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Abstract: The Soil and Water Assessment Tool 2012 (SWAT2012) offers four sediment routing methods
as optional alternatives to the default simplified Bagnold method. Previous studies compared only
one of these alternative sediment routing methods with the default method. The proposed study
evaluated the impacts of all four alternative sediment transport methods on sediment predictions:
the modified Bagnold equation, the Kodoatie equation, the Molinas and Wu equation, and the
Yang equation. The Arroyo Colorado Watershed, Texas, USA, was first calibrated for daily flow.
The sediment parameters were then calibrated to monthly sediment loads, using each of the four
sediment routing equations. An automatic calibration tool—Integrated Parameter Estimation and
Uncertainty Analysis Tool (IPEAT)—was used to fit model parameters. The four sediment routing
equations yielded substantially different sediment sources and sinks. The Yang equation performed
best, followed by Kodoatie, Bagnold, and Molinas and Wu equations, according to greater model
goodness-of-fit (represented by higher Nash–Sutcliffe Efficiency coefficient and percent bias closer
to 0) as well as lower model uncertainty (represented by inclusion of observed data within 95%
confidence interval). Since the default method (Bagnold) does not guarantee the best results, modelers
should carefully evaluate the selection of alternative methods before conducting relevant studies or
engineering projects.
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1. Introduction

The semi-distributed watershed simulation model, Soil and Water Assessment Tool (SWAT) [1]
has been applied worldwide to identify critical source areas of water quality impairments and evaluate
potential solutions through land use change and water resource planning and management [2–9].
Various SWAT applications have been conducted to explore sediment loading from watersheds [10–13].
Most SWAT sediment studies have focused on sediment transport in surface and bank erosion [13–15],
while comparatively few studies have taken into account sediment transport within streams [16,17].
In addition, excess sediment loads can cause silting problems and damage aquatic habitats [18].
In recent years, research related to sediment yield and transportation has increased considerably [19].
Challenges such as erosion of fertile topsoil, blocking stream channels, and filling reservoirs have the
potential to impact agricultural productivity [20].

In SWAT version 2012 (SWAT2012), the simulation of sediment transport in channels was
updated by including four equations for sediment routing by particle size along with the simplified
Bagnold equation [21] incorporated in SWAT since the 2005 version [22]. The alternative methods
are (1) modified Bagnold equation [21]; (2) Kodoatie equation [23]; (3) Molinas and Wu equation [24];
and (4) Yang equation [25]. The four sediment transport equations were developed based on different
theories and bed materials. The Bagnold equation was modified by Williams [26] to calculate the
maximum sediment transport capacity via the velocity function of peak stream. The Kodoatie equation
calculates the maximum transport capacity with flow depths, stream geometry, and bed materials,
beside flow velocity. The Molinas and Wu equation calculates the maximum transport capacity with
universal stream power, which is related to flow depth and particle fall velocity. The Yang equation
calculates the maximum transport capacity with unit stream power and includes mean and critical
velocity, shear velocity, material fall velocity, kinematic viscosity, critical stream power for incipient
motion, and particle size.

Each of the four alternative sediment transport functions in SWAT calculates sediment transport
mechanisms differently [22]. SWAT applies the principle of sediment transport capacity to further
route sediment processes through main reaches or channels. Sediment deposition or streambed
degradation is determined based on the current sediment concentration in the channel system and the
estimated sediment transport capacity. Only the modified Bagnold equation will be examined in this
study. Comparisons between the simplified and modified version, which both have the same equation
for maximum transport capacity, were previously conducted to evaluate the effect on sediment
predictions [19,27]. The major difference between the two equations is that the modified Bagnold
equation is able to simulate the mechanism of bank erosion. In addition, the modified Bagnold equation
may provide better predictions of low sediment concentrations than the simplified version (which is
also the default sediment transport function) [19,27]. Selection of alternative methods could be justified
based on the river bed materials (particle types), specified ranges of particle size, physical assumptions
of mathematical equations and the associated impacts on model calibration and predictions.

The four alternative sediment transport routing methods (modified Bagnold, Kodoatie, Molinas
and Wu, and Yang) have not previously been compared or investigated with respect to maximum
sediment transport capacity in SWAT2012. The goal of this study is to evaluate the potential influence
of the four alternative sediment transport methods on sediment loads and concentrations using a SWAT
model developed for the Arroyo Colorado watershed (ACW), in Southern Texas, USA. Specifically, the
following objectives were pursued: (i) to assess the performance of each respective sediment transport
routing method on predicting flow and sediment in SWAT; and (ii) to quantify and to evaluate the
corresponding predictive uncertainty associated with these methods.
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2. Materials and Methods

2.1. The SWAT Model

The SWAT model is a spatially distributed, semi-physically-based watershed simulation model
developed and maintained by the Agricultural Research Service, United States Department of
Agriculture to evaluate the impact of land management and climate change on flow and water quality
processes [2]. Relevant functions of SWAT include weather components, hydrology, land use, crop
growth, sediment transport routines, fate of nutrients, and conservation practices, which are capable
of evaluating various hydrological, hydrochemical, and biophysical processes [3,6,28]. SWAT is a
complex watershed simulation model conducted on daily time steps. In addition, large-scale, long-term
simulations/predictions are available in alternative time scales (e.g., daily, monthly and annual).
Implementations of SWAT can be found in various subjects including sediments transport, nutrients
processes, and pesticide applications in varying watersheds of the world [29–31]. Modifications of
SWAT and comparisons among alternative routing methods are available in literature [32–36].

2.2. Study Area

The Arroyo Colorado watershed (ACW) is a part of the Nueces-Rio Grande Coastal Basin located
in Southern Texas, USA (sharing its border with Mexico, see Figure 1). The Arroyo Colorado River
(ACR) in ACW is a branch of the Rio Grande River and the drainage area of 1692 km2 within three
counties (Cameron, Hidalgo, and Willacy Counties) [37]. In general, the ACW is comprehensively
developed in terms of agricultural activities and urbanization. Specifically, more anthropogenic
development can be found in the central and the western parts of the ACW (e.g., cities such as Donna,
Harlingen, McAllen, Mercedes, Mission, Pharr, San Benito, and Weslaco) [37].
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Figure 1. Location of the Arroyo Colorado Watershed [38].

As shown in Figure 2, agriculture (54%), rangeland (18.5%) and urban areas (12.5%) are the three
major land use categories in the ACW, whereas the commonly cultivated crops are cane, cotton, citrus,
sorghum, and vegetables. The predominant soils in the ACW are sandy loams (0.06–2 mm), clay
loams (0.002–0.006 mm), and clays (<0.002 mm), whereas the depth of soil layers is ranging from
1600 mm to 2000 mm. In SWAT, temperature and precipitation are the two major climate model inputs.
The average annual temperature in the ACW is 28.9 ◦C in July and 14.5 ◦C in January which can also
be considered as the reference data for summer and winter. The average annual precipitation ranges
from 530 mm to 680 mm which can also be categorized as the semi-arid climate region. More details of
the ACW can also be found in [37].
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Figure 2. Demonstration of the (A) land use; and (B) soil types, of the Arroyo Colorado Watershed
(AGRL: Agricultural Land-Row Crops; FRST: Mixed Forest; PAST: Pasture; RNGB: Range-Brush; RNGE:
Range-Grass; URBN: Urban; WATR: Water; WETF; Wetland-Forest; and WETN: Wetland-NonForest).

2.3. Sources of Input Data

Meteorological records (e.g., precipitation, temperature), anthropogenic activities (e.g., agricultural
operation, urban usage), and measured hydrological data were integrated by the ArcSWAT system
(ArcSWAT 2012.10.18, Texas A&M University, College Station, Texas, USA) which is a platform
that incorporates the SWAT model and GIS (Geographic Information System) with a user-friendly
interface. A Digital Elevation Model (DEM) with a spatial resolution of 30 m × 30 m downloaded
from the National Elevation Dataset of the U.S. Geological Survey (USGS) [39], was used to generate
sub-basins of the SWAT model in the ACW [40]. Additional information of SWAT included a land
use map representing land cover conditions for 2004–2007 and the soil map from the Soil Survey
Geographic Database (SSURGO), USDA-NRCS (United States Department of Agriculture-Natural
Resources Conservation Service). In the SWAT model, the watershed was divided into 17 sub-basins
comprising 475 Hydrological Response Units (HRUs) further subdivided by land use, soil and slope
combinations. Crops and management practices including tillage practices, irrigation management,
and nutrient application rate and timing were obtained by local agencies including Texas Commission
of Environmental Quality (TCEQ), Texas AgriLife Research, Texas State Soil and Water Conservation
Board (TSSWCB), and Natural Resources Conservation Service (NRCS). In addition, best management
practices involving land leveling, irrigation management, nutrient management methods in the period
of 1999–2006 were provide by TSSWCB.

Daily weather data (minimum–maximum air temperature and precipitation during the period
2000–2005) were collected for model inputs from three stations: COOPID 413943 near Harlingen;
COOPID 415836 near Mercedes; and COOPID 419588 near Weslaco (managed by Texas State
Climatologist Office located at Texas A&M University at College Station). The stream flow data of a
gauge station (near Llano Grande at FM (Farm-to-Market Road) 1015 south of Weslaco) was provided
by International Boundary and Water Commission. In addition, there was a total of 21 permitted
point sources with discharges in the ACW, including 16 municipal districts with discharge permit
limits ranging from 0.4 to 10 million gallons per day, three industrial areas, and two shrimp farms with
infrequent discharge [41].

The watershed modeling work conducted in this study was designed to enhance the living quality
of local colonia residents [37]. However, one of the challenging issues was the lack of observation data
especially for sediment loads (substantially restricted by available funding supported). It was stated
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in Harmel et al. [42] and Yen et al. [43] that model performance (in terms of statistics) of watershed
modeling could be substantially affected by the quality of measurement data. For sediment loadings
alone, measurement uncertainty may reach up to 117%. Therefore, the selection of alternative functions
should be even more carefully examined while an insufficient amount of data was acquired. We tried
to make the best use of the available measurement data in the sense of fulfilling a complete watershed
modeling project. In this study, suspended sediment (SS) was evaluated by water quality data from
limited grab samples (7–8 times per year). LOAD ESTimator (LOADEST) is a software package
developed by USGS that can automatically conduct regression analysis to generate estimated water
quality data. Available observation records are used to fill gaps at time steps with missing data. In this
case, LOADEST was used to convert the grab-samples into time series loads with monthly mean values
within the 95% confidence interval [44], as observed data to calibrate SWAT. For more information on
the input and sampling data of the ACW, see the research by Seo et al. [38].

2.4. Sediment Transport Methods in SWAT

SWAT2012 offers four alternative sediment routing methods to the model’s standard method.
All sediment routing equations share the same in-stream sediment routing (sediment transport capacity
is routed in main reaches/channels) but calculate the maximum sediment transport capacity (maximum
concentration of transportable sediment) differently. A brief introduction of the four methods is
described as follows, and further details can be found in the SWAT User’s Manual [22].

2.4.1. Modified Bagnold Equation

The Bagnold equation is the default choice for calculating maximum transport capacity from a
reach segment in SWAT. This method determines the maximum transport capacity as a function of
channel slope and velocity. The equation was developed by Williams [26] based on stream power
as defined by Bagnold [21]. The maximum transport capacity from a reach segment is calculated
by Equation (1).

concsed,ch,mx = csp·vch,pk
SPEXP (1)

where, concsed,ch,mx is the sediment concentration (maximum) transported by water (ton/m3); csp

(SPCON) is the user defined sediment coefficient; vch,pk is the peak channel velocity (m/s); and SPEXP
is the user defined coefficient in the exponential term [1]. In SWAT2012, extension of the Bagnold stream
power function served as a separate modeling option from the default Bagnold method. The modified
Bagnold equation includes consideration of the shear stress deployed by the water on the river bank
as well as the stream bed that dislodges sediment particles based on the concept of critical shear
stress [45].

2.4.2. Kodoatie Equation

The Kodoatie equation is suitable for streams that have bed materials of sizes ranging from silt to
gravel. The equation was modified by Kodoatie [23] based on the equation developed by Posada [46]
via the nonlinear optimization approach to categorize data from the field in various riverbed sediment
sizes. The maximum transport capacity is represented as Equation (2).

concsed,ch,mx =

(
a·vch

b·yc·Sd

Qin

)
·
(

W + Wbm
2

)
(2)

where, vch is the mean flow velocity (m/s); y is the mean flow depth (m); S is the energy slope (m/m)
(in SWAT, the value of S is projected the same as bed slope in all cases); regression coefficients for the
Kodoatie equation are defined as a, b, c and d in categorizing four different bed materials; Qin is the
daily water volume that enters each sub-basin (m3); W is the channel width at water surface (m); and
Wbm is the bottom channel width (m).
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2.4.3. Molinas and Wu Equation

By the application of universal stream power, the Molinas and Wu equation was designed for
simulating large sand-bed rivers. The equation was developed by Molinas and Wu [24] using universal
stream power to calculate the maximum transport capacity.

Cw = MψN (3)

where, Cw is the sediment concentration by weight (mg/L); ψ is the universal stream power; M and N
are user defined coefficients. The equation was calibrated using large river basins as test cases and the
following equation is derived:

Cw =
1430·(0.86 +

√
ψ)·ψ1.5

0.016 + ψ
·10−6 (4)

The universal stream power ψ, can be expressed as:

ψ =
vch

3(
Sg − 1

)
·g·depth·ω50·

[
log10

(
depth
D50

)]2 (5)

where, Sg is the solid relative density (2.65 g/cm3 for this study); g is the gravity acceleration
(9.81 m/s2); depth is the flow depth (m); ω50 is the fall velocity (m/s) for median size particles;
D50 is the median of sediment size (mm).

2.4.4. Yang Sand and Gravel Equation

The method was developed mainly for simulation of sand and gravel materials. Yang [47]
calculated the total sand transport rate as excess unit stream power (the unit stream power is defined
as the time rate of potential energy dissipation per unit weight of water), which is a product of velocity
and slope. Yang [48] extended the unit stream power equation for sand to gravel loading. Equations
for sand and gravel were separately developed based on regression of critical unit stream power, fall
velocity, kinematic viscosity, sediment size, shear velocity, and unit stream power. The equations for
sand (median sizes D50, less than 2 mm) are as follows:

log Cw,ppm = 5.435− 0.286 log ω50D50
ν − 0.457 log V∗

ω50

+
(

1.799 − 0.409 log ω50D50
ν − 0.314 log V∗

ω50

)
log
(

υchS
ω50
− VchS

ω50

) (6)

and for gravel (D50 between 2 mm and 10 mm) are:

log Cw,ppm = 6.681− 0.633 log ω50D50
ν − 4.816 log V∗

ω50

+
(

2.784− 0.305 log ω50D50
ν − 0.282 log V∗

ω50

)
log
(

υchS
ω50
− VchS

ω50

) (7)

where Cw,ppm is the sediment concentration (mg/L); ν is the kinematic viscosity (m2/s); V∗ is the shear
velocity (m/s); Vch is the critical velocity (m/s); and υch is the mean channel velocity (m/s). The results
of sediment concentration in mg/L are divided by 106 to convert to concentration by weight, and then
the conversion equation for Molinas and Wu is used to convert to maximum bed load concentration in
metric ton/m3.

2.5. Model Calibration and Validation

In this study, calibration consisted of testing each of the four scenarios in SWAT whereas alternative
sediment routing equations were tested. The scenario name and equation tested in each scenario were
(i) Scenario 01: Modified Bagnold equation; (ii) Scenario 02: Kodoatie model; (iii) Scenario 03: Molinas
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and Wu model; and (iv) Scenario 04: Yang sand and gravel model. Calibration of the SWAT model for
the ACW was conducted from 2002 to 2003 (warmup years from 2000 to 2001) and the validation period
was from 2004 to 2005. Daily streamflow and monthly sediment were calibrated via the Integrated
Parameter Estimation and Uncertainty Analysis Tool (IPEAT) [49]. IPEAT is a framework for both
auto-calibration and uncertainty analysis which adopts Dynamically Dimensioned Search (DDS) as
the major parameter estimation technique [50] (however, DDS can be replaced by other methods under
the IPEAT framework). In addition, IPEAT has been demonstrated to have superior performance
(e.g., convergence speed and the ability to find better solutions) over other commonly implemented
auto-calibration techniques such as Shuffle Complex Evolution (SCE-UA) and DiffeRential Evolution
Adaptive Metropolis (DREAM) [51].

In this study, the SWAT model was calibrated/validated by the measurement data from the gauge
station (U.S.G.S. 08470142), which is 58 km west of the ACW outlet. A total 14 parameters were altered
for flow calibration, and for sediment. The same set of calibrated streamflow parameters was used for
all scenarios and the sediment parameters were calibrated in each scenario. The parameters and the
recommended ranges are listed in Appendix B and ??.

The Nash–Sutcliffe Efficiency coefficient (NSE) was used as the objective function to determine
model goodness-of-fit. NSE has been implemented broadly as the primary statistical measure in the
field of watershed modeling [52,53]. The values of NSE may range from−∞ to one which represent the
worst and the best model performance. In Equation (8), yObs

i is the observation data at time step i; ySim
i

is the model predictions at time step i; yMean
i is the mean of observation data at time step i; and N is

the time span of total time steps. Perfect simulation is achieved when NSE equals one, while negative
values of NSE are generally regarded as poor performance. In this study, NSE was modified for the
auto-calibration process [38] so that a value of zero indicates a perfect fit. In Equation (9), the objective
function represents the integrated value of (1 − NSE) for targeted output variables (e.g., streamflow
and sediment), where OF is the value of the objective function; NSEv is the value of NSE of variable v;
and V is the total number of variables.

NSE = 1−
∑N

i=1

(
yObs

i − ySim
i

)2

∑N
i=1
(
yObs

i − yMean
i

)2 (8)

OF =
V

∑
v=1

(1− NSEv) (9)

It is difficult to estimate uncertainty in a deterministic model such as SWAT, therefore, the inclusion
rate and spread were exerted to quantify the comparative level of uncertainty among scenarios. Spread
is the average width of the 95% confidence interval along simulated temporal series. Since the
width of confidence intervals may change over temporal series, it is a lot easier to compare levels of
uncertainty by averaged width (which is defined as “spread”). On the other hand, the inclusion rate is
calculated by the percentage of observed data located within 95% confidence intervals of modeling
outputs (calculated by sorting simulation outputs at each time step using empirical probability density
function). If there are 10 observation points and only seven of the total are located within the confidence
intervals, the inclusion rate is going to be 70%. More details and applications of the inclusion rate and
spread can be found in Yen [50], Yen et al. [49].

3. Results

3.1. Comprehensive Comparisons by Objective Function Values

Figure 3A presents the overall performance for objective functions (optimized for sediment
calibration) along with the model iteration for all four scenarios. The convergence speed was fairly
varied with different scenarios where Scenario 02 reached a stable objective function value slower than
other scenarios. After 1500 iteration times, no improvements (in terms of objective function values
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that did not change for more than 0.1% of the previous one within 1000 runs) were made in any of the
scenarios. Figure 3B shows the best objective function values among the four scenarios. Scenario 04
(Yang equation) generated the best objective function, while Scenario 3 (Molinas and Wu equation)
yielded the worst objective function. By comparing the performance of objective function values, the
Yang equation fitted the measured data best. On the other hand, it is also necessary to consider other
statistical measures (since there are other methods used to evaluate model performance in this study),
which will be further discussed in later sections.
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Figure 3. General performance of objective function values in all case scenarios (Scenario 01: Bagnold;
Scenario 02: Kodoatie; Scenario 03: Molinas and Wu; Scenario 04: Yang): (A) The processes
of convergence during auto-calibration whereas no substantial improvements can be found after
1500 iterations; (B) The final converged values of objective function are 0.502/0.461/0.562/0.444 for
four scenarios respectively; the Yang equation performed better than the other methods in terms of
optimality for objective function.
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3.2. Evaluation of Model Performance on Streamflow and Sediment Predictions

In Figure 3A,B, model predictions of streamflow and sediment loadings were evaluated in terms of
NSE and PBIAS (percent bias). NSE values for streamflow were close to 0.69 and 0.56 for calibration and
validation periods, respectively, in all four scenarios (Figure 4A). PBIAS was relatively low at less than
or equal to 7% for streamflow for both evaluation periods in all four scenarios (Figure 4B). NSE values
for sediment, however, were better for Scenarios 02 (Kodoatie), and 04 (Yang)—at approximately
0.85—than for Scenarios 01 (Bagnold) and 03 (Molinas and Wu).
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Figure 4. Best solutions (calibration and validation) of error statistics in four scenarios (Scenario 01:
Bagnold; Scenario 02: Kodoatie; Scenario 03: Molinas and Wu; Scenario 04: Yang): (A) Nash–Sutcliffe
efficiency coefficient; (B) PBIAS. (STR(cal): Error statistics of streamflow in the calibration period
(2002–2003); SED(cal): Error statistics for sediment in the calibration period (2002–2003); STR(val): Error
statistics of streamflow in the validation period (2004–2005); SED(val): Error statistics for sediment in
the validation period (2004–2005).

PBIAS values for sediment exhibited the same trend (in terms of statistical values and also the
relative differences among scenarios) in both the calibration and validation periods. In the calibration
period, PBIAS for sediment was less than 5% for Scenarios 02 (Kodoatie) and 04 (Yang), compared
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to 7% for Scenario 01 (Bagnold) and almost 9% for Scenario 03 (Molinas and Wu). In the validation
period, Scenario 04 (Yang) performed the best, followed by Scenarios 02, 01, and 03. According to
the guidelines for model performance, statistics recommended by Moriasi et al. [54] (one may also
take advantage of the latest and more detailed guidelines in Moriasi et al. [55]), the best results from
Scenarios 02 and 04 were considered “Very Good,” while results from Scenarios 01 and 03 were
classified as “Good.” The results of error statistics were consistent with the overall performance of
objective function values. The Yang equation generated the best sediment predictions, while the
Molinas and Wu equation yielded the worst sediment predictions. Details of each method were further
investigated in the following section.

Comparisons of simulated and observed values were shown in Figure 5A,B. As stated previously,
streamflow predictions were fairly close among all scenarios either in NSE or PBIAS. In Figure 5A, the
simulated streamflow approximated observed flow in all four scenarios. The peak flows in September
and December 2002 were slightly underestimated, while the recession limbs during August and
September 2003 were slightly overestimated. In general, the simulated daily streamflow performed
well in both low and high conditions. In Figure 5B, simulated sediment under Scenarios 02 and 04
showed similar trends to the other two scenarios in time series. Considerable underestimation (around
50% underestimation between Scenario 03 and the observation) can be found in the early stage of
Scenario 03. The performance of sediment predictions during high flow conditions was closer to
observed data than during low flow periods, which can be explained by the fact that the objective
function (NSE) was designed to capture peak events. The differences of streamflow and sediment
processes among scenarios were consistent with the corresponding statistics.
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Figure 5. Best results in (A) daily streamflow (flow rate); (B) monthly sediment load; and (C) sediment
concentration of total suspended sediment, by the four sediment equations in the SWAT (Soil and
Water Assessment Tool) model (Scenario 01: Bagnold; Scenario 02: Kodoatie; Scenario 03: Molinas and
Wu; Scenario 04: Yang).

3.3. Evaluation of Sediment Concentration and Sediment Budget

Figure 5A–C demonstrated that, while all four equations generated comparable streamflow and
sediment load trends, the total suspended sediment (TSS) concentration varied significantly between
equations. In SWAT, TSS consisted only of silt and clay, while the total sediment loads contained
all particles. Only 35% of the total sediment loads from the Yang equation were silt and clay, while
almost all total sediment loads from the other three equations were silt and clay. Accordingly, the
Yang equation, which was developed to simulate large particles such as sand and gravel, generated
lower sediment concentrations than did the Molinas and Wu equation and the Kodoatie equation.
The Bagnold equation yielded the lowest TSS concentrations overall, but it is important to note that,
during high flow conditions, TSS concentrations rose when applying the Bagnold equation (Figure 5B).

In considering why four equations that generated comparable sediment loads can yield different
TSS concentrations, it is important to consider sediment sources and sinks associated with each
respective equation. As shown in Figure 6, the Bagnold equation had significant bank erosion and
minimal bed erosion, while bed erosion exceeded bank erosion in all three other equations. The Molinas
and Wu equation generated the most sediment movement (2.62 ton/ha), as well as the greatest erosion
(1.76 ton/ha), resuspension, and deposition. In general, surface erosion and point sources contributed
an unsubstantial portion of sediment yield. Notable findings here will be further investigated in the
next section.
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Figure 6. Best results of average annual sediment sources and sinks for the four sediment
routing equations.

3.4. Uncertainty Analysis

The predictive uncertainty for streamflow and sediment were evaluated using the inclusion
rate and spread, and the results were shown in Table 1. Since all scenarios share mutual streamflow
calibration results, the inclusion rate and spread are essentially the same. For sediment predictions,
Scenarios 02 and 04 (the best two scenarios) performed similarly while a considerable increase of
spread and the inclusion rate can be found in Scenario 01 and 03. In general, the wider spread identified
in Scenarios 01 and 03 increased the corresponding inclusion rate.

Table 1. Inclusion rate and spread of measured streamflow and sediment within the 95% confidence
intervals of the simulation period (2002–2003).

Scenario
Inclusion Rate (%) Spread

Streamflow Sediment Streamflow Sediment

Scenario 01 49.59 62.50 1.815 0.046
Scenario 02 49.59 35.42 1.815 0.033
Scenario 03 49.59 54.17 1.815 0.040
Scenario 04 49.59 31.25 1.815 0.029

Notes: Inclusion rate (%): Percentage of measured data located within the 95% confidence intervals. Spread: Average
width of the corresponding uncertainty band along the predicted time series. The units for streamflow and sediment
are m3/s (cubic meter per second), and tons/ha (tons per hectare) respectively.

A higher inclusion rate means that more of the observed data set is located within the 95%
confidence interval of the model simulation, which seems to indicate reduced uncertainty. However,
the associated spread increases with higher inclusion rates, suggesting that it is harder for the
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auto-calibration technique to find better solutions in the given watershed modeling project. Therefore,
a higher inclusion rate may also indicate that the corresponding uncertainty has increased. In this study,
the importance of greater or lesser uncertainty relied upon relative comparisons among scenarios
instead of a quantified, stand-alone measurement. Accordingly, it is not feasible to objectively identify
which scenario is superior based on the available evidence. Scientists and stakeholders should consider
the potential margins while conducting alternative approaches.

4. Discussion

4.1. Similarities and Differences during Calibration

In this study, it was found that all four sediment routing methods produced similar calibrated
sediment yields in the targeted watershed, but sediment concentration differed substantially.
The four sediment routing methods estimated quite different sources and sinks of sediment throughout
the watershed. In the Bagnold equation, erosion occurred mainly on the stream banks, while it was
primarily bed erosion in the other equations. In the Yang equation, bed materials were calibrated to
better simulate sandy conditions; therefore, the total sediment loads contained more coarse materials,
which SWAT excluded from TSS concentrations, than silt and clay. In the other equations, bank and
bed materials were calibrated to be loamy, and total sediment loads were essentially silt and clay,
which was a part of the primary sources to TSS concentrations in SWAT.

The discrepancies in sediment load composition are not completely due to the differences in
equation theory. The auto-calibration approach, which selects parameter values without any regard of
physical meaning (see Appendix B for the best parameter sets in the four scenarios), may contribute
to erroneous differences in sediment load composition. The mechanism for stream bank and stream
bed erosion was controlled by CH_COV1 and CH_COV2 in the routing (*.rte) files, which are more
prone to erosion with lower parameter values (if CH_EQU > 0). Therefore, one may control erroneous
erosion of the river bank and bed by specifying different ranges for stream bank and stream bed.

The fractions of silt and clay in total sediment loads were controlled by CH_BNK_D50 and
CH_BED_D50, respectively. In terms of calibrated bed sediment size, the Bagnold and the Kodoatie
equations performed well during the auto-calibration processes. CH_BED_D50 values (which were
not yet available in literature) were 1.267 µm, medium clay, and 49.24 µm, coarse silt, for Kodoatie
and Bagnold, respectively. However, the former was developed for sediment from silt to gravel, while
the latter was for sandy rivers. The other two scenarios included suitable bed sediment sizes for the
application sediment transport equations.

For study areas with missing TSS data or expert knowledge of sediment transport pathways,
one cannot conclusively judge which results best suit the catchment. As stated in a previous
study [56], selection of alternative functions within a complex watershed simulation model could
significantly impact model predictions. Ideally, users should apply both extensive TSS data and
thorough knowledge of a study area as they choose a sediment routing equation and parameter ranges
measurements that suit their specific goals. When complete data are not available, users should
consider how their sediment routing equation and parameter range choices may affect results.

4.2. Comparisons of Equation Theories and Applications

There were both resuspension and deposition by all equations, due to the sediment routing
processes in the SWAT model, which were the same for all equations (SWAT conducts sediment routing
in main reaches and channels according to the sediment transport capacity). In studies of the field
isotope investigation, most stream erosion was redeposited within the streams, and much of the TSS in
the water column came from resuspended sediments within streams [57,58]. The Kodoatie equation
has been tested against stream bed materials of all sizes, whereas Bagnold, Molinas and Wu and
Yang equations were developed for large sand-bed rivers [24,25,59]. In addition, the Bagnold and
Yang equations were widely applied in large rivers. The Kodoatie equation and the Molinas and Wu
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equations were not applied as much as the other two equations. Intuitively, the Kodoatie equation
should have performed the best because it could incorporate the full range of sediment sizes. However,
Yang’s equation performed overall the best, followed by the Kodoatie, Bagnold, and Molinas and
Wu equations. It implied that the selection of sediment transport equations should be determined
based on more than which equation can incorporate more sediment material sizes. One should also
consider other issues such as (i) how many associated parameters are available to properly reflect
actual watershed behavior (e.g., actual measured values of bank erosion parameters are available or
perhaps an additional calibration process is required); and (ii) how well the integrated watershed
model (in this case, the SWAT model) could simulate the sediment transport process by alternative
methods (e.g., in other cases, surface runoff routines can be calculated by curve number procedure [60]
or the Green and Ampt infiltration approach [61] via SWAT [56]).

In SWAT, the optional modified Bagnold equation is associated with the highest inclusion rate of
sediment (Table 1) as well as the highest level of uncertainty. SWAT allowed more parameters to be
calibrated for the modified Bagnold equation than for the other three alternative equations, because it
shared the same parameters as the default simplified Bagnold equation [27]. Many parameters in the
three other equations were hard coded in the SWAT model and thus cannot be calibrated. Parameters
for the Bagnold equation should be more dependent on field survey data than the three other equations
to reduce uncertainty using SWAT as the modeling tool.

The fundamental approach to improve the simulation results is to have more observation data of
the targeted watershed, such as sediment sizes, channel erosion factors, and channel cover factors. It is
advised to use measured data (parameters) to conduct relevant comparisons and analysis. However,
it is difficult to evaluate some equations in depth due to limited information about the study area.
In many cases, it may not be feasible economically or due to time constraints. These challenges may be
addressed by automatic calibration techniques, which were developed to address the growing number
of unknown values of model parameters.

5. Conclusions

In this study, the impacts of alternative maximum sediment transport functions on sediment
prediction in the SWAT model were evaluated by IPEAT. Four sediment routing methods (modified
Bagnold equation, Kodoatie equation, Molinas and Wu equation, and Yang sand and gravel equation)
in the SWAT model were calibrated and validated via daily flow and monthly sediment loads in the
ACW using IPEAT as the primary tool in conducting parameter estimation and uncertainty analysis.
The Yang and the Kodoatie equations generated better predictions in terms of commonly used statistical
measures. In addition, the associated uncertainty is relatively lower for the Yang and the Kodoatie
equations. Uncertainty of model results from these two equations was smaller, with a higher inclusion
rate and smaller spread, than results from other equations. In the Yang equation, both sand and
gravel are applicable with calibrated sediment size, while the Kodoatie equation is not suitable for the
calibrated values.

The major finding of this study is that it is possible for the four sediment transport equations to
yield similar sediment yields, even in a watershed that does not have a complete set of observation
data (e.g., measurement of sediment sizes, channel bank information). However, the use of alternative
functions may not directly impact desired results due to varying TSS concentrations, the associated
source and sink terms, or a complex watershed simulation model with multiple calculation procedures
in specific output variables. In practice, it may be difficult to measure or even estimate values of channel
or river bed parameters. Auto-calibration may provide an efficient technology to calibrate model
parameters within a limited timeframe. However, the embedded physical meanings could contribute
to erroneous, biased results if the tool (e.g., IPEAT in this study) is implemented blindly. As scientists,
engineers, and decision makers (not limited to politicians) contemplate policy issues related to sediment
transport, they should evaluate the applicability of model results to policy on a case-by-case basis.
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Input data, parameter estimation, and selection of sediment transport equation contribute to what one
can and cannot conclusively determine from the results of a SWAT modeling study.
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Appendix A.
Table A1. Streamflow parameters applied in all case scenarios.

Parameters Input
File Units Range Calibrated

Values Description

EPCO .bsn - 0–1 0.454 Plant uptake compensation factor
SURLAG .bsn Day 1–24 6.865 Surface runoff lag time

ALPHA_BF .gw 1/Day 0–1 0.764 Baseflow alpha factor
GW_DELAY .gw Day 0–500 98.22 Groundwater delay
GW_REVAP .gw - 0.02–0.2 0.042 Groundwater “revap” coefficient

GWQMN .gw mm
H2O 0–5000 28.16 Threshold depth of water in the shallow

aquifer required for return flow to occur
ESCO .hru - 0–1 0.403 Soil evaporation compensation factor
CN_F .mgt % ±10 9.144 Initial SCS CN II value

CH_K2 .rte mm/h −0.01–500 85.60 Effective hydraulic conductivity in main channel alluvium
CH_N2 .rte - −0.01–0.3 0.070 Manning’s “n” value for the main channel

SOL_AWC .sol % ±10 8.522 Available water capacity of the soil layer
SOL_K .sol % ±10 8.997 Saturated hydraulic conductivity
CH_K1 .sub mm/h 0–300 32.06 Effective hydraulic conductivity in tributary channel alluvium
CH_N1 .sub - 0.01–30 0.191 Manning’s “n” value for the tributary channels

Notes: Parameter values for CN_F, SOL_AWC, and SOL_K, are the changes of fraction from default values.
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Appendix B.

Table B1. Calibrated parameters for sediment predictions in all case scenarios.

Parameter Input File Unit Scenario 01 Scenario 02 Scenario 03 Scenario 04 Range Description

ADJ_PKR .bsn - 0.549 0.464 1.290 1.195 0–2 Peak rate adjustment factor for sediment
routing in the sub-basin (tributary channels)

PRF .bsn - 1.713 0.755 0.089 1.257 0–2 Peak rate adjustment factor for
sediment routing in the main channel

SPCON .bsn - 0.0074 0.0067 0.0059 0.0067 0.0001–0.01
Linear parameter for calculating the
maximum amount of sediment that can be
re-entrained during channel sediment routing

SPEXP .bsn - 1.995 1.051 1.760 1.761 1.0–1.5 Exponent parameter for calculating sediment
re-entrained in channel sediment routing

CH_BED_BD .rte g/cc 1.811 1.386 1.617 1.110 1.1–1.9 Bulk density of channel bed sediment

CH_BED_D50 .rte µm 4650 1.267 49.24 8241 1–10,000 D50 median particle size diameter
of channel bed sediment

CH_BNK_BD .rte g/cc 1.118 1.118 1.335 1.172 1.1–1.9 Bulk density of channel bank sediment

CH_BNK_D50 .rte µm 2592 1868 1677 1550 1–10,000 D50 median particle size diameter
of channel bank sediment

CH_COV1 .rte - 0.1807 3.7340 4.2880 4.4340 0–5 Channel erodibility factor

CH_COV2 .rte - 2.3600 0.0006 0.0528 0.4123 0–5 Channel cover factor
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