relate climatic variables to population

dynamics. If a population model based on physiology

and microclimate successfully predicts the dynamics of

independent abundance data, then the overall theoret-

ical model is validated. If the model fails to provide

satisfactory predictions, there may be a weakness in

either the physiological or climatic components, which

may then be refined, or the hypothesized driver of

population dynamics is simply not strong enough to

have applied value and consideration should shift to

other drivers. We employed this three-level approach to

evaluate the effects of winter temperatures on popula-

tion dynamics of the southern pine beetle, Dendroctonus

frontalis Zimmermann (Coleoptera: Scolytinae) across

its distribution in the southeastern United States. This

study built on previous ones that have implicated

minimum winter temperature as a factor in the survival

and northern distribution limits of D. frontalis (Ungerer

et al. 1999, Lombardero et al. 2000).

Study system

The southern pine beetle reproduces by killing mature
pine trees, and its populations frequently attain epidemic

proportions (Turchin et al. 1991, Ylioja et al. 2005). It is
by far the most important source of biotic disturbance in

pine forests of the southeastern United States (Price et
al. 1997), and is among the most economically and

ecologically important sources of forest disturbance in
North America (Ayres and Lombardero 2000, Dale et

al. 2001). Based upon a composite historical record, the
range of the southern pine beetle covers the southeastern

United States, from southern New Jersey and Pennsyl-
vania to southern Missouri, south to east Texas, and

east into Florida. The insect is also found in Arizona
through Mexico and as far south as Nicaragua

(Thatcher et al. 1980, Billings et al. 2004). Outbreaks
at the northern limits of the southern pine beetle’s range,

where it has historically been rare, have occurred in
recent years. New Jersey suffered from outbreaks
beginning in 2001 and continuing to the present

(2006), where no outbreaks had been recorded since
1939 (Wilent 2005). Maryland experienced outbreaks in

Talbot County for the first time in 2005, and Ohio
reported outbreaks in 2001 (Wilent 2005). Ungerer et al.

(1999) predicted a northern expansion of southern pine
beetle outbreaks should there be an increase of

minimum winter air temperature.
In this study, we tested the hypothesis that minimum

winter temperature is a meaningful driver of broad
spatiotemporal patterns in the epidemiology of southern

pine beetle populations. A priori, there was a strong case
for the importance of winter temperatures in southern

pine beetle population dynamics. Notable winter mor-
tality of natural populations has occurred when air

temperatures dropped below approximately�128C (e.g.,
Beal 1933, McClelland and Hain 1979, others cited in

Ungerer et al. 1999). Lombardero et al. (2000) measured
the supercooling points (temperature of crystallization)

of adults, pupae, and feeding larvae of the southern pine
beetle. They found that the lower lethal temperature for
adults, which corresponded to the supercooling point,

averaged �12.18 6 4.08C (mean 6 SD), did not change
seasonally, and was not affected by various acclimation

regimes. These authors showed that momentary expo-
sure to temperatures at or below the supercooling point

was lethal to southern pine beetles, while even prolonged
exposure to slightly warmer temperatures produced little

mortality. Ungerer et al. (1999) also showed a concor-
dance between the historical northern distribution limits

of the southern pine beetle and the annual occurrence of
at least one winter night when air temperature dropped

below�168C (which they judged should result in .90%

mortality of the beetle population, allowing for the inner

pine bark being 18C warmer due to thermal buffering).
Based on existing physiological studies, Ungerer et al.
(1999) predicted that the relative growth rate of beetle

populations from one summer to the next would drop
sharply when the minimum winter air temperature
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dropped below approximately �168C. Among the

limitations of this work were that: (1) physiological

studies were restricted to one population from northern

Alabama; (2) climatic models were based on only 50

weather stations and ignored potential differences in

temperature between the stations and trees, due to

differences in elevation or microclimate (e.g., exposure);

and (3) there were no direct tests of demographic effects

in natural populations.

Here we developed a spatial interpolation method to

predict minimum winter air temperature in study forests

using observations from a large number of weather

stations, and tested for a historical trend of warming

minimum winter air temperatures that might account for

the recent spate of northern outbreaks of D. frontalis.

We studied cold tolerance in the most northerly

population of D. frontalis and evaluated the relationship

between air temperature and phloem temperatures

experienced by bark beetles. Finally, we tested the

population predictions from climatic modeling and

physiological measurements against more than a decade

of surveys of southern pine beetle abundance in forests

throughout the southeastern United States.

METHODS

Predicting minimum air temperatures in study forests

Since 1987, a growing network of forest health

professionals have been participating in a standardized

protocol of pheromone-based trapping to estimate the

abundance of southern pine beetle during the spring

dispersal phase (Billings 1988). By 2004, this network

included 140 forests. Sampling locations include U.S.

National Forest Ranger Districts, state forests, military

lands, and privately owned loblolly pine (Pinus taeda)

forests. Data are compiled annually by the Texas Forest

Service (available online).7

The exact locations of the traps are not known and

may vary from year to year. Therefore, we referenced

the data spatially by assigning coordinates to the middle

of each forest area, which should generally have been

within 10 km of actual trapping locations. This sampling

program had high value for our research questions

because it is unusually extensive in space and time. A

limitation is that these are operational data that have

been collected by many different people for management

purposes, and not for research. If we had designed the

sampling for our research question, we probably would

have included more trapping locations per forest to

reduce the sampling variance in population estimates for

each forest in each year.

The putative climatic driver in this study is the

minimum winter air temperature (the lowest minimum

temperature from July of the preceding year to June of

each year). Minimum daily temperatures for 1987–2004

were obtained for all weather stations across the

southeastern United States, from Texas and Florida in

the south to Tennessee and Maryland in the north, from

the NOAA online data acquisition system (available
online).8 The median distance from forests with beetle

abundance data (Fig. 1) to the nearest weather station

was 16 km; 97.5% were within 40 km, with a maximum

distance of 71 km. We extracted the minimum winter air
temperature for each station in each year for which

records were complete (data from 1157 stations with 5–

17 winters for each station).

We used a spatial interpolation method to estimate

minimum winter air temperature in each year for each
forest with beetle abundance data. After preliminary

testing of various spatial interpolation techniques,

including spatial regression and kriging, we developed

our own distance-weighted procedure, because it pro-
duced slightly more accurate estimates:

Tu ¼
X
ðTi 3 D�k

i ÞX
D�k

i

þ
X
ðEi 3 D�k

i ÞX
D�k

i

� Eu

" #
3 ‘ ð1Þ

where Tu¼minimum winter air temperature at site u, Ti

¼minimum winter air temperature recorded at weather

station i, Di¼distance from site u to weather station i, Ei

¼ elevation of weather station i, Eu¼ elevation at site u, k
¼ distance weighting coefficient, and ‘ ¼ an elevation

weighting coefficient. The distances between weather

stations and beetle sites (in meters) were calculated

assuming the earth is a sphere. The distance coefficient k
and elevation coefficient ‘ were estimated using the

Generalized Reduced Gradient (GRG2) algorithm

(Microsoft Excel solver) to minimize the average cross-

validation root mean square error across years. In cross-
validation, observations are withheld and estimated one

by one; then squared differences between observed and

estimated values are summed and averaged to provide

the mean square error.

Time trend in air temperatures

Of the NOAA weather stations retained above, we

identified 76 stations representing 12 states (AL, AR,
FL, GA, LA, MD, MS, NC, SC, TN, TX, and VA) that

had nearly complete data from 1960 through 2004, with

no more than five years with any missing daily minimum

temperatures. We chose 1960 as a starting point because
this marks the earliest systematic records of D. frontalis

damage across the region (Price et al. 1997). For each of

these stations, we calculated the average minimum

winter air temperature over the 44-year series and
calculated residuals for each year from this long-term

average. The mean residual of minimum winter air

temperature for each year (averaged across stations) was

regressed against year.

Because these analyses showed a surprisingly strong
warming trend, we went on to test for patterns with

respect to latitude, longitude, elevation, and local

7 hhttp://texasforestservice.tamu.edui 8 hhttp://www.ncdc.noaa.gov/oa/ncdc.htmli
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human population density. The population density

check tested if the pattern might be a consequence of

urban heat islands (Jin et al. 2005), and therefore not

necessarily relevant to the forests inhabited by D.

frontalis. We extracted human population densities

(2000 census, 100% data, for 5-digit zip code tabulation

areas containing each climate station (mean area 6 SD¼
479 6 372 km2) (U.S. government census data, available

online).9 For each of the 76 climate stations, we

calculated the slope of minimum winter air temperature

vs. year, and then evaluated all possible linear regres-

sions to predict these individual slopes as a function of

latitude, longitude, elevation, their two-way interac-

tions, (latitude)2, (longitude)2, and/or log(people/km2)

(transformation to improve normality).

Phloem temperatures

Beal (1934) showed that thermal buffering in Pinus

ponderosa varied with bark thickness and could be as

great as 128C. However, Ungerer et al. (1999) and

Bolstad et al. (1997) have discounted the potential

variability in thermal buffering and used estimates of 1–

28C of buffering in daily thermal minima within the

phloem compared to air. To better understand the

variability in thermal buffering, we tested a model based

on Newton’s Law of Cooling, in which the rate of

change in temperature of an object is proportional to the

difference between the ambient temperature and that of

the object (in this case, phloem):

TtþDt ¼ Tt þ KðAtþDt � TtÞDt ð2Þ

where TtþDt and AtþDt ¼ phloem and air temperature at

time t þ Dt, respectively, Tt ¼ phloem temperature at

time t, and K¼ the cooling constant (units of t�1), and Dt
is a small time step (e.g., one hour).

Paired thermocouples (Type T) connected to data-

loggers (LogBox, Ocean Controls, Balnarring, Austral-

ia) were used to monitor air and phloem temperatures at

intervals of Dt ¼ 0.25–1 hour in nine pine trees at five

localities: DeSoto Ranger District, Mississippi (July–

August 2004); Oakmulgee Ranger District, Alabama

(May–June 2005); York, Pennsylvania (20–25 December

2004), and two sites in Cape May Court House, New

Jersey (February–April 2005). Trees ranged in size from

15 to 50 cm diameter at breast height. On each tree, at

1.5 m height, one sensor was placed in the air 8–10 cm

FIG. 1. Minimum air temperatures (in 8C) in the southeastern United States during the winter of 2003–2004, calculated using
Eq. 1. The locations of southern pine beetle (SPB) sites and weather stations are shown. We constructed separate models for each
year from 1987 to 2004 to estimate minimum winter air temperatures at each southern pine beetle site.

9 hhttp://www.census.gov/i
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from the tree, and the other was inserted through the

outer bark via a minimal tangential incision (1 mm

diameter) into the thin (1–3 mm) phloem layer where D.

frontalis would occur; the incision was then sealed with a

spot of silicone. Like most pine forests inhabited by D.

frontalis, these forest canopies were largely closed, and

there was little solar warming of tree trunks (usually

,18C difference in phloem temperatures among trees

within a stand or between sides of trees that are shaded

vs. sunlit). Estimates of K for each tree were obtained by

fitting Eq. 2, using the Generalized Reduced Gradient

(GRG2) algorithm to minimize the RMSE of predicted

phloem temperatures at each time step, to data from

each locality using observed phloem temperature at t¼ 0

as an initial condition. Predicted phloem temperatures at

subsequent time steps were based on current observed

air temperature and the previous time step’s predicted

phloem temperature.

This model implies that the degree of thermal

buffering is highest when K is low (likely related to the

size of tree and thickness of bark), temperatures prior to

the cold temperature are relatively warm, and the

duration of the cold temperature is short. To estimate

thermal buffering in pine forests with D. frontalis, we

applied Eq. 2 to 140 historical time-series of hourly

temperatures during midwinter (1 December to 28

February) that were available for seven recent years

(1998–2005) from 25 NOAA climate stations distributed

across 16 states (AL, AR, CT, DE, GA, IL, KY, MD,

MS, NC, NJ, PA, SC, TN, VA, and WV) in the region

of interest. For each winter record at each site, we used

different values of K to calculate the expected minimum

phloem temperature during the three-month period

(excluding the first three days) minus the observed

minimum air temperature. This yielded a frequency

distribution for any K of expected thermal buffering

under historical winter temperatures.

Physiological measurements of cold tolerance

To test for regional differences in the lower lethal

temperature for the southern pine beetle, we measured

the supercooling points for adults from the Oakmulgee

Ranger District of the Talladega National Forest,

Alabama, and Cape May Court House, New Jersey,

collected in November 2004, as well as other life stages

from New Jersey, collected in February 2005. Thermo-

couples were attached with tape to the surface of

individual beetles, which were then slowly cooled in an

air chamber within a low-temperature water bath. As

cooling proceeded, the temperature of each individual

beetle was recorded at one-second intervals using a 16-

channel recorder (THERMES data acquisition system,

Physitemp Instruments, Incorporated, Clifton, New

Jersey, USA). The instant when each beetle froze was

marked by a conspicuous exotherm from the heat of

fusion. Supercooling points were taken as the temper-

ature of the insect immediately preceding the exotherm.

Most measurements employed a standard linear cooling

rate of�0.28C/min (e.g., Lombardero et al. 2000) but we

also conducted two trials with a very slow cooling rate of

�0.048C/min to verify that this experimental detail did

not affect supercooling points. Following freezing,

individuals were observed over several days at room

temperature for signs of life. With the beetles collected

from New Jersey in February 2005, we also measured

the supercooling points of late fourth instars that had

moved from the phloem into the outer bark in

preparation for pupation (prepupae). Beal (1933)

hypothesized this life stage to be relatively cold-tolerant

in the southern pine beetle.

Our studies used supercooling points as estimates of

lower lethal temperature—the temperature below which

death occurs. To validate this, samples of 83–100

individuals from New Jersey were slowly cooled over

11 hours to�13.78C,�15.68C,�17.48C, or�19.78C, held

at that temperature for one hour, and individually

scored as dead or alive following several days of

observation at room temperature. These experimental

temperatures were calculated from the frequency distri-

bution of independently measured supercooling points

to yield mortalities of 27%, 51%, 71%, or 99%,

respectively. We compared the observed and expected

mortality frequencies with a chi-square test. We

measured the supercooling points of survivors of the

�17.48C treatment (71% expected mortality) to test

whether the survivors were a nonrandomly cold-tolerant

subset of the population.

To determine if southern pine beetles were capable of

resuming normal development following exposure to

low temperatures, infested bark collected from New

Jersey on 1 February 2005 was placed overnight in a

freezer at �15.38C, with some samples remaining at a

storage temperature of 08C. Exposed and nonexposed

bark was subsequently placed in separate emergence

cans at room temperature for monitoring. Also, 100

individuals (fourth instars) removed from the bark were

kept in vials to develop at room temperature without

being exposed to subzero temperatures.

Population growth

The southern pine beetle trapping data were used to

calculate interannual per capita growth rates (Rt) of

beetle populations as follows:

Rt ¼ lnðNt þ 1Þ � lnðNt�1 þ 1Þ ð3Þ

where Nt and Nt�1¼ average beetle captures per trap per

two weeks in years t and t� 1. There were 1439 pairs of

site-years for which we could calculate population

growth rates. This sampling program also records the

number of captured Thanasimus dubius (Fabricius)

(Coleoptera: Cleridae). T. dubius is a predator of D.

frontalis and associated bark beetles whose fluctuating

abundances influence population dynamics of the

southern pine beetle (Turchin et al. 1999). Thus, we

tested for a relationship between minimum winter air

temperature and growth rates of T. dubius populations.
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Southern pine beetle abundance has been measured as

the number of local infestations (groups of dead and

dying pines known as ‘‘spots’’ because of their appear-

ance to an aerial observer) detected from aerial surveys
in each year in each National Forest Ranger District or

county (Billings and Ward 1984). Using these data,

which have been compiled by the U.S. Forest Service

Region 8 Forest Health and the Texas Forest Service, we
calculated another measure of interannual population

growth rates (using Eq. 3 but substituting spots per

forest for beetles per trap). There were 1509 pairs of site-

years (largely the same as for the trapping data) for

which we could calculate population growth rates based
on the number of beetle infestations.

We used a linear threshold function to analyze the

relationship between minimum winter air temperature

and interannual growth rates:

R ¼ aðT � cÞ þ b if T , c
b if T � c

�
ð4Þ

where R ¼ interannual growth rate (trap capture of

beetles or predators, number of spots), T ¼ minimum

winter air temperature, a¼ slope, b¼ intercept, and c¼
threshold temperature. Parameters were fit using the

Generalized Reduced Gradient (GRG2) algorithm to
minimize the RMSE of predicted interannual growth

rates for each site-year. Eq. 4 was derived from the

hypothesis that minimum winter temperatures influence

population growth rate via mortality from lethal
temperatures. Average minimum winter air temperature

covaries geographically with the potential number of

beetle generations per year (r ¼ 0.78 [Ungerer et al.

1999]), which might also influence population growth

rate. However, we would not expect a threshold in this
case because generations are numerous (4–6 per year),

overlapping, and uninterrupted by diapause. We used

the Akaike Information Criterion to compare the three-

parameter threshold model (Eq. 4) to an alternative two-
parameter linear regression derived from the hypothesis

that the relationship between extreme winter temperate

and R is an artifact of collinearity with summer

temperatures (which influence the number of genera-

tions per year).

We used quantile regression (Koenker and Bassett
1978, Cade and Noon 2003) to test if the distribution of

interannual growth rates was related to minimum winter

air temperature. Minimum winter air temperatures were

grouped into 40 intervals containing equal numbers of

observations, and growth rate deciles were determined
for each interval. The linear threshold model (Eq. 4) was

fitted between median minimum winter air temperature

of the interval vs. interannual growth rate for each

decile.

A theoretical model relating climatic data
to D. frontalis population dynamics

The demographic effect of winter temperature ex-

tremes on D. frontalis populations within a forest is

modeled here as a function of (1) the average minimum

air temperature during the winter of interest within the

forest (or county) of interest, (2) spatial variation across

the forest in minimum winter air temperature, (3) the

relationship between minimum winter air temperature

and minimum winter temperature experienced by D.

frontalis within the phloem of its host trees, (4) the mean

and variance in lower lethal temperature for D. frontalis

of each life stage, and (5) the proportion of the

population within each life stage at the time when

minimum winter temperatures are experienced. This

relationship is expressed by

SðTÞ ¼
Xs

i¼1

Xz

j¼1

½Pi 3 Qj 3ð1�Mi; jÞ� ð5Þ

where S(T ) ¼ the proportion of the D. frontalis

population expected to survive exposure to regional

average air temperature T, s¼ the number of life stages,

z ¼ the number of different possible classes of

experienced temperatures h (here, 81 temperatures at

intervals of 0.58C from 0 to�408C), Pi¼ the proportion

of population in each life stage, Qj ¼ the proportion of

D. frontalis that experience each temperature h given

regional average air temperature T, and Mi,j ¼ the

proportion of each life stage i with a lower lethal

temperature equal to or greater than the experienced

temperature h.

We used this model to evaluate the expected

demographic consequences of new information regard-

ing life stage structure and experienced temperatures.

Scenario 1 represented baseline knowledge at the start of

the present study and so followed Ungerer et al. (1999)

in recognizing three life stages (larvae, pupae, and

adults) with P¼ 0.379, 0.174, 0.447, respectively (based

on proportion of total development time at 258C in each

life stage), and with temperature–survivorship functions

(M) for each life stage calculated from empirical

frequency distributions of supercooling points: ¼
�10.58 6 2.98C, �8.88 6 2.68C, and �11.98 6 2.98C

(mean 6 SD), respectively (assuming a normal distri-

bution of supercooling points). Also following Ungerer

et al. (1999), the baseline scenario assumed that all

beetles experienced a temperature 18C warmer than T to

account for thermal buffering within phloem (Qj ¼ 1

where h¼ Tþ 1 and 0 otherwise). Scenario 2 accounted

for local spatial variation in the temperatures experi-

enced by beetles by using the RMSE from Eq. 1 as an

estimate of the standard deviation in minimum winter

air temperature among the forest stands occupied by a

population of D. frontalis (Qj ¼ normal probability

density function). Scenario 3 added new estimates of the

mean and variance in thermal buffering within the

phloem (see below). Scenario 4 added the presence of a

cold-tolerant life stage (prepupae, see Results).

For scenario 4, we calculated Qj based on a range of

cooling constants (K in Eq. 2), and compared expected

mortality patterns given hypothetical distributions of
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overwintering beetles in small, medium, and large pine

trees. The distribution of D. frontalis with respect to tree

size may vary from forest to forest and year to year, but

beetles tend to occur in medium-sized trees. Our

approximation employed data from a recent epidemic

in the Bankhead National Forest in Alabama (Ylioja et

al. 2005). At the time of the epidemic, the forest

contained 276 km2 of loblolly pine stands, with 50%

,33 years of age (10, 25, 75, and 90% were ,8, 23, 68,

and 75 years of age, respectively). D. frontalis infesta-

tions were concentrated in stands that were 25–40 years

old: stand ages corresponding to cumulative percentiles

of 10, 25, 50, 75, and 90% were 18, 28, 33, 38, and 68

years. Thus we estimated that the proportion of D.

frontalis inhabiting each of these stand age classes was

0.1, 0.225, 0.35, 0.225, and 0.1, respectively. The

diameter of loblolly pine at these ages tends to be

;15, 20, 23, 25, and 51 cm (Baldwin and Feduccia

1987). Based on empirical estimates of K vs. tree

diameter (see Results), we estimated K for each of these

size classes as 0.221, 0.175, 0.156, 0.141, and 0.077 h�1.

Based on these K ’s and historical time series of winter

air temperatures (see Results), we calculated correspond-

ing mean thermal buffering of 1.58 6 0.78, 1.98 6 0.88,

2.28 6 0.88, 2.48 6 0.88, and 3.98 6 1.18C, respectively.

For scenario 4, Qj was based on mean ¼ T þ average

thermal buffer and variance ¼ the mean square error

from Eq. 1 þ variance in thermal buffer.

RESULTS

Predicting minimum air temperatures

at beetle trapping sites

The distance-weighted spatial interpolation model

(Eq. 1) provided good, spatially explicit predictions of

minimum winter air temperatures across the region of

interest (RMSE ranging from 1.298 to 1.828C). The best

overall fit was obtained with ‘ ¼ 0.005658C/m (lapse

rate) and k ¼ 2.91 (weighting coefficient). Estimating

different values of ‘ and k for each year gave negligible

improvements to the RMSE.

Time trend in air temperatures

Analysis of data from 76 climate stations in the

southeastern United States showed a statistically signif-

icant increase in minimum winter air temperatures of

3.38C from 1960 to 2004 (Fig. 2). When calculated

separately for each station, the slope of minimum winter

air temperature as a function of year was always positive

(mean 6 SD ¼ 0.0778 6 0.0338C/yr; range ¼ 0.002–

0.1718C/yr) and tended to increase across our study area

with latitude (8N) and longitude (8W); see Eq. 6 (P ,

0.0001 for each individual parameter; r2 ¼ 0.46, delta

AIC compared to second-best model with three or fewer

parameters ¼ 14):

8C=yr ¼ �3:8þ 0:0103ðlatitudeÞ þ 0:0783ðlongitudeÞ

� 0:00043ðlongitudeÞ2: ð6Þ

Based on this regression, average minimum winter air

temperature has increased from 1960 to 2004 by 2.88 vs.

5.18C in the south vs. the north (30.758 vs. 35.758 N), and

by 2.28 vs. 4.28 vs. 4.18C from east to west (808 vs. 888 vs.

948 W). Most of our climate stations were in rural areas

with relatively low human population densities (median

¼ 43 people/km2), but there was still a 200-fold range in

human density (5 to 1005 people/km2). The warming

trend in Fig. 2 was not an artifact of urban heat islands,

because the rate of increase in minimum winter air

temperature was not related to human density (P . 0.19

in all possible simple and multiple linear regressions).

The warming trend tended to be greater with increasing

elevation in the Appalachian Mountains (r2 ¼ 0.12 for

simple linear regression with elevation, P ¼ 0.002), but

this pattern was absorbed by longitude in Eq. 6, and

elevation contributed nothing further (P ¼ 0.72).

Matched analyses of the same climate stations

indicated that average annual temperature (January to

FIG. 2. Minimum winter air temperatures in the southeastern United States from 1960 to 2004. Shown are mean residuals (from
mean of site) 6 SE (from 64–75 sites). Slope¼ 0.0778 6 0.0318C/yr (P¼ 0.017, n ¼ 44 years).
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December) has also increased from 1960 to 2004, but by

only 0.68C (mean 6 SE ¼ 0.0158 6 0.0068C/yr, P ¼
0.017), and that there has been no significant trend in

maximum annual temperature¼ 0.0218 6 0.0148C/yr, P

¼ 0.15).

Phloem temperatures

Actual phloem temperatures closely matched those

predicted by a Newtonian heat transfer model, Eq. 2

(Fig. 3). The accuracy of predicted daily minima in

phloem temperatures was generally 618C (RMSE in

Table 1). For every tree, Eq. 2 yielded more accurate

measurements of minimum daily phloem temperatures

than using the average buffering for that tree (difference

in RMSEs¼0.18–3.28C). Two dataloggers recorded days

in which the daily minimum phloem temperature was

actually lower than the daily minimum air temperature

by .28C. This occurred on days that were much warmer

than the previous day, a characteristic consistent with

Eq. 2. The smallest K values and highest differences in

temperatures were observed in trees with the largest

diameters at breast height. K was related to tree

diameter at breast height (in centimeters) as (K ¼ 1/(1

þ a�dbh) (where a ¼ 0.235 6 0.047; r2 ¼ 0.16).

When Eq. 2 was applied to historical time series of

hourly winter air temperatures, the predicted average

buffering (predicted minimum winter phloem tempera-

ture � minimum winter air temperature) ranged from

;1.08 to 4.38C as K decreased from 0.299 to 0.066 h�1

(corresponding to trees from 10 to 60 cm dbh; Fig. 4).

The frequency distributions of thermal buffering were

approximately normally distributed, with standard

deviations increasing from 0.58 to 1.18C as K decreased.

In Elkins, West Virginia, in the winter of 2002–2003, the

predicted thermal buffering was 3–58C higher than

average (Fig. 4). This corresponded to an unusually

brief cold bout on 18 January in which air temperatures

went from �58 to �258C and then back to above �58C

within 43 hours. Elkins was also the second highest site

in our analysis at 594 m above sea level (a.s.l.). For most

time series, the coldest night in the phloem was predicted

to be the night of the coldest air temperature or the next

FIG. 3. Air, phloem, and predicted phloem temperatures for a tree (38 cm dbh Pinus taeda) in Chickasawhay Ranger District,
DeSoto National Forest, Mississippi, for August 2004.

TABLE 1. Summary of thermal buffering in pine trees. The data shown are nine time series of air and phloem temperatures, and
results from fitting a heat transfer model (Eq. 2) to each tree.

Origin
Pinus
species

dbh
(cm)

Days of
data

Recording
interval (h)

Average of Tair – Tphloem (8C)

Model fit from Eq. 2

K (h�1)

RMSE� (8C)

Daily
mean

Daily
maxima

Daily
minima

All
data

Daily
minima

New Jersey P. rigida 38 89 1 1.7 6 �4 0.081 1.7 1.5
New Jersey P. rigida 42 89 1 1.5 4 �1 0.245 1.5 1.1
Pennsylvania P. strobus 50 3 0.25 �1.0 2 �7 0.013 1.1 1.0
Mississippi P. taeda 36 36 1 1.2 3 �1 0.139 0.8 0.6
Mississippi P. taeda 15 30 1 1.5 3 0 0.240 1.2 0.8
Mississippi P. taeda 38 30 1 2.0 5 �1 0.076 0.6 0.6
Mississippi P. taeda 27 17 1 0.6 2 �2 0.201 0.7 1.1
Mississippi P. taeda 17 18 1 1.6 3 �1 0.159 1.0 0.7
Alabama P. taeda 18 61 1 1.1 3 �1 0.116 1.0 1.0

� Root mean square error.
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night (56–83% of 140 time series for K ’s of 0.066–0.299

h�1, respectively). Regression analyses indicated that

thermal buffering (B) was greatest in southerly latitudes

and when K was low (see Eq. 7; P , 0.0001 for all

coefficients, r2 ¼ 0.63, RMSE ¼ 0.888C, delta AIC

compared to the best simpler model ¼ 42, n ¼ 840):

B ¼ 54:16� 2:62ðlatitudeÞ þ 0:035ðlatitudeÞ2

þ 0:0015ðelevationÞ � 36:62K þ 62:83K2: ð7Þ

Based on this regression, in a tree with K¼ 0.096 h�1

(;40 cm dbh), B ¼ 4.98 to 3.68C at 30.758 vs. 35.758 N,

and by 3.58 to 4.38C at 5 vs. 600 m a.s.l.

Cold tolerance of D. frontalis in New Jersey

The mean supercooling point of southern pine beetle

adults collected in November from New Jersey was

�9.78 6 2.78C (mean 6 SD) (n¼ 27), significantly lower

than in adult beetles collected at the same time in

Alabama:�7.28 6 1.68C (n¼ 25) (t50¼ 4.18, P¼ 0.0002).

However, the cold tolerance of even the New Jersey

adults was actually less than the values previously

reported by Lombardero et al. (2000) and used by

Ungerer et al. (1999) for modeling winter mortality. As

previously reported, freezing was invariably fatal, as no

individuals showed any sign of life following freezing.

The only life stage that appeared to be successfully

overwintering in New Jersey during 2004–2005 was late

fourth instars (prepupae) in the outer bark (see Plate 1).

Although we found a few adults and younger larvae,

most of them were dead (Table 2). Given this result, all

additional physiological measurements were conducted

on prepupae. The supercooling point for prepupae

(mean 6 SD ¼�14.68 6 3.98C, minimum ¼�19.98C, n

¼ 298) was much lower than that for adults collected in

November, and lower than any previously published

measurements on southern pine beetle in any life stage

(Fig. 5). Although fourth instars resisted freezing to a

lower temperature, they still died when freezing oc-

curred. There was no detectable effect of cooling rate on

supercooling temperatures of fourth instars (t296¼ 0.66,

P ¼ 0.51).

Bark samples containing prepupae from New Jersey

produced large numbers of apparently healthy adults

after exposure to one night of temperatures at�15.38C.

This proved the ability of D. frontalis to survive

temperatures previously thought to produce nearly

complete mortality (Ungerer et al. 1999). There were

high levels of emergence from both treated and control

bark. Emergence peaked at ;21 days, with totals of 193

and 138 adult beetles, respectively. It was not possible to

estimate proportional mortality in these bark samples,

but dissection revealed some dead fourth instars in both

samples. Out of 100 untreated individuals (prepuae) that

were removed from the bark and placed in vials, 23

successfully developed to adults, 5 developed to callow

adults before dying, and 72 died as fourth instars.

The frequency distribution of supercooling points was

generally a reliable predictor of the probability of

survival given exposure to any specific temperature

(Table 3). In three of four experiments, there was an

excellent match between observed and expected survival.

In the fourth experiment, with exposure to �13.78C,

observed survival (90%) was significantly higher than

expected (73%). The average supercooling point of those

fourth instars that survived the �17.48C treatment

(�18.608 6 0.98C, n ¼ 16) was much lower and less

variable than that of an unselected population (t312 ¼
4.04, P , 0.0001). Overall, results supported the premise

(implicit in our application of Eq. 5) that supercooling

points in D. frontalis usually represent the lower lethal

temperature. This is common in (freeze-susceptible)

FIG. 4. Predicted thermal buffering in phloem based upon
historical time series of winter air temperatures and a heat
transfer model (Eq. 2). Climatic data were hourly air
temperatures from 1 December to 28 February for 140 winters
in the southeastern United States (3–7 winters 3 25 sites).
Cooling constants (K ) correspond to typical pine trees with
diameters of 10–60 cm (K ¼ 1/(1 þ 0.235 3 dbh). Thermal
buffering was defined as the difference between minimum air
temperature and predicted minimum phloem temperature
(given K ) during each winter record. Indicated are 10th, 25th,
50th, 75th, and 90th percentiles, and outliers. The upper outlier
at all K’s represents Elkin, West Virginia, in the winter of 2002–
2003 (see Results: Phloem temperatures).

TABLE 2. Life stages present in a southern pine beetle
population near Cape May Courthouse, New Jersey, in
February 2005.

Life stage

All individuals Average across trees

n
Alive
(%) ntrees

Average
alive (%)

Eggs 0 ��� 0 ���
Larvae in phloem 26 7.7 6 5.6
Larvae in outer bark 1562 99.8 8 99.9
Pupae 0 ��� 0 ���
Adults 103 0 10 0
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insects, but not universal (Bale 2002, Renault et al. 2002,

Carrillo et al. 2005b).

Population growth

Interannual growth rates ofD. frontalis, measured from

trap captures, averaged�0.19 6 1.71 beetles�beetle�1�yr�1
(mean 6 SD). As predicted by Ungerer et al (1999), these

rates were more likely to be negative following a winter in

which the minimum air temperature dropped below

�168C (72% of 96 vs. 54% of 1108; v2 ¼ 10.9, df ¼ 1, P

, 0.001). Linear threshold regression revealed a pattern of

decreasing interannual growth rates when minimum

winter air temperatures dropped below c 6 SE¼�12.58

6 1.28C, the threshold temperature in Eq. 4 (F2,1436¼11.2,

P , 0.001; delta AIC compared to the linear nonthreshold

model¼9.8). As predicted, the threshold cwas close to the

lower lethal temperatures that Lombardero et al. (2000)

reported from physiological studies. The slope (a 6 SE¼
0.122 6 0.04) was significantly different from zero (t1436¼
3.37, P , 0.001). The intercept, representing average

population growth in the absence of lethally cold

temperatures, was near 0 (b 6 SE ¼ �0.11 6 0.05).

Although the regression model (Eq. 3) was highly

significant, it explained ,2% of the total variation in

population growth rate (r2 ¼ 0.015), indicating the

importance of other factors. Quantile regression models

(Eq. 4) were significant for six of the nine deciles (Table 4).

Slopes were always positive (a . 0) indicating an increase

in growth rate with minimum winter air temperature for

all deciles, and thresholds were in the range �13.28 to

�10.88C. Neither parameter was systematically related to

decile rank. Contrary to the predictions of Ungerer et al.

(1999), there were some cases of positive interannual

growth rates even when minimum winter air temperature

dropped below�168C. Most notably, there were growth

rates of 3.15, 4.25, and 0.897 beetles�beetle�1�yr�1 in the

Ocoee Ranger District, Tennessee, from 1995 to 1996 and

in the Nolichucky Ranger District, Tenneesse, from 1992

to 1993 and 1995 to 1996, even though the estimated

minimum winter air temperatures were �20.78, �18.08,

and�28.38C, respectively (Fig. 6).

Interannual growth rates in the number of D. frontalis

infestations (spots) also were more likely to be negative

following a winter in which the minimum winter air

temperature dropped below�168C (74% of 85 vs. 55% of

968; v2 ¼ 11.1, df ¼ 1, P , 0.0001; Fig. 6b). As in

analyses of trap capture data, the linear threshold

regression from spot data was highly significant and

qualitatively consistent with theoretical expectations,

but had very low explanatory power overall: r2¼ 0.011,

F2,1501¼ 8.60, P¼ 0.0002 (delta AIC compared to linear

nonthreshold model¼ 38.3); slope 6 SE¼ 0.103 6 0.03

(t1501 ¼ 3.01, P ¼ 0.003), when minimum winter air

temperatures 6 SE dropped below �11.68 6 1.488C;

intercept 6 SE ¼�0.14 6 0.06 (t1501 ¼ 2.25, P ¼ 0.02).

Quantile regression was significant for five of the nine

deciles, with positive slopes and thresholds in the range

of�13.1 to�9.2 (Table 4). Again, slopes and thresholds

were not systematically related to decile rank. As with

trappings, there were cases of positive interannual

growth in the number of spots, even when minimum

winter air temperature dropped below �168C. Most

notably, there were growth rates of 1.35 and 1.61

spots�spot�1�yr�1 in the Grandfather Ranger District,

North Carolina, from 1993 to 1994, and in Oktibbeha,

Mississippi, from 1989 to 1990, even though the

estimated minimum winter air temperatures were

�22.18C and�22.48C, respectively (Fig. 6b).

Interannual growth rates of the bark beetle predator,

T. dubius, were about as variable in space and time as

those of D. frontalis (mean 6 SD¼�0.01 6 1.14 yr�1).

Linear threshold regression suggested a weak pattern of

decreasing interannual growth rates (r2¼ 0.005; F2,1436¼
3.90; P ¼ 0.02, delta AIC compared to linear non-

threshold model¼5.8; data not shown), with slope 6 SE

¼ 0.064 6 0.03 (t1436 ¼ 1.89, P ¼ 0.06) when minimum

winter air temperatures dropped below c 6 SE ¼�14.0
6 2.08C, and an intercept 6 SE of 0.014 6 0.032 (t1436¼
0.43, P ¼ 0.67).

FIG. 5. Frequency distribution of supercooling points of
late fourth-instar larvae from New Jersey measured during
February 2005. The line indicates the probability of not
freezing.

TABLE 3. Survival of fourth-instar larvae from New Jersey
following exposure to low temperature.

Treatment (8C) n

Survival (%)

v2 PObserved Expected

�13.67 100 90 73 15.36 ,0.0001
�15.64 83 58 49 2.43 0.12
�17.36 100 26 29 0.44 0.51
�19.66 100 0 1.3 1.36 0.24

Note: Expected survival is the percentage of individuals that
do not freeze based upon the distribution of supercooling
points.
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Theoretical models relating climatic data

to D. frontalis population dynamics

Fig. 7 compares observed patterns in D. frontalis

population dynamics to alternative theoretical models

for the effects of minimum winter air temperature.

Scenario 1, following Ungerer et al. (1999), predicted

that population growth rates would decrease sharply as

minimum winter air temperature decreased from�108 to

�158C. The addition of regional variability in minimum

winter air temperature (scenario 2) had almost no effect

on the expected probability of not freezing, and is not

shown. Scenario 3, with the addition of better estimates

of thermal buffering, lowered the temperature of 50%

mortality from �11.78 to �138C, but still overestimated

the sensitivity of population growth rates to low

temperatures (compare scenario 3 to data, Fig. 7).

Scenario 4, with the addition of a cold-tolerant life stage

(prepupae; Fig. 5), and a concentration of overwintering

individuals within that life stage (matching Table 2),

shifted the expected survival function by 4.48C, and

provided a reasonably satisfying fit with the empirical

decline in average population growth rates at low

temperatures (Fig. 7).

DISCUSSION

Prediction of experienced temperatures

Estimates of minimum winter air temperature in study

forests (using NOAA data) were adequate for modeling

the effects of winter air temperatures on D. frontalis. The

addition of unexplained spatial variation in minimum

temperature had an inconsequential effect on predicted

mortality patterns. That is, the RMSEs for Eq. 1 were

sufficiently modest (1.38–1.88C) that scenario 2 was

nearly identical to scenario 1 using Eq. 5. The prediction

of experienced temperatures requires the additional step

of relating air temperature to temperature in the phloem,

where southern pine beetles spend most of their lives

(Payne 1980). A model based on Newtonian cooling

(Eq. 2) permits predictions of phloem temperature given

estimates of K and knowledge of the time course of air

temperatures during winter cold bouts (Fig. 2, Table 1).

Eq. 2 also provides a mechanistic description of heat

transfer, and suggested a general means for incorporat-

ing effects of tree size (by modeling K as a function of

tree size).

Application of Eq. 2 to historical time series of hourly

winter temperatures provided a general description of

thermal buffering of minimum temperatures in pine

phloem (Fig. 4). Previously published estimates were as

disparate as Beal (1934) and Bolstad et al. (1997), who

reported thermal buffering of minimum temperatures in

pine phloem of up to 128C vs. ,18C. Beal deliberately

measured large trees with thick bark (up to 5 cm), and

presumably with low K ’s, during a brief but extreme

cold bout (air temperatures from �68 to �328 to �128C

within 35 hours). Our analyses of 140 winter tempera-

ture series from the southeastern United States did not

reveal a single occasion where so much buffering would

have been expected (Fig. 4). However, the predicted

buffer was more than previously assumed by Ungerer et

al. (1999): average of 1.58–3.98C (maximum of 9.28C) for

trees of ;20–50 cm dbh. With these new predictions of

thermal buffering experienced by D. frontalis, the air

temperature required to produce 50% mortality shifted

downward by 1.38C (scenario 3 vs. scenario 1 in Fig. 7).

Eq. 2, as simple as it is, seems to work well in the closed-

canopy pine forests that are typically inhabited by D.

frontalis in the southeastern United States (Table 1). Eq.

2 assumes no other heat source and would not work

without modification in trees that experience significant

warming from solar radiation (Bolstad et al. 1997).

Prediction of physiological effects of temperature

Field and laboratory studies of a northern D. frontalis

population provided important new knowledge by

showing that prepupae were more cold tolerant (by

.3.58C) than pupae, adults, and feeding larvae, and that

the winter life stage structure was strongly biased toward

this most cold-tolerant life stage. This was not an

artifact of differential mortality from cold exposure

prior to collection, because dead individuals of other life

stages were not found, even though winter temperatures

preserved them well enough to be easily observed in our

sampling. The predominance of prepupae appears to be

an example of adaptive seasonality (sensu Logan and

TABLE 4. Summary of decile linear threshold regression for population growth rate of D. frontalis as a function of minimum
winter air temperature (Eq. 4).

Abundance
units

Model
parameter

Decile

10 20 30 40 50 60 70 80 90

Trap captures Slope, a (rate/8C) 0.143 0.173 0.19 0.152 0.123 0.13 0.107 0.105 0.129
Intercept, b (rate) �2.41 �1.40 �0.80 �0.26 �0.01 0.17 0.46 1.09 2.16
Threshold, c (8C) �13.2 �12.4 �12.6 �10.8 �11.1 �13.1 �13.2 �12.4 �12.4
F2,37 2.2 8.5* 12.0* 23.4* 23.4* 11.0* 3.5* 2.3 2.4

"Spots’’ per forest Slope, a (rate/8C) 0.049 0.091 0.189 0.147 0.093 0.07 0.09 0.156 0.205
Intercept, b (rate) �2.95 �1.53 �0.73 �0.26 �0.04 0.10 0.50 1.19 2.50
Threshold, c (8C) �9.8 �9.2 �12.4 �12.9 �13.1 �12.7 �12.4 �12.4 �12.4
F2,37 0.5 3.4* 7.6* 6.6* 12.1* 4.7* 1.7 2.3 2.5

Note: The table matches data in Fig. 6.
* P , 0.05.
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Bentz 1999), where there is a favorable match of life

stage to season (even without diapause). The addition of

a cold-tolerant life stage (prepupae) and adaptive

seasonality to Eq. 5 had a marked effect on expected

winter mortality as a function of minimum winter air

temperature, and contributed more to a good fit between

theoretical predictions and empirical population growth

rates than improved estimates of microsite temperatures

(Fig. 7).

Further studies of seasonality in D. frontalis life stage

distributions would be valuable, particularly in the

northern extremes of the species’ range. Thatcher and

Barry (1982) wrote ‘‘The southern pine beetle over-

winters . . . in the egg, larval, pupal, or adult stages.’’

Thatcher (1967) reported the presence of all life stages

(from egg to ovipositing adult) during December of

three winters in east Texas (although with a diminution

of eggs by mid-February). However, observers in the

mountains of North Carolina have reported that most

D. frontalis there spend the coldest parts of the winter as

larvae (Beal 1933, McClelland and Hain 1979 [without

specifying the proportion of larvae that were feeding in

the phloem vs. preparing to pupate in the outer bark]).

We hypothesize that other northern populations of D.

frontalis, in other years, also tend to overwinter as

prepupae. This could be a purely phenotypic result of

FIG. 6. The relationship between minimum winter air temperature and interannual changes in Dendroctonus frontalis
abundance as measured by (a) pheromone-based trapping in the spring and (b) the number of discrete local infestations (beetle
‘‘spots’’) detected in systematic aerial surveys. Lines show threshold linear regression for each decile (10–90) of beetle population
growth (Table 4). Data points specifically identified (arrows) are from the Nolichucky, Ocoee, and Grandfather Ranger Districts
(RD), and a field site in Oktibbeha, Mississippi.
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differences among life stages in their developmental
responses to temperature (Powell et al. 2000), or could

involve genetic differences among populations inhabit-
ing different climatic regions (Ayres and Scriber 1994,

Bentz et al. 2001). The tendency to overwinter in a cold-

tolerant life stage could be a coincidence rather than an
adaptation. For example, constraints of holometabolous

development might dictate that molting to pupae is
slowed more by low temperatures than is growing

through the last larval instar (Ayres and Scriber 1994),
and prepupae might be more cold tolerant just because

they have no food in their gut. If winter temperatures
tend to synchronize the age structure for any reason,

northern populations would tend to have one or another
life stage predominating throughout the year, because

there are fewer generations per year for convergence on
a stable age distribution.

The mechanistic basis for enhanced cold tolerance in
prepupae remains unknown, but might include synthesis

of cryoprotectants and/or the elimination of nucleating
agents in the gut after cessation of feeding (Beal 1933,

Bale 2002). It cannot be explained by the physico-
chemical characteristics of outer bark vs. phloem (Beal

1933), because the differences persist when the insects

are removed from the outer bark. Even with the
recognition of a cold-tolerant life stage, and adaptive

seasonality, the cold tolerance of D. frontalis is on the
low end for bark beetles. (Of 16 species that have been

studied, seven survive temperatures of�258C or less, and

none is less cold tolerant than D. frontalis [Somme 1982,
Miller and Werner 1987, Bentz and Mullins 1999,

Lombardero et al. 2000].) Since northern populations
of D. frontalis sometimes experience high mortality from

low temperatures, it is somewhat surprising that D.

frontalis has not evolved greater cold tolerance. Adap-
tation of northern populations could be constrained by

gene flow from southern populations, especially if there
are trade-offs between cold tolerance and the possibility

for continued development of beetles during mild winter
days.

Population growth

Results permitted evaluation of a process-based
model of climatic effects on D. frontalis populations.

The qualitative concordance between model predictions
and independent measurements of population fluctua-

tions indicate that D. frontalis populations can be
influenced by freezing during winter cold bouts. The

empirically fit threshold values for demographic effects
(c is approximately �128C; Eq. 4, Figs. 6–7) were a

reasonable match with independent physiological mea-
surements (Beal 1933, Lombardero et al. 2000, this

study) and historical observations of notable winter

mortality (reviewed in Ungerer et al. 1999). Further-
more, the threshold model (Eq. 4), which was derived

from a model of mortality from freezing, was better
supported by the data than an alternative linear model.

Finally, there was a reasonably good fit between average

FIG. 7. Theoretical probability of not freezing (solid lines) from Eq. 5 under three scenarios: Scenario 1, following Ungerer et
al. (1999) with thermal buffering of 18C; Scenario 3, scenario 1 plus local spatial variation in air temperatures and a frequency
distribution of thermal buffering as in Fig. 4; Scenario 4, scenario 3 plus recognition of cold-tolerant prepupae as in Fig. 5 and
Table 2. For comparison, points show empirical average population growth rate for each temperature (60.58C) calculated from
data in Fig. 6a and fit with Eq. 4 (dashed line). Sample sizes for population growth rates, from�228 to�28C, respectively, were 6,
13, 12, 5, 24, 30, 48, 56, 74, 90, 141, 110, 139, 153, 183, 166, 127, 123, 84, 38, and 20.
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population growth rates and the predictions of a

theoretical model that was independently derived and

parameterized based on susceptibility to freezing (sce-

nario 4 in Fig. 7). The theoretical model (Eq. 5) has been

generally validated at all three steps of a generalized

approach for modeling climatic effects on population

dynamics (see Introduction).

However, knowledge of minimum winter air temper-

ature explained only a scant 1.5% of the total variation

in interannual growth rates of historical time series of D.

frontalis abundance. Winter temperature is clearly only a

minor driver of southern pine beetle population

dynamics over much of the historical range of D.

frontalis, where minimum temperatures rarely reach the

supercooling point of beetles. (The estimated minimum

winter air temperature was more than �128C in 75% of

1440 winters in the D. frontalis population monitoring

program.) Even when temperatures were cold enough so

that freezing mortality was expected, there was still high

unexplained variance in D. frontalis population growth,

and there were several cases of positive population

growth rates even with air temperatures below �208C

(Fig. 6; see also Ragenovich 1980). We attribute most of

the high variance in population growth rate to

demographic processes during the 3–7 beetle generations

that occur after population sampling in one spring and

before the subsequent winter. Some of the dynamic

forces known to influence D. frontalis populations

include density dependence, predators, host suitability,

community interactions with symbiotic fungi, pest

suppression programs, adverse summer temperatures,

and competition with other phloem-feeding insects

(Flamm et al. 1993, Lorio 1993, Reeve et al. 1998,

Turchin et al. 1999, Clarke et al. 2000, Clarke and

Billings 2003, Hofstetter et al. 2006). Other sources of

residual variation probably include sampling error in

annual population estimates and variation in thermal

buffering (Fig. 4; Eq. 7).

Although population growth rates are highly variable

for reasons unrelated to winter temperatures, there

appear to be meaningful effects of winter temperatures

on northern populations of beetles. Ungerer et al. (1999)

predicted that an increase of 38C would permit the

occurrence of outbreaks ;178 km farther north than in

historical times. In fact, average minimum winter air

temperatures have increased by just over 38C since 1960

(Fig. 2). From 1960 into the 1990s, D. frontalis

outbreaks were rare or nonexistent north of North

Carolina and Tennessee. In the last decade, there have

been outbreaks in Kentucky, Delaware, Maryland,

Virginia, New Jersey, and even Ohio. Outbreaks in

New Jersey started in 2001 and have continued to occur.

From 1960 to 1996, minimum winter air temperatures

near the current New Jersey infestations averaged

�168C, and there were 10 winters when the minimum

air temperature dropped to at least �188C (sufficient to

halve population growth rate; Fig. 7). Since 1996,

minimum winter air temperatures have averaged

�138C and have not dropped below �168C (based on

three climate stations: Atlantic City 1, Atlantic City 2,

and Millville). The New Jersey infestations are ;292 km

(200 km north) from the nearest forests where there were

PLATE 1. (Left) adult and (right) prepupa of the southern pine beetle, Dendroctonus frontalis. Photo credits: Erich Vallery,
USDA Forest Service, and J. K. Trà̂n, respectively.
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systematic records of D. frontalis activity from 1960 to

1996 (near Richmond, Virginia [Price et al. 1997]).

Foresters in Maryland have been monitoring D. frontalis

since 1988. Foresters in Delaware and New Jersey joined

the monitoring program in 2001 and 2002, respectively.

Ohio participated only in 2001. The recent northern

expansion of D. frontalis infestations is about as

predicted by Ungerer et al. (1999) for an increase of

38C in minimum winter air temperatures.

A weakness in our understanding of climatic effects on

the distribution of D. frontalis is that we still lack models

that can predict the details of range expansions. (For

example, Eq. 5 could not have predicted that there would

be outbreaks near Millville, New Jersey, beginning in

2001.) Presumably, range expansions involve immigra-

tion, as well as survival and reproduction of beetles when

they are present. Models such as Eq. 5 could be expanded

to include immigration, but at present we do not know

whether the dispersal of D. frontalis into unoccupied

forests is as predictable as diffusion, or if it involves

occasional stochastic movements over large distances

(Turchin and Thoeny 1993, Sharov and Liebhold 1998,

Byers 2000, Cronin et al. 2000, Safranyik and Carroll

2005). Alternatively, dispersal might not be very

important if northern outbreaks of beetles are mainly

due to favorable conditions for resident populations that

are below detection levels.

Conclusions

Some of our results could benefit forest managers who

seek reliable short-term predictions of D. frontalis

abundance. If the coldest night of the winter does not

drop below �128C, there are no obvious effects of low

temperatures on D. frontalis populations, nor any

apparent reason from physiological studies to expect an

effect. If air temperatures drop below�168C, populations

are likely to decline (probability of decline ;65%). If

temperatures reach �208C, populations probably will

decline (probability ;80%). Following any winters when

the minimum air temperature goes below�16 8C, it will be

unlikely that an epidemic ofD. frontalis will arise from an

endemic population (the occurrence would require

improbably high growth rates). The climatic parameter

most relevant to the winter survival of D. frontalis is the

minimum temperature on the coldest night. The air

temperature required to produce 50% beetle mortality

ranges from about �128 to �168C depending upon life

stage structure, the size of the trees that are infested, and

the duration of the cold bout (Figs. 4 and 7). The single

most valuable predictor of beetle abundance this year is

beetle abundance last year (Billings 1988), but our study

indicates that readily accessible climate data can some-

times allow for better predictions than would be possible

with population monitoring alone.

D. frontalis can be added to the list of forest pests that

have recently been generating large to massive distur-

bances in northern and high-altitude ecosystems where

they were previously rare or absent. Other notable

examples include themountain pine beetle (D. ponderosae)

in westernNorthAmerica, the spruce beetle (D. rufipennis)

in Alaska, and the pine processionary moth (Thaumeto-

poea pityocampa, Notodontidae) in the Mediterranean
region (Logan et al. 2003, Carroll et al. 2004, Battisti et al.

2005). In all of these cases, there is evidence that climatic

warming trends have permitted or triggered the changes.

If the current global warming trend continues (Moberg et
al. 2005, Oerlemans 2005), forest managers will likely be

challenged by numerous novel pest problems for which

there are no well-tested responses and only a limited basis

for predicting the ecosystem consequences of not
responding (Ayres and Lombardero 2000, Dale et al.

2001, Volney and Hirsch 2005).

As early as 1899, A. D. Hopkins hypothesized that

interannual variability in minimum winter temperatures

influenced the population dynamics of D. frontalis (Beal

1933). The hypothesis that climate is a driver of animal
population dynamics is much older (Anonymous 1665).

The general approaches that have been used to evaluate

this hypothesis include observations of natural fluctua-

tions with reference to climatic conditions, physiological
measurements, phenomenological models that screen for

relationships between climate and population dynamics,

transplant experiments, and mechanistic (process-based)

models that predict population fluctuations based on

hypothesized physiological effects of specific climatic
drivers (e.g., Beal 1933, Davidson and Andrewartha

1948, Turchin et al. 1991, Pearson and Dawson 2003,

Crozier 2004, Karban and Strauss 2004, Battisti et al.

2005). Together, Eqs. 1, 2, and 5 are an example of the
last category. This model is general enough to be applied

(with modified parameters) to other species in other

systems where there are hypothesized effects of climatic

extremes (warm or cold) on mortality. The model would

have to be expanded to allow for cases where the
physiological effects are more graded than survival (e.g.,

changes in development rates) or where the focal

physiological process integrates climatic conditions over

a period of time (e.g., if temperatures prior to a cold bout
influence cold tolerance [Bentz and Mullins 1999, Chen

and Kang 2005]). Other reasonably well-validated,

process-based models have been developed to predict

population dynamics as a function of climate for an

assortment of taxa (Jenouvrier et al. 2003, Jacobson et al.
2004, Yonow et al. 2004, Altwegg et al. 2005, Carillo et

al. 2005a,b, Edmunds 2005, Lloyd et al. 2005, Vucetich et

al. 2005), but these are mostly recent and surprisingly

few. The further development and testing of such models
will contribute to the synthesis of physiological and

population ecology, and aid in assessing the ecological

consequences of climatic warming trends (Stenseth et al.

2002, Walther et al. 2002, Parmesan and Yohe 2003,
Root et al. 2003; Reynolds et al., in press).
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