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Optimal auditing and insurance in a dynamic model
of tax compliance

B. Ravikumar
Research Division, Federal Reserve Bank of St. Louis

Yuzhe Zhang
Department of Economics, Texas A&M University

We study the optimal auditing of a taxpayer’s income in a dynamic principal–
agent model of hidden income. Taxpayers in our model initially have low income
and stochastically transit to high income that is an absorbing state. A low-income
taxpayer who transits to high income can underreport his true income and evade
his taxes. With a constant absolute risk-aversion utility function and a costly and
imperfect auditing technology, we show that the optimal auditing mechanism in
our model consists of cycles. Within each cycle, a low-income taxpayer is initially
unaudited, but if the duration of low-income reports exceeds a threshold, then the
auditing probability becomes positive. That is, the tax authority guarantees that
the taxpayer is not audited until the threshold duration is reached. We also find
that auditing becomes less frequent if the auditing cost is higher or if the variance
of income is lower.
Keywords. Tax auditing, tax compliance, optimal taxation, stochastic costly state
verification.

JEL classification. D82, D86, J65.

1. Introduction

There is a large literature on tax compliance following the approach to crime and pun-
ishment developed in Becker (1968) and Stigler (1970). For instance, Reinganum and
Wilde (1985, 1986) examine a static model where taxpayers’ incomes are private infor-
mation. Using the costly state verification framework developed by Townsend (1979),
they study optimal verification schemes when the tax and the penalty are exogenously
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specified. In this paper, we characterize the optimal auditing and taxation schemes in a
dynamic stochastic costly state verification environment.

We develop a model where the tax authority (principal) is risk neutral and taxpayers
(agents) have constant absolute risk-averse preferences. Each agent knows his own in-
come but it is unobserved by the principal. The principal may audit an agent to verify
his income, but this is costly and imperfect. The tax authority designs an optimal tax-
ation scheme as well as an optimal auditing scheme to maximize the present value of
revenue net of audit cost. Taxpayers in our model initially have low income and receive
stochastic opportunities each period to transit to high income. For convenience, we as-
sume that high income is an absorbing state. Since income is private information, the
taxpayer could conceal the fact that he has transited to high income and evade taxes.
We use a dynamic mechanism-design approach to search for the best tax system and
auditing system within a large family of state contingent contracts.

Our model contains persistent private information and, as demonstrated by
Fernandes and Phelan (2000), the principal’s problem contains two state variables: the
continuation utility for an agent who just transited to high income and the continuation
utility for a low-income agent. We follow Zhang (2009) and set up the principal’s prob-
lem in continuous time. We then formulate the Hamilton–Jacobi–Bellman equation and
use it to study the dynamic behavior of continuation utilities.

Since high income is an absorbing state in our model, the treatment of the agent who
transited to high income is straightforward—constant consumption forever and, hence,
constant continuation utility. Furthermore, he is never audited. However, the principal
has to provide incentives for the low-income agent to truthfully report the transition to
high income. Since income is private information, the principal does not fully insure the
low-income agent. The distortion in the consumption path for a low-income agent is a
key object of interest. We measure this distortion as the difference between the cost of
providing the continuation utility to the low-income agent and the cost of providing the
same utility using a perfectly smooth consumption path. We show that the distortion is
determined by the ratio of the two state variables noted above.

The auditing technology in our model is imperfect: there is an auditing error that
labels a low-income agent as having high income.1 Our main result is that it is optimal
for the principal to audit the agent periodically. The auditing mechanism in our model
consists of cycles. The low-income agent could be in one of two states: (i) not audited
or (ii) randomly drawn to be audited. Within each cycle, a low-income agent is initially
in the not-audited state. He is moved into the random audit state if the duration of his
low-income reports exceeds a threshold N , where N is pinned down by the primitives of
the model. If he is randomly drawn to be audited, then he is moved to the not-audited
state after the audit, and a new cycle begins. If a low-income agent is mislabeled as hav-
ing high income, he is mistakenly punished and continues to stay in the random audit
state. While auditing is stochastic, the threshold duration N is not. Put differently, within
each cycle the principal guarantees that the agent is not audited until the duration N is

1The principal has access to infinite penalty in our model and can implement the full-information allo-
cation if auditing reveals the agent’s income without any error.
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reached. The intuition for the periodicity is that the benefit of auditing is increasing
with the duration of low-income reports, while the cost of auditing is constant. Auditing
occurs only when the benefit exceeds the cost.

In our model, there are two instruments for providing incentives. One instrument
is dynamic taxation that distorts the consumption path and makes future payoffs con-
tingent on past history of reported incomes. This is the standard instrument used in
dynamic mechanism design. For instance, Green (1987) uses this instrument to provide
incentives for truthful reporting of income by designing taxes and subsidies that are his-
tory dependent. The second instrument is auditing: the principal has to pay a cost to
use the instrument. The U.S. Internal Revenue Service uses the second instrument to
provide incentives for taxpayers to pay their true share of taxes—those who are caught
cheating are penalized. The principal in our model has access not only to the past his-
tory of reported incomes, but also to the history of auditing outcomes and, hence, can
provide better incentives by using both instruments.

To understand the interaction between the two instruments, we study two versions
of the model: one with the dynamic taxation instrument only and the other with both
taxation and audit instruments. In the model with the dynamic taxation instrument
only, to ensure that the high-income agent does not have the incentive to deviate, the
low-income agent’s consumption path is such that the static gain to the high-income
agent from deviation is small, whereas the future losses are large. We show that this
path is highly distorted since it implies a steeply declining consumption profile. We
also show that when the sequence of low-income reports is sufficiently long, the distor-
tion in the consumption path converges to infinity. In contrast, if the income process
was independent and identically distributed (i.i.d.) as in Green (1987), the distortion is
constant.

When the auditing instrument is also available, we show that the principal uses it
to alleviate the distortion in the consumption path implied by the first instrument. Au-
diting reduces the distortion, because when the agent’s income is observed during the
audit, albeit imperfectly, the principal rewards the truth-teller relative to the cheater. In
particular, the principal removes the distortion (accumulated up to the auditing date)
in consumption for the truth-teller. This is not possible when there is no technology
to ever verify who is the truth-teller and who is the cheater. We show that the optimal
mechanism implies a discrete upward jump in the continuation utilities for the truth-
teller after the audit. We also show that no matter how high the cost of auditing is, there
always exists a threshold instant at which the auditing probability becomes positive.

If the agent’s absolute risk aversion is not constant, then he is audited minimally
when risk aversion is either extremely high or extremely low. When risk aversion is ex-
tremely low, the variation in consumption incurs little cost; thus, there is no need to use
the costly auditing instrument to reduce the distortion. When risk aversion is high, a
small variation in consumption generates large incentive effects, hence there is again
no need to use the auditing instrument. The model also implies that as the variance in
income increases, auditing occurs more frequently.

In related literature on dynamic costly state verification, Wang (2005) studies de-
terministic auditing with i.i.d. hidden incomes. He finds that there is a critical level
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of auditing cost, below which there is auditing and above which there is no auditing.
That is, if it is optimal to audit in one period, then it is optimal to audit in every period.
Thus, the auditing in Wang (2005) is a static decision: it depends only on the cost of
auditing and is independent of the past history. In our model, the auditing decision is
dynamic and depends on past history via the duration of low-income reports. Popov
(2007) studies stochastic auditing with i.i.d. hidden incomes. He specifies an exoge-
nous lower bound for the agent’s continuation utility and every cheater is moved to the
lower bound if caught during the audit. In his model, auditing plays a dynamic role, but
for agents with continuation utility at the lower bound, the auditing instrument is not
effective because the principal cannot punish a liar any more. In our model, there is
no lower bound on continuation utility and the auditing instrument is always effective.
Monnet and Quintin (2005) study stochastic auditing with linear utility and i.i.d. hidden
incomes. They find that auditing eventually is not used. We study the risk-averse case,
thus consumption distortion plays a central role in our model.

Although we focus on tax compliance in the paper, the issue of fraud and optimal
auditing is applicable to other areas in economics. For instance, a venture capitalist
provides start-up funds to an entrepreneur to invent a new product. In the experimen-
tal stage, the entrepreneur receives outside funding, but after the product is invented,
he might have to share the profits with the venture capitalist. If the outcome of the
experiment is private information, then the entrepreneur can delay the report of being
successful, keep the profit by selling the product privately, and continue to receive fund-
ing from the venture capitalist. In the problem of infant industry protection, domestic
firms are subsidized for a certain period to help them increase their productivity and
compete with foreign firms. If productivity is private information, the firms have strong
incentives to cheat because they can earn monopoly rents and receive subsidies simul-
taneously. In the context of unemployment insurance, an unemployed worker might
find a job at a random rate. The exact date when he finds the job might not be observ-
able. By delaying the report of employment, the worker can receive both wage income
and unemployment benefits.

The rest of the paper is organized as follows. Section 2 describes the basic model
without auditing, and shows that the distortion in consumption increases with the du-
ration of low-income reports. In Section 3, we introduce the auditing technology and
show that it is optimal to audit the low-income agent periodically. Then we study the
dependence of auditing frequency on the primitives of the model. Section 4 concludes.
We provide the proofs of all the results in the Appendix.

2. Model: No auditing technology

In this section we study a hidden income model in which the principal does not have
access to an auditing technology. The characterization of the optimal contract in this
section helps us examine the optimal auditing in Section 3 when an auditing technology
is available.



Theoretical Economics 7 (2012) Optimal auditing and insurance 245

The tax authority is a risk-neutral principal with a discount rate r > 0. The taxpayer
is a risk-averse agent, whose preferences are given by

E

[∫ ∞

0
re−rtu(ct)dt

]
�

where ct is consumption at time t, u(c) = −exp(−ρc) is a constant absolute risk-aversion
(CARA) utility function with risk aversion ρ, r is the discount rate (same as that of the
principal), and E is the expectation operator. Let c : (−∞�0) → R denote the inverse of
the utility function:

c(u) = − log(−u)

ρ
�

Agents have either high income, wH , or low income, wL, where wL <wH . All agents
start with low income and transit to wH with Poisson rate π > 0. For the model to be
tractable, we assume that the high-income state is permanent.2

True income is not observable by the principal, so a high-income agent can under-
report his income and pose as a low-income agent. We assume that the principal always
asks the agent to show his reported income, so the low-income agent can never pretend
to have wH . Hence, there are no incentive constraints when the agent reports wH .

The timing is as follows. In the initial period, the agent receives an income of either
wH or wL. He chooses to report either wH or wL to the principal. The principal assigns
current and future consumptions based on the report. In subsequent periods, if an agent
reported wH in the past, he is in an absorbing state and no further reports are necessary.
If an agent reported wL in every period in the past, then he receives an income of either
wH or wL. The sequence of events then is the same as in the initial period.

The principal commits to delivering two sequences of consumptions, {(cH(s)�

cL(s)); s ≥ 0}, where cH(·)� cL(·) : [0�∞) → R are measurable functions. We denote this
pre-commitment contract as σ . If an agent transits to wH at t, efficiency requires that
the agent’s consumption remain constant afterward. This is because the principal and
the agent have the same discount rate and wH is an absorbing state. We denote this
constant level of consumption as cH(t). The flow utility from this level of consumption
then is ru(cH(t)). Let H(t) ≡ u(cH(t)) denote the discounted sum of utilities to an agent
who transits to wH for the first time at t. Note that since true income is not observable,
H(t) is also the continuation utility to an agent who transited to wH before t, but reports
wH for the first time at t. A low-income agent’s consumption at t is denoted by cL(t) and
his flow utility is uL(t) ≡ u(cL(t)). His continuation utility is

L(t) ≡
∫ ∞

t
e−(r+π)(ξ−t)(πH(ξ)+ ruL(ξ))dξ

(1)

=
∫ s

t
e−(r+π)(ξ−t)(πH(ξ)+ ruL(ξ))dξ + e−(r+π)(s−t)L(s)� for all t < s�

2Similar simplifying assumptions are made by Hopenhayn and Nicolini (1997) in an unemployment in-
surance model and Golosov and Tsyvinski (2006) in a disability insurance model. We discuss in Section 3.4
how our results might be affected when the high-income state is not permanent.
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We refer to (1) as promise-keeping constraints.
The incentive compatibility constraint requires that an agent who transited to high

income at t does not have the incentive to delay the report of the transition to a later
time s, i.e., to report wL from t to s and to report wH from s onward:

H(t)≥
∫ s

t
e−r(ξ−t)ru(cL(ξ)+wH −wL)dξ + e−r(s−t)H(s)�

The above constraint can be simplified as follows. CARA utility implies that u(cL(ξ) +
wH −wL) = u(cL(ξ))|u(wH −wL)|. Define

b ≡ |u(wH −wL)| ∈ (0�1)�

so the incentive constraint can be written as

H(t) ≥
∫ s

t
e−r(ξ−t)rbuL(ξ)dξ + e−r(s−t)H(s)� (2)

The expected cost for the principal is

C(σ) =
∫ ∞

0
e−(r+π)t(πcH(t)+ rcL(t))dt�

There should, in fact, be an additional term in C(σ): the discounted income obtained by
the principal, (rwL + πwH)/(r + π). However, unlike the unemployment insurance lit-
erature that endogenizes job-finding probabilities, the discounted income in our model
is a constant, so it does not affect the optimal σ .

The principal’s problem is to find an incentive compatible (I.C.) σ that delivers a level
of initial utility L0 to a low-income agent and minimizes C(σ), i.e.,

min
σ

C(σ) subject to L0 =L(0) ≡
∫ ∞

0
e−(r+π)t(πH(t)+ ruL(t))dt

(3)
and constraint (2) for all t < s�

Next we obtain a recursive representation of the above problem. The promise-
keeping constraint (1) and the incentive constraint (2) are equivalent to the following
integral equations (4) and (5).

Lemma 1. The promise-keeping constraint (1) and the incentive constraint (2) hold for
all t < s if and only if

L(s)−L(t) =
∫ s

t
((r +π)L(ξ)−πH(ξ)− ruL(ξ))dξ (4)

H(s)−H(t) ≤
∫ s

t
(rH(ξ)− rbuL(ξ))dξ (5)

hold for all t < s.
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Equation (4) states that the rate of change of L is r(L(t) − uL(t)) + π(L(t) − H(t)),
where the first term is the rate of change of L when there is no uncertainty (i.e., when
there is no transition to the high-income state), and the second term captures the addi-
tional rate of change due to uncertainty. Inequality (5) plays the role of incentive con-
straints by imposing an upper bound on the rate of change of H. Intuitively, a sharply
declining H(·) prevents the agent from delaying the high-income report. If (5) holds
as an equality, then a high-income agent is indifferent between reporting wH at t and
delaying the high-income report until s; if (5) is strict, then delaying the high-income
report makes him strictly worse off.

Following Fernandes and Phelan (2000) and Zhang (2009), we may write the princi-
pal’s problem as a dynamic programming problem with L and H as the state variables,
and with equations (4) and (5) as their laws of motion. With a slight abuse of notation,
denote the principal’s cost function as C(L�H).

Remark 1. We include H in the state variable for incentive reasons. The principal
chooses H(0) freely to minimize cost (i.e., H(0) ∈ arg minH C(L(0)�H)). In any continu-
ation contract, however, H is no longer a free variable, because H acts as a threat utility.
Raising H(t) might induce an agent who transited to wH in earlier periods to postpone
the high-income report until t.

Remark 2. The domain of the cost function C(L�H) in the dynamic programming
problem is {(L�H) :L < H < 0}. If L is not strictly below H, then a high-income agent
would pose as a low-income agent and consume more than the low-income agent.

In the rest of this section, we study the optimal contract with no auditing in three
steps. In Section 2.1, we show a homogeneity property of the cost function C(L�H)

and use it to introduce a measure of consumption distortion. In Section 2.2, we use
the homogeneity property to obtain a simplified Hamilton–Jacobi–Bellman equation.
Then we fully characterize the optimal contract by showing that the cost function is the
unique solution to this Hamilton–Jacobi–Bellman equation. In Section 2.3, we explain
why the distortion increases with the duration of low-income reports, which helps us
understand the optimal auditing in Section 3.

2.1 A measure of distortion

Recall that the agent’s utility function belongs to the CARA class. A property of the utility
function is that

−exp
(

−ρ

(
c − log(α)

ρ

))
= −αexp(−ρc) for all α> 0�

Suppose that a contract σ ≡ {(cL(t)� cH(t)); t ≥ 0} delivers the continuation utility pair
(L�H). Then a contract

σα ≡
{(

cL(t)− log(α)
ρ

� cH(t)− log(α)
ρ

)
; t ≥ 0

}
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delivers (αL�αH). The reverse is also true. Further, σ is I.C. if and only if σα is I.C.
Therefore, {(cL∗(t)� cH∗(t)); t ≥ 0} is the optimal contract to deliver (L�H) if and only if
{(cL∗(t)− log(α)/ρ� cH∗(t)− log(α)/ρ); t ≥ 0} is the optimal contract to deliver (αL�αH).
The next lemma states this homogeneity property and is used to obtain a measure of
distortion.

Lemma 2. The cost function C has the following properties.

(i) Homogeneity: For any α> 0,

C(αL�αH) = C(L�H)− log(α)
ρ

� (6)

(ii) Monotonicity: The cost C(L�H) is weakly decreasing in H.

Recall that c(·) is the inverse of the utility function, so (6) is the same as

C(αL�αH)= C(L�H)+ c(−α)�

We can thus decompose the cost C(L�H) as

C(L�H) = C

(
|L|(−1)� |L|

(
−H

L

))
= C

(
−1�−H

L

)
+ c(L)�

With full information and no incentive constraints, the principal delivers L to the low-
income agent via a stream of constant consumption, i.e., H(·) = uL(·) = L in problem
(3). Hence the cost of delivering L under full information is c(L). The distortion of
consumption to the low-income agent in our contract can be measured by the difference
between the cost C(L�H) and the full-information cost c(L):

C(L�H)− c(L)= C

(
−1�−H

L

)
≡ ĉ(x)� (7)

where

x≡ H

L
and ĉ(x) ≡ C(−1�−x)�

It is helpful to compare the distortion in our model to that in Green (1987). With i.i.d. in-
comes, private information, and CARA utility, Green (1987) shows that the cost function
implied by the optimal contract differs from the full-information cost function only by
a constant. Thus, the distortion in any continuation contract in the i.i.d. case is con-
stant. In particular, the distortion is independent of the history or the level of evolving
continuation utilities. With persistent shocks, the distortion is independent of the level
of the continuation utility L, but depends on the ratio H/L, as noted in (7). Part (ii) of
Lemma 2 implies that the higher is the ratio (i.e., lower H), the higher is the distortion.
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2.2 The optimal contract without auditing

In this section, we first derive a Hamilton–Jacobi–Bellman (HJB) equation for the cost
function. Then we conjecture a candidate solution to the HJB equation. Finally, we
verify that the allocation implied by the candidate solution solves problem (3). The last
step of verifying the optimality of the candidate solution is needed, because the HJB
equation has multiple solutions.

If L(·) and H(·) are differentiable, we can rewrite (4) and (5) as differential equations
and inequalities:

dL(t)

dt
= (r +π)L(t)−πH(t)− ruL(t)

dH(t)

dt
≤ rH(t)− rbuL(t)� (8)

Note that we allow for downward jumps in H(·): when H(t) > lims↓t H(s), we interpret
the discontinuity as dH(t)/dt = −∞, and the differential inequality (8) still holds under
this interpretation. Introducing a slack variable μ(t) ≥ 0 in (8), we get

min
σ

C(σ) =
∫ ∞

0
e−(r+π)t

(
πc(H(t))+ rc(uL(t))

)
dt (9)

subject to
dL(t)

dt
= (r +π)L(t)−πH(t)− ruL(t) (10)

dH(t)

dt
= rH(t)− rbuL(t)−μ(t)� (11)

The HJB equation for the cost function C(L�H) is

(r +π)C(L�H) = min
uL�μ

{
CL(L�H)

dL

dt
+CH(L�H)

dH

dt
+ rc(uL)+πc(H)

}
� (12)

We can simplify (12) by replacing the state (L�H) with (L�x). Equations (10) and
(11) imply that

dx

dt
= d

(
H
L

)
dt

= r(x− b)
uL

L
+π(x− 1)x− μ

L
� (13)

Recall that the homogeneity property allows us to write C(L�H)= c(L)+ ĉ(x). The HJB
equation (12) can be written as

(r +π)(c(L)+ ĉ(x)) = min
uL�μ

{
c′(L)dL

dt
+ ĉ′(x)dx

dt
+ rc(uL)+πc(H)

}
�

which, after rearrangement, becomes

(r +π)ĉ(x) = min
uL�μ

{
− 1
ρ

(r +π)L−πH − ruL

L

+ ĉ′(x)
(
r(x− b)

uL

L
+π(x− 1)x− μ

L

)
+ rc

(
−uL

L

)
+πc

(
−H

L

)}
�
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Introducing ûL ≡ uL/L> 0 and μ̂≡ −μ/L ≥ 0, we get

(r +π)ĉ(x) = min
ûL�μ̂

{
− 1
ρ
(r +π −πx− rûL)

+ ĉ′(x)(r(x− b)ûL +π(x− 1)x+ μ̂)+ rc(−ûL)+πc(−x)

}
�

(14)

Note that the homogeneity property makes the state space one dimensional, even
though the state space in (9) contains two dimensions.

Next we make a conjecture to narrow down candidate solutions to (14): there exists
an x∗ ∈ (0�1), to the left of which ĉ(·) is flat and to the right of which it is strictly increas-
ing.3 If we know the optimal contract starting with x(0) = x∗, then the optimal contract
with x(0) < x∗ can be obtained by a discrete jump in the state variable to x∗. Therefore,
we focus on the solution to (14) in [x∗�1). Because ĉ(·) is strictly increasing in [x∗�1), it is
optimal to choose μ̂ = 0. Hence we can remove μ̂ from the right side of (14) and restrict
attention to solutions that are monotonically increasing in x. That is, we rewrite (14) as

ĉ(x) = H(ĉ′(x)�x) and ĉ′(x) ≥ 0� (15)

where

H(d�x)≡ 1
r +π

min
ûL

{
− 1
ρ
(r +π −πx− rûL)

+ d(r(x− b)ûL +π(x− 1)x)+ rc(−ûL)+πc(−x)

}
�

In the following, we solve (15) as an initial value problem by expressing ĉ′ as a func-
tion of x and ĉ. We establish the domain for (x� ĉ) by showing some properties of H in
the lemma below.

Lemma 3. (i) The function H(0�x) decreases in x (see Figure 1).

(ii) Denote the maximizer in maxd≥0 H(d�x) as d̄(x). Then

d̄(x)

{= 0 if x ≤ x

> 0 if x > x,

where x is the unique root in (b�1) to the equation r(x− b)+π(x− 1)x= 0.4

(iii) If x > x, then H(·�x) is strictly increasing in (0� d̄(x)).

3Because the principal minimizes the cost, it is reasonable to conjecture that ĉ(·) is a convex function.
Let x∗ be the largest minimizer in arg minx ĉ(x). Then ĉ(·) is flat on (0�x∗] for two reasons: (i) ĉ(x) ≥ ĉ(x∗)
∀x ∈ (0�x∗] because x∗ is a minimizer; (ii) ĉ(x) ≤ ĉ(x∗) ∀x ∈ (0�x∗] because ĉ(·) is nondecreasing. It is easy
to see that ĉ(·) is strictly increasing on [x∗�1). Convexity implies that ĉ′(x) is nondecreasing in x. If ĉ′(y) = 0
for some y > x∗, then ĉ′(x) = 0 ∀x ∈ [x∗� y], contradicting the fact that x∗ is the largest minimizer.

4The quadratic function f (x) ≡ r(x − b) + π(x − 1)x has a unique root in (b�1) because f (b) < 0 and
f (1) > 0. So one root is between b and 1, and the other is below b.
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Figure 1. The candidate solution with no auditing.

Part (ii) in Lemma 3 shows that H(0�x) < H(d̄(x)�x) if and only if x < x. Define D

as the region between H(0�x) and H(d̄(x)�x),

D ≡ {
(x� ĉ) :x < x< 1�H(0�x) < ĉ <H(d̄(x)�x)

}
�

For any (x� ĉ) ∈ D, let d∗(x� ĉ) be the inverse of H , that is, the root of H(d�x) = ĉ. It
follows from part (iii) in Lemma 3 that this root exists and is unique in (0� d̄(x)). Thus,
the HJB equation (15) is equivalent to the following initial value problem in D:

ĉ′(x) = d∗(x� ĉ(x))� (16)

To solve (16), we start with the initial condition, (x∗�H(0�x∗)), since ĉ′(x∗) = 0 and
ĉ(x∗) = H(0�x∗). Then the solution curve enters D (see Figure 1) because x∗ > x.5 Be-
cause x∗ is unknown a priori, we find a condition to pin down x∗ in the next subsection.

2.2.1 Candidate solution Let ĉx0(·) denote the solution to (16) with initial condition
(x0�H(0�x0)). Figure 1 shows the solutions for various x0. These solutions are ordered
by their function values: a solution starting with a lower initial value ĉx0(x0) = H(0�x0)

remains low as long as it resides in D. (Note that lower function value occurs with higher
initial state x0.) There is a unique x∗ such that the solution ĉx

∗
(·) stays in D forever. We

call ĉx
∗
(·) the candidate solution. In Section 2.2.2, we verify that the allocation implied

by the candidate solution is indeed optimal. If a solution is lower than ĉx
∗
(·), then the

solution curve reaches the upper limit of the domain at 1. This is inappropriate because
no contract can deliver equal continuation utilities to both types (i.e., 1 cannot be in the
domain of ĉ(·)). If a solution is higher than ĉx

∗
(·), then it rises too rapidly and crosses

the upper boundary H(d̄(·)� ·), which is also inappropriate as ĉ(x) ≤ maxd≥0 H(d�x). We
prove these results in the following lemma.

5It is easy to see that x∗ exceeds x; otherwise, since ĉ(x) increases and H(d̄(x)�x) decreases in x (because

it coincides with H(0�x) when x≤ x; see parts (i) and (ii) in Lemma 3), the function ĉ(x) exceeds H(d̄(x)�x)

immediately after x∗, which violates the HJB equation.



252 Ravikumar and Zhang Theoretical Economics 7 (2012)

Lemma 4. (i) For each initial condition (x0�H(0�x0)) with x0 ∈ (x�1), the solution ĉx0(·)
to (16) exists and is unique in D. Further, it is strictly increasing and strictly convex
when x ≥ x0. The cost function C(L�H) = c(L)+ ĉx0(H/L) is strictly convex when
L < 0 and H/L ≥ x0. The optimal policy ûL in H((ĉx0)′(x)�x) implies dx/dt > 0
(i.e., distortion increases with the duration of low-income reports).

(ii) There is a unique initial condition, (x∗�H(0�x∗)), such that the solution ĉx
∗
(·) does

not exit D.

When x < x∗, the state takes a discrete jump to x∗. Hence we extend ĉx
∗
(·) to (0�x∗)

by ĉx
∗
(x) ≡ ĉx

∗
(x∗) for x < x∗. The candidate solution ĉx

∗
(·) satisfies the HJB equation

(14) in [x∗�1) by definition. However, (14) is violated when x < x∗, because (ĉx
∗
)′(x) = 0

implies

ĉx
∗
(x) = ĉx

∗
(x∗) < 1

r +π
min
ûL�μ̂

{
− 1
ρ
(r +π −πx− rûL)+ rc(−ûL)+πc(−x)

}
�

This reinforces the intuition that the state variable x needs to exit (0�x∗) immediately.
The candidate solution ĉx

∗
(·) implies an allocation. For each x ≥ x∗, the optimal

policy ûL is determined as 1/(1 + ρ(x − b)(ĉx
∗
)′(x)), and the state variables evolve as

in (10), (11), and (13). In the next subsection, we verify that this implied allocation is
optimal.

2.2.2 Verification Given the initial promised utilities (L�H), the following lemma
shows that

(i) the cost of the contract implied by ĉx
∗
(·) is C(L�H)

(ii) the costs of other I.C. contracts are weakly higher than C(L�H).

The main technique behind the proof is to integrate the HJB equation from time 0 to
time T and then take limit T → ∞.

Lemma 5. When the auditing technology is not available, the contract implied by ĉx
∗
(·)

is optimal.

2.3 Discussion

We explain in this subsection why the distortion trends upward. Our explanation has
two parts. First, we provide some intuition for why the distortion is an increasing func-
tion of the ratio H/L. Second, we show that H/L increases with the duration of low-
income reports. Under persistent information, the principal lets H fall faster than L

conditional on the low-income report, while in the i.i.d. case, they both fall at the same
rate.

2.3.1 Why does higher x imply higher distortion? We have seen from Figure 1 that the
distortion ĉx

∗
approaches infinity as x → 1. This result might be puzzling, as the con-

tinuation utility H approaches L when x → 1, which is exactly the feature of the full-
information contract. To resolve this puzzle, let us compare the consumption paths
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when H approaches L, with and without private information. With full information,
consumption of a high-income agent approaches that of a low-income agent when-
ever H approaches L, because the mapping between continuation utility and con-
sumption is one-for-one. This one-for-one relationship no longer holds with private
information. The high-income agent’s consumption remains un-distorted with private
information. The low-income agent’s consumption path, however, is very distorted
when H is just slightly above L due to the incentive constraints. To see this, note
that limx→1(ĉ

x∗
)′(x) → ∞. When H is close to L, the low-income agent’s flow utility

uL = (1/(1 + ρ(x− b)(ĉx
∗
)′(x)))L is close to zero. The large consumption at that instant

needs to be offset by much lower levels of consumption in the future, so as to deliver a
given level of continuation utility L (to confirm this intuition, we show in Lemma 10 that
both L(t) and H(t) decrease with time).6 The closer H is to L, the more a low-income
agent’s consumption is front-loaded and, hence, the faster his continuation utility de-
clines. Thus, higher x implies higher distortion.

2.3.2 Why does x increase with the duration of low-income reports? To see the intuition
for why H/L increases with the duration of low-income reports, we start with a three-
period model in which the agent has random income, either wH or wL, in the first two
periods. There is no discounting. In the last period, the agent has no income, hence
there is no need for income reports (and there are no incentive problems). We keep the
last period in the model so that the principal can provide incentives in the second period
when income is private. Income in the first period is private, and income in the second
period is public in Case 1 and private in Case 2. Here we focus on an agent who has low
income in the first period. The allocation for an agent who has high income in the first
period is not discussed, as it is irrelevant.

Case 1. Income is private in the first period, but public in the second. Suppose that
income is i.i.d. The low-income agent’s continuation utility at the beginning of the sec-
ond period is

L(2)= πLVL +πHVH�

where πi ≡ Pr(wi) and Vi ≡ u(ci(2))+u(ci(3)) is the utility conditional on the second pe-
riod income wi, i = L�H. Because income is i.i.d., the low-income agent’s continuation
utility, L(2), is also the liar’s continuation utility. It must be made lower than that for a
high-income agent, which is the dynamic reward versus punishment aspect of dynamic
contracts studied in Green (1987). Because income in the second period is observable,
the principal offers full insurance starting from the second period and chooses VH = VL.
When income is persistent, this equality fails, as the informational content of observing
wH in the second period is different from observing wL: wH in the second period is more
suggestive of a liar than wL, hence, the principal finds it optimal to choose VH < VL.
This is akin to the moral-hazard (hidden-effort) model, where the agent’s consumption
is lower in states that are more likely to be realized with shirking. In the following dis-
cussion, we offer an alternative interpretation related to the above information-content

6Here the low-income agent is savings constrained. In dynamic risk-sharing problems with private in-
formation, optimal contracts typically restrict agents’ savings (Rogerson 1985, Green 1987).
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intuition, but more useful for our purpose: in the persistent case, what matters for the
incentive is not only L(2), but also the difference between VH and VL. Because a liar
is more likely to receive VH (denote the liar’s probability of receiving wH in the second
period as π̃H , π̃H > πH ), his continuation utility is

L(2)+ (π̃H −πH)(VH − VL)�

The larger the difference between VH and VL, the more a liar could gain from the con-
tinuation contract for the low-income agent. With persistence, the principal has access
to a second instrument to reduce the liar’s gain: keep L(2) fixed but lower VH − VL. This
instrument is ineffective in the i.i.d. case, as the liar cares only about L(2). With persis-
tence, this instrument is always used, as a small deviation from VH = VL has a first-order
effect on the incentive constraint, but incurs only a second-order cost. In fact, here the
principal makes VH − VL negative.

Case 2. Income is private in both the first and the second periods. Different from
Case 1, here VH must be above VL; otherwise, the agent does not reveal his second-
period income truthfully. However, the key insight from the previous case remains. With
i.i.d. incomes, only the continuation utility (the probability weighted average of VH and
VL) matters for the incentives; with persistent incomes, both the continuation utility and
the difference VH − VL matter. With i.i.d. incomes, the agent’s continuation utility falls
with the first period’s low-income report; with persistent incomes, the average of VH and
VL still falls, but the principal lets VH fall faster than VL to further reduce a liar’s gain.

The intuition from the three-period model carries over to an infinite-horizon model.
Consider an infinite-horizon discrete-time model with i.i.d. income. Each period has a
length dt, and the income is wH with probability π dt and is wL with probability 1 −
π dt. Green (1987) shows that this problem has only one state variable L(t), which is the
agent’s continuation utility before the realization of income in period t. Recall that H(t)

denotes the agent’s continuation utility after the realization of high income in period t.
The Bellman equation is

C(L(t)) = min
H(t)�cL(t)

{
π dtC(H(t))+ (1 −π dt)

[
r dtcL(t)+ (1 − r dt)C(L(t + dt))

]}
subject to H(t) ≥ (r dt)buL(t)+ (1 − rdt)L(t + dt)

L(t) = π dtH(t)+ (1 −π dt)[(r dt)buL(t)+ (1 − r dt)L(t + dt)]�
where C(H(t)) is the cost following a high-income report. (We do not state the prob-
lem following a high-income report explicitly because we want to focus on a path with
only low-income reports.) With CARA preferences, Green (1987) shows two properties
of this problem: (i) C(L(t)) and C(H(t)) differ from the full-information cost function
only by a constant; (ii) although continuation utility L(t) falls with the duration of low-
income reports (i.e., L(t) > L(t + dt)), the ratio x(t) = H(t)/L(t) is constant. That x(t)
remains constant is because of the homogeneity property: policy functions (including
current and future utilities) in a continuation contract are all proportional to L(t). With
i.i.d. incomes, H(t) is a control variable and is optimized every period given L(t); in
contrast, in our model with persistent incomes, H(t) is also a state variable. The differ-
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ence H(t)−L(t) is the counterpart of the difference VH − VL in the above three-period
example. The Bellman equation when the high-income state is permanent is

C(L(t)�H(t)) = min
cL(t)

{
π dtc(H(t))

+ (1 −π dt)
[
r dtcL(t)+ (1 − r dt)C(L(t + dt)�H(t + dt))

]}
subject to H(t) ≥ (r dt)buL(t)+ (1 − r dt)H(t + dt)

L(t) = π dtH(t)+ (1 −π dt)[(r dt)buL(t)+ (1 − r dt)L(t + dt)]�
The two underlined terms reflect the differences from the i.i.d. case. The first difference
is immaterial because c(H(t)) and C(H(t)) differ only by a constant. The second differ-
ence (i.e., H(t + dt) replaces L(t + dt) in the right side of the incentive constraint) ac-
celerates the speed at which H(t + dt) falls, because smaller H(t + dt) makes it easier to
satisfy the incentive constraint. Recall that H(t) is proportional to L(t) in the i.i.d. case.
In contrast, H(t) falls faster than L(t) in our model. As a result, x = H/L increases with
the duration of low-income reports.

3. Model: Costly and imperfect auditing

When an auditing technology is available, the principal has access to two instruments.
In addition to distorting the consumption path to provide incentives, now the princi-
pal can deter cheating by auditing the agent’s report. Since high income is an absorb-
ing state, it is easy to see that auditing is unnecessary forever if the agent reports wH

just once in the past. Auditing costs γ units of consumption good. However, auditing
is not perfect: there is a positive probability 
 > 0 of auditing error that labels a low-
income agent as having high income. If a low-income agent is audited after reporting
wL, the principal observes either a low-income signal L with probability 1−
 or a high-
income signal H with probability 
. However, there is no auditing error that labels a
high-income agent as having low income, i.e., if a high-income agent is audited after
reporting wL, the principal observes H with probability 1.

The timing is as follows. In the initial period (t = 0), the agent receives an income of
either wH or wL. He chooses to report either wH or wL to the principal. Then conditional
on the low-income report, the principal chooses to audit according to a Poisson arrival
rate p(0). (Recall that auditing is unnecessary if the report is wH .) The principal assigns
current and future consumptions, conditional on the report, whether the audit occurs,
and the signal L or H if the audit does occur. In subsequent periods, if an agent reported
wH in the past, he is in an absorbing state and no further reports or auditing are neces-
sary. If an agent reported wL in every period in the past, then he receives an income of
either wH or wL. The sequence of events then is the same as in the initial period.

Note that since our model is in continuous time, p(t) is the endogenous arrival rate
of an audit at instant t, not the auditing probability itself. That is, over a period of
length dt, the principal audits with probability p(t)dt and does not audit with proba-
bility 1 −p(t)dt. If p(t) = 0, no audit arrives, while if p(t) = ∞, the auditing probability
has an atom at t.
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Conditional on signals from the audit, the principal assigns new continuation utili-
ties to the agents. Let LL(t) and LH(t) be the continuation utilities of an audited low-
income agent with signals L and H, respectively, at t. Let HH(t) be the continuation util-
ity of an audited high-income agent (whose signal can only be H) at t. Finally, let HL(t)

be the continuation utility of an audited low-income agent with signal L who transited
to high income immediately after he was audited.

The principal pre-commits not only to the two sequences of consumption, as in the
previous section, but also to the sequence of arrival rates of audit. We can again repre-
sent the principal’s cost minimization problem recursively with L and H as state vari-
ables. The cost must be weakly less than that in Section 2, since it is always feasible
for the principal to shut down auditing. We continue to exclude the discounted income
from the cost function C(L�H) for the same reason as in Section 2; however, C(L�H)

now includes both the cost of delivering consumption and the cost of auditing.
When the principal audits, (i) it is feasible for her to deliver any continuation utility

pair (L�H), such that L < 0 and H < 0, and (ii) limH↓−∞C(L�H) < ∞ (this contrasts
with limH↓L C(L�H)= ∞ in Section 2 and is explained below in Remark 3). These state-
ments imply that the full-information constant consumption can be achieved. To see
this, suppose that the principal wants to implement (L�L) and offers constant con-
sumption c(L) to the agent regardless of income reports. This is, however, not incen-
tive compatible, as the high-income agent wants to underreport. To deter cheating, the
principal randomly jumps from state (L�L) to state (L�H) at a small rate ε > 0 condi-
tional on the low-income report. For any ε > 0, H can be made sufficiently low so as
to restore the incentive compatibility of the contract. Because each jump incurs a finite
cost (because C(L� ·) is bounded), the total cost incurred by the jumps diminishes when
ε is made arbitrarily small.

Remark 3. It is easy to see that limH↓−∞C(L�H) < ∞ when auditing is perfect. With
no auditing error, the principal could perfectly separate the two types of agents after
paying a finite cost γ. If the agent’s income is truly low, the principal could reset H to the
optimal level without affecting incentives, hence C(L�H) ≤ γ + minH̃ C(L� H̃) for all H.
With auditing error, the principal could still partially separate the two types of agents by
auditing multiple times in a small time interval, say in [0� ε]. Consider a contract starting
at state (L�H), where H is low: cH(t) = c(H) and cL(t) = c(H)−(wH −wL) ∀t ≥ 0. In this
contract, the high-income agent is indifferent between reporting wH and wL. Hence,
this contract is incentive compatible and no auditing is needed for incentive purposes.
However, the low-income agent’s promise-keeping constraint is violated when H < L.
To solve this problem, the principal uses auditing to partially discover the low-income
agent and reward him. She audits at instants (j/J)ε, j = 1�2� � � � � J, and stops when the
signal L arrives for the first time. Denote the first arrival time as τ (if L has not arrived
until ε, let τ = ∞). Since the principal observes only signal H from the high-income
agent and observes signal L from the low-income agent sooner or later, this auditing
strategy discovers the low-income agent when J is large. For the principal to observe
a sequence of H signals of length J from the low-income agent, the agent either must
be extremely unlucky or must have transited to high income before ε. If ε is small, the
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auditing cost is finite even when J is large.7 At τ, the principal resets L(τ)=L∗ to satisfy
the promise-keeping constraint. If ε is small and J is large, L∗ must be close to L, as
the low-income agent’s probability of staying in the above contract is very small. The
principal also resets H(τ) to the optimal level, i.e., H(τ) ∈ arg minH̃ C(L∗� H̃), without
violating the incentive constraint, as a high-income agent cannot generate a signal L
and, hence, he does not benefit from the resetting. To summarize, the principal can
reduce the cost C(L�H) to minH̃ C(L∗� H̃) by incurring a finite auditing cost in a small
time interval. Hence C(L�H) is bounded above no matter how low H is.

The previous discussion and Remark 3 imply that without further restrictions on the
domain of the cost function, the principal can deliver the full-information constant con-
sumption. To make the problem nontrivial, we exclude the region {(L�H) :H < L < 0}
from the domain of the cost function. If H <L< 0, the agent is induced not to transit to
the high-income state: he can secretly decline the wH offer and continue to stay in the
low-income state.

In the rest of this section, the domain of the cost function is restricted to {(L�H) :
L ≤ H < 0}. To see that the principal can deliver any (L�H) in the restricted domain,
recall from Section 2 that she can deliver L<H < 0, even when the auditing technology
is not available. Auditing helps the principal deliver L = H < 0, as shown in Remark 4
below.

For now we impose a restriction that atomic auditing is not allowed. In Section 3.2,
we verify that the principal does not use atomic auditing even if it is allowed. When
there is no atomic auditing (i.e., p(·) < ∞), the probability that auditing does not occur
in [t� s), conditional on the history up to time t, is e− ∫ s

t p(ξ)dξ. The promise-keeping
constraint is

L(t) =
∫ s

t
e−(r+π)(ξ−t)−∫ ξ

t p(η)dη
(
ruL(ξ)+πH(ξ)+p(ξ)((1 −
)LL(ξ)+
LH(ξ))

)
dξ

(17)
+ e−(r+π)(s−t)−∫ s

t p(ξ)dξL(s) for all t < s�

The incentive constraint is

H(t) ≥
∫ s

t
e−r(ξ−t)−∫ ξ

t p(η)dη(rbuL(ξ)+p(ξ)HH(ξ))dξ

+ e−r(s−t)−∫ s
t p(ξ)dξH(s) for all t < s�

(18)

Using the same arguments as in Lemma 1, we know that the promise-keeping con-
straint (17) and the incentive constraint (18) hold for all t < s if and only if

L(s)−L(t) =
∫ s

t

(
(r +π +p(ξ))L(ξ)− ruL(ξ)−πH(ξ)

(19)
−p(ξ)((1 −
)LL(ξ)+
LH(ξ))

)
dξ

H(s)−H(t) ≤
∫ s

t

(
(r +p(ξ))H(ξ)− rbuL(ξ)−p(ξ)HH(ξ)

)
dξ for all t < s� (20)

7The auditing cost is less than e−πε
∑J

j=1 γ

j−1 +(1−e−πε)Jγ ≤ γ/(1−
)+(1−e−πε)Jγ, which remains

finite for large J because ε can be made arbitrarily small.
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Note that the above integral equations are generalized versions of (4) and (5) in Section 2.
If the auditing technology is not available (i.e., p(·) = 0), then (19) and (20) are identical
to (4) and (5).

Remark 4. In the domain of the cost function, the utility pair L = H < 0 can be deliv-
ered by the contract

L(·) =H(·) = LH(·) =HH(·) = L=H� HL(·) ≥LL(·) = 1
2L

cH(·) = c(H)� cL(·) = c(L)− (wH −wL)� p(·)= 2r(|u(wL −wH)| − 1)
1 −


�

This contract satisfies (19) and (20).

In the following discussion, we use the same heuristic arguments as in Section 2 to
obtain a HJB equation. Similar to (13), the differential equation for x is

dx

dt
= r(x− b)ûL +π(x− 1)x+p(ĤH − (1 −
)xL̂L −
xL̂H)+ μ̂�

where

ûL ≡ uL

L
� L̂L ≡ −LL

L
� ĤL ≡ −HL

L
� L̂H ≡ −LH

L
� ĤH ≡ −HH

L
�

and μ̂ ≥ 0 is, again, a slack variable. Similar to (14), the HJB equation satisfied by ĉ(·) is

(r +π)ĉ(x)

= min
ûL�p�L̂L�L̂H�ĤL�ĤH�μ̂

{
− 1
ρ

(
r +π −πx− rûL +p((1 −
)L̂L +
L̂H + 1)

)
+ ĉ′(x)

(
r(x− b)ûL +π(x− 1)x+p(ĤH − (1 −
)xL̂L −
xL̂H)+ μ̂

)
+ rc(−ûL)+πc(−x)+p((1 −
)C(L̂L� ĤL)+
C(L̂H� ĤH)+ γ − ĉ(x))

}
�

Collecting all the terms with p, the above HJB equation can be written as

ĉ(x) = 1
r +π

min
ûL�μ̂

{
− 1
ρ
(r +π −πx− rûL)+ ĉ′(x)(r(x− b)ûL +π(x− 1)x+ μ̂)

+ rc(−ûL)+πc(−x)

}
+ 1

r +π
min
p≥0

p
(
γ − M(ĉ′(x)�x)

)
�

where

M(d�x) ≡ max
L̂L�L̂H�ĤL�ĤH

{
1
ρ
((1 −
)L̂L +
L̂H + 1)+ d((1 −
)xL̂L +
xL̂H − ĤH)

+ (ĉ(x)− (1 −
)C(L̂L� ĤL)−
C(L̂H� ĤH))

}
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measures the benefit of an audit. Note that the benefit and, hence, the decision whether
to audit, do not depend on H and L separately, but depend only on the ratio x. Auditing
yields two benefits: ĉ(x) − (1 − 
)C(L̂L� ĤL) − 
C(L̂H� ĤH) is the benefit due to the
jumps to new states that potentially have lower cost, while d((1 − 
)xL̂L + 
xL̂H −
ĤH) + (1/ρ)((1 − 
)L̂L + 
L̂H + 1) measures the benefit from relaxing the incen-
tive constraint and the promise-keeping constraint through auditing (because auditing
changes the evolution of both x(t) and L(t)).

The HJB equation requires that

M(ĉ′(x)�x) ≤ γ�

with p = 0 whenever the inequality is strict. Hence minp≥0 p(γ − M(ĉ′(x)�x)) = 0 and
auditing does not contribute to the right side of the HJB equation. Therefore,

ĉ(x) = 1
r +π

min
ûL�μ̂

{
− 1
ρ
(r +π −πx− rûL)

+ ĉ′(x)(r(x− b)ûL +π(x− 1)x+ μ̂)+ rc(−ûL)+πc(−x)

}
�

which is identical to (14), except here ĉ(·) is also defined at the boundary x= 1.
In Section 3.1, we solve for the optimal contract. In the solution, the principal audits

if and only if x = 1 and the optimal auditing is periodic. In Section 3.2, we show that the
principal would not use atomic auditing. In Section 3.3, we study implications of the
optimal contract. Finally, in Section 3.4, we discuss various extensions of the model.

3.1 The optimal contract with auditing

3.1.1 Candidate solution Recall that the candidate solution in Section 2 starts with the
initial condition (x∗�H(0�x∗)). The principal’s cost when the auditing technology is
available must be less than that in Section 2. Hence in solving the ordinary differential
equation (ODE) (16), we focus on solutions that start with x0 > x∗ and hit the boundary
x= 1.

The auditing arrival rate p is positive when x = 1. To see this, suppose p = 0 when
x= 1. Then

dx

dt

∣∣∣∣
x=1

= r(1 − b)ûL + μ̂ > 0�

which violates the domain restriction x≤ 1 (i.e., L≤H). Therefore, p(γ−M(ĉ′(x)�x)) =
0 implies

M(ĉ′(x)�x)|x=1 = γ�

With this condition, there is a unique solution to (16). We verify the optimality of the
candidate solution in Section 3.1.2.

Lemma 6. There is a unique initial condition x∗∗ such that the solution ĉx
∗∗
(·) to (16)

satisfies M((ĉx
∗∗
)′(1)�1) = γ (see Figure 2).
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Figure 2. The candidate solution with auditing.

Next we show that the benefit of auditing is monotonic in x.

Lemma 7. The benefit function M((ĉx
∗∗
)′(x)�x) increases in x. Therefore, if x < 1, then

M((ĉx
∗∗
)′(x)�x) < γ�

The intuition for the monotonicity of the benefit function can be seen in a simple
case. Suppose that auditing is perfect and that the principal pre-commits to auditing at
time t with probability 1. Then the high-income agent cannot underreport at t, and the
principal can jump from state (L�H) to (L�Lx∗∗) without violating any incentive con-
straint. Here the benefit of auditing is C(L�H)−C(L�Lx∗∗)= ĉx

∗∗
(x)− ĉx

∗∗
(x∗∗), which

increases in x. In other words, the benefit here is to reset H and remove the distortion
in the consumption allocation. The larger is the distortion, the larger is the benefit of
auditing. In the general case of stochastic auditing with errors, the benefit of auditing is
similar, although M takes a more complicated form.

Let N be the moment when the trajectory of x(t) implied by the candidate solution
reaches the boundary 1 starting from x(0) = x∗∗. In the pre-commitment contract, the
principal guarantees not to audit until N , despite the fact that income is private infor-
mation. When the duration of the agent’s low-income reports reaches N , he is audited
randomly according to an endogenous arrival rate p > 0. The actual instant of audit
depends on the realization of the audit random variable, so the actual audit could be re-
alized at any t ≥ N . Two remarks regarding N are in order: (i) while auditing is stochas-
tic, the threshold duration N is deterministic; (ii) while N depends on primitives of the
model, it does not depend on the initial promised utility L0. The homogeneity prop-
erty implies that if {(L(t)�H(t)); t ≥ 0} is the optimal trajectory when the initial promise
is L0, then {((L̄0/L0)L(t)� (L̄0/L0)H(t)); t ≥ 0} is the optimal trajectory when the initial
promise is L̄0 �=L0. The two paths reach x = 1 at the same time.

Our main result is that the auditing pattern is periodic. The optimal mechanism con-
sists of cycles. A low-income agent begins each cycle with continuation utilities (L�H),
such that H/L = x∗∗, and is initially not audited. The pair (L(·)�H(·)) falls with the du-
ration of low-income reports until N (i.e., until x = 1). After N , the principal randomly
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audits and (L(·)�H(·)) remains unchanged until audit arrives. When the audit arrives
and the observed signal is H, the agent is punished by a downward jump in his contin-
uation utilities. The new state still satisfies x = 1 and, hence, the agent continues to be
audited randomly. A new cycle starts the moment after the observed signal from the
audit is L. In the new cycle, the low-income agent begins with improved continuation
utilities (LL�HL), such that HL/LL = x∗∗.

Proposition 1. Given the initial utility L0, the principal chooses H0 such that H0/L0 =
x∗∗. Starting from x∗∗, the solution to ODE (16) reaches x= 1 in finite time N . After N and
conditional on low-income report, the principal audits with an arrival rate p > 0. The
utility pair (L(t)�H(t)) remains stationary: L(t) = H(t) = L(N) = H(N) ∀t ≥ N until
the agent is randomly drawn to be audited. If the observed signal from the audit is H, the
agent is punished, LH =HH <L(N). If the signal is L, the agent is rewarded, LL >L(N).
The new state satisfies HL/LL = x∗∗ and, hence, the contract enters a new cycle.

There are two instruments to provide incentives for truthfully reporting the transi-
tion to high income. The first instrument is dynamic taxation that distorts the consump-
tion path; the second instrument is auditing. Proposition 1 shows that the principal uses
the first instrument only when L < H and uses the second only when L = H. Recall
that ĉ(x) measures the distortion in the continuation contract (see the discussion after
Lemma 2), and the closer is x to 1, the higher is the distortion. The principal switches to
the auditing instrument only when the distortion is the highest, i.e., when L= H.

The principal alternates between dynamic taxation and auditing because the net
benefit of the first instrument is decreasing with the distortion, while that of the second
is increasing with the distortion. Starting with the full-insurance consumption path, a
first-order distortion in consumption generates only a second-order cost to the prin-
cipal. Thus, when consumption distortion is small, it is nearly costless to use the first
instrument and the principal avoids the second instrument of auditing, which has a
cost γ. When L = H, the consumption distortion is high, so further distortion using the
dynamic taxation instrument is costly. At this stage, the principal abandons the first in-
strument and switches to the second. Conditional on discovering the truth-teller after
an audit, she removes the previously accumulated distortion by resetting the state vari-
ables. After the resetting, a new cycle begins and the principal switches back to the first
instrument.

Periodic auditing is the outcome of joint optimization of the two instruments. If dis-
tortion does not grow as it does here, then periodic auditing may no longer be optimal.
In particular, in models with i.i.d. income, such as Green (1987), the distortion is con-
stant as noted in Section 2.1. Wang (2005) shows that the optimal auditing probability
in such environments is time invariant. In a private information model with two-state
Markov chain shocks, Nakamura (2009) derives a debt contract that follows a cycle. In
the “normal” phase of the cycle, the borrower pays a fixed amount to the lender, and in
the “restructuring” phase of the cycle, the borrower declares bankruptcy and his pay-
ments are reduced. Unlike our model, the income is not reported in Nakamura’s model
and the contract is not designed to elicit truthful revelation of income. His result is due
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to the evolution of the lender’s beliefs regarding the borrower’s income, not due to the
accumulation of distortions.

Our periodic auditing result holds no matter how high the auditing cost γ is. This
is because the distortion in consumption converges to infinity (see Section 2) and the
benefit of using the auditing instrument eventually surpasses any finite cost. This result
contrasts with those in Wang (2005) and Monnet and Quintin (2005), where the benefit
of audit remains bounded and the principal does not audit when γ is large.

3.1.2 Verification Similar to Section 2.2.2, we verify that the allocation implied by the
candidate solution ĉx

∗∗
(·) is indeed optimal.

Lemma 8. When the auditing technology is available, the contract implied by ĉx
∗∗
(·) is

optimal.

3.2 No atomic auditing

In the previous subsection, we showed that the principal would set p = 0 when L < H

and would set p > 0 but finite when L = H. In this subsection, we show that the prin-
cipal never sets p = ∞, i.e., she never uses atomic auditing. To see this, suppose that
the auditing probability has an atom of size P > 0 with the state (L�H). With proba-
bility P , the principal audits, and with probability 1 − P , she does not. Thus, the cost
minimization problem for the principal is

M(P) = min

LL�HL�LH�HH�L̄�H̄

P((1 −
)C(LL�HL)+
C(LH�HH)+ γ)+ (1 − P)C(L̄� H̄) (21)

subject to L= P((1 −
)LL +
LH)+ (1 − P)L̄ (22)

H ≥ PHH + (1 − P)H̄� (23)

where (LL�HL) denotes the state if the observed signal from the audit is L, (LH�HH)

denotes the state if the signal is H, and (L̄� H̄) denotes the state if the agent is not au-
dited. Note that M(0) = C(L�H). Lemma 9 below states that atomic auditing is not
optimal.

Lemma 9. At any (L�H), L ≤ H, there is no atomic auditing, because M(P) >M(0) for
all P > 0.

3.3 Implications of the optimal contract

1. Reducing the cost of auditing (smaller γ) increases the auditing frequency. A smaller
γ makes the auditing instrument cheaper. As a result, the principal is willing to
audit more frequently. For all γ, the auditing instrument is used only when x = 1.
However, x∗∗ (see Figure 2) increases with smaller γ. Hence, N , the time taken to
reach x= 1 from x = x∗∗, is less for smaller γ.
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2. Increasing the variance of income (larger wH −wL) increases the auditing frequency.
With a larger wH − wL, there is a larger benefit to the agent from underreporting
income. In the absence of an auditing technology, the low-income agent’s con-
sumption path needs to be distorted more to provide dynamic incentives for truth-
telling. The benefit of auditing is increased with a larger wH − wL; as a result, the
auditing instrument is used more frequently.

3. Agents with an intermediate level of risk aversion are audited more frequently rela-
tive to agents with either low or high risk aversion. When the absolute risk aver-
sion ρ is small, the variation in the consumption path implies little cost to the
principal; thus, there is no need to use auditing to reduce the distortion. When
ρ is large, a small variation in consumption is able to generate large incentive ef-
fects. Again, there is no need to audit. More specifically, let L0 = −1 and consider
a contract in which auditing is not used and consumptions decline linearly, i.e.,
cH(t) = cL(t) = (log(π/(r + π))− rt)/ρ. This contract delivers the promised utility
L0 because∫ ∞

0
e−(r+π)t(πH(t)+ ruL(t))dt = −

∫ ∞

0
e−(r+π)t

(
(π + r)ert

π

r +π

)
dt = −1�

It is I.C. because

dH(t)

dt
= rH(t) < rH(t)− rbuL(t)�

When ρ→ ∞, the cost of the contract converges to the full-information cost c(L0).
The above no-auditing contract has very little distortion in consumption, and there
is no need to correct it frequently by auditing.

3.4 Discussion

Show-me assumption. We assume that the principal always asks the agent to show his
income. This assumption prevents low-income agents from reporting high income;
hence, we do not have to include the incentive constraint for the low-income agent.
In fact, even if we include this incentive constraint, it never binds. To see this, recall that
x(t) always stays above x, where x is the unique root to r(x− b)+π(x− 1)x = 0 in (b�1)
(see Lemma 3). Therefore, the incentive constraint for the low-income agent

∫ ∞

t
e−(r+π)(s−t)(rb−1H(t)+πH(t))ds = rb−1 +π

r +π
H(t) < L(t)

is always satisfied, because

rb−1 +π

r +π
x(t)− 1 >

rb−1 +π

r +π
x− 1 = r

r +π
(xb−1 − 1) > 0�

Auditing error. If auditing is perfect (
 = 0), then an arbitrarily small arrival rate
of audit plus infinite penalty delivers the full-information constant consumption. Our
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assumption 
> 0 implies that when H is observed, the principal cannot be 100 percent
certain that the agent is a liar and, hence, would not want to impose an infinite penalty.

Finite punishment. When punishment is exogenous and finite, the full-information
constant consumption cannot be achieved even with perfect auditing.

In Ravikumar and Zhang (2010), after an audit, a liar is caught with probability 1 and
his consumption is reduced forever by an exogenous amount. We show that the optimal
mechanism is still periodic auditing.

Popov (2007) imposes an exogenous lower bound on the agent’s continuation utility
in an i.i.d. income model with no auditing errors. He shows that both the distortion and
the auditing probability depend on the level of the agent’s continuation utility. This con-
trasts with our model, where the auditing probability is independent of the low-income
agent’s continuation utility. In his model, after an audit, the liar is pushed to the lower
bound on continuation utility. Thus, in the event of being caught after the audit, agents
with high continuation utility suffer a more severe punishment relative to agents with
low continuation utility. For agents with high continuation utility, a low auditing proba-
bility combined with a severe punishment is very effective. For agents with continuation
utility at the lower bound, the auditing instrument is not effective because the principal
cannot punish a liar any more.8 In our model, there is no lower bound on continuation
utility and the auditing instrument is always effective.

The benefit of auditing in our model is to remove the distortion embedded in the
dynamic contract. This notion of auditing benefit applies more generally. Consider
a model where the agent’s private information θ ∈ {θ1� θ2� � � � � θn} evolves as a Markov
chain. The private information θ could represent the agent’s income, his taste shocks,
or other risks that are relevant to allocating resources to the agent efficiently. The princi-
pal’s problem is to deliver an initial level of utility to the agent at a minimal cost, subject
to incentive constraints. This problem can be formulated recursively by keeping track of
the shock θ and a vector of continuation utilities v ∈ R

n; the vector v contains the contin-
uation utility, vθ, for the agent whose current type is θ and (n− 1) continuation utilities,
v−θ, for agents who just transited to other states. Let C(v�θ) denote the principal’s dis-
counted expected cost of delivering the vector v. Suppose that auditing is perfect and
nonstochastic, and that the punishment is exogenous and finite (the punishment could
be a function of the vector v and the liar’s true type, observed after auditing). If no cheat-
ing is found upon auditing, the principal can re-optimize all continuation utilities v−θ

and obtain a benefit C(vθ� v−θ�θ)− minṽ−θ
C(vθ� ṽ−θ�θ). In such a general environment,

it is optimal for the principal to wait for some positive amount of time after an audit
before she audits again. This is because v−θ is reset to the minimizer immediately after
the audit. Continuity implies that v−θ remains close to the minimizer for some interval
of time. Since auditing has a fixed cost, there is a region around the minimizer where
the cost of auditing dominates the benefit. Thus, the optimal contract implies that the
principal commits to no auditing for a length of time and eliminates the distortion by
resetting the state variable after every audit. The duration between two audits may not
be a constant and may depend on how the distortion evolves in the optimal contract.

8At low continuation utility in Popov’s environment, both the dynamic taxation and the auditing instru-
ments are weak, so the determination of auditing probability is nontrivial.
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Preferences. With CARA utility, the distortion in our optimal contract is independent
of the agent’s continuation utility. Instead the distortion depends only on the ratio of
the high-income agent’s utility H to the low-income agent’s utility L. For general utili-
ties, the distortion depends on both the level and the ratio. The principal’s cost function
becomes two dimensional, making it difficult to obtain a full characterization of the op-
timal contract.

In a model with constant relative risk aversion (CRRA) preferences, we find that the
auditing probability is small when the agent’s continuation utility is either extremely
high or extremely low (see Lemma 13 in the Appendix). This is consistent with the find-
ing in Section 3.3 that the auditing probability is small when the absolute risk aversion
is extremely large or extremely small (the absolute risk aversion in CRRA preferences
decreases with consumption and with the agent’s level of continuation utility).

Absorbing state. Our assumption that the high-income state is permanent allows us
to focus on the path with only low-income reports. If the transition rate from high in-
come to low income, π ′, is positive, the analysis becomes more complex. Not only does
the principal’s problem after the transition to high income become nontrivial, but the
dynamics before the transition to wH are also altered. For π ′ > 0, the candidate solution
to (16) is not easy to find analytically, because the solution curve may reach the upper
bound H(d̄(·)� ·), and local Lipschitz condition fails there. Our numerical result shows
that without auditing and when π ′ is small, the ratio x= H/L approaches 1 (i.e., the dis-
tortion approaches infinity). Thus, our periodic auditing result in Section 3 still holds
when π ′ is small. When π ′ is much larger than π, x still increases with the duration
of low-income reports, but it approaches a limit strictly below 1. That is, the distor-
tion in the contract remains bounded. Hence, it is no longer true that auditing is used
eventually regardless of the auditing cost γ. To summarize, our periodic auditing result
requires high persistence of the high-income state, but the high-income state need not
be absorbing.

Multiple income levels. Our assumption that income is either wH or wL is restrictive.
One implication of this assumption is that auditing occurs only at the lowest income
level (i.e., wL). When there are more than two income levels, the principal might audit
any income level below the maximum. If we assume that the only binding incentive
constraint when the report is wi is for the agent at the next higher income level wi+1,
then our measure of distortion remains useful.9 The distortion in this case is the ratio
of the continuation utility for the agent who just transited to wi+1 to that for the agent
who remains at wi. It would be interesting to examine how the distortion evolves and
whether the optimal auditing is still periodic with multiple income levels.

4. Conclusion

We study insurance and auditing in a repeated hidden income environment with per-
sistent incomes. A principal, with imperfect ability to audit, designs an optimal taxation

9Kapicka (2010) and Williams (2011) make this assumption in their private-information models. A gen-
eral condition on primitives for this assumption to be valid is still unknown.
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scheme as well as an optimal auditing scheme. When the agent’s absolute risk aver-
sion is constant, we show that it is optimal to audit the low-income agent periodically.
The optimal mechanism consists of cycles. Within each cycle, an agent reporting low
income is guaranteed that he is not audited until the duration of low-income reports
exceeds a threshold. After the threshold is reached, the agent is audited randomly. After
the random audit, if the agent is discovered to be a truth-teller, then a new cycle begins.

The low-income agent’s consumption path is intertemporally distorted. We mea-
sure the distortion as the principal’s cost minus the cost of the full-information constant
consumption that delivers the same utility to the low-income agent. Unlike the repeated
hidden income model with i.i.d. incomes, the distortion in our model increases with the
duration of low-income reports. Auditing helps the principal detect who is a truth-teller
and who is a cheater. She can thus correct the distortion in the consumption path af-
ter an audit. The benefit of auditing increases with the duration of low-income reports,
whereas the cost of auditing is constant. Consequently, the principal uses the auditing
instrument no matter how high the auditing cost is.

Since auditing is imperfect in our model, the principal cannot detect a liar with cer-
tainty and, hence, does not want to impose an infinite penalty. If auditing were perfect,
then the optimal mechanism is a small probability of audit plus infinite penalty. This
mechanism delivers the full-insurance consumption.10 However, with perfect auditing
but exogenous and finite penalty, the optimal mechanism is periodic auditing.

Appendix

Proof of Lemma 1. We show only the equivalence between (2) and (5), since the equiv-
alence between (1) and (4) can be obtained similarly by replacing the inequalities below
with equalities.

Necessity. If (2) holds for all t < s, then

H(t)+
∫ s

t
(rH(ξ)− rbuL(ξ))dξ

≥
∫ s

t
e−r(ξ−t)rbuL(ξ)dξ + e−r(s−t)H(s)

+
∫ s

t

(
r

(∫ s

ξ
e−r(η−ξ)rbuL(η)dη+ e−r(s−ξ)H(s)

)
− rbuL(ξ)

)
dξ

=
(
e−r(s−t) +

∫ s

t
re−r(s−ξ) dξ

)
H(s)+

∫ s

t
(e−r(ξ−t) − 1)rbuL(ξ)dξ

+
∫ s

t
r

(∫ s

ξ
e−r(η−ξ)rbuL(η)dη

)
dξ

10When both the auditing probability and the penalty are exogenously specified, Armenter and Mertens
(2010) show that full-insurance consumption can be achieved in the long run in a dynamic Mirrlees taxation
model.
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=H(s)+
∫ s

t
(e−r(ξ−t) − 1)rbuL(ξ)dξ +

∫ s

t

(∫ η

t
re−r(η−ξ) dξ

)
rbuL(η)dη

=H(s)+
∫ s

t
(e−r(ξ−t) − 1)rbuL(ξ)dξ +

∫ s

t
(1 − e−r(η−t))rbuL(η)dη

=H(s)�

Hence, inequality (5) is verified.
Sufficiency. Define an absolutely continuous function f (·) as

f (s) ≡
∫ s

t
e−r(ξ−t)rbuL(ξ)dξ + e−r(s−t)

(
H(t)+

∫ s

t
(rH(ξ)− rbuL(ξ))dξ

)
�

Because f is absolutely continuous, it is differentiable almost everywhere (a.e.), and

f ′(s) = e−r(s−t)rbuL(s)− re−r(s−t)

(
H(t)+

∫ s

t
(rH(ξ)− rbuL(ξ))dξ

)

+ e−r(s−t)(rH(s)− rbuL(s))

= re−r(s−t)

(
H(s)−H(t)−

∫ s

t
(rH(ξ)− rbuL(ξ))dξ

)
a.e.

If (5) holds, then f ′(s) ≤ 0 a.e. Then it follows from Theorem 29.15 in Aliprantis and
Burkinshaw (1990) that

f (s) = f (t)+
∫ s

t
f ′(ξ)dξ ≤ f (t) = H(t)�

Therefore, ∫ s

t
e−r(ξ−t)rbuL(ξ)dξ + e−r(s−t)H(s) ≤ f (s) ≤ H(t)�

which verifies inequality (2). �

Proof of Lemma 2. (i) Equation (6) holds because {(cL∗(t)� cH∗(t)); t ≥ 0} is the
optimal contract to implement (L�H) if and only if {(cL∗(t) − log(α)/ρ�
cH∗(t)− log(α)/ρ); t ≥ 0} is the optimal contract to implement (αL�αH).

(ii) We show that C(L� H̄) ≤ C(L�H) for any H < H̄. Pick any I.C. contract {(cL(t)�
cH(t)); t ≥ 0} that implements (L�H). If we simply redefine cH(0) to be c(H̄) and
leave other consumptions unchanged, the contract implements (L� H̄). That is,
the modified contract starting with (L� H̄) coincides with the original contract im-
mediately after time zero. Hence, the two contracts have the same cost. The mod-
ified contract is incentive compatible too, because incentive constraints allow for
downward jumps in H(·). Therefore, C(L� H̄) ≤ C(L�H). �

Proof of Lemma 3. (i) When ĉ′(x) = 0, the optimal ûL is 1 and, hence, H(0�x) =
(π/(r +π))(−(1/ρ)(1 − x)+ c(−x)) decreases in x.
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(ii) The envelope theorem implies that (r + π)(∂H(d�x)/∂d) = r(x − b)ûL +
π(x − 1)x = dx/dt. When x ≤ b, it follows from ûL > 0 and r(x − b)ûL +
π(x − 1)x ≤ 0 that d̄(x) = 0. When x > b, the first-order condition implies that
the optimal policy ûL(d) is 1/(1 + dρ(x− b)) and decreases in d. Hence

(r +π)
∂H(d�x)

∂d
= r(x− b)

1 + dρ(x− b)
+π(x− 1)x�

which decreases in d because x > b. Thus H(·�x) is concave in d and to find d̄(x),
it suffices to study the first-order condition. When d = 0,

(r +π)
∂H(d�x)

∂d

∣∣∣∣
d=0

= r(x− b)+π(x− 1)x
{≤ 0 if b < x≤ x

> 0 if x < x< 1.

Recall that x is the unique root of r(x − b) + π(x − 1)x = 0 in (b�1). From
these first-order conditions, we know that the optimal d̄(x) is 0 when b ≤
x ≤ x. When x < x < 1, the first-order condition (r + π)(∂H(d�x)/∂d) =
r(x− b)/(1 + dρ(x− b))+π(x− 1)x = 0 yields

d̄(x) = 1
ρ

(
r

πx(1 − x)
− 1

x− b

)
> 0�

(iii) Part (ii) states that if x > x, then ∂H(d�x)/∂d = 0 when d = d̄(x) and ∂H(d�x)/

∂d > 0 when 0 ≤ d < d̄(x). �

Proof of Lemma 4. (i) Because d∗(x� ĉ) in (16) is continuously differentiable in the
open set D, it satisfies the local Lipschitz condition at every point (x� ĉ). Hence,
the solution to (16) exists and is unique in a neighborhood of every point.11 Then
a global solution can be obtained by pasting the local solutions until the solution
reaches boundaries of D.

To simplify notation, we omit the superscript x0 from ĉx0(·) in the following dis-
cussion. To show that ĉ(·) is strictly convex, it suffices to show that ĉ′′ > ρ(ĉ′)2 ≥ 0.
Differentiating ĉ = H(ĉ′�x) with respect to x yields

(r +π)ĉ′ = (r +π)(Hx + Hdĉ
′′)

=
(
π

ρ
+ ĉ′(rûL +π(2x− 1))− π

ρx

)
+ (r(x− b)ûL +π(x− 1)x)ĉ′′

< ĉ′(rûL +π)+ (r(x− b)ûL +π(x− 1)x)ĉ′′�

where the inequality follows from x < 1 and ĉ′ > 0. Then it follows from ûL =
1/(1 + ρ(x− b)ĉ′) that

ĉ′′(x) > rĉ′ − rĉ′ûL

r(x− b)ûL +π(x− 1)x
>

rĉ′ − rĉ′ûL

r(x− b)ûL
= ρ(ĉ′)2�

11Although the local Lipschitz condition fails on the upper boundary H(d̄(·)� ·) of D, our proof does not
require it.
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To see the strict convexity of C(L�H)= c(L)+ ĉ(H/L), note that

CLL = ρ−1L−2 + 2ĉ′HL−3 + ĉ′′H2L−4 > 0

CHH = ĉ′′L−2 > 0

CHL = −ĉ′L−2 − ĉ′′HL−3�

Therefore,

CLLCHH −C2
HL = ρ−1L−2ĉ′′L−2 − (−ĉ′L−2)2 > 0�

To see that distortion increases with the duration of low-income reports, recall
from the proof of part (ii) in Lemma 3 that dx/dt = (r+π)(∂H(d�x)/∂d) > 0 when
(x� ĉ(x)) ∈ D.

(ii) First, we show that solutions are ordered. If x0 and y0 are two initial conditions
such that x0 < y0, then ĉx0(x) > ĉy0(x) whenever both ĉx0(·) and ĉy0(·) are defined
at x. Initially when x = y0, since ĉx0(·) is increasing, ĉx0(y0) > ĉx0(x0) > ĉy0(y0).
When x > y0, because d∗(x� c) increases in c, we get d∗(x� ĉx0(x)) > d∗(x� ĉy0(x)).
That is, curve ĉx0(·) rises faster than ĉy0(·). Consequently ĉx0(·) is always above
ĉy0(·).

Second, we show the existence of an initial condition x∗ such that the solution
ĉx

∗
(·) does not exit D. Let A be the collection of initial conditions such that the

solution exits D for the first time at x= 1,

A≡ {
x0 ∈ (x�1) : ĉx0(x) < H(d̄(x)�x) ∀x ∈ [x0�1) and ĉx0(1) ∈ R

}
�

Clearly, (i) A is nonempty since x0 ∈A when x0 is sufficiently close to 1, and (ii) A
does not contain all points in (x�1) because the solution ĉx0(·) will reach the upper
boundary when x0 is sufficiently close to x. Define x∗ ≡ infA> x. We now show
that the solution ĉx

∗
(·) does not exit D. Clearly, ĉx

∗
(·) could not reach x = 1 be-

cause it is above all solutions that reach x= 1. To prove that ĉx
∗
(·) could not reach

the upper boundary H(d̄(·)� ·), suppose to the contrary that ĉx
∗
(x) = H(d̄(x)�x)

for some x ∈ (x�1). Then the upper boundary is flatter than ĉx
∗
(·) at x, because

dH(d̄(x)�x)

dx
= ∂H(d̄(x)�x)

∂x

= 1
r +π

(
π

ρ
+ d̄(x)(rûL +π(2x− 1))− π

ρx

)

<
1

r +π
d̄(x)(rûL +π(2x− 1))

= d̄(x) = (ĉx
∗
)′(x)�

since x < 1 and ûL < 1. By continuity, the solution ĉx
∗+ε(·) must cross the upper

boundary when ε > 0 is sufficiently small. This contradicts the fact that x∗ is the
infimum of A (i.e., ĉx

∗+ε(·) must be below the upper boundary for all ε > 0).
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Third, we show the uniqueness of x∗. To the contrary, suppose that both ĉx0(·)
and ĉy0(·) stay in D forever for some x0 < y0. Denote x1(c) and y1(c) as the in-
verse of ĉx0(·) and ĉy0(·), respectively. That is, ĉx0(x1(c)) = ĉy0(y1(c)) = c. Since
limx→1 H(d̄(x)�x) = limx→1 ĉ

x0(x) = limx→1 ĉ
y0(x) = ∞, we get that

lim
c→∞(y1(c)− x1(c)) = 0� (24)

If x is close to 1 and d̄(x) is large, then (r +π)Hx = π/ρ+ d̄(x)(rûL +π(2x− 1))−
π/(ρx) > 0, hence d∗(x� c) decreases in x, as ∂d∗(x� c)/∂x = −Hx/Hd < 0. There-
fore,

y ′
1(c)− x′

1(c) = 1
(ĉy0)′(y1)

− 1
(ĉx0)′(x1)

= 1
d∗(y1� c)

− 1
d∗(x1� c)

> 0�

which contradicts (24). �

Proof of Lemma 5. To see that the cost of the constructed contract is C(L�H), define

f (T) ≡
∫ T

0
e−(r+π)t

(
πc(H(t))+ rcL(t)

)
dt + e−(r+π)TC(L(T)�H(T))�

which is differentiable because the trajectories L(·) and H(·) implied by ĉ(·) are differ-
entiable in T .12 It follows from the HJB equation (12) that

f ′(T) = e−(r+π)T

(
πc(H(T))+ rcL(T)−CL

dL(T)

dT
−CH

dH(T)

dT

)

− e−(r+π)T (r +π)C(L(T)�H(T))

= 0�

Hence f (·) is a constant. In particular, for all T > 0,

C(L�H) = f (0) =
∫ T

0
e−(r+π)t

(
πc(H(t))+ rcL(t)

)
dt + e−(r+π)TC(L(T)�H(T))�

Lemma 11 (later in the Appendix) shows that the tail in the preceding equality converges
to zero when T → ∞; thus, taking limit T → ∞ yields

C(L�H) =
∫ ∞

0
e−(r+π)t

(
πc(H(t))+ rcL(t)

)
dt�

To see that the cost of an I.C. contract {(c̃H(t)� c̃L(t)); t ≥ 0} is higher than C(L�H),
define

f (T) ≡
∫ T

0
e−(r+π)t

(
πc(H̃(t))+ rc̃L(t)

)
dt + e−(r+π)TX(T)�

12The trajectory H(·) is differentiable except for a possible downward jump at t = 0 if H(0) is too large.
The possible jump does not affect the following claim that f (·) is a constant, as it does not change the value
of the cost function.
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where

X(T) ≡ C(L(0)�H(0))+
∫ T

0
CL(L̃(t)� H̃(t))((r +π)L̃(t)−πH̃(t)− rũL(t))dt

+
∫ T

0
CH(L̃(t)� H̃(t))(rH̃(t)− rbũL(t))dt�

We claim that

X(t) ≤ C(L̃(t)� H̃(t)) for all t ≥ 0� (25)

If H̃(·) is differentiable, this is easy to show as X(0) = C(L(0)�H(0)) and

X ′(t) = CL(L̃(t)� H̃(t))((r +π)L̃(t)−πH̃(t)− rũL(t))

+CH(L̃(t)� H̃(t))(rH̃(t)− rbũL(t))

≤ CL(L̃(t)� H̃(t))((r +π)L̃(t)−πH̃(t)− rũL(t))+CH(L̃(t)� H̃(t))
dH̃(t)

dt

= dC(L̃(t)� H̃(t))

dt
�

Since we allow for discrete jumps in H̃(·), we prove (25) in Lemma 12 (later in the Ap-
pendix) without assuming the differentiability of H̃. It follows from the HJB equation
(12) that

f ′(T) ≥ e−(r+π)T

(
πc(H̃(T))+ rc̃L(T)−CL

dL̃(T)

dT
−CH(rH̃(T)− rbũL(T))

)

− e−(r+π)T (r +π)X(T)

≥ e−(r+π)T

(
πc(H̃(T))+ rc̃L(T)−CL

dL̃(T)

dT
−CH(rH̃(T)− rbũL(T))

)

− e−(r+π)T (r +π)C(L̃(t)� H̃(t))

≥ 0 a.e.

The absolute continuity of f and the nonnegativity of f ′(·) imply that f is increasing
in T . Therefore, for all T ,

C(L�H) = f (0) ≤ f (T)

≤
∫ T

0
e−(r+π)t

(
πc(H̃(t))+ rc̃L(t)

)
dt + e−(r+π)TC(L̃(T)� H̃(T))�

Taking limit T → ∞ and applying Lemma 11 yield

C(L�H) ≤
∫ ∞

0
e−(r+π)t

(
πc(H̃(t))+ rc̃L(t)

)
dt� (26)

completing the proof. �
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Proof of Lemma 6. We show that M((ĉx0)′(1)�1) is monotonically decreasing in the
initial condition x0 and M(ĉ′(x)�x) can be rewritten as

(1 −
) max
L̂L�ĤL

{
1
ρ
(L̂L + 1)+ (ĉx0)′(x)x(L̂L + 1)−C(L̂L� ĤL)+ ĉx0(x)

}

+
 max
L̂H�ĤH

{
1
ρ
(L̂H + 1)+ (ĉx0)′(x)x(L̂H + 1) (27)

− (ĉx0)′(x)



(ĤH + x)−C(L̂H� ĤH)+ ĉx0(x)

}
�

When x = 1, the first maximization problem is

max
L̂L�ĤL

{
1
ρ
(L̂L + 1)+ (ĉx0)′(1)(L̂L + 1)−C(L̂L� ĤL)+ ĉx0(1)

}

= max
L̂L

{
1
ρ
(L̂L + 1)+ (ĉx0)′(1)(L̂L + 1)− c(L̂L)

}
− ĉx0(x0)+ ĉx0(1)�

The optimal L̂L is

L̂L = − 1
1 + ρ(ĉx0)′(1)

> −1� (28)

Both ĉx0(1) and (ĉx0)′(1) decrease in the initial condition x0. It follows from (L̂L + 1) > 0
and the envelope theorem that maxL̂L

{(1/ρ)(L̂L + 1) + (ĉx0)′(1)(L̂L + 1) − c(L̂L)} in-
creases in (ĉx0)′(1) and hence decreases in x0. Further, ĉx0(1) − ĉx0(x0) decreases with
x0, because all solutions are ordered by x0. Therefore, the maximized value in the first
problem decreases with x0.

When x = 1, the second maximization problem is

max
L̂H�ĤH

{
1
ρ
(L̂H + 1)+ (ĉx0)′(1)(L̂H + 1)− (ĉx0)′(1)



(ĤH + 1)−C(L̂H� ĤH)+ ĉx0(1)

}
�

We first show that the optimal solution is on the boundary (i.e., satisfies L̂H = ĤH ). Sup-
pose not. Then the first-order conditions for an interior solution are

CL(L̂H� ĤH) = 1
ρ

+ (ĉx0)′(1) =CL(−1�−1) (29)

CH(L̂H� ĤH) = −(ĉx0)′(1)



<CH(−1�−1)� (30)

Equation (29) and dCL(t)/dt = 0 (proven in Lemma 10) imply that (L̂H� ĤH) is on a path
that eventually reaches (−1�−1). This contradicts (30) and dCH(t)/dt < 0 (proven in
Lemma 10). Therefore, impose L̂H = ĤH and rewrite the second maximization problem
as

max
L̂H

{
1
ρ
(L̂H + 1)+ (ĉx0)′(1)(L̂H + 1)− (ĉx0)′(1)



(L̂H + 1)− c(L̂H)

}
�



Theoretical Economics 7 (2012) Optimal auditing and insurance 273

The optimal L̂H satisfies

L̂H = − 1
1 + ρ(1 − 1/
)(ĉx0)′(1)

< −1� (31)

Hence the maximized value in the second problem increases in (ĉx0)′(1) and decreases
in x0.

We conclude that M((ĉx0)′(1)�1) is monotonically decreasing in x0. Hence the can-
didate solution is unique. The existence proof follows easily from the intermediate value
theorem and is omitted. �

Proof of Lemma 7. To simplify notation, we omit the superscript x∗∗ from ĉx
∗∗
(·) in

this proof. Choose a trajectory (L(t)�H(t)) and let x(t) =H(t)/L(t). Since

CL(L�H) = − 1
ρL

− ĉ′(x)x
L

CH(L�H) = − ĉ′(x)
L

�

we can rewrite M(ĉ′(x(t))�x(t)) in (27) as

(1 −
) max
LL�HL

{
C(L(t)�H(t))−CL(L(t)−LL)−C(LL�HL)

}

+
 max
LH�HH

{
C(L(t)�H(t))−CL(L(t)−LH)− CH



(H(t)−HH)−C(LH�HH)

}
�

(32)

Because dx/dt > 0, it is equivalent to show that M(ĉ′(x(t))�x(t)) increases in t. Lem-
ma 10 states that dCL(t)/dt = 0 and dCH(t)/dt < 0. Applying the envelope theorem, we
have

dM

dt
= (1 −
)

{
CL

dL(t)

dt
+CH

dH(t)

dt
−CL

dL(t)

dt

}

+


{
CL

dL(t)

dt
+CH

dH(t)

dt
−CL

dL(t)

dt

− CH




dH(t)

dt
− 1




dCH(t)

dt
(H(t)−HH)

}

= −dCH(t)

dt
(H(t)−HH) > 0� �

Proof of Proposition 1. Conditional on a signal L, the low-income agent is re-
warded, as (28) states that L̂L > −1. Conditional on a signal H, both agents are pun-
ished, as (31) states that L̂H = ĤH <−1.

The trajectory (L(t)�H(t)) satisfies L(t) = H(t) when t ≥ N because dx/dt > 0
whenever x < 1. The auditing arrival rate p can be solved from dL/dt = dH/dt at L= H,
which is

(r +π)L−πH − ruL −p((1 −
)LL +
LH −L)= rH − rbuL −p(HH −H)�
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Note that when L=H,

HH −H

(1 −
)LL +
LH −L
= ĤH − (−1)

(1 −
)L̂L +
L̂H − (−1)

=
1 − 1

1+(1−1/
)ρĉ′(1)

1 − (1−
)
1+ρĉ′(1) − 


1+(1−1/
)ρĉ′(1)

= 1 + ρĉ′(1)
ρĉ′(1)

=
−1 + b

1+ρ(1−b)ĉ′(1)

−1 + 1
1+ρ(1−b)ĉ′(1)

= −1 + bûL

−1 + ûL
= rH − rbuL

(r +π)L−πH − ruL
�

Hence when L = H, p is ((r + π)L − πH − ruL)/((1 − 
)LL + 
LH − L) =
(rH − rbuL)/(HH − H) > 0, which implies dL/dt = dH/dt = 0. The state is stationary
after N and before auditing arrives. �

Proof of Lemma 8. Given the initial promised utilities (L�H), we need to verify that

(i) the cost of the contract implied by ĉx
∗∗
(·) is C(L�H)

(ii) the costs of other I.C. contracts are weakly higher than C(L�H).

We verify only (ii) here, since the proof for (i) can be obtained simply by replacing the
following inequalities with equalities.

Suppose that {(c̃H(t)� c̃L(t)� p̃(t)); t ≥ 0} is an I.C. contract. The proof that shows (26)
in Section 2.2.2 can be used to prove that

C(L�H) ≤
∫ ∞

0
e−(r+π)t−∫ t

0 p(ξ)dξ
(
πc(H̃(t))+ rc̃L(t)

+p(t)
(
(1 −
)C(L̃L(t)� H̃L(t))+
C(L̃H(t)� H̃H(t))+ γ

))
dt�

which can be rewritten equivalently as

C(L�H) ≤E

[∫ τ1

0
e−(r+π)t

(
πc(H̃(t))+ rc̃L(t)

)
dt

]

+E[e−rτ1γ] +E
[
e−rτ1C(L̃(τ1)� H̃(τ1))

]
�

where τ1 is the first auditing time and (L̃(τ1)� H̃(τ1)) is the after-auditing state vector
contingent on the signal at τ1 (i.e., it is either (L̃L� H̃L) or (L̃H� H̃H)). Inductively, we
obtain

C(L�H) ≤E

[∫ τn

0
e−(r+π)t

(
πc(H̃(t))+ rc̃L(t)

)
dt

]

+E

[
n∑

i=1

e−rτiγ

]
+E

[
e−rτnC(L̃(τn)� H̃(τn))

]
�
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where τn is the nth auditing time. Without loss of generality, we may assume that
limn→∞ τn = ∞ almost surely (otherwise, the principal audits infinitely many times in
finite time and the auditing cost is infinity). Hence taking limit n → ∞ in the above
inequality and applying Lemma 11 yield

C(L�H) ≤ E

[∫ ∞

0
e−(r+π)t

(
πc(H̃(t))+ rc̃L(t)

)
dt

]
+E

[ ∞∑
i=1

e−rτiγ

]
�

�

Proof of Lemma 9. If H/L≤ x∗∗, it is easy to show that M(P) > C(L�H) because

P((1 −
)C(LL�HL)+
C(LH�HH)+ γ)+ (1 − P)C(L̄� H̄)

> P((1 −
)C(LL�x∗∗LL)+
C(LH�x∗∗LH)+ γ)+ (1 − P)C(L̄�x∗∗L̄)

≥ C(L�H)+ Pγ�

In the rest of the proof, we assume that H/L> x∗∗. Because C(L�H) is strictly convex in
{(L�H) :L < 0�x∗∗ ≤ H/L ≤ 1}, the optimal solution to (21) is unique and is denoted as
LL(P), HL(P), LH(P), HH(P), L̄(P), H̄(P).

First, we show that the objective M(P) is a strictly convex function of P . Suppose
θ ∈ (0�1) and P = θP1 + (1 − θ)P2, P1 �= P2. Then construct a solution for the problem
M(P) as

(L̃L� H̃L) = θP1

θP1 + (1 − θ)P2
(LL(P1)�HL(P1))+ (1 − θ)P2

θP1 + (1 − θ)P2
(LL(P2)�HL(P2))

(L̃H� H̃H) = θP1

θP1 + (1 − θ)P2
(LH(P1)�HH(P1))+ (1 − θ)P2

θP1 + (1 − θ)P2
(LH(P2)�HH(P2))

(L̄� H̄) = θ(1 − P1)

θ(1 − P1)+ (1 − θ)(1 − P2)
(L̄(P1)� H̄(P1))

+ (1 − θ)(1 − P2)

θ(1 − P1)+ (1 − θ)(1 − P2)
(L̄(P2)� H̄(P2))�

The strict convexity of C(L�H) implies that

M(P) ≤ P((1 −
)C(L̃L� H̃L)+
C(L̃H� H̃H)+ γ)+ (1 − P)C(L̄� H̄)

< P(1 −
)

(
θP1

θP1 + (1 − θ)P2
C(LL(P1)�HL(P1))

+ (1 − θ)P2

θP1 + (1 − θ)P2
C(LL(P2)�HL(P2))

)

+ P


(
θP1

θP1 + (1 − θ)P2
C(LH(P1)�HH(P1))

+ (1 − θ)P2

θP1 + (1 − θ)P2
C(LH(P2)�HH(P2))

)

+ (1 − P)

(
θ(1 − P1)

θ(1 − P1)+ (1 − θ)(1 − P2)
C(L̄(P1)� H̄(P1))
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+ (1 − θ)(1 − P2)

θ(1 − P1)+ (1 − θ)(1 − P2)
C(L̄(P2)� H̄(P2))

)
+ Pγ

= θ
(
P1

(
(1 −
)C(LL(P1)�HL(P1))+
C(LH(P1)�HH(P1))+ γ

)
+ (1 − P1)C(L̄(P1)� H̄(P1))

)
+ (1 − θ)

(
P2

(
(1 −
)C(LL(P2)�HL(P2))+
C(LH(P2)�HH(P2))+ γ

)
+ (1 − P2)C(L̄(P2)� H̄(P2))

)
= θM(P1)+ (1 − θ)M(P2)�

Second, we show that M(P) > C(L�H) =M(0) for all P > 0. Because M(P) is strictly
convex, it is sufficient to prove that M ′(0) ≥ 0. To finish the proof, we show that

M ′(0) = γ − M(ĉ′(x)�x) ≥ 0� where x = H

L
�

Denote the Lagrangian multipliers on constraints (22) and (23) as ξL(P) and ξH(P), re-
spectively. Then the first-order conditions are

M ′(P) = (
(1 −
)C(LL(P)�HL(P))+
C(LH(P)�HH(P))+ γ −C(L̄(P)� H̄(P))

)
− (

ξL(P)((1 −
)LL(P)+
LH(P)− L̄(P))+ ξH(P)(HH(P)− H̄(P))
)

ξL(P) = CL(LL(P)�HL(P)) = CL(LH(P)�HH(P)) = CL(L̄(P)� H̄(P))

0 = CH(LL(P)�HL(P))

ξH(P)



= CH(LH(P)�HH(P))

ξH(P) = CH(L̄(P)� H̄(P))�

Since limP→0 L̄(P) = L, limP→0 H̄(P) =H, these first-order conditions imply

lim
P↓0

M ′(P) = ((1 −
)C(LL�HL)+
C(LH�HH)+ γ −C(L�H))

− (
CL(L�H)((1 −
)LL +
LH −L)+CH(L�H)(HH −H)

)
= γ − M(ĉ′(x)�x)�

where the second equality follows from (32). �

Lemma 10. When H > L, the trajectories implied by the candidate solution satisfy
dL/dt < 0, dH/dt < 0, dCL/dt = 0, and dCH/dt < 0.

Proof. (i) Because x < 1, ûL = 1/(1 + ĉ′(x)ρ(x − b)) < 1, and L < 0, then dL/dt =
(r +π −πx− rûL)L < 0.

(ii) Because L< 0 decreases and x > 0 increases with t, then H =Lx decreases with t.
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(iii) It follows from C(L�H) = c(L) + ĉ(x) that CH = ĉ′(x)/L�CL = −1/(ρL) −
ĉ′(x)x/L. Hence

dCH

dt
=

dĉ′(x)
dt L− ĉ′(x)(r +π −πx− rûL)L

L2

=
((

π

ρ

(
1
x

− 1
)

+ ĉ′(x)(r + 2π − rûL − 2πx)
)
L

− ĉ′(x)(r +π −πx− rûL)L

)/
L2

= π(1 − x)

L

(
1
ρx

+ ĉ′(x)
)

< 0�

(iv) Because CL = −1/(ρL)−CHx, we have

dCL

dt
= (r +π −πx− rûL)L

ρL2 −CH(r(x− b)ûL +π(x− 1)x)− dCH

dt
x

= r +π −πx− rûL − ρĉ′(x)(r(x− b)ûL +π(x− 1)x)
ρL

− π(1 − x)

L

(
1
ρx

+ ĉ′(x)
)
x

= 0� �

Lemma 11. (i) In the model with no auditing, if the cost of an I.C. contract {(cH(t)�

cL(t)); t ≥ 0} is finite, then

lim
T→∞

e−(r+π)TC(L(T)�H(T)) = 0�

(ii) In the model with auditing, if the cost of an I.C. contract {(cH(t)� cL(t)�p(t)); t ≥ 0}
is finite, then

lim
T→∞

E
[
e−rTC(L(T)�H(T))

] = 0�

Proof. The proof for part (ii) is similar to part (i), but much simpler because the distor-
tion function ĉx

∗∗
(·) is bounded with auditing. We only prove part (i).

Recall that the upper bound for ĉx
∗
(·) is

H(d̄(x)�x)

= 1
r +π

(
− 1
ρ
(r +π −πx− rûL)+ rc(−ûL)+πc(−x)

)

= 1
r +π

(
− 1
ρ
(r +π −πx− rûL)+ rc

(
−π(1 − x)b

r(x− b)

)
+πc(−x)

)



278 Ravikumar and Zhang Theoretical Economics 7 (2012)

= 1
r +π

(
− 1
ρ
(r +π −πx− rûL)+ rc

(
− πb

r(x− b)

)
+πc(−x)

)

− r

ρ(r +π)
log(1 − x)�

There is a lower bound for the costs of all I.C. contracts delivering (−1�−x). Since all
such contracts satisfy

−1 =
∫ ∞

0
e−(r+π)t(πH(t)+ ruL(t))dt (33)

−x ≥
∫ ∞

0
e−(r+π)t(πH(t)+ rbuL(t))dt� (34)

we may solve a relaxed problem in which only (33) and (34) are imposed. The cost c(x)
from this problem serves as a lower bound. If x < (π + rb)/(r +π), the constraint (34) is
slack and

H(t) = uL(t) = −1 ∀t ≥ 0�

Otherwise, (34) binds and

H(t) = r +π

π

b− x

1 − b
� uL(t) = r +π

r

x− 1
1 − b

∀t ≥ 0�

Hence when x ∈ [(π + rb)/(r +π)�1),

c(x) = π

r +π
c

(
r +π

π

b− x

1 − b

)
+ r

r +π
c

(
r +π

r

x− 1
1 − b

)

= π

r +π
c

(
r +π

π

b− x

1 − b

)
+ r

r +π
c

(
r +π

r

−1
1 − b

)
− r

ρ(r +π)
log(1 − x)�

It follows from the two bounds that H(d̄(x)�x)− c(x) is bounded by some B > 0.
For any I.C. contract with finite cost, the promise-keeping constraint and finite cost

imply that

lim
T→∞

e−(r+π)TL(T) = 0

lim
T→∞

∫ ∞

T
e−(r+π)t

(
πc(H(t))+ rcL(t)

)
dt = 0�

Then,

lim
T→∞

e−(r+π)T
(
c(L(T))+ ĉx

∗
(x(T))

)
≤ lim

T→∞
e−(r+π)T

(
c(L(T))+ H(d̄(x)�x)

)
≤ lim

T→∞
e−(r+π)T

(
c(L(T))+ c(x(T))+B

)
≤ lim

T→∞

∫ ∞

T
e−(r+π)t

(
πc(H(t))+ rcL(t)

)
dt + lim

T→∞
e−(r+π)TB = 0�
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where the second inequality follows from the choice of B and the third inequality follows
from the fact that c(L(T)) + c(x(T)) is a lower bound for the cost of the continuation
contract that delivers (L(T)�L(T)x(T)). On the other hand,

lim
T→∞

e−(r+π)T
(
c(L(T))+ ĉx

∗
(x(T))

) ≥ lim
T→∞

e−(r+π)T c(L(T))

≥ lim
T→∞

e−(r+π)T L(T)

ρ
= 0�

We conclude that limT→∞ e−(r+π)TC(L(T)�H(T)) = 0. �

Lemma 12. In the model with no auditing, if the cost of an I.C. contract {(cH(t)� cL(t));
t ≥ 0} is finite, then

X(T) ≤ C(L(T)�H(T)) for all T ≥ 0� (35)

where

X(T) ≡ C(L(0)�H(0))+
∫ T

0
CL(L(t)�H(t))((r +π)L(t)−πH(t)− ruL(t))dt

+
∫ T

0
CH(L(t)�H(t))(rH(t)− rbuL(t))dt�

Proof. Fix a T > 0. First we find a compact subset G of the domain of the cost function
that contains the path {(L(t)�H(t)) : 0 ≤ t ≤ T }. The promise-keeping constraint implies
that L(·) is continuous in t. The finite cost of the contract implies that max0≤t≤T x(t) < 1,
because otherwise the lower bound in Lemma 11 implies that the cost is infinity. Define

G≡
{
(l�h) ∈ R

2 : min
0≤t≤T

L(t) ≤ l ≤ max
0≤t≤T

L(t)�0 ≤ h

l
≤ max

0≤t≤T
x(t)

}
�

Because CL(·� ·) and CH(·� ·) are continuous functions, let M > 0 be an upper bound for
them on the compact set G. Uniform continuity on G states that for any ε > 0, there
exists a δ > 0, such that if |(l1�h1)− (l2�h2)| ≤ δ, then

|CL(l1�h1)−CL(l2�h2)| ≤ ε� |CH(l1�h1)−CH(l2�h2)| ≤ ε�

Second, we show that both L(·) and H(·) are of bounded variation on [0�T ]. The
function L(·) is absolutely continuous, hence it has bounded variation. Incentive con-
straints imply that

V +(T) = sup

{
n−1∑
i=1

(H(ti+1)−H(ti))
+ : {t1� � � � � tn} is a partition of [0�T ]

}

is finite. Because H(·) is a bounded function, it follows from H(T) − H(0) = V +(T) −
V −(T) that V −(T) is also finite. Hence H(·) has bounded variation.

Third, we choose a partition {t1� � � � � tn}, 0 = t1 < t2 < · · · < tn = T of [0�T ] that is fine
enough such that in any interval [ti� ti+1], either the total variations of L(·) and H(·) are
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less than δ (then [ti� ti+1] is called a type 1 interval) or H(·) has a discrete jump larger
than δ (called a type 2 interval). Furthermore, the total variation excluding the discrete
jumps in all the type 2 intervals can be made less than ε. Then

C(L(T)�H(T))−C(L(0)�H(0))

=
n−1∑
i=1

C(L(ti+1)�H(ti+1))−C(L(ti)�H(ti))

=
n−1∑
i=1

CL(Li�Hi)(L(ti+1)−L(ti))+CH(Li�Hi)(H(ti+1)−H(ti))�

where Li ∈ [L(ti)�L(ti+1)] and Hi ∈ [H(ti)�H(ti+1)] exist because of the mean value the-
orem. Hence

n−1∑
i=1

CL(Li�Hi)(L(ti+1)−L(ti))+CH(Li�Hi)(H(ti+1)−H(ti))

≥
∑

i∈type 1

∫ ti+1

ti

(
CL(Li�Hi)dL(t)+CH(Li�Hi)(rH(t)− rbuL(t))dt

) − 2Mε

≥
∑

i∈type 1

∫ ti+1

ti

((
sup

t∈[ti�ti+1]
CL(L(t)�H(t))− ε

)
dL(t)

+
(

sup
t∈[ti�ti+1]

CH(L(t)�H(t))− ε
)
(rH(t)− rbuL(t))dt

)
− 2Mε

≥
n−1∑
i=1

∫ ti+1

ti

((
sup

t∈[ti�ti+1]
CL(L(t)�H(t))− ε

)
dL(t)

+
(

sup
t∈[ti�ti+1]

CH(L(t)�H(t))− ε
)
(rH(t)− rbuL(t))dt

)
− 2Mε− 2(M + ε)ε

≥
∫ T

0

(
CL(L(t)�H(t))dL(t)+CH(L(t)�H(t))(rH(t)− rbuL(t))dt

)

− ε(L(T)−L(0))− ε

∫ T

0
(rH(t)− rbuL(t))dt − 2Mε− 2(M + ε)ε�

Since the inequality holds for all ε > 0, (35) is true. �

Lemma 13. Assume CRRA preferences and the same auditing technology as in Section 3.
The optimal auditing probability is close to zero when L0 is either extremely high or ex-
tremely low.

Proof. When L0 is high, consider a no-auditing I.C. contract in which cH(t) and cL(t)

are independent of t, cH − cL =wH −wL, and

ru(cL)+πu(cH)

r +π
= L0�
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The difference between the cost of this contract, (rcL + πcH)/(r + π), and that of the
full-information constant consumption, c(L0), is the risk premium, which can be easily
verified to approach zero when L0 → ∞ because the absolute risk aversion approaches
zero. Hence the principal does not need to audit with large probability when L0 is large.

The lowest utility that the principal can deliver to the agent is L ≡ (ru(0) +
πu(wH − wL))/(r + π). This is because the agent’s consumption must be nonnegative
and, hence, the high-income agent can consume at least wH −wL by underreporting.

When L0 is close to L, consider again the above no-auditing I.C. contract in which
cH − cL =wH −wL and

ru(cL)+πu(cH)

r +π
= L0�

Because cL ≈ 0, the cost of this no-auditing contract, (rcL + πcH)/(r + π), is close to
π(wH − wL)/(r + π), which is a lower bound for the costs of all I.C. contracts. To see
that π(wH − wL)/(r + π) is a lower bound, note that the high-income agent’s contin-
uation utility must be greater than or equal to u(wH − wL), as the low-income agent’s
consumption must be nonnegative. Hence the principal does not need to audit with
large probability when L0 is close to L. �
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